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Abstract

We prove that Ricci-flat vacuum exact solutions are stable under linear perturbations in a new class of weakly non-local gravitational

theories finite at the quantum level.

1. Introduction

A popular motivation to study quantum gravity is that a

gravitational interaction governed by the laws of quantum me-

chanics may avoid spacetime singularities [1]. A class of pro-

posals aiming at such result and that raised in the last few years

is known under the umbrella name of non-local quantum grav-

ity (see [1, 2] for reviews and references therein). Non-local

quantum gravity is a perturbative field theory of gravitation

whose dynamics is characterized by form factors (operators in

kinetic-like terms) with infinitely many derivatives. The quan-

tum theory has the good taste of being unitary and renormaliz-

able or finite, for certain choices of form factors. However, the

fate of classical singularities is still under debate. For instance,

the classical theory seems able to resolve the big-bang singu-

larity and replace it with a bounce [3, 4] but singular solutions

such as a universe filled with radiation are possible [5].

The case of black holes is especially interesting because,

currently, there are three different views: black holes in non-

local gravity may form but are singular [6, 7], they form and

are regular [8–15], or they may not even form as asymptotic,

classically stable states [16, 17]. The first view is the subject of

the present paper (we will comment about the second view in

the concluding section). Although there is no complete proof

of black-hole stability in non-local theories known to be renor-

malizable, this proof exists for their non-renormalizable coun-

terparts without the Ricci-tensor–Ricci-tensor term [6]. Here

we fill this gap and show analytically that black holes may

form and be stable in a wide class of theories in the absence of
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Weyl–Weyl terms,1 encompassing most of the proposals whose

renormalizability has been studied so far [2, 22–28]. This result

should not be taken as a negative trait of non-local quantum

gravity, for the simple reason (among others we will discuss

later) that the control of divergences in the quantum theory goes

much beyond the naive removal of all classical singularities.

In section 2, we introduce a new theory of non-local grav-

ity where the Laplace–Beltrami operator ✷ is replaced by the

Lichnerowicz operator ∆L. This change does not modify per-

turbative renormalizability of the theory with respect to previ-

ous proposals but it allows one to address the stability issue

(section 4) of Ricci-flat solutions (section 3) exactly. An exten-

sion of the theory to the electromagnetic sector is discussed in

section 5, while section 6 is devoted to conclusions.

Our conventions are the following. The metric tensor gµν
has signature (− + . . .+) and the curvature tensors are defined

as R
µ
νρσ = −∂σΓ

µ
νρ + . . ., Rµν = R

ρ
µρν and R = gµνRµν. Terms

quadratic in the Ricci tensor or scalar but not in the Riemann

tensor will be denoted as O(Ric2).

2. A new class of non-local gravity theories

A general class of theories compatible with unitarity and

super-renormalizability or finiteness has the following structure

in D dimensions:

S =
1

2κ2

∫

dD x
√

|g|
[

R + RF0(∆L)R + RµνF2(∆L)Rµν + Vg

]

, (1)

1In general, a Weyl–Weyl term CµνστF3(✷) Cµνστ in the action [18, 19] may

restrict the theory further. The space of solutions is shrunk [20] with respect to

its span in the absence of this extra term [21] and, in particular, Schwarzschild

singular solutions are forbidden there [15].
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where the ‘potential’ term Vg is at least cubic in the curvature

and at least quadratic in the Ricci tensor and F0,2 are form fac-

tors, functions of the Lichnerowicz operator ∆L. When acting

on a rank-2 symmetric tensor,

∆LXµν = 2Rσ µντ Xτ σ + Rµσ Xσ ν + Rσν Xσ µ −✷Xµν

= −2Rµσντ Xστ + Rµσ Xσ ν + Rσν Xσ µ −✷Xµν . (2)

On the trace X
µ
µ or on a scalar X, ∆LX = −✷X.

The Lagrangian (1) is proposed here for the first time but it

has all the same properties of the theories considered in [2, 22–

28], in particular, perturbative unitarity and finiteness. The

main difference with respect to previous literature is that F0,2

are functions of ∆L instead of the Laplace–Beltrami operator ✷.

