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Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France

b Albert Einstein Center, Institute for Theoretical Physics, University of Bern,
Sidlerstrasse 5, CH-3012 Bern, Switzerland

c Physics Department, University of Ioannina
45110, Ioannina, Greece

Abstract

We propose a new mechanism of (geometric) moduli stabilisation in type IIB/F-theory
four-dimensional compactifications on Calabi-Yau manifolds, in the presence of 7-branes, that
does not rely on non-perturbative effects. Complex structure moduli and the axion-dilaton
system are stabilised in the standard way, without breaking supersymmetry, using 3-form
internal fluxes. Kähler class moduli stabilisation utilises perturbative string loop corrections,
together with internal magnetic fields along the D7-branes world-volume leading to Fayet-
Iliopoulos D-terms in the effective supergravity action. The main ingredient that makes the
stabilisation possible at a de Sitter vacuum is the logarithmic dependence of the string loop
corrections in the large two-dimensional transverse volume limit of the 7-branes.
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1 Introduction

The String Theory landscape comprises an enormous number of vacua, however, not all of
them are consistent with the cosmological data and the relevant for particle physics effective
N = 1 supergravity theories. Many of them are characterised by anti-de-Sitter (AdS) minima,
predicting a negative cosmological constant, in contradiction with the existing evidence of the
accelerated expansion of the universe. In order to obtain a consistent supersymmetric vacuum
we must seek string compactifications with a de Sitter (dS) minimum and stabilise the various
moduli fields which are ubiquitous in string compactifications.

In type IIB string theory in particular, compactified on a Calabi-Yau three-fold, the complex
structure moduli and the axion-dilaton/ten-dimensional (complexified) string coupling appear in
the superpotential induced when 3-form fluxes are turned on and can be fixed in a supersymmet-
ric way [1] 4. The Kähler class moduli on the other hand, such as the Calabi-Yau volume, remain
undetermined because -being (1, 1) forms- they do not appear in the flux induced superpoten-
tial. The resulting effective supergravity has constant superpotential and, thus, a non-vanishing
gravitino mass term and vanishing scalar potential, due to the no-scale structure of the tree-
level Kähler potential of the Kähler class moduli that remain massless and undetermined. Their
stabilisation requires their appearance in the superpotential and, a usual way to realise it, is
to include non-perturbative corrections [4]. These are in general model dependent related, for
instance, to gaugino condensation of the gauge group of D7-branes [5]. In the simplest case, to
realise a sufficiently large volume in a well controlled regime, a fine tuning of the coefficients in
the resulting superpotential generated by the fluxes is required.

Moreover, higher order α′ corrections are taken into account and break the no-scale structure
of the Kähler potential [6]. One-loop corrections to the Kähler potential may also be included
[7, 8, 9, 10, 11, 12, 13, 14, 15]. In most cases, dS vacua can only be obtained by ‘uplifting’ the
vacuum energy in the presence of anti-D3 branes (D3-branes for short), which break though
supersymmetry explicitly (KKLT scenario [4]). This situation can, in principle, be remedied if
instead of D3-branes, D-term contributions are taken into account in the effective action [16, 17,
18, 19, 20, 21, 22], emerging from internal magnetic fluxes along the D7-branes world volume.
String realisations improving the KKLT scenario are also possible within the so-called large
volume scenario in Calabi-Yau compactifications [23, 24].

In the present work we take a different path and, working in the framework of type IIB/F-
theory, we consider possible contributions to the Kähler potential due to the presence of space-
time filling D7-branes. Recall that 7-branes are fundamental objects in F-theory and certain
configurations of them determine the gauge symmetry of the effective theory. Moreover, an
important class of matter fields resides on Riemann surfaces which can be interpreted as the
intersection locus of D7-branes. In such configurations, anomalous U(1) symmetries, associated
with intersecting branes, are frequently present and the resulting chiral spectrum of the four-
dimensional theory usually induces Fayet-Iliopoulos (FI) D-terms to the effective potential. The
importance of introducing D-term contributions is that these are always positive and can in
principle uplift the potential, generating a dS minimum with all moduli fixed.

It turns out though that D-terms are not sufficient to stabilise all moduli, at least when
charged fields on D7-branes have vanishing expectation values. The basic additional ingredient
that comes in rescue is quantum corrections to the Kähler potential stemming from the presence
of the D7-branes. For large transverse volume, as is the case of such configurations, these
corrections become crucial and cannot be neglected. They display a logarithmic dependence
on the modulus associated with the transverse dimension [25]. The logarithmic dependence is
quite general in the presence of two large transverse dimensions, as shown for example in [26].
Combining these effects with D-term contributions, we show that all Kähler moduli can be

4For an alternative stabilisation method, see [2, 3]
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stabilised in a dS vacuum of broken supersymmetry.

