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Abstract

We explore the cosmic censorship in the Einstein-Maxwell-dilaton theory following Wald’s thought

experiment to destroy a black hole by throwing in a test particle. We discover that at probe limit

the extremal charged dilaton black hole could be destroyed by a test particle with specific energy.

Nevertheless the censorship is well protected if backreaction or self-force is included. At the end, we

discuss an interesting connection between Hoop Conjecture and Weak Gravity Conjecture.
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I. INTRODUCTION

The Weak Cosmic Censorship Conjecture asserts that singularities formed by gravitational

collapse of matter are hidden behind event horizons [1, 2]. Its basic idea is to resolve the

apparent conflict between generic occurrence of singularity and smooth geometry in classical

general relativity. In a seminal work, Wald proposed an illuminating gedanken experiment

to test this conjecture by plunging a test particle into an extremal Kerr-Newman black hole

[3, 4]. Wald first showed that in order to expose the singularity, the particle must carry high

charge and angular momentum to mass ratio. On the other hand, he showed that the very

particle cannot be captured by an extremal black hole, therefore the censorship is protected.

Wald’s work has received lots of attention and followed by extensive studies [5–26]. In some

cases, such as nearly extremal RN [5, 8] or Kerr black holes [6, 7, 9], a test particle were able

to destroy the horizons and censorship could be violated. Although it is widely believed that

the censorship could be restored if self-energy(force) correction [10], backreaction or radiation

effect were considered properly, there is no conclusive proof. Instead, it is a nontrivial question

to ask that in which background or to what extend the weak cosmic censorship conjecture is

applicable.

This article concerns the cosmic censorship in the Einstein-Maxwell(-axion)-dilaton theory,

which serves as a simple model of compactified low-energy string theory[27, 28]. Specifically,

we shall consider a consistently-truncated four-dimensional model obtained by toroidal com-

pactification of the low-energy heterotic string theory, whose action reads (G = c = 1)

L =

√
−g

16π

[
R− 2(∇φ)2 − e−2aφF 2

]
(1)

This model describes a massless scalar field in coupled with the abelian vector field. In this

paper, we only consider the dilaton black hole[29, 30] with a specific choice of scalar-Maxwell

coupling1 a = 1, known as the Gibbons-Maeda-Garfinke-Horowitz-Strominger (GMGHS) so-

lution. The dilaton plays nontrivial role to replace the would-be inner horizon by a singular

1 The a = 0 case yields the Reissner-Nordström solution, while a =
√

3 case corresponds to the Kaluza-Klein

black hole.
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surface, when compared with the Reissner-Nordström black hole[30–32]. The solution also

enjoys an SL(2,R) symmetry, inherited from the S-duality in string theory, such that static

dyonic solutions can be constructed [34, 35] as well as time-dependent ones [33]. A peculiar

feature of this dynamic dilaton black hole is that it can be destroyed by spherically-symmetric

and electrically-charged null fluid, therefore the censorship could be violated. However, we

remark that this violation is under the condition that all weak, dominant or strong energy con-

ditions for the dilaton stress-energy tensor alone are violated sufficiently close to the apparent

horizon. One might suspect that this nontrivial dilaton configuration were responsible for such

violation and wonder whether it would still happen for ordinary matter. In this article, we

shall test the censorship in the old-fashioned way a la Wald. In contrast to Wald’s conclusion

that cosmic censorship is respected for extremal black holes in a canonical background without

dilaton field[3, 4], we find that a static electrically-charged extremal black hole in the GMGHS

solution can be destroyed by a test charged particle if backreaction or self-energy(force) is ig-

nored. To our interest, after we introduce backreaction or self-energy(force) as suggested in

the Hoop Conjecture, censorship is safely restored and, as a bonus, we find that the Weak

Gravity Conjecture is necessary to satisfy the second law of black hole thermodynamics.

This paper is organized as follows: the GMGHS solution of static black hole is reviewed

in Sec.II. In Sec.III, we show the extremal black hole could be destroyed by a test particle

of specific energy, if backreaction is ignored. However, we prove that censorship is recovered

by using the Hoop Conjecture in Sec.IV. Moreover, in Sec.V we find that Weak Gravity

Conjecture is necessary for the merging process. We extend our discussion to the rotating

case in Sec.VI. At last, we have discussion in Sec.VII.

