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Abstract: We compute the baryon asymmetry created in a tachyonic electroweak symme-

try breaking transition, focusing on the dependence on the source of effective CP-violation.

Earlier simulations of Cold Electroweak Baryogenesis have almost exclusively considered a

very specific CP-violating term explicitly biasing Chern-Simons number. We compare four

different dimension six, scalar-gauge CP-violating terms, involving both the Higgs field and

another dynamical scalar coupled to SU(2) or U(1) gauge fields. We find that for sensible

values of parameters, all implementations can generate a baryon asymmetry consistent with

observations, showing that baryogenesis is a generic outcome of a fast tachyonic electroweak

transition.
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1 Introduction

Cold Electroweak Baryogenesis attempts to explain the observed baryon asymmetry in the

Universe by postulating that the process of electroweak symmetry breaking was a cold

spinodal transition [1–4]. This is possible if the Higgs field φ is coupled to another field,

whose dynamics triggers symmetry breaking only after the Universe has cooled below the

electroweak scale [3, 5–7]. In such a cold transition, a baryon asymmetry is created in

the presence of CP-violation, as the out-of-equilibrium conditions required for successful

baryogenesis are provided by the exponentially growing IR modes of the spinodal (Higgs)

field. C and P violation follow from the electroweak sector of the Standard Model. As

for traditional (hot) electroweak baryogenesis, the CP-violation arising from the Standard

Model CKM matrix is insufficient [8–10]. Sources of CP-violation beyond the Standard

Model must therefore be part of the scenario.

In a series of recent papers [11–13], using classical lattice field theory simulations we

have studied the effect of relaxing a sequence of assumptions of the original work [4, 14–16].

This includes the dependence on the speed of the spinodal transition [13], the impact of

U(1) hypercharge gauge fields on the asymmetry [12], and the effect of replacing a “by-

hand” mass-flip of the Higgs field by a portal coupling to a new dynamical field σ [11].

In the present work, we relax one final assumption, namely the introduction of CP

violation through one specific dimension-6 term

S2,φ =
3δ2,φg

2

16π2m2
W

∫
dt d3xφ†φTrWµνW̃µν , (1.1)
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with Wµν the field strength tensor of the SU(2) gauge field and W̃µν = 1
2εµνρσW

ρσ. The

dimensionless constant δ2,φ is a measure of the magnitude of CP-violation, and could in

principle be derived from matching this effective term to some underlying theory. φ†φ is

manifestly C and P even, and WW̃ is C even, but P odd. The common feature of all

electroweak baryogenesis scenarios is that the baryon asymmetry arises from generating a

non-zero value of Chern-Simons number

Ncs,SU(2)(t)−Ncs,SU(2)(0) =
g2

16π2

∫ t

0
dt d3xTrWµνW̃µν , (1.2)

since baryon number then changes according to the chiral anomaly

3[Ncs,SU(2)(t)−Ncs,SU(2)(0)] = B(t)−B(0). (1.3)

It is clear that the term (1.1) has a very special standing, in that by partial integration

and assuming that φ is approximately constant in space, one gets

S2,φ ' −
3δ2,φ

m2
w

∫
dt ∂0(φ†φ)Ncs,SU(2). (1.4)

As soon as φ changes in time, an effective bias is introduced precisely for the Chern-Simons

number which then generates a baryon asymmetry.

In a more generic model, one would expect CP-violation to be present in the system,

but not as an explicit bias in this way. More likely, during the transition CP-violation forces

the complete set of fields to favour CP-violating configurations, and in such a background,

Chern-Simons number is effectively biased to a non-zero expectation value.