The layout of this paper is as follows. In Section 2, we start with a general overview of the
moduli stabilisation problem, we introduce the effective supergravity and present the leading
quantum corrections, perturbative in α′ and in the string coupling (subsection 2.1). We discuss
in particular their dependence on the transverse volume of the D7-branes that grows logarith-
mically at large distances. We then introduce the D-term contributions to the effective potential
(subsection 2.2). In Section 3, we work out the minimisation conditions and the Kähler moduli
stabilisation. We first present the simple example of a single D7-brane which brings two moduli
that can be chosen to be the total volume of the Calabi-Yau manifold and the volume transverse
to the brane (subsection 3.1). We show how the latter can be stabilised using the logarithmic
loop corrections, but not the former. Full stabilisation in a dS minimum can be achieved only in
the general case of three intersecting D7-branes with corresponding D-terms. Indeed, the total
volume can be stabilised by the logarithmic corrections (subsection 3.2), while all moduli are
fixed when D-terms are included, as shown in subsection 3.3. Finally, Section 5 contains our
conclusions, while in the Appendix we show why in the case of one D7-brane, one cannot find
a dS minimum in the whole parameter space of the model.

2 General Overview

In IIB string theory, appropriate 3-form fluxes generate a superpotential given by [27]:

W =

∫
G3 ∧ Ω · (1)

In the above, the G3 flux is defined as G3 = F3 − SH3, where F3, H3 are the Ramond-Ramond
(RR) and Neveu-Schwarz (NS) 3-form fluxes, S = C0 + ie−φ ≡ C0 + i/gs is the axion-dilaton
field associated with the ten-dimensional string coupling gs, and Ω is the holomorphic Calabi-
Yau (3, 0)-form dependent on complex structure moduli za [28]. Clearly, the superpotential
(1) depends on za and the axion-dilaton S but it is independent of the Kähler class moduli,
as described for example in [29]. The conditions DaW = 0, (where Da is the Kähler covariant
derivative and the index a runs over all moduli fields) fix all the complex structure moduli and the
axion-dilaton. A generalization of eq. (1) in the F-theory framework is straightforward [30, 31].

A wide class of solutions towards the stabilisation of Kähler class moduli rely on non-
perturbative effects. This ingredient allows the appearance of the Kähler moduli in the su-
perpotential and as a result, a potential is generated whilst their masses are determined from
the minimisation procedure of the effective potential. The α′-corrections which generate O(α′3)
contributions to the Kähler potential, are also widely used. In the present analysis, we will take
a different path and investigate the effects of string loop corrections to the Kähler potential
which displays a dependence on the transverse volume of D7-branes, as well as the D-terms
potential depending on the world-volume of D7-branes.

To set the stage, we start with the Kähler potential. Ignoring for the moment α′ or string
loop corrections, it can be written as a simple separable form

K0 = K0(Ti) +K(S, za) , (2)

where Ti are the Kähler moduli, S the axion-dilaton S = C0+ie−φ, and za the complex structure
moduli respectively. The two components of K are

K0(Ti) = −
3∑
i=1

ln(−i(Ti − T̄i)) (3)

K(S, za) = − ln(−i(S − S̄))− ln(i

∫
Ω ∧ Ω̄) · (4)
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As can be readily seen, eq. (3) satisfies the no-scale condition∑
I,J=Ti

KIJ0 ∂IK0∂JK0 = 3, (5)

and therefore the potential can be written as

V =
∑
I,J 6=Ti

eK
(
DIWK−1

IJ̄
DJ̄W

)
, (6)

with DIW = ∂IW +W∂IK. In the simplest scenario, the flux generated perturbative superpo-
tential in eq. (1) stabilises the complex structure moduli and the axion-dilaton field by using
the supersymmetric conditions DiW = 0. This leads to zero vacuum energy. Furthermore,
because of the no scale structure of the Kähler potential, the Kähler moduli cannot be fixed
from the supersymmetric minimisation of the superpotential. In order to stabilise the Kälher
moduli, quantum corrections are usually included so that the no-scale invariance is violated and
the total volume is fixed.