On a flat background, these operators coincide. Tree-level uni-

tarity is not affected by the Riemann and Ricci tensors present

in the form factors because, when we expand the action to sec-

ond order in the graviton perturbation, such tensors do not give

contributions to the propagator. Indeed, the form factors are

inserted between two Ricci tensors or scalars that are already

linear in the graviton around Minkowski space. Therefore, the

Lichnerowicz operator can only affect vertices in Feynman di-

agrams, but the power-counting analysis of [23, 24] still holds.

One has only to replace the variation of the ✷ operator with the

variation of ∆L.

3. Exact Ricci-flat solution

Let us recall the proof that any Ricci-flat spacetime (Sch-

warzschild, Kerr, and so on) is an exact solution in a large class

of super-renormalizable or finite gravitational theories at least

quadratic in the Ricci tensor [5]. This calculation was done

with the Laplace–Beltrami operator ✷ but we adapt it to the

✷→ −∆L case straightforwardly.

The equations of motion (EOM) in a compact notation [29]

for the action (1) read

Eµν :=
δ
[√

|g|
(

R + RF0(∆L)R + RαβF2(∆L)Rαβ + Vg

)]

√

|g|δgµν

= Gµν −
1

2
gµνRF0(∆L)R −

1

2
gµνRαβF2(∆L)Rαβ

+2
δR

δgµν
F0(∆L)R +

δRαβ

δgµν
F2(∆L)Rαβ

+
δRαβ

δgµν
F2(∆L)Rαβ +

δ∆r
L

δgµν





F0(∆l
L
) − F0(∆r

L
)

∆
r
L
− ∆l

L

RR





+
δ∆r

L

δgµν





F2(∆l
L
) − F2(∆r

L
)

∆
r
L
− ∆l

L

RαβR
αβ



 +
δVg

δgµν
= 0 , (3)

where ∆
l,r

L
act on, respectively, the left and right arguments (on

the right of the incremental ratio) inside the brackets.

Replacing the Ansatz Rµν = 0 in the equations of motion

(3), the following chain of implications holds in vacuum:

Rµν = 0 =⇒ Eµν = 0 ⇐⇒
δVg

δgµν
= O(Ric) . (4)

In particular, the Schwarzschild metric, the Kerr metric and all

the known Ricci-flat metrics in vacuum Einstein gravity are ex-

act solutions of the non-local theory.

4. Stability

In this section, we study the stability of Ricci-flat solutions

under linear perturbations. We focus on the minimal finite the-

ory of gravity compatible with super-renormalizability. Namely,

we select F0 = −F2/2 (we also redefine F2 ≡ γ) in (1) and (3).

Tree-level unitarity requires

γ(∆L) =
eH(∆L) − 1

−∆L

, (5)

where H is an analytic function that can be expanded in a se-

ries with infinite convergence radius. This type of ‘gentle’ non-

locality is called weak and is discussed elsewhere. We will not

make use of the form factor (5) until later.

At quadratic order in the Ricci tensor, the EOM read

Gµν + 2
δRαβ

δgµν
γ(∆L)Gαβ + O(Ric2) = 0 . (6)

Notice that the omitted higher-order curvature term is at least

quadratic in the Ricci tensor but not in the Riemann tensor. This

property is crucial for the proof of stability.

To this purpose, we only need to keep terms at most linear

in the Ricci tensor in the EOM. Using the variation

δRαβ

δgµν
=

1

2
gα(µgν)β✷ +

1

2
gµν∇α∇β − gα(µ|∇β∇|ν) ,

we can rewrite (6) as

0 = Gµν + 2

[
1

2
gα(µgν)β✷ +

1

2
gµν∇α∇β

−
1

2

(

gαµ∇β∇ν + gαν∇β∇µ
) ]

γ(∆L)Gαβ + O(Ric2)

= Gµν + ✷γ(∆L)Gµν +gµν∇α∇β γ(∆L)Gαβ
︸                    ︷︷                    ︸

1

−2∇β∇(µ γ(∆L) Gν)
β

︸                    ︷︷                    ︸

2

+O(Ric2) . (7)

In the appendix we prove the following non-trivial identity up

to Ricci-square terms:

∇µ
[

γ(∆L)Gµν
]

= O(Ric2) . (8)

Using this expression, one immediately finds that

1 = O(Ric2) .