Modelling the Standard Model through an effective bosonic theory including only the

Higgs field φ and SU(2) gauge field Wµ, Eq. (1.1) is the natural lowest order CP-violating

term (although not the only one, see [10]). But including also U(1) gauge fields and a

symmetry-triggering scalar σ, as necessary for achieving a cold tachyonic transition (see

below), other possibilities arise, including

S2,σ =
3δ2,σg

2

16πm2
W

∫
dt d3x ξ2σ2 TrWµνW̃µν , (1.5)

S1,φ =
3δ1,φ(g′)2

32πm2
W

∫
dt d3xφ†φBµνB̃µν , (1.6)

S1,σ =
3δ1,σ(g′)2

32πm2
W

∫
dt d3x ξ2σ2BµνB̃µν , (1.7)

with Bµν the U(1) (hypercharge) gauge field strength. New parameters δ2,σ, δ1,φ, δ1,σ, are

introduced representing the magnitude of CP-violation. ξ is a dimensionless portal coupling

to be defined below. Whereas the first of these terms again biases Ncs,SU(2) (a primary bias,

in our terminology), the next two bias another CP-odd observable (the U(1)-Chern-Simons

number)

Ncs,U(1)(t)−Ncs,U(1)(0) =
(g′)2

32π2

∫ t

0
dt d3xBµνB̃µν , (1.8)
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which then through the field dynamics potentially biases Ncs,SU(2) (a secondary bias).

Establishing whether, and under what conditions, such a secondary bias is able to

generate sufficient baryon asymmetry is the purpose of this work. Clearly, secondary bias

is the most generic source of CP-violation and, if successful, opens up new paths of model

building for this baryogenesis scenario. A combination of the two was considered in [17–19]

for the 2-Higgs doublet model where, instead of (1.1), the authors considered

S2hdm =
3δ2hdmg

2

16πm2
W

∫
dt d3x (φ†1φ2 − φ†2φ1)Tr WµνW̃µν . (1.9)

This works as a primary bias, breaks both C and P, but conserves CP. In addition, it

is then necessary to include C-violation in the 2-Higgs potential, effectively to bias the

combination φ†1φ2 − φ†2φ1 to be nonzero. This was seen to generate a large enough baryon

asymmetry to match observations [17, 18].

In the following section 2, we present our model: the bosonic part of the electroweak

sector of the Standard Model, coupled to a singlet scalar. We further discuss the four

different CP-violating terms that we will consider, and present some discussion about CP-

odd observables and how they are related. In section 3 we give a brief overview of Cold

Electroweak Baryogenesis and show a few examples of the behaviour of the observables. In

section 4 we then compare the asymmetries resulting from each of the four CP-violating

terms and when some of them are combined. We also comment on the effect of a constant

(in time and space) bias of Ncs,SU(2), and lattice discretization effects. We conclude in

section 5.

2 Model

Building on the work of [11], we consider the bosonic part of the Standard Model elec-

troweak sector, extended by a singlet scalar σ coupled to the Higgs field φ. The action

reads:

S =

∫
dt d3x

[
−1

2TrWµνWµν − 1
4B

µνBµν − (Dµφ)†Dµφ+ µ2φ†φ− λ
(
φ†φ
)2 − µ4

4λ

−1
2∂µσ∂

µσ − m2

2 σ
2 − 1

2ξ
2σ2φ†φ

]
+ SCP, (2.1)

where for the SU(2) gauge field, we have Wµν = ∂µWν−∂νWµ−ig[Wµ,Wν ], Wµ = W a
µσ

a/2

with σa the Pauli matrices, and similarly for the U(1) hypercharge field Bµν = ∂µBν−∂νBµ.

The covariant derivative is given by

Dµφ =
(
∂µ − iY g′Bµ − igWµ

)
φ, (2.2)

with Y = −1/2 for the Higgs field.

We have explicitly put in the Higgs vacuum expectation value v = 246 GeV, the

Higgs self-coupling λ = µ2/v2 = m2
H/(2v

2) ' 0.13, and the gauge couplings g = 0.65 and

g′ = 0.35. This corresponds to mH = 125 GeV, mW = 80 GeV, and mZ = 91 GeV. In
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addition, we have the free parameters of the σ-φ potential, m2 and ξ. We have chosen a very

simple potential form, ignoring cubic and quartic σ self-interactions and the cubic portal

coupling. This is just for simplification and to match [11]. Engineering the σ-potential to

have more features (non-zero expectation values in the vacuum, away from the vacuum)

may have implications for the baryon asymmetry.