II. STATIC BLACK HOLES

We consider a static black hole solution in the Einstein-Maxwell-dilaton theory [33]
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ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(1− 2D

r
)(dθ2 + sin2 θdφ2), (2)

F = −Q
r2
dt ∧ dr, (3)

e2φ = e2φ0(1− 2D

r
) (4)

with the constraint

e−2φ0Q2 = 2MD (5)

This solution describes a massless scalar field coupled with the abelian vector field for a

specific choice of scalar-Maxwell coupling a = 1 in the action (1). φ0 is the value of dilaton field

at the asymptotics, and we will set φ0 = 0 in the following discussion. The black hole solution

exists as long as censorship condition M > D is satisfied. We shall refer the extremal limit to

the case Q2 = 2M2, where the singular radius coincides with the horizon. The solution also

exhibits an SL(2, R) symmetry at the classical level, which is inherited from the S-duality in

string theory. With that being said, one may introduce a complex-valued scalar λ ≡ χ+ e−2φ

and (anti-) self-dual Maxwell field F± ≡ F ± i?F , where χ is known as the axion field. Then

the Lagrangian (1) and solution (2) can be promoted to generate the dyonic solution with

both electric and magnetic charges [34, 35].

One may prefer the horizon to be a conventional two-sphere by adopting the areal coordi-

nate, R2 ≡ r(r − 2D). The singular surface at r = 2D corresponds to the origin R = 0 in

this new coordinate. Away from the extremal limit, say R > M � D, the metric gtt can be

expanded as

− gtt ' 1− 2M

R
+
e−2φ0Q2

R2
+O(R−3) (6)

and this black hole appears like a Reissner-Norström black hole at far distance.
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III. DESTROYING A BLACK HOLE

We consider the black hole is probed by a test particle with mass m and charge q. We only

concern the probe limit for the moment, namely m � M and q � Q. The energy for a test

particle along geodesic reads

E = −qAt +

√
|gtt|
(
m2 +

l2

gφφ

)
, (7)

for given angular momentum l. A test particle needs at least energy EL to arrive at horizon,

E ≥ EL =
qQ

2M
. (8)

On the other hand, to destroy the black hole, we further assume that singularity becomes

naked after the test particle is taken in, that is,

M + E ≤ (Q+ q)2

2(M + E)
. (9)

This gives us a upper bound EU . After small q expansion, one obtain

E ≤ EU = EL +
1

4M
(1− Q2

2M2
)q2 +O(q3) (10)

The censorship condition before merging assures a positive coefficient for q2 term. There

appears a possible energy window EL ≤ E ≤ EU for the test particle to arrive at horizon and

destroy the black hole. However, it can be shown numerically that the actual upper bound is

much lower. In fact, one observes the opposite; as shown in Figure 1, EU < EL for a generic

non-extremal case, i.e. Q2 < 2M2. It is barely possible to destroy the extremal black hole

with a specific energy E = EL = EU .

If one assumes the test particle comes all the way from infinity, one shall also check the

effective potential Veff remains negative along the way, that is,

Veff = −ṙ = g−1
rr

(
1 +

l2

m2gφφ
+

(E + qAt)
2

m2gtt

)
(11)
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FIG. 1: Numeric shows that EU < EL < E+
hp in the non-extremal black hole (Q2/2M2 < 1) and

coincides only in the extremal limit. The shaded regions are forbidden as censorship is violated.

Since we only consider the static black hole solution, the test particle carries no angular

momentum. This gives us a negative definite effective potential as long as E > m
√
−gtt.

In conclusion, a test particle of a specific energy E = Qq
2M

and vanishing angular momentum

l = 0 could fall straight to an extremal black hole and possibly destroy it, exposing the naked

singularity and censorship being violated. We note that above discussion does not take into

account the higher order q-terms, or self energy of a charged particle, backreaction to the black

hole background, radiation due to acceleration and etc. In the following, we reconsider the

merging process while the black hole receives the backreaction through the Hoop Conjecture.

IV. COSMIC CENSORSHIP AND HOOP CONJECTURE

The Hoop Conjecture states that the horizon forms when a mass M gets compacted into

a region whose circumferences in every direction is bounded by C = 4πM . According to the

conjecture, a test particle with energy E has become part of the black hole at the hoop radius

rhp = 2(M + E). As a result, the lower bound E ′L and its small q expansion become

E ′L =
(Q+ q)q

rhp
' Qq

2M
+

1

2M

(
1− Q2

2M2

)
q2 +O(q3) (12)

It is obvious that E ′L > EU so there is, in fact, no energy window to destroy the black hole.
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FIG. 2: We refine our merging process in two steps: before (left figure) and after (right figure) a

test particle enters the reach of hoop radius. We will show that energy is loss during the process,

but the process is only energetic favored if the Weak Gravity Conjecture is imposed.

On one hand, the Hoop Conjecture can be regarded as the backreaction since it allows test

particle energy to contribute part of the background. On the other hand, the q2 term in E ′L

can also be interpreted as the contribution from self-force [37]. Therefore, we may restate our

conclusion that the static black hole in Einstein-Maxwell-dilaton theory can not be destroyed

by a test particle with vanishing angular momentum if backreaction or self-force of the charged

particle is considered. The singularity remained hidden behind the horizon and censorship is

protected.