In addition, non-perturbative contributions originating from gaugino condensation or in-
stanton effects, involve certain Kähler moduli in exponentially suppressed terms. Including such
terms, the superpotential obtains the form

W =W0 +

h1,1+∑
i=1

Λie
−λiTi · (7)

The implementation of the conditions DzaW = 0 put all complex structure moduli and axion-
dilaton at their minima, and so W0, Λi and λi are constants. The condition DTiW = 0 leads to
a supersymmetric AdS minimum [4]. However, a drawback of this scenario is that the minimum
is achieved only when the value of W0 is fine-tuned in order to balance the non-perturbative
effects. In addition, as can be seen from (7), non-perturbative corrections are required for all
4-cylces involved, whilst the inclusion of D3 contributions to uplift the AdS minimum breaks
supersymmetry explicitly.

A generalisation of the above scenario [23, 24] improving these deficiencies, is realised with
an exponentially large volume, where in the simplest case of two Kähler moduli τb, τs the Calabi-

Yau volume takes the form V = τ
3/2
b − τ3/2

s . In the presence of non-perturbative corrections the
Kähler potential and superpotential are given by

KLV S = −2ln(τ
3
2
b − τ

3
2
s + ξ), (8)

WLV S =W0 + Λe−λτs . (9)

The gaugino condensation and the α′ correction ξ are necessary to stabilise both τb and τs.
However, as in the KKLT case, a mechanism is required to uplift it to a dS minimum.

In the next subsections, we will present an alternative scenario of Kähler moduli stabilisation
which does not rely on (uncontrolable) non-perturbative corrections in the superpotential. The
proposed mechanism is based on the observation that the effective action receives logarithmic
corrections in the large (two dimensional) volume limit transverse to the D7-branes [25].

2.1 Effective supergravity, dualities and quantum corrections

We would like now to include the leading quantum corrections in the effective action presented
above. These are perturbative in α′ or in the string coupling correcting the Kähler potential and
the gauge kinetic functions. The former correspond to a constant shift of the internal volume
proportional to the Euler number of the Calabi-Yau manifold, while the latter can be important
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only in the presence of large transverse volume of dimension less or equal than two, as in the
configuration of D7-branes that we consider in this work. In this case, one loop corrections
to localised effective action terms in the open string channel grow logarithmically with the
transverse volume [25]. Since such corrections have been computed explicitly in N = 1 type I
orientifolds [35], we will start by presenting them in this framework and then use T-dualities to
derive the corresponding expressions in type IIB/F-theory context with intersecting D7-branes.

Let us consider type I strings on a product of three 2-torii (
∏3
i=1 T

2
i ) with D9-branes and

in general three types of D5-branes extended in the three non-compact spatial dimensions and
along each one of the three T 2

i . The Kähler potential is

K = − ln(S − S̄)−
3∑
i=1

ln(Ti − T̄i) + · · · , (10)

where the dots refer to contributions dependent on the complex structure that we omit in the
following. The imaginary part of the various moduli are given by the inverse gauge couplings of
the D9 and D5i branes, upon compactification in four dimensions:

ImS =
1

g2
9

= e−φv1v2v3 ImTi =
1

g2
5i

= e−φvi , (11)

with vi the volume of T 2
i in string units.

To go to the framework of type IIB/F-theory with three types of D7-branes, one has to
perform six T-dualities along all six internal directions. The D9 then becomes D3 while D5i
becomes D7i transverse to T 2

i . Recall that under a single T-duality R→ 1/R the string coupling
transforms as eφ → eφ/R. It follows that under six T-dualities, the four moduli S, Ti go to the
inverse gauge couplings of the corresponding D3 and D7i branes:

ImS → 1

g2
3

= e−φ ImTi →
1

g2
7i

= e−φV/vi (12)

with V = v1v2v3 the total internal volume and eφ is the 10-dimensional string coupling gs = eφ.
The Kähler potential (10) then becomes

K → −2 ln(e−2φV) = − ln(S − S̄)− 2 ln V̂ (13)

where V̂ = e−3φ/2V.

Corrections to the Kähler potential in type II strings (with D-branes), are induced through
corrections of the Einstein graviton kinetic terms. The perturbative corrections in α′, ξ̂, and
the string one-loop corrections δ̂, both arise in the string frame as corrections to the Einstein
kinetic terms [32]: [

e−2φ(V + ξ̂) + δ̂
]
R (14)

where ξ̂ is of order α′3, arising at four loops in the Calabi-Yau σ-model, and is proportional to
the Euler number of the Calabi-Yau manifold χ, ξ̂ = −

[
ζ(3)/4(2π)3

]
χ [33, 34, 6], and δ̂ is in

general a function of moduli fields.

