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Abstract

We argue that there may exist spacetime defects embedded in Minkowski spacetime, which have

negative active gravitational mass. One such spacetime defect then repels a test particle, corre-

sponding to what may be called “antigravity.”
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I. INTRODUCTION

It is possible that a “quantum-spacetime” phase has given rise to the classical spacetime

of the present Universe. If that is the case, then it is also possible that there have appeared

small imperfections in the emerging classical spacetime. These remnant imperfections may

be called “spacetime defects,” by analogy with defects in an atomic crystal.

We have studied a soliton-type spacetime defect which has nontrivial topology for both

the spacetime manifold and the matter-field configuration. Specifically, we have constructed

a new type of Skyrmion classical solution [1], for which the nontrivial topology of the SO(3)

matter field matches the nontrivial topology of space [essentially RP 3 ∼ SO(3)].

Even before the final soliton was constructed, there were hints that the soliton could have

an unusual asymptotic property, namely, a negative active gravitational mass [2]. This was

confirmed by a detailed numerical analysis [3]. The goal, now, is to understand the origin

of this negative gravitational mass.

II. THEORY AND ANSÄTZE

The details of the spacetime manifold and matter fields of the Skyrmion spacetime defect

solution have been given in Sec. II of Ref. [1], which also contains further references. Here,

we recall the main results, mainly in order to establish our notation.

The four-dimensional spacetime manifold has the topology

M4 = R×M3 , (2.1a)

M3 = RP 3 − p∞ , (2.1b)

where p∞ corresponds to the “point at spatial infinity.”

A particular covering of the manifold M3 uses three charts of coordinates, labeled by n =

1, 2, 3. The explicit coordinate charts are discussed in Sec. 2 and App. A of Ref. [4]. These

three sets of coordinates (Xn, Yn, Zn) are invertible and infinitely-differentiable functions of

each other in their respective overlap regions (details and further results can be found in

Chap. 5 of Ref. [5] and a brief summary appears in Sec. 2.1.2 of Ref. [3]). At this moment,

we will focus on the n = 2 chart, the other charts being similar. Specifically, the chart-2

coordinates have the following ranges:

X2 ∈ (0, π) , Y2 ∈ (−∞, ∞) , Z2 ∈ (0, π) , (2.2)

where Y2 = 0 gives the position of the defect surface (an RP 2 submanifold). Henceforth, we

will drop the suffix 2.

The action reads (c = ~ = 1)

S =

∫

M4

d4X
√−g

[
1

16πGN

R +
f 2

4
tr
(
ωµ ω

µ
)
+

1

16e2
tr
(
[ωµ, ων ] [ω

µ, ων ]
)]

, (2.3a)

ωµ ≡ Ω−1 ∂µ Ω , (2.3b)
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in terms of the Ricci curvature scalar R and the scalar field Ω(X) ∈ SO(3), together with

the definition g ≡ det gµν . In addition to having Newton’s gravitational coupling constant

GN , there is an energy scale f from the kinetic matter term in (2.3a). Furthermore, the

quartic Skyrme term comes with a dimensionless coupling constant 1/e2.

The spherically symmetric Ansatz for the metric over the chart-2 domain is given by [1]

ds2 = −
[
µ(W )

]2
dT 2 +

(
1− b2/W

) [
σ(W )

]2
(dY )2 +W

[
(dZ)2 + sin2 Z (dX)2

]
, (2.4a)

W ≡ b2 + Y 2 . (2.4b)

Remark that, compared to Eq. (8) of Ref. [1], we have dropped the suffix 2 on the spatial

coordinates in (2.4) and have removed the tildes on the two finite metric functions, µ(W )

and σ(W ). The metric from the Ansatz (2.4) is degenerate at W = b2 (or Y = 0), with

a vanishing determinant of the metric at the defect surface. This particular Ansatz avoids

running into curvature singularities; see Ref. [6] for a discussion of manifolds with the same

topology (2.1) but inequivalent differential structures. For further remarks on degenerate

metrics in general relativity, see Sec. VI.