Also, the commutator of covariant derivatives on a symmetric

tensor is

[∇β,∇µ] Xαβ = Rα λβµ Xλβ + Rλµ Xλα . (9)

Plugging (8) and (9) with Xαβ = γ(∆L) Gαβ (which is linear in

the Ricci tensor) into 2 , up to operators quadratic in the Ricci

tensor one has

2 = −
(

gαµ∇β∇ν + gαν∇β∇µ
)

γ(∆L)Gαβ

= −
(

gαµ∇ν∇β + gαµ[∇β,∇ν] + gαν∇µ∇β + gβµ[∇β,∇µ]
)

×γ(∆L)Gαβ

= −gαµR
α
λβν Xλβ − gανR

α
λβµ Xλβ + O(Ric2)

= −Rµλβν Xλβ − Rνλβµ Xλβ + O(Ric2)

= 2RµβνλX
βλ
+ O(Ric2) .

2



Therefore, the EOM (7) simplifies to

0 = Gµν +✷γ(∆L)Gµν + 2Rµανβγ(∆L)Gαβ + O(Ric2)

= [1 − ∆Lγ(∆L)]Gµν + O(Ric2) , (10)

which agrees with the full equations of motion [30]. Replacing

now the form factor (5) in (10), we get

eH(∆L)Gµν + O(Ric2) = 0 . (11)

Provided exp H is entire (all renormalizable non-local quantum

gravities satisfy this property2), we obtain the equations for lin-

ear perturbations around any Ricci-flat background:

eH(∆L)δGµν = 0 =⇒ δGµν = 0 , (12)

where the last implication is clear in a basis in which the Lich-

nerowicz operator is diagonal. Note that, at the linearized level,

the number of degrees of freedom of nonlocal gravity is two; the

other six degrees of freedom [21, 30] are fully non-perturbative

and, consistently, they do not show up in (12).

The conclusion is that the problem of linear perturbations in

nonlocal gravity can be reduced to exactly the same problem in

Einstein gravity. Expanding the metric gµν = ḡµν + hµν around a

Ricci-flat background ḡµν with a small perturbation hµν (|hµν| ≪

1), equation (12) is equivalent to solve δRµν(h) = 0. Any Ricci-

flat spacetime stable in Einstein gravity is stable in non-local

gravity, too. In particular, the Schwarzschild metric is stable

because it is stable in general relativity, since the perturbation

hµν remains small throughout its evolution [31–39]. Explicitly,

from δRµν(h) = (∇̄ρ∇̄µhνρ + ∇̄
ρ∇̄νhµρ − ∇̄

2hµν − ∇̄µ∇̄νh)/2 = 0,

the perturbation hµν is classified depending on the transforma-

tion properties under parity, namely, odd and even. Using the

Regge–Wheeler–Zerilli gauge, one obtains two distinct types of

perturbations: odd with 2 degrees of freedom and even with 4

degrees of freedom. We have to mention that even though one

starts with 2+4 = 6 degrees of freedom in the Regge–Wheleer–

Zerilli gauge, the physically propagating degrees of freedom

are still two of odd and even type for a massless spin-2 mode (a

gauge-invariant treatment is also available [36, 37]). This result

mainly concerns the stability on and outside the horizon. We do

not consider the case inside the horizon because the situation is

quite different near the singularity inside the black hole.

Note that this result is much simpler than in higher-order

local gravity [40] because the derivative operator in (12) is an

entire function, while in the higher-order local case one must

solve a second-order equation for δRµν(h).

5. Non-local Einstein–Maxwell gravity

In this section, we propose an extension of the non-local

theory that could admit charged black holes as solutions. Based

on previous results on completely decoupled non-local gauge

(in particular, electromagnetic) sectors [48, 49], a natural way

2Contrary to the typical non-analytic form factors γ ∝ ln(−✷) appearing in

the effective quantum action coming from a local field theory [41–47].

to couple non-local gravity with a non-local Maxwell field is

via a Lagrangian of the following form:

L =
1

2κ2

[

R +
(

Gµν − κ
2τA
µν

)

F
µν, ρσ

g (∆L)
(

Gρσ − κ
2τA
ρσ

)]

−
1

4
FµνF

µν
+ ∇µF

µν FA(∆L)∇ρF
ρ
ν, (13)

where the analytic functions of the Lichnerowicz operator Fg,

FA and the rank-2 tensor τA
µν are defined as

F
µν, ρσ

g (∆L) :=

(

gµρgνσ −
1

2
gµνgρσ

) (

eHg(∆L) − 1

−∆L

)