From the above form, it follows that the two corrections can be accounted for by a shift of
the Calabi-Yau volume V and of the inverse 4d closed string coupling e−2φ4 = e−2φV:

V → V + ξ ; e−2φ4 = e−2φV → e−2φ4 + δ̂ (15)

It is now clear that the radiatively corrected Kähler potential reads:

K = −2 ln
[
e−2φ(V + ξ̂) + δ̂

]
= − ln e−φ − 2 ln

(
V̂ + ξ + δ

)
= − ln(S − S̄)− 2 ln

(
V̂ + ξ + δ

)
, (16)
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where V̂ is defined in (13) and

ξ = ξ̂/g3/2
s = − ζ(3)

4(2π)3g
3/2
s

χ ; δ = δ̂g1/2
s . (17)

Note that a nonvanishing ξ in the large volume limit gives rise to localised graviton kinetic terms
in the internal Calabi-Yau space at the points where the Euler number is concentrated. Indeed
it remains finite in the large volume limit in (14) leading to a localised Einstein action, on an
effective 3-brane, studied in [32].

These localised graviton kinetic terms can generate one loop corrections that grow logarith-
mically with the size of the bulk in the presence of 7-brane sources [25]. Indeed, the localised
graviton vertices can emit closed strings propagating along all the six dimensions of the internal
space. The contribution of the relevant diagrams contains the exchange of these closed strings in
the bulk between a certain number of graviton vertices from the 4d Einstein action localised in
the internal space and another boundary that can be a D-brane or an orientifold plane. These
diagrams correspond to local tadpoles whose existence can be consistent with global tadpole
cancellation. Each of branes/orientifold planes behave as point-like sources in the corresponding
transverse space. The emitted closed string from the localised graviton vertices carry in principle
momentum along all the six internal dimensions. However, the momentum along the directions
parallel to the worldvolume of brane/orientifold plane vanishes by conservation. It follows that
the exchanged closed strings carry only transverse momentum p⊥ which is not conserved due
to the presence of branes/orientifold planes that break translation invariance in the transverse
directions. Thus the relevant diagram that contributes to δ, in the large transverse volume V⊥
limit, takes the form:

δ ∼ 1

V⊥

∑
|p⊥|<Ms

1

p2
⊥
F (~p⊥) ; ~p⊥ =

(n1

R
, · · · , nd

R

)
, (18)

where F (~p⊥) are the local tadpoles in the momentum space and the summation (instead of
integration) is because ~p⊥ are discrete in the compact transverse space that we parameterise its
size as V⊥ ∼ Rd. The tadpoles arise from the distribution of D-branes and orientifolds which act
as classical point-like sources in the transverse space. Considering for instance 2d orientifolds
located at the corners of a d-dimensional cube formed by d dimensions of equal size πR and a
brane at the position ~y (plus its images), the local tadpole is given by:

F (~p⊥) ∼

{
d∏
i=1

(
1 + (−)ni

2

)
− cos(~p⊥~y)

}
. (19)

It follows that its contribution to the amplitude (18) would contain an infrared divergence in
the large transverse limit when its co-dimension is less or equal to 2. The divergence is linear
in R for d = 1 and logarithmic for d = 2, while the amplitude is finite for d > 2.

In conclusion, in the system with 7-branes and localised graviton kinetic terms in the internal
space, the effective two-dimensional propagation of closed strings induce an infrared divergence
in the loop correction that goes logarithmically when the co-dimension 2 transverse dimension
is large [25]. Due to the infrared divergence, one could also expect it is the dominant correction
at that order in the string loop expansion. One could thus write eq. (18) as

δ = η lnu, (20)

where η is some model dependent constant and u is the modulus of the space transverse to a
D7-brane.

We would like to emphasise again that the necessary condition for the arguments of [25]
is to have localised kinetic terms in the internal space. Here we have to discuss separately the
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case of smooth Calabi-Yau manifolds and orbifolds. As argued before, the presence of a non-
vanishing ξ at the string tree-level can induce at one loop level logarithmic corrections of the type
eq. (20). An explicit computation however is rather difficult to be performed since it requires
quantising strings propagating in Calabi-Yau threefolds taking into account the perturbative in
α′ correction (thus treating it exactly), and it is not within the scope of the present work.