The Skyrmion-type Ansatz for the SO(3) scalar field is given by [1]

Ω(X) = cos
[
F (W )

]
113 − sin

[
F (W )

]
x̂ · ~S +

(
1− cos

[
F (W )

])
x̂⊗ x̂ , (2.5a)

F (b2) = π , F (∞) = 0 , (2.5b)

S1 ≡




0 0 0

0 0 1

0 −1 0


 , S2 ≡




0 0 −1

0 0 0

1 0 0


 , S3 ≡




0 1 0

−1 0 0

0 0 0


 , (2.5c)

with the unit 3-vector x̂ ≡ ~x/|~x| from the Cartesian coordinates ~x defined in terms of the

coordinates X , Y , and Z (see App. A of Ref. [4]). Remark that, compared to Eq. (9) of

Ref. [1], we have removed the tilde on the Ansatz function F (W ) in (2.5). The boundary

conditions (2.5b) make for unit winding number of the compactified map Ω(X). Further

details and discussion can be found in Ref. [1].

There are two dimensionless model parameters in the theory (2.3),

η̃ ≡ 8πGN f 2 ≥ 0 , (2.6a)

e ∈ (0, ∞) . (2.6b)

Regarding the inequality of (2.6a), we assume f 2 > 0 and allow for GN ≥ 0. Numerical

calculations can use the following dimensionless variables:

w ≡ (e f)2 W = (y0)
2 + y2 , (2.7a)

y ≡ e f Y , (2.7b)

y0 ≡ e f b . (2.7c)

Inserting the above Ansätze into the Einstein and matter field equations from the action

(2.3) gives the corresponding reduced expressions. The reduced field equation (13a) from
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Ref. [1] contains, however, an error [3]. The corrected reduced field equations correspond to

the following three dimensionless ordinary differential equations (ODEs):

4wσ′(w) = +σ(w)

[[
1− σ2(w)

]
+ η̃

2

w

(
A(w) σ2(w) + C(w) [wF ′(w)]

2
)]

, (2.8a)

4w µ′(w) = −µ(w)

[[
1− σ2(w)

]
+ η̃

2

w

(
A(w) σ2(w)− C(w) [wF ′(w)]

2
)]

, (2.8b)

w2 F ′′(w) = +
1

C(w)
σ2(w) sinF (w)

(
sin2 F (w)

2
+

w

2

)

−1

2
σ2(w)wF ′(w)

[
1− 4 η̃

1

w
sin2 F (w)

2

(
sin2 F (w)

2
+ w

)]

− 1

C(w)
wF ′(w)

[
wF ′(w) sinF (w) + w

]
, (2.8c)

with definitions [3]

A(w) ≡ 2 sin2 F (w)

2

(
sin2 F (w)

2
+ w

)
, (2.9a)

B(w) ≡ w2C(w) ≡ w2

(
4 sin2 F (w)

2
+ w

)
. (2.9b)

The prime in (2.8) stands for differentiation with respect to w.

The ODEs (2.8) can be solved numerically with boundary conditions (2.5b) and appropri-

ate boundary conditions µ(b2) and σ(b2). For a given value of η̃, the solution space has been

found to be two-dimensional [3], characterized by the coefficients {k, l} of the asymptotic

behavior F (w) ∼ k/w and σ(w) ∼ 1 + l/(2
√
w) for w → ∞.

III. REMNANT SPACETIME DEFECT

As our focus will be on the asymptotic Schwarzschild mass of the spacetime defect (consid-

ered to be a possible left-over from an earlier phase), we introduce the following dimensionless

mass-type variable:

l(w) ≡
√
w

(
1− 1

σ2(w)

)
, (3.1)

which corresponds to a Schwarzschild-type behavior of the square of the metric function,

σ2(w) = 1/[1− l(w)/
√
w ]. From the ODE (2.8a), we get

l′(w) = η̃ w−3/2

(
A(w) + C(w)

[wF ′(w)]2

σ2(w)

)
, (3.2)

where the prime again denotes the derivative d/dw and the auxiliary functions A(w) and

C(w) have already been defined in (2.9). As the right-hand side of (3.2) is nonnegative,
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the interpretation is that the mass-type variable l(w) can only increase by the addition of

positive energy density from the matter fields.

Still, the boundary condition on σ(w) at w = (y0)
2 [or, equivalently, on l(w) at w = (y0)

2]

is essentially different from what happens with a relativistic star in a simply-connected space.