V. CONNECTION TO WEAK GRAVITY CONJECTURE

The computation in previous section is done right after the test particle steps into the reach

of hoop radius. As sketched in the Figure 2, one can refine the calculation by study the abrupt

change of physical quantities across the hoop radius at some time thp. If the test particle has

a size of L, it would take some finite time ε = L/ṙ to completely cross the hoop radius. In the

following discussion, we will refer E+
hp as the energy of test particle at time t+hp = thp + ε/2,

which has been calculated as E ′L. However, right before it merges into the black hole, say at

t−hp = thp − ε/2, energy of the test particle is given by
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q/m = 0.1634

log(q/m) = -1.6366 - 0.4671 log(Q/M)
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FIG. 3: This plot shows that the minimum value k of q/m for a test particle changes against the

black hole parameter Q/
√

2M . k varies from 1 for the neutral black hole, to 0.1634 for the extremal

black hole. Inset graph shows their log relation and numeric fit k ∝ ( QM )−0.4671.

E−hp =
Qq

rhp
+m

√
1− 2M

rhp
. (13)

It is straightforward to show that E−hp > E+
hp. The energy order EU < E+

hp = E ′L < E−hp

simply reassures that the black hole cannot be destroyed by a test particle. The energy loss

|E−hp − E
+
hp| might take form of electromagnetic or gravitational radiation as the test particle

flies across the hoop radius. Despite the energy loss, one may wonder whether this process

can happen naturally. To answer this question, we shall compute the entropy change. The

entropy change of black hole due to merging is given by

∆SBH = πr2
hp − π(2M)2 = 8πME+

hp + 4π(E+
hp)

2 (14)

In addition, the entropy change due to the test particle across the hoop radius is given by

∆Sp =

∫ r+hp

r−hp

dQ

T
'
E+
hp

T+
−
E−hp
T−

= 8π(M + E+
hp)E

+
hp − 8πME−hp, (15)

where T+ = (4πrhp)
−1 and T− = (8πM)−1 are the Hawking temperatures at time t±hp. Here we

have assumed that the energy loss of test particle is only carried away by thermal radiation,
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and |t+hp − t−hp| = ε � 8πM , such that the black hole and test particle have enough time

to reach thermal equilibrium during the process of merging. As a result, the total entropy

increase during merging process reads

∆Smerge = ∆SBH + ∆Sp = 4π(4M + 3E+
hp)E

+
hp − 8πME−hp. (16)

The generalized second law (GSL) of black holes thermodynamics suggests that ∆Smerge > 0

for an irreducible process[40]. It is interesting to learn that to have ∆Smerge ≥ 0, one arrives

at a lower bound for the mass-charge ratio of test particle, that is q/m ≥ k (in the unit

mp = 1) for some constant k. In Figure 3, we found the numeric fit k ∝ ( Q
M

)−0.4671 for

non-extremal black hole. This surprising result agrees with the Weak Gravity Conjecture[39],

which states, in its simplest form, that in a U(1) gauge field coupled consistently to gravity,

there must exist at least a particle whose proper mass is bounded by its charge. Since the

GSL should apply to all types of massive charged particles, we arrive at a stronger version of

Weak Gravity Conjecture that the lower bounds for mass-charged ratio exist for all massive

charged particles.2 We remark that a recent proof of the Weak Gravity Conjecture by Hod

[41] using the universal relaxation bound[42], which is also closely related to the GSL.

VI. SLOWLY ROTATING BLACK HOLE

Now we would like to generalized our result to a test particle with nonzero angular mo-

mentum. Accordingly, we have to modify the static black hole solution to a rotating one. A

slowly rotating black hole solution is given by [36]

2 The authors thank the referee to point out this subtle difference in our version of Weak Gravity Conjecture.
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FIG. 4: This plot shows that the minimum value of q/m for a test particle changes against the black

hole rotation parameter a = l/(M + D
3 ). In general, k gradually increases with |a|. The increase rate

reaches the highest in the extremal limit (η ≡ Q2

2M2 → 1).

ds2 = −(1− r+

r
)dt2 + (1− r+

r
)−1dr2 + r2(1− r−

r
)dΩ− 2af(r) sin2 θdtdφ,

f(r) =
2r2

r2
−

(1− r−
r

) log(1− r−
r

)− 1 +
2r

r−
+
r+

r
,

e2φ = 1− r−
r
,

At = −Q
r
, Aφ = a sin2 θ

Q

r2
(17)