We will stick to the quadratic form indicated in (2.1). In the language of [11], we will

consider a fast (mH/m = 4 and ξ = 2.04) and slow (mH/m = 32 and ξ = 0.254) quench

at n = 8, where n indicates the total energy in the system through

Vtot = V0

(
1 +

1

n2

)
=
µ4

4λ

(
1 +

1

n2

)
. (2.3)

For n = 8, the energy initially stored in the non-zero σ field is therefore negligible (about

1%) compared to V0, the potential energy density from the Higgs potential itself at φ = 0,

σ = 0. For more details of this point, we refer the reader to [11].

As advertised in the introduction, we will consider four different effective bosonic

dimension-6 terms playing the role of SCP. In previous work, we found that a baryon

asymmetry consistent with observations corresponds to δ2,φ ' 10−5, with some dependence

on the speed of the symmetry breaking quench [11].

The full Standard Model includes all the fermions as well, with CP-violation encoded in

the CKM-matrix. It is tempting to expect that when integrating these out, CP-violation

would be recovered as terms of the form (1.1), (1.5). This is true in terms of the field

content, but the structure of the effective terms is rather more complex [10]. Also, the

magnitude of the coefficients δi,j is much too small to be responsible for baryogenesis,

unless the effective temperature during the transition is less that 1 GeV [10], which does

not seem to be the case [20].

So for our purposes, although we do expect that such effective terms arise from integrat-

ing some heavier degrees of freedom, they are just generic representatives of CP-violation

providing primary and secondary bias.

2.1 Observables

As we have no fermions explicitly in the system, we rely on the chiral anomaly relation

(1.3) to infer the baryon asymmetry. But in fact, in the presence of U(1) gauge fields in

addition to the SU(2) gauge fields, the full chiral anomaly is the sum of two contributions

B(t)−B(0) = 3
[
Ncs,SU(2)(t)−Ncs,SU(2)(0)

]
− 3

[
Ncs,U(1)(t)−Ncs,U(1)(0)

]
. (2.4)

Usually, this complication is ignored, as one is interested in permanent changes of the

Chern-Simon number. For the SU(2) gauge theory, the vacuum structure consists of a

series of gauge equivalent vacua with integer Chern-Simons number. Hence, going from

one minimum to the next produces net baryon number, and this asymmetry can remain at

late times and low temperatures. The vacuum structure for the U(1) gauge field is trivial,

with a single vacuum at Ncs,U(1) = 0. This means that although during the process, U(1)

Chern-Simons number may be biased to one side, ultimately it will relax back to zero,

restoring the simple form (1.3).
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As a further proxy for the baryon asymmetry, we note that the Higgs field winding

number

Nw =
1

24π2

∫
d3xεijkTr[(U †∂iU)(U †∂jU)(U †∂kU)], (2.5)

with U(x) = (iτ2φ
∗, φ)/φ†φ, in a “pure-gauge” vacuum obeys

Nw = Ncs,SU(2). (2.6)

This follows from the minimization of the covariant derivative, when Bµ = 0. But more

generally, we have the relation

Nw ' Ncs,SU(2) −Ncs,U(1), (2.7)

a relation we will confirm numerically below. Because Nw is integer (up to lattice artefacts)

and therefore a much less noisy numerical observable, we will make the identification at

late times

B(t)−B(0) = 3[Nw(t)−Nw(0)]. (2.8)

In our simulations we will average the observables over an initially CP-symmetric en-

semble of field realisations, initialised to reproduce the correlation functions of the quantum

vacuum [21, 22]. The dynamics themselves follow the classical equations of motion, as de-

rived from the full lagrangian. The detailed numerical lattice implementation may be found

elsewhere [4].

To track the progress of the transition, we will often plot the average Higgs field

〈φ2〉 =
1

V

∫
d3xφ†φ(x), (2.9)

and σ field

〈σ〉 =
1

V

∫
d3xσ(x), (2.10)

also averaged over the ensemble.