Recall that, for an R× R
3 spacetime manifold with standard radial coordinate r ∈ [0, ∞),

the metric at the origin r = 0 of the relativistic star is Minkowskian, as the local contribution

of the matter vanishes (assuming a finite energy density at the origin). With the standard

spherically symmetric metric over R× R
3,

ds2 = −
[
µ̂(r)

]2
dt2 +

[
σ̂(r)

]2
dr2 + r2

[
dθ2 + sin2 θ dφ2

]
, (3.3)

the rr-component metric function σ̂(r) then has boundary condition

σ̂(0) = 1 , (3.4)

and the same holds for the tt-component metric function, µ̂(0) = 1. Note that σ̂(0) 6= 1 in

the metric (3.3) would give rise to a conical singularity.

For the nonsimply-connected manifold M3 of our defect, the Y Y -component metric func-

tion σ(W ) can a priori take any value at W = b2 :

σ(b2) ∈ (0, ∞) , (3.5)

where the value zero has been excluded, in order that the field equations be well-defined at

Y = 0 (see Sec. 3.3.1 of Ref. [3]). Note that, as long as b2 > 0, the function value (3.5) in

the metric (2.4) does not give rise to singularities of the Ricci and Kretschmann curvature

scalars; see Eqs. (B1a) and (B1b) of Ref. [1] for the reduced expressions of these scalars.

We now proceed as follows. In Sec. IV, we describe the type of solutions obtained from

the “standard” boundary condition σ(b2) = 1. In Sec. V, we then give an argument which

demands, in certain cases, a nonstandard boundary condition σ(b2) < 1, corresponding to a

negative mass-type variable l(b2) according to (3.1).

IV. CRITICAL DEFECT SCALE

The Skyrmion-type Ansatz (2.5), with unit winding number, behaves as follows at the

defect surface Y = 0:

lim
W→b2

Ω(W ) = −113 + 2 x̂⊗ x̂ , (4.1)

which, as emphasized in Ref. [1], is consistent with the required antipodal identification

(recall RP 2 ∼ S2/Z2). This behavior causes a divergence of the soliton mass as the defect

scale b drops to zero (Fig. 1), at least in the absence of gravity or η̃ = 0. The soliton mass

is, in fact, defined by

Msol ≡
∫

M3

d3x
√−g T00 , (4.2)
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and, for η̃ = 0, behaves as follows:

Msol → ∞ , for b → 0+ , (4.3a)

Msol → ∞ , for b → ∞ . (4.3b)

Starting from b = 0+, the soliton mass drops to a minimum value around b = 0.7/(ef) and

then grows again as b increases (Fig. 1).

If gravity is turned on (η̃ 6= 0), the behavior of the solution is different. The Ansatz metric

has already been given in (2.4a) and involves two functions, µ(W ) and σ(W ). The vacuum

solution for the field σ(W ) has the Schwarzschild-type form, consistent with Birkhoff’s the-

orem (cf. Sec. 4 of Ref. [4]),

σ2(W )
∣∣∣
(vac)

=
1

1− RS/
√
W

, (4.4)

where RS ≡ 2GN M is the Schwarzschild radius. For a nonvacuum solution, we can write

σ2(W ) =
1

1− 2GN MS(W )/
√
W

. (4.5)

The function MS(W ) can essentially be interpreted as the mass contained within a sphere of

squared radius W and will be discussed further below. Note that the dimensionless version

of 2GN MS(W ) corresponds to our previous variable l(w) from (3.1),

l(w) = 2GN MS(W ) e f , (4.6)

where w and W are related by (2.7a).

The Arnowitt–Deser–Misner (ADM) mass [7] is now obtained by the limit

MADM = lim
W→∞

MS(W ) (4.7)

and equals the Komar mass [8] for the case considered (see Sec. 2.3.1.2 of Ref. [3]).

The model from Sec. II, with the standard boundary condition σ(b2) = 1, gives rise to two

branches of solutions (Fig. 2) that coalesce at a point characterized by a critical defect scale

bcrit and a critical coupling η̃crit. (The gravitating SU(2) Skyrmion also has two branches;

cf. Fig. 1 and Table 1 of Ref. [9].) The branch with larger values of |F ′(b2)| in Fig. 2 has

larger ADM masses and presumably corresponds to unstable solutions. We will restrict our

analysis to the branch with smaller values of |F ′(b2)| and smaller ADM masses. (The last

two sentences correct some erroneous statements in Ref. [1], at the bottom of the left column

on p. 5.)