,

FA(∆L) :=
eHA(∆L) − 1

−2∆L

, (14)

τA
µν := FµσFσν −

1

4
FµνF

µν , Fµν := ∂µAν − ∂νAµ ,

where Aµ is Abelian. We propose the theory (13) as a viable

coupling of quantum gravity with the electromagnetic force. Its

main properties can be guessed from the results of [48, 49] and

it may be argued to be ghost-free in the gravitational and elec-

tromagnetic sectors separately. The polynomial asymptotic ul-

traviolet scaling of the entire functions Hg and HA must be the

same in order to have the same fall-off of the propagator in the

ultraviolet regime and a renormalizable theory. A formal proof

of these statements will be given elsewhere.

When we take the variation of the Lagrangian (13) with re-

spect to the metric, we find an EOM very similar to (3) but in

the presence of the electromagnetic field. In particular, the op-

erator ∝ F
µν, ρσ

g is quadratic in the local Einstein EOM, while

the operator ∝ FA is quadratic in the EOM for Aµ. As a con-

sequence, if the local EOM are satisfied, so are the non-local

EOM:

Gρσ = κ
2 τA
ρσ =⇒ Eµν = κ

2Tµν ,

∇µF
µν
= 0 =⇒ E

µ

A
= 0 , (15)

where E
µ

A
:= δS/δAµ is not calculated explicitly here. The lo-

cal EOM are on the left-hand side of the conditionals (in par-

ticular, the electromagnetic field is described by two-derivative

Maxwell theory), while the exact non-local EOM for the met-

ric and the electromagnetic field are on the right-hand side.

Note that when the EOM Gρσ = κ
2 τA
ρσ are satisfied, we have

Tµν = τ
A
ρσ, which means that τA

ρσ becomes the physical energy-

momentum tensor on shell. Therefore, all the solutions of the

Einstein EOM in the presence of the electromagnetic field are

also solutions of non-local gravity. The latter may have more

solutions but the point here is that all black-hole solutions of

general relativity, including those incorporating an electromag-

netic charge, are exact solutions of the theory (13). Schwarz-

schild, Kerr and Reissner–Nordström metrics are all admissible.

If one coupled non-local gravity and electromagnetism to

normal matter, then the Reissner–Nordström solution would

probably not be an exact solution anymore. Indeed, the form

factors in the theory can delocalize (smear) the source and the

energy-momentum tensor will be modified everywhere in space-

time. Therefore, it remains to be seen whether the solution we

found is physical.
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6. Conclusions

In this paper, we completed the stability analysis of Ricci-

flat spacetimes in a large class of non-local gravity. In previous

works, it was proved that Minkowski and any maximally sym-

metric spacetime are stable under linear perturbations. In this

paper, we extended the analysis of [6] of Ricci-flat spacetimes

for non-renormalizable models to renormalizable theories. We

showed that the stability analysis for a particular class of non-

local gravitational theories reduces exactly to the one in Ein-

stein gravity, i.e., the linearized equation δRµν(h) = 0. There-

fore, the analysis for Einstein gravity [31–39] holds automat-

ically also in non-local gravity and one can conclude that the

Schwarzschild black hole is stable under linear perturbations,

which means that the latter are either bounded or suppressed.

Our method is very general because, as just said, we brought

back the stability problem in non-local gravity to the same prob-

lem in Einstein’s theory. For instance, one can immediately

borrow the results of Kerr black holes for the non-local case.

The Kerr solution is stable outside the outer horizon [53, 54]3

but unstable inside the inner horizon [55]. Extending the gravi-

tational action to the electromagnetic sector, we argued that the

Reissner–Nordström metric is also a solution, although we have

not checked its stability.

Naively, one might regard the presence of singular solutions

in a non-local setting as a support to the claim [5] that non-local

quantum gravity may not provide a resolution of the singularity

problem, even when the quantum theory is finite. However, one

cannot reach the conclusion that singular physical black holes

exist in the full theory. Indeed, a finite quantum theory can hide

a conformal invariance both at the classical and the quantum

level [50, 51]. It may be the latter, rather than non-locality itself,

that solves the spacetime singularity problem [52, 56–60].