3 Cold Electroweak Baryogenesis

Detailed expositions of many aspects of the Cold Electroweak Baryogenesis scenario is

available in the literature [4, 23]. In brief, the non-Standard Model degree of freedom σ is

assumed to start out at a value σi > σc = µ/ξ, and to roll down its potential to σ = 0. In

doing so, the mass parameter of the Higgs field changes sign, with

µ2
eff(t) = ξ2σ2(t)− µ2. (3.1)

We will take σi =
√

2σc, in such a way that µ2
eff goes from +µ2 initially to −µ2 asymptot-

ically at late times. Although the exact trajectory by which this happens will depend on

the parameters of the model, ultimately this will result in electroweak symmetry breaking.
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While µ2
eff(t) < 0, momentum modes of the Higgs field with k2 + µ2

eff(t) < 0 grow

exponentially, a process known as spinodal transition or tachyonic preheating. The result

is that the energy in the initial Higgs potential is transferred to particles in the IR (k < µ)

of the spectrum. The instability itself, but also the subsequent redistribution of energy

into the UV, are strongly out of equilibrium processes, suitable for generating a baryon

asymmetry.

The speed of the transition may be expressed as

u = − 1

2µ3

dµ2
eff

dt
|µ2

eff=0 ≡
1

µτq
, (3.2)

with τq a characteristic quench time. We found in [13] for the exact same model considered

here the relation τq ' 1.3m−1, and so from now on, we will express the quench time in

terms of the dimensionless ratio mH/m ' 0.8mHτq ' 1.1/u. The maximum asymmetry

occurs for quench times mH/m ' 30, whereas very fast quenches with mH/m ' 0, most

favoured by model-building, give an asymmetry of the opposite sign and a factor of 3-4

smaller in magnitude [11, 13].

A more detailed analysis of the field configurations arising in such a transition shows,

that an asymmetry is generated first as the Chern-Simons number is biased to one side by

CP-violation, and that subsequently the Higgs winding number changes to accommodate

this. And that this happens most readily when there are many points in space with

φ†φ(x) ' 0 [23].

In Fig. 1, we show the basic observables during the transition, averaged over the

ensemble of initial conditions. The quench time is chosen to be mH/m = 32, and so until

mHt ' 25, the Higgs field is stable at φ2 = 0. Then as the effective mass parameter µ2
eff

becomes negative, the Higgs field grows from zero to near the vacuum expectation value

φ2/v2 = 1/2, after which it oscillates with a decreasing amplitude.

Meanwhile, the SU(2) Chern-Simons number (1.2), Higgs winding number (2.5) and

U(1) Chern-Simons number (1.8) deviate from zero average in a complicated way under the

influence of CP-violation (here, (1.1). The Chern-Simons number moves first, but for Nw,

most of the motion happens near mHt = 40 and 55, when the Higgs field is at a minimum

in its oscillation. This is when many local zeros of the Higgs field are present.

By time mHt = 90, the Higgs field has settled, and the Higgs winding number is

completely frozen in. In principle, equilibrium Sphaleron processes could trigger a change in

winding and Chern-Simons number, but at an effective temperature way below the critical

temperature of the electroweak phase transitions (about 40 GeV compared to Tc = 160

GeV [24]) this is completely negligible.

It is a generic feature that the largest asymmetry is created for parameter values giving

the largest number of Higgs zeros. In Fig. 2, we show the average Higgs field squared (left)

and the singlet field (right) for a number of transition speeds. We see that the Higgs field

increases as the transition is triggered, but then oscillates back to a minimum.The value

of this minimum decreases with increasing quench time up to mH/m = 32, after which it

increases again.
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Figure 1. The Higgs and σ fields and the CP-odd observables in a typical simulation, averaged

over an ensemble of 50 CP-conjugate pairs.
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Figure 2. The Higgs (left) and singlet (right) fields early in the transition for a range of transition

speeds.