For slow rotation, we only keep terms up to order O(a). This gives a magnetic potential Aφ

and metric component gtφ but r+ = 2M and r− = 2D stays intact. The angular momentum

of black hole J can be read off from gtφ as r →∞, that is

J = a(M +
1

3
D). (18)

We now reconsider the merging process but for a test particle with nonvanishing angular

momentum l. We still begin with a static black hole and it starts to spin after intaking the test

particle. The slowly rotating solution is justified by small parameter a ∼ l/M � 1. Following

the previous two-step approximation, we recalculate its energy before and after entering the

range of hoop radius as follows:
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E−hp =
Qq

rhoop
+

√
(1− 2M

rhoop
)(m2 +

l2

gφφ
),

E+
hp =

(Q+ q)q

rhoop
+
gtφ
gφφ

(
qAφ − l

)∣∣
rhoop

(19)

To reach the hoop horizon, the minimal energy required for a test particle with nonzero

angular momentum l is always higher than that with l = 0; on the other hand, the upper

bound EU remains the same for small a. Therefore, the black hole still cannot be destroyed

by a test particle with nontrivial angular momentum. In Figure 4, it shows that the lower

bound k of charge-mass-ratio gradually increases with |a|. The increase rate is highest in the

extremal case and decreases as the black hole is away from extremality.

VII. CONCLUSION

In this paper, we study the censorship in the Einstein-Maxwell-dilaton theory by performing

Wald’s thought experiment. We find naively that a static charged dilaton black hole could be

destroyed by a test particle with a specific energy. Fortunately, this can never happen if one

considers the Hoop Conjecture, which effectively includes the backreaction in the background

metric or in other words, self-force of the test particle in the vicinity of black hole horizon.

We further refine our calculation by break the merging process in two steps. We find that

in order for the process to be energetically favored, say, to have non-decreasing entropy, the

charge to mass ratio for the test particle has to be bounded from below, in the same spirit as

the Weak Gravity Conjecture. The charge-mass-ratio bound persists in rotating black holes

and increases with rotation parameter |a|.

We have several remarks. First, the Weak Gravity Conjecture was discussed in many

contexts, for instance, the discharging process of black holes [43]. For completion, we show the

charge-mass-ratio bound during discharging process in the appendix. Nevertheless, we are the

first to make its connection to the Hoop Conjecture in the merging process3. A recent numeric

3 A different version of Hoop Conjecture has proven useful to resolve the apparent violation of the generalized
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study showed a close connection between the Weak Gravity Conjecture and censorship in the

Einstein-Maxwell-(Λ) theory with asymptotically anti-de Sitter boundary conditions[45–47].

Our discovery may contribute to a remarkable triangular connection among the Weak Gravity

Conjecture, the Weak Cosmic Censorship Conjecture and the Hoop Conjecture. Second,

the condition for thermal equilibrium during the merging process can be restated as L �

αM |Veff (rhoop)|, where we have recovered the metric unit with α =
√

G2

h̄c9
∼ 10−34m/J2.

Although this condition seems easy to be satisfied thanks to small value of α, we argue that

the result from equation (15) may still be valid even the condition fails. This is because entropy

is a state function and temperature is well defined before and after the merging process. Third,

we observe that the censorship is protected in static or stationary black holes, however, we

are not ready to argue against the censorship violation in the [33] unless our discussion can be

generalized to the dynamic dilaton solutions. Fourth, our discussion on rotating black holes is

restricted to small parameter a. It would be nice if an exact Kerr black hole solution can be

constructed and tested for the censorship in the Einstein-Maxwell-dilaton theory. At last, we

recall that some recent studies suggested the absence of horizon upon formation of dynamic

(time-dependent) black holes [48, 49]. It is curious to see whether censorship violation in the

[33] can be simply resolved in the absence of horizon. We leave the above-mentioned issues

for future study.

Acknowledgments

Part of this work has been reported in the 3rd LeCosPA symposium and physics department

seminar at the National Taiwan University. We are grateful to the useful comments by Chi-Te

Liang and Gary Shiu. This work is supported in part by the Taiwan’s Ministry of Science and

Technology (grant No. 106-2112-M-033-007-MY3).

second law in the near-extremal Reissner-Nordström (RN) black holes[44]. Though its connection to the

Weak Gravity Conjecture was not mentioned there. Furthermore, the modified conjecture was specifically

designed for RN black holes therefore inapplicable here.
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Appendix A: Weak Gravity Conjecture and black holes discharge

In this appendix, we will derive the lower bound of charge-to-mass ratio suggested by the

discharging process. Following the discussion in [43], we will assume the extremal dilaton black

hole can still emit charged particle spontaneously4. There are two cases in consideration. At

high temperature or small black holes regime, one considers emission as thermal radiation

with a chemical potential. The emission rate reads

e
− 1
T

(m− qQ
r+

)
(A1)

which is dominant if the exponent becomes positive. This gives a lower bound q/m ≥
√

2.

On the other hand, at low temperature or large black holes regime, one considers the Schwinger

process. The emission rate becomes

e−
πm2r2+
qQ (A2)

It starts to discharge appreciably when the exponent is less than 1. This gives another

bound q/m2 ≥ 4πM/
√

2.
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