In orbifold compactifications of type IIB orientifolds, the α′ correction ξ vanishes. Thus at
the leading order in string loop expansion, graviton kinetic terms in eq. (14) are ten-dimensional
and therefore the arguments of [25] do not apply. However this is not the case at higher orders.
The one loop correction δ̂ receives moduli dependent contributions only from N = 2 supersym-
metric sectors depending on the moduli of the corresponding fixed torus under the action of
the orbifold group [35]. For D7-branes transverse to the 2-torus T 2, it is given by a sum over
BPS states corresponding to the open string winding modes where N = 2 vector multiplets and
hypermultiplets contribute with opposite signs. The result depends on the complex structure
modulus of the torus but not on its volume and does not contain any logarithmic correction, as
expected from our general analysis above. Thus, one loop corrections in the Kähler potential
cannot lead to logarithmic dependence, in agreement with one-loop results in the literature for
orbifolds (see for instance [35, 8]). On the contrary, the kinetic function of D7 gauge fields which
are localised in the transverse dimension receive large corrections that grow logarithmically with
the transverse volume, which is calculated explicitly in [35]. Notice however, that the one loop
corrections [8] contain terms localised on the transverse T 2 and thus two loop corrections are
expected to diverge logarithmically with its volume, following the argument above. In this case,
the correction δ in eqs. (17) and (20) should have an additional factor of g2

s lnu.

In the following, we will consider a radiatively corrected Kähler potential (16) with eq. (20)
δ = η lnu, :

K = − ln(S − S̄)− 2 ln
(
V̂ + ξ + η lnu

)
. (21)

2.2 D-terms in the presence of D7-branes

It has been suggested that magnetised branes along (1, 1)-cycles of the internal compactification
space can be used to stabilise the Kähler moduli, as an alternative to non-pertubative effects, at
a de Sitter vacuum through the induced D-terms [18, 19, 20]. The advantage of magnetic fluxes
on D-branes, as opposed to non-perturbative effects and D3-contributions, is that these have
an exact string description at weak coupling (i.e. to all orders in α′) and can be studied within
the standard effective supergravity. In this subsection we will discuss the D-term contributions
from magnetised D7-branes in type IIB superstring theory. We will assume that all complex
structure moduli and the axion-dilaton ten-dimensional (10d) field are fixed in a standard way
by appropriate 3-form fluxes at a vacuum preserving N = 1 supersymmetry in four dimensions
with weak string coupling. Moreover, we shall consider zero vacuum expectation values (VEVs)
for all charged fields and restrict our analysis to the Kähler moduli associated with the world-
and transverse-volumes of the D7-branes; they should all be considered large in string units for
the consistency of the effective supergravity description.

In usual D7-brane configurations representing supersymmetric four-dimensional (4d) effec-
tive theories there are stacks of branes associated with some non-abelian gauge group while it
is common that additional branes intersect each other. A single D7-brane spans four compact
dimensions and forms a two-cycle intersection with any other non-overlapping brane.

We now consider a IIB/F-theory framework with the presence of intersecting 7-branes. Stacks
of D7-branes are associated with gauge groups and we assume a D-brane configuration where
some anomalous U(1) is present, induced by a corresponding magnetic flux. A 4-cycle Kähler
modulus Ta associated with the world-volume of the magnetised D7-brane acquires then a charge
Q under the U(1) as a shift symmetry along its real component: T a → T a + Qω, with ω the
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transformation parameter (the appropriate topological conditions for this, are discussed for
instance in [22]). In general, we also expect the existence of complex scalar fields φJ carrying
charges QJ .

The induced D-term has the generic form dictated by the effective N = 1 supergravity
[16, 17, 21, 22]:

VD =
g2
D7

2

(
iQ∂TaK(T a) +

∑
J

QJ | 〈φJ〉 |2
)2

(22)

where the gauge coupling is fixed by the kinetic function: 1
g2D7

= Im(T a) and φJ are scalar

components of superfields whose charges QJ are subject to anomaly cancellation conditions
(that are automatically satisfied in a consistent string background) [19]. Although in general
the VEVs of the scalar fields are on-zero, for our present purposes we can ignore the matter
fields and write (22) as follows

VD = − da
2Im(T a)

(∂TaK(T a))2 , (23)

in which da = Q2 5.

In our convention, we denote the imaginary part of the world-volume Kähler modulus Ta
as τa. The whole 6-dimensional volume can be expressed as sum of triple products of 2-cycle
moduli:

V =
1

6
κabcv

avbvc, (24)

where κabc are the triple intersection numbers. In the framework of 3 intersecting D7-branes,
we take 2-cycle va as the transverse volume modulus of each D7-brane with world-volume τa:

va =
V
τa
, (25)

and take κabc as εabc for simplicity. Then the volume can be expressed as

V = v1v2v3 =
√
τ1τ2τ3 (26)

3 Volume Stabilisation from Intersecting D7-Branes

In this section we investigate the implications of D7-branes on the stabilisation of Kähler moduli.
Starting with the simplest case, we introduce only one D7-brane and observe that this is not
adequate to stabilise all moduli. Then, we proceed with the inclusion of three intersecting
D7-branes.