Returning to Fig. 1, we find that Chern-Simons numbers individually do not seem to

match the winding number very well, as would be expected for a pure-gauge field configura-

tion. In Fig. 3, we show the same observables in the same simulation, but for much longer

time. In the left-hand plot, we see the two Chern-Simons numbers separately, whereas in

the right-hand plot, we have added them up as in (2.4). We see that the relation (2.7)

applies. We have checked that for very long times, Ncs,U(1) indeed goes to zero, so that

Nw = Ncs,SU(2) is restored as a simple proxy for the baryon asymmetry. In what follows,
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Figure 3. The CP-odd observables in a typical simulation, with Ncs,SU(2) and Ncs,U(1) separately

(left) and added up (right).

we will use the value of Nw at the end of the simulation as our primary observable.

4 Comparing sources of CP-violation

The numerical procedure is then for each of the four CP-violating terms to vary the coeffi-

cients δi,j for the two different quench speeds mH/m = 4 (fast) and mH/m = 32 (slow), but

otherwise keeping parameters fixed. The lattice size 643 and lattice spacing amH = 0.375

are kept fixed unless explicitly stated otherwise. The ensemble members are randomly gen-

erated, and we use different random seeds for different simulations. The ensembles each

consist of 400 CP-conjugate pairs. For each pair of CP-conjugate configurations, we record

whether the final values of Nw cancel to zero (one is minus the other). If not, we say that

the pair has performed a “flip”. Flipped pairs usually add up to ±1, but instances of ±2

and 3 were observed. Statistics and errors are based on the frequency of flips.

4.1 SU(2)-type CP-violation

In Fig. 4 we show the final asymmetry in Nw for the two CP-violating terms involving the

SU(2) gauge fields. In our terminology, they both represent a primary bias of Chern-Simons

number. We show four separate cases, corresponding to fast (top) and slow (bottom)

transitions, when the SU(2) field is coupled to the Higgs field (left) and when it is coupled

to the σ field (right).

Concentrating first on the SU(2)-Higgs case, we notice is that the asymmetry is positive

for slow quenches, and negative for fast quenches. For both quench times, the dependence

on δ2,φ is linear, but with a much larger magnitude for the slow quench. We can fit the

dependence with a 1-parameter form to find

〈Nw(t)−Nw(0)〉 = −(3.5± 0.7)× 10−3δ2,φ,
(
mH/m = 4, SU(2)− φ

)
(4.1)

= (48± 2)× 10−3δ2,φ,
(
mH/m = 32, SU(2)− φ

)
. (4.2)
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Figure 4. The asymmetry for the type of primary CP-violation involving SU(2) gauge fields.

Coupled to the Higgs field (left) and the singlet field (right). For fast (top) and slow (bottom)

transitions.

When replacing the Higgs field by the σ field, we anticipate that the prefactor of WW̃

(σ) is no longer (as) strongly correlated with the availability of Higgs zeros (in φ). But

also, because σ2 runs from finite positive to zero (so decreases in time), we expect the bias

and hence the asymmetry to have the opposite overall sign. We indeed see this, and also

that for a slow transition the asymmetry is reduced by a factor of about six compared to

the Higgs-SU(2) term (for values of δ2,σ similar to the δ2,φ above). This is sensible, since

the slow quench is specifically tuned to a maximum of Higgs zeros, rather than for instance

where the CP-violating term is maximal. We see that for a fast transition, which does

not optimize the availability of Higgs zeros, we get an asymmetry of the roughly the same

magnitude, whether through Higgs-SU(2) or σ-SU(2).

We may again fit with a linear relation, to find

〈Nw(t)−Nw(0)〉 = (10± 1)× 10−3δ2,σ,
(
mH/m = 4, SU(2)− σ

)
(4.3)

= −(6.9± 0.7)× 10−3δ2,σ,
(
mH/m = 32, SU(2)− σ

)
. (4.4)

A rescaling of ξ or σ naively corresponds to changing δ2,σ, and so a priory, it is unclear

why the asymmetries should match in magnitude for the same values of δ2,σ. But since

ξσi = µ =
√
λv it is perhaps not so surprising that the order of magnitude is the same.
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Figure 5. The asymmetry for the type of CP-violation involving U(1) gauge fields. Coupled to

the Higgs field (left) and the singlet field (right). For fast (top) and slow (bottom) transitions.

What is remarkable is that the change in sign between fast and slow quenches remains.

This really seems to be a generic feature of the process, distinguishing between fast and

slow transition regimes.