Moreover, numerous solutions of the truncated theory [8]

or of the linearized theory [9–13] point out that, in the presence

of matter, we could have non-singular and non-Ricci-flat black

holes.4 In particular, these results suggest that a Ricci-flat black

hole may be not a physical metric resulting from the collapse of

ordinary matter. However, in non-local gravity no Birkhoff the-

orem has been formulated yet and it is not obvious how to inter-

pret our spherically symmetric Ricci-flat solutions in vacuum,

which are exact in the fully non-linear theory, in relation with

spherically symmetric non-Ricci-flat approximate solutions of

the linearized equations of motion with matter. The next steps

to take will be, on one hand, to check whether the stable so-

lutions found with our analysis are physical and, on the other

hand, to apply the same analysis also to regular black holes in

the spacetime region where deviations from the Ricci-flat met-

ric are small.

3Note that mode stability [53] excludes a particular type of growing solu-

tions, hence it is different from linear stability, where all solutions are bounded

or decay.
4See also [61, 62] for other regular sources. Regular black holes were also

found in effective quantum-gravity models with non-local operators of the form

ln✷ [63, 64], to be contrasted with the fundamental non-locality we are dealing

with in this paper, which has different ultraviolet properties.
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A. Proof of (8)

In this appendix, we prove the identity (8). Consider first

the covariant derivative of one Lichnerowicz operator acting on

the Einstein tensor,

∇µ
(

∆LGµν
)

= −∇µ
(

✷Gµν + 2RµρνσG
ρσ

)

+ O(Ric2)

= −

[

∇µ∇α∇
αGµν

︸        ︷︷        ︸

I

+ 2∇µ
(

RµρνσGρσ
)

︸             ︷︷             ︸

II

]

+O(Ric2) . (16)

We know from the Bianchi identities that

∇µGµν = 0 , (17)

−∇αRνσβα = ∇νRσβ − ∇σRνβ , (18)

[∇ρ,∇µ1
]Xµ1µ2µ3 = R

µ1

λρµ1
Xλµ2µ3 + R

µ2

λρµ1
Xµ1λµ3

+R
µ3

λρµ1
Xµ1µ2λ . (19)

Therefore,

I = ∇α∇
µ∇αGµν + [∇µ,∇α]∇

αGµν

= ∇α∇
α∇µGµν + ∇α[∇

µ,∇α]Gµν + [∇µ,∇α]∇
αGµν

= ∇α[∇
µ,∇α]Gµν

︸            ︷︷            ︸

a

+ [∇µ,∇α]∇
αGµν

︸            ︷︷            ︸

b

. (20)

We can express a in terms of the Riemann tensor,

a = ∇α[∇µ,∇α]Gµν = ∇
α
(

Rµ λµα
︸︷︷︸

Ric

Gλ ν − Rλ νµαG
µ
λ

)

= −(∇αRλ νµα)G
µ
λ − Rλ νµα∇

αGµ λ + O(Ric2)

= −Rαµνλ∇
αGµλ + O(Ric2) , (21)

where in the last line we used (18). Also, from (19) we get

[∇ρ,∇µ1
]∇µ1Gρµ3 = Rµ3

λρµ1
∇µ1Gρλ + O(Ric2)

and

b = gδν[∇µ,∇α]∇
αGµδ = gδνR

δ
λµα∇

αGλµ + O(Ric2)

= −Rαµνλ∇
αGλµ + O(Ric2) . (22)

Replacing (21) and (22) in (20), we obtain

I = −2Rαµνλ∇
αGµλ + O(Ric2) .

The operator II can be simplified using (18):

II = 2∇µ
(

RµρνσG
ρσ

)

= 2
(

∇µRµρνσ
︸   ︷︷   ︸

Ric

)

Gρσ + 2Rµρνσ∇
µGρσ

= 2Rµρνσ∇
µGρσ + O(Ric2) ,

4



so that I + II = O(Ric2) and

∇µ
(

∆LGµν
)

= O(Ric2) . (23)

Introducing the symmetric tensor Zµν := ∆LGµν satisfying

the property ∇µZµν = O(Ric2), in exactly the same way as be-

fore we can show that

∇µ
(

∆LZµν
)

= ∇µ
(

∆L∆LGµν
)

= O(Ric2) .

Similarly,

∇µ
(

∆L∆L · · ·∆LGµν
)

= O(Ric2) , (24)

and finally, for an analytic function of the Lichnerowicz opera-

tor, we obtain (8).
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