3.1 A Single D7-Brane

We start with a single space-time filling D7-brane and assume that all the complex structure
moduli and the axion-dilaton are stabilised by fluxes. The Kähler modulus can be divided into
the world volume part of the D7-brane τ and the transverse part u. Both τ and u are real
4-cycle volumes. Then we can write the compactifacation volume V in terms of the two Kähler
moduli as follows:

V = τ
√
u. (27)

5See also argument in [21].

7



The no-scale structure is broken by perturbative corrections: α′ world-sheet corrections and
string loop corrections. The Kähler potential now takes the general form:

K = −2 ln(τ
√
u+ ξ + ηln(u)), (28)

The string loop correction term η ln(u) is of course valid in the perturbative region:

|ηln(u)| < τ
√
u (29)

The corresponding F-term potential with a superpotential W0 is:

VF =
W2

0 (−8η + 3ξ + 3ηln(u))

(8η + 2τ
√
u− ξ − ηln(u))(τ

√
u+ ξ + ηln(u))2

. (30)

In the large volume expansion, we can compute the derivative with respect to u:

dVF (τ, u)

du
= −ηW2

0

3(−10 + 3ln(u))

4τ3u5/2
+O(η2) +O(ξ). (31)

We find that for η being negative, the potential has a minimum in the u direction. Thus, the
string loop correction ηln(u) can stabilise the transverse direction of the D7-brane. However, for
the volume part τ , the first derivative doesn’t show the stabilisation. Indeed, in the appendix
we show that even in the presence of an uplifting D-term, there is no dS minimum with just
perturbative corrections for a single D7-brane.

3.2 Stabilisation of the total volume by three intersecting D7-branes

In the same way, we can get the F-term potential for 2 non-parallel D7-branes and find that there
is always one Kähler modulus which is not stabilised. Thus, in order to stabilise all the Kähler
moduli, we should consider that there exist at least three non-parallel (magnetised) D7-branes.
This corresponds to 3 intersecting D7-branes which is quite general in string model building.
In the following, we neglect the α′ correction and consider only the string loop correction. The
general Kähler potential can be written as:

K = −2ln (
√
τ1τ2τ3 +

∑
i

2ηiln(
V
τi

)) (32)

= −2ln (
√
τ1τ2τ3 +

∑
i

η′iln(τi)), η′a =
∑
i

ηi − 2ηa. (33)

Each τi corresponds to the world volume of one D7-brane real 4-cycle. We calculate the first
derivative with respect to either τa:

dVF (τ1, τ2, τ3)

dτa
=W2

0

3(
∑

i 6=a(8η
′
i − 3η′iln(τi)) + 10η′a − 3η′aln(τa))

4
∏
i 6=a τ

3
2
i τ

5
2
a

+O(η′2). (34)

The minimisation condition from the three directions in eq. (34) then shows that a minimum
only exists for the total volume V if

η1 = η2 = η3 = ητ < 0. (35)

The other two directions, which can be thought of as the ratios between τ1, τ2 and τ3, remain
flat, since under the condition (35), the Kähler potential and the corresponding F-term potential
only depend on V. Indeed, the Kähler potential is:

K = −2ln(V + 2ητ ln(V)) , (36)
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and the F-part of the effective potential is

VF (V) = − 3ητW2
0 (2ητ + 4V + 4ητ ln(V)− Vln(V))

(V + 2ητ ln(V))2(6η2
τ + 8ητV + V2 + ητ (4ητ − V)ln(V))

(37)

=
ητW2

0

V3
(3ln(V)− 12) +O(η2

τ ) (38)

3.5 4.0 4.5 5.0 5.5 6.0
-4.×10-6

-2.×10-6

0

2.×10-6

4.×10-6

ln[ ]

V
F

η = -0.3

η = -0.5

η = -0.7

Figure 1: The scalar potential of eq. (37) for the choice W0 = 1.

The first derivative of eq. (37) shows that the minimum is independent of the ητ parameter
in the large volume limit:

dVF (V)

dV
= −ητ

3W2
0 (3ln(V)− 13)

V4
+O(η2

τ ). (39)

The potential (37) is plotted in Fig. 1.
At this minimum, the supersymmetric condition is not satisfied:

DVW0 |Vmin= ∂VK |Vmin W0 = − 2W0

Vmin
+O(ητ ) 6= 0, (40)

so supersymmetry is spontaneously broken. The minimum is not stable due to the two undeter-
mined directions and a tiny deviation from condition (35) would destabilise the total volume.
We will discuss the stabilisation of the ratios in the next section where the condition (35) is not
necessary.