Generalizing to a much broader class of σ potentials, it is possible to engineer the σ

to increase from zero to a non-zero vev. From one vev to another. Or to/from a very

large/small amplitudes. In each case, one will get a different asymmetry, which then again

corresponds to a differently value of δ2,σ and possibly a flipping of the sign, depending on

when whether the σ increases or decreases in magnitude.

4.2 U(1)-type CP-violation

In Fig. 5 we show a similar set of results, in the case where the gauge field in the CP-

violating term is U(1) hypercharge. Now we have a situation where while the transition

occurs, a U(1) gauge field is generated with non-zero Chern-Simons number, which then

relaxes back to zero once the transition is over and thermalization completes. But while

this Chern-Simons number is non-zero, the SU(2) gauge field and the Higgs field evolve in

a (C)P-breaking background, leading to flips and a net asymmetry. That could in principle

also relax back to zero, but because of the vacuum structure with high potential barriers

in the low-temperature phase, leading to exponential suppression of Sphaleron transitions,
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once equilibrium is re-established the relaxation process takes longer than the age of the

Universe.

As for Fig. 4, we show in the two lefthand panels the case where the bias is due to a

coupling to the Higgs field. And in the right-hand panels, when we couple to the σ field.

The top panels are for a fast quench, mH/m = 4 and the bottom panels for a slow quench

mH/m = 32. For each panel, we show the dependence on the strength of CP-violation.

We first note that the overall asymmetry of the U(1)-Higgs has the opposite sign to

the SU(2)-Higgs system for positive δi,j (with our sign conventions, (1.1), (1.5)). And the

U(1)-σ system has the opposite sign to the SU(2)-σ system. Also, for the same values of

δi,j , the asymmetry in the U(1)-type systems is about an order of magnitude smaller than

for the equivalent SU(2)-type terms of Fig. 4. This is a question of normalization of the

variables and prefactors of the CP-violating operator, but also indicates that the values of

BB̃ are numerically smaller.

For the fast quenches, both couplings to Higgs and σ produce no statistically signifi-

cant asymmetry. This may indicate that the asymmetry is in general very small for fast

quenches, but most likely it is because mH/m = 4 happens to be where the dependence

of the asymmetry on quench-time goes through zero on its way from positive to negative.

The detailed quench speed dependence for the SU(2)-Higgs system was explored in [11].

For technical reasons to do with the lattice size, we are not able to reliably simulate even

faster quenches (see again [13]).

For slow quenches, we again find a clear asymmetry for both Higgs and σ-coupling,

with a roughly linear dependence on the strength of CP-violation. Just as for the SU(2)-

type terms, the coupling to the Higgs field produces the largest asymmetry by a factor of

4-5. In terms of linear fits we find for the Higgs-U(1) term

〈Nw(t)−Nw(0)〉 = −(0.7± 1)× 10−4δ1,φ,
(
mH/m = 4, U(1)− φ

)
(4.5)

= −(37± 2)× 10−4δ1,φ,
(
mH/m = 32, U(1)− φ

)
. (4.6)

and for the σ-U(1)

〈Nw(t)−Nw(0)〉 = (0.7± 0.5)× 10−4δ1,σ,
(
mH/m = 4, U(1)− σ

)
(4.7)

= (4± 1)× 10−4δ1,σ,
(
mH/m = 32, U(1)− σ

)
. (4.8)

4.3 Adding up biases

Having computed the asymmetry from each of the four types of CP-violation, it is natural

to ask what happens when two or more terms are active at the same time. This may of

course be done in any number of different combinations, which different values of the four

δi,j . We will show one particular case here, namely

S2+1,φ =
3δ2+1,φ

m2
w

φ†φ

(
g2

16π2
Tr WµνW̃µν −

(g′)2

32π2
BµνB̃µν

)
, (4.9)

so that δ2,φ = −δ1,φ = δ2+1,φ = 6.8. By a similar argument to the one that led to (1.4), we

hence effectively bias the combination Ncs,SU(2)−Ncs,U(1), which again through the anomaly
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Figure 6. The asymmetry from combining two CP-violating terms. Left: When only one source

is on, and when two are on at the same time. Right: Comparing the sum of the two single-source

asymmetries to the double-source asymmetry.

equation is equal to the baryon number. We realise that this a very special choice, but it

is just meant as one example of combining CP-violating terms. Since we have seen that in

general, δ1,j must be about an order or magnitude larger than δ2,j to create the same size

asymmetry, we expect the contribution from the SU(2) term to dominate.