There is a similar form to eq. (36) in the classical large volume scenario. The equation of
motion of the small cycle τs from eq. (9) leads to

τs ∝ ln(V) ∝ ln(τb). (41)

3.3 D-term uplifting and ratios stabilisation

In order to stabilise the ratios and find a dS vacuum, we introduce D-terms emerging from a
magnetic flux on each D7-brane. These depend on the corresponding world volume modulus τa:

VDa =
da
τa

(
∂K

∂τa

)2

= da
(V + 2η′a)

2

τ3
a (V +

∑
i η
′
iln(τi))2

(42)

=
da
τ3
a

+O(ηi). (43)
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For simplicity, we still use the condition (35) to calculate the minimum. Notice that it is not
a necessary condition once D-terms are included from all three D7-brane stacks, leading to a
global minimum for all the Kähler moduli.

We choose τ1, τ2 and V as the 3 independent dynamical variables. The sum of the F-term
potential (38) and D-term potentials (43) in the large volume limit becomes:

Vsum =
ητW2

0

V3
(3ln(V)− 12) +

d1

τ3
1

+
d2

τ3
2

+
d3τ

3
1 τ

3
2

V6
. (44)

The minimisation conditions of τ1 and τ2 lead directly to

τ3
1 =

(
d2

1

d2d3

) 1
3

V2

τ3
2 =

(
d2

2

d1d3

) 1
3

V2. (45)

Substituting these expresssions into the minimisation condition of V we get:

ητW2
0 (13− 3ln(V)) = 2(d1d2d3)

1
3V. (46)

There are two conditions that must be satisfied in order to get a dS minimum.

• The first is that there should exist two real solutions of eq. (46) where the smaller one
corresponds to a minimum and the larger one corresponds to a maximum. Indeed, by
doing a change of variables in eq. (46), we get:

zez =
2e

13
3 (d1d2d3)

1
3

3ητW2
0

; z =
13

3
− ln(V). (47)

The first equation above has two solutions for z negative while the function zez has a
minimum at z = −1. Thus, the right hand side should be between −e−1 and 0 that
requires:

− 3e−
16
3

2
' −0.007242 <

(d1d2d3)
1
3

ητW2
0

< 0. (48)

The smaller solution V0 of eq. (46) is:

V0 = e

13
3
−W

[
2e

13
3 (d1d2d3)

1
3

3ητW2
0

]
, (49)

in which W is the Lambert W-Function.

• The second condition is that the potential should be positive at the minimum. Using
eqs. (45) and (46), we can express the potential at the minimum in a simple form:

V min
sum =

ητW2
0

V3
0

+
(d1d2d3)

1
3

V2
0

> 0 (50)

Solving it numerically gives a new constraint

(d1d2d3)
1
3

ητW2
0

< −0.006738, (51)

which is consistent with the inequalities (48) and together lead to

− 0.007242 <
(d1d2d3)

1
3

ητW2
0

< −0.006738. (52)
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Within this range, we can get approximately the order of magnitude of the volume V0:

ln(V0) ' 5, (53)

which corresponds to a Grand Unification Theory (GUT) scale compactification volume.

We show an example in Fig. 2, in which we take d1 = d2, thus τ1 = τ2 at minimum according
to eq. (45).

Figure 2: Sum of the F- and D-term contributions to the potential (37) and (42) in terms of ln(V) and ln(τ3)
with the choice W0 = 1, ητ = −0.4, d1 = d2 = 0.00375, d3 = 0.0018. The blue area corresponds to V = 10−8

plane.

4 Conclusions

Moduli stabilisation in string theory is a long standing issue and despite the significant progress
that has been made during the last two decades, the proposed solutions are still far from being
conclusive. The main ingredients of the existing scenarios are backgound fluxes, string loop-
corrections and non-perturbative effects.

The key point towards a convincing solution is to implement a realistic dynamical mech-
anism which generates a scalar potential and provides masses to the various massless scalar
fields emerging in string compactifications. In this work, we have studied this problem in the
framework of IIB/F-theory compactifications and we have proposed a new geometric mechanism
which dispences with the use of non-perturbative effects. We have considered configurations,
where the main ingedients are intersecting D7-branes equipped with internal magnetic fluxes
which have an exact description to all orders in α′, and we have investigated their implications
on the stabilisation of the Kähler moduli. More concretely, assuming that the VEVs of the
complex structure moduli and of the axion-dilaton field are already fixed by supersymmetry
conditions, we examined the modifications of the Kähler potential arising from perturbative α′

and loop corrections. Elaborating on the essential features of D7-branes in the configuration of
the compact space, we concluded that in the transverse large volume limit of dimension two,
the effective action receives loop corrections which are logarithmically divergent. In effect, the
Calabi-Yau volume in the Kähler potential receives corrections which display logarithmic de-
pendence on the size of the transverse to the D7-branes directions. This is in contrast to the α′

correction which induces just a shift to the volume by a constant parameter ξ.
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In addition, magnetised D7-branes, have significant implications on the stabilisation of the
Kähler moduli and, at the same time, they can naturally ensure the existence of a dS minimum.
More precisely, magentised D7-branes are associated with anomalous U(1) symmetries which
are also a source of D-terms, that depend on the world-volume of the corresponding D7-branes.
These contributions to the effective potential can stabilise the ratios between each world-volume
modulus and the total volume and, thus, they work as an uplift mechanism to realise de-Sitter
minima. To show this we have computed the scalar potential and performed a detailed analysis,
where we found that in the case of one D7-brane the logarithmic shift of the volume stabilises
only the modulus of the transverse space. Stabilisation of the total volume is achieved only
in the presence of at least three intersecting D7-branes, which span all six dimensions of the
compact space. Interestingly, in this scenario, non-perturbative corrections are not necessary.

The realisation of this geometric stabilisation mechanism and the uplifting is a viable scenario
in F-theory [36] where intersecting 7-branes are a natural phenomenon which also has additional
attractive features beyond the present context. For instance, one could use the F-theory model
building [37] to realise the Standard Model.
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Appendix

The D-term potential from a U(1) magnetic flux on a single D7-brane has the form:

VD = d
u

τ(τ
√
u+ ξ + ηln(u))2

. (54)

The corresponding scalar potential is:

V =
W2

0 (−8η + 3ξ + 3ηln(u))

(8η + 2τ
√
u− ξ − ηln(u))(τ

√
u+ ξ + ηln(u))2

+ d
u

τ(τ
√
u+ ξ + ηln(u))2

. (55)

In order that the scalar potential has a dS minimum, one necessary condition is that for the
direction along V = τ

√
u, there exists a dS minimum when u is a constant. It is the same for the

direction along τ since they only differ by a factor of
√
u which is a positive constant. We can

thus write the potential in terms of V and take the other parameters including u as constants:

V (V) =
a

(V − b)(V − c)2
+

e

V(V − c)2
(56)

=
(a+ e)V − be
V(V − b)(V − c)2

(57)

The potential should be positive when V → +∞. So (a + e) should be positive. Since we
only consider the existence of a dS minimum, independently of the overall normalisation of the
potential, we can divide it by (a+ e) and define a new parameter f = be

a+e . The potential now
becomes:

V (V)

a+ e
=

V − f
V(V − b)(V − c)2

(58)
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and has three singularities at 0, b and c. The dS minimum should lie in the branch outside these
three singularities. Thus, we define a new parameter

g = max(0, b, c), (59)

and only consider the region:
V > g. (60)

First, consider the case that f > g; we find that the potential becomes negative in the range
g < V < f , which means there is no dS minimum. We turn to the case f ≤ g and calculate the
first derivative with respect to V:

dV (V)

dV
/(a+e) =

1

V(V − b)(V − c)2
− V − f
V2(V − b)(V − c)2

− V − f
V(V − b)2(V − c)2

− 2(V − f)

V(V − b)(V − c)3
.

(61)
Suppose b is the largest singularity b = g. The first derivative becomes:

dV (V)

dV
/(a+ e) =

f − b
V(V − b)2(V − c)2

− V − f
V2(V − b)(V − c)2

− 2(V − f)

V(V − b)(V − c)3
. (62)

Note that all the terms above are negative in the region f ≤ g < V. Thus, there is no minimum
in this region. The same results hold for 0 or c to be the largest singularity g. Thus, no dS
minimum exists in the physical region of the parameter space.
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[9] M. Berg, M. Haack and B. Körs, Phys. Rev. Lett. 96, 021601 (2006) [hep-th/0508171].

[10] S. L. Parameswaran and A. Westphal, JHEP 0610, 079 (2006) [hep-th/0602253].

[11] M. Cicoli, J. P. Conlon and F. Quevedo, JHEP 0801, 052 (2008) [arXiv:0708.1873 [hep-th]].

[12] M. Berg, M. Haack, J. U. Kang and S. Sjörs, JHEP 1412, 077 (2014) [arXiv:1407.0027
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