In Fig. 6, we show the time-dependence of the Higgs winding number for three simu-

lations, all at mH/m = 32. One run has only the Higgs-SU(2) term turned on (black line),

another has only the Higgs-U(1) term turned on (blue line). And the third has both turned

on simultaneously (red line). The bands around each curve correspond to one standard

deviation on the average. In the left-hand plot, we show the individual three asymme-

tries, which grow and settle, with the U(1)-only asymmetry clearly the smallest, and the

SU(2)-only asymmetry and SU(2)+U(1) asymmetry consistent within errors.

In the right-hand plot we compare the asymmetry from the combined run to the sum

of the other two runs, according to Ncs,SU(2) −Ncs,U(1). We see that the two agree within

error bars. It seems that at least in this linear regime of the individual terms, combining

multiple sources of CP-violation one may simply add up their individual contributions. No

significant enhancements or suppressions arise. Although note that we chose a combination

of terms precisely biasing the observable, we were intersted in. Whether for more generic

combinations, competing effects create more complicated non-linear effects remains to be

seen. Also, because the U(1) asymmetry is of the same order of magnitude as the statistical

errors, we do not have the accuracy to make very strong statements on this point.

4.4 Constant bias of SU(2) Chern-Simons number

Since WW̃ is already responsible for breaking CP (through breaking P) in the simulations,

one may imagine simply replacing the Higgs field by a constant, to get

S2 =
3δ2g

2

16π2m2
w

v2

2
TrWµνW̃µν =

6δ2

16π2
TrWµνW̃µν . (4.10)
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Figure 7. The asymmetry from a constant bias for (lattice) Ncs, for different lattice spacings with

the same physical volume.

For a classical simulation, this should however not provide any asymmetry, since WW̃

is a total derivative, and so drops out of the equation of motion1. However the lattice

implementation is not a total derivtaive at finite lattice spacing. Writing out the plaquette

Ux,µν = Ux,µUx+µ,νU
†
x+ν,µU

†
x,ν = e−iaµaνF

a
µν

σa

2
+O(a4) (4.11)

This gives us, for small lattice spacing

TrWµνW̃µν '
1

2
εµνρσTrUx,µνUx,ρσ =

1

2
εµνρσTr

[
(1− iaµaνF aµν

σa

2
−
a2
µa

2
ν

2
F aµν

σa

2
F bµν

σb

2
+ · · · )

×(1− iaρaσF aρσ
σa

2
−
a2
ρa

2
σ

2
F aρσ

σa

2
F bρσ

σb

2
+ · · · )

]
,

(4.12)

because of the antisymmetrization and the trace, what survives is

1

2
εµνρσTrUx,µνUx,ρσ = −1

2
εµνρσ

aµaνaρaσ
2

F bµνF
b
ρσ +O(a6). (4.13)

We find that to reduce lattice artefacts, it is necessary to symmetrize the plaquette as

Ūx,µν =
1

4

(
Ux,µν + Ux,−νµ + Ux,ν−µ + U−µ−ν

)
. (4.14)

In any case the lattice term is not a total derivative, but has corrections of relative error

expected to scale as O(a2).

We may therefore expect CP-violating effects from this term, going to zero quadrati-

cally with the lattice spacing. In Fig. 7 we compare simulations at equal physical volume,

but lattice spacings of amH = 0.375, 0.5, 0.75. We use a quench time of mHτq = 32 and

δ2 = 6.8. We show the time histories of the Higgs winding number (left) and a fit to a

1At the quantum level, the story is different
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purely quadratic dependence on lattice spacing (right). The fit is very convincing, confirm-

ing that the lattice artefacts contribute as expected. Also, the magnitude of the artefact

contribution, although non-negligible, is subdominant relative to the total asymmetry once

the dynamical Higgs field is reinstated. We note that all the above simulations were done

at amH = 0.375, where the artefacts contribution is ' −0.04. As an estimate, this can be

compared to the result for S2,φ at the same δ2,φ = 6.8 of 0.33, a systematic error of about

15%. But it does teach us that using a larger lattice spacing could introduce systematic

errors larger than the physical signal.

5 Conclusion

In a series of papers [11–13], we have gradually relaxed simplifying assumptions on the dy-

namics and field content of simulations of Cold Electroweak Baryogenesis. The results show

that the main findings of the original work [4, 15, 16] are correct: A baryon asymmetry is

produced in a tachyonic electroweak transition, as soon as CP-violation is present (primary

or secondary). This asymmetry can be consistent with observations for reasonable values

of the phenomenological dimensionless CP-violating parameters δi,j ' 10−5. The overall

sign depends on the speed of quench, so that fast quenches, “quench times” mH/m < 4,

produce one sign (negative, in our conventions, for SU(2)-Higgs), and slower quenches pro-

duce the opposite sign. For very slow quenches mH/m > 60, the asymmetry becomes very

small. The replacement SU(2)→U(1) flips the overall sign, and so does φ→ σ.

The quantity of interest for observations is the baryon-to-photon ratio, and for the

parameters used here, it is given by [11]

η =
nB
nγ

= 8.55× 10−4〈Nw〉, (5.1)

where 〈Nw〉 refers to the specific simulations and lattice parameters described above. A

sensible estimate is the to consider a fast quench for the SU(2)-Higgs term (4.3), for which

we find

η = −9× 10−6δ2,φ, (5.2)

and since the observed asymmetry is approximately η = 6 × 10−10, we require δ2,φ '
7 × 10−5. Or 5 times smaller if we allow ourselves to tune to the optimal quench speed

mH/m = 32.

This information can now be fed back to model building, where the largest caveat is how

to engineer a cold symmetry breaking transition in the first place, while still triggering a

fast enough quench. A few models exist on the market, where the σ field may be identified

with the inflaton [5] or not [6] with the associated constraints from observations. And

a more exotic scenario where the triggering is not due to a σ but a supercooled phase

transition [7, 25]. Much more work in this direction is required.

The second caveat is the origin of the CP-violation terms. The Standard Model does

not provide large enough CP-violation [10], but the Two-Higgs Doublet Model (2HDM)

might. If the Standard Model (or 2HDM or Standard Model+singlet) were a low-energy
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effective theory of something else, additional sources of CP-violation could be present from

integrating out heavy degrees of freedom.

This problem is not distinct from the lack of sufficient CP-violation in traditional (hot)

Electroweak Baryogenesis. However, in the hot regime around a finite-temperature elec-

troweak phase transition, temperature is around 160 GeV [24], which suppresses effective

CP-violation. In the cold regime, we instead experience temperatures between near-zero

(at the beginning) and up to 30-40 GeV after the transition.

Ultimately, the true effective CP-violation will arise from integrating out heavy de-

grees of freedom in an out-of-equilibrium environment, a computation that is hard to do

analytically. In time, one would want to perform fully 3-family simulations of the whole

SM + extensions with fermions, on large lattices with high statistics. Although the proof

of method exists [26], the numerical effort is vast.

For the moment, the highest priority seems to be to extend the set of viable and

not too fine-tuned super-cooling and triggering mechanisms and scenarios, embedded in

experimentally testable particle physics models. Since a fast triggering of Higgs symmetry

breaking requires a sizeable coupling to whatever fundamental or composite BSM degree of

freedom in whatever way, constraints from zero-temperature Higgs collider physics will be

important. Standard portal couplings to what could be a Dark Sector could in turn connect

baryogenesis to Darkmattergenesis, which could itself be based on a tachyonic transition

or a more traditional first order phase transition. Getting all the numbers to match up

(asymmetry, Dark Matter density, expansion of the Universe, evading direct detection,

inflation) will likely require creativity in model building.
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