From now on, we will refer to the coordinate-dependent quantityMS(W ) from (4.5) as the

“effective mass.” Therefore, the boundary condition σ(b2) = 1 can be understood as having

a vanishing effective mass at the defect surface. In this case, one expects that, for a given

coupling constant η̃ 6= 0, the solution ceases to exist below some critical value of the defect

scale. The numerical solution of the ODEs indeed shows this behavior (Fig. 3): starting

from b values near the minimum ADM mass, the soliton energy increases as b decreases, but,

at b = bcrit, the solution collapses, possibly even before an event horizon is formed. (The

6
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Figure 1. Soliton mass Msol in units f/e vs. defect scale b in units 1/(ef), for the case of GN = 0

and f 6= 0, corresponding to a vanishing coupling constant η̃ ≡ 8π GN f2.
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Figure 2. Two branches of the Skyrmion spacetime defect solution: matter-function slope F ′(b2)

vs. coupling constant η̃, for defect scale b = 0.34/(ef) and metric-function boundary condition

σ(b2) = 1. At this value of b, the critical value of the coupling constant, η̃crit, is approximately

equal to 0.033.
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Figure 3. Gravitational mass MADM in units f/e vs. defect scale b in units 1/(ef), for coupling

constant η̃ = 0.033 and boundary condition σ(b2) = 1. These results correspond to the lower-mass

branch of Fig. 2.
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Figure 4. Curve of the critical defect scale bcrit [in units of 1/(ef)] and corresponding critical

coupling constant η̃crit, where the boundary condition is fixed to σ(b2) = 1. Above the curve, there

are no globally regular solutions with σ(b2) = 1.
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collapse of the gravitating SU(2) Skyrmion has been discussed in, e.g., Ref. [9].) Note that,

in the absence of gravity (η̃ = 0), the collapse of the unit-winding-number SO(3) Skyrmion

is impossible and the soliton energy increases to infinity for b → 0+, as shown by Fig. 1.

With gravity present, the order of magnitude of bcrit can be obtained from the following

condition:

b = κ 2GN Msol, η̃=0(b
2)/c2 +O(η̃2) , (4.8)

where we have temporarily reinstated the light velocity c. In (4.8), κ is a positive constant

of order unity and Msol, η̃=0 is given by the integral (4.2) for the case η̃ = 0. The numerical

results from Figs. 1 and 3 are consistent with (4.8) for κ ≈ 27/50 : the first term on the

right-hand side of (4.8) gives approximately 0.34/(ef) for η̃ = 0.033 and Msol, η̃=0 ≈ 240 f/e

from the curve of Fig. 1 at b = 0.34/(ef), while the left-hand side of (4.8) corresponds to the

direct numerical result bcrit ≈ 0.34/(ef) from Fig. 3. In Fig. 4, we show the numerical results

for the dependence of bcrit on the coupling η̃crit at fixed boundary condition σ(b2) = 1. Above

the curve of Fig. 4, there are no globally regular solutions with σ(b2) = 1 or MS(b
2) = 0.

V. ANTIGRAVITY

Now, assume that the spacetime defects are remnants from some quantum-spacetime

(QST) phase, as discussed in Sec. I. For simplicity, also assume that this phase determines

a single characteristic scale of the defects, bQST > 0. There are two possibilities to consider.

The first possibility is that the characteristic scale, for a fixed value of η̃, corresponds to

b
(1)
QST ≥ bcrit [lying, for example, in the b > 0.34/(ef) region of Fig. 3 ]. With the boundary

condition σ
(
b2
)
= 1 for b = b

(1)
QST, the ADM mass is then always positive: the effective-mass

function MS(W ) is zero at W =
(
b
(1)
QST

)2
and increases monotonically with W .

The second possibility is that the characteristic scale, for a fixed value of η̃, corresponds

to

b
(2)
QST < bcrit , (5.1)

where, from now on, the suffix “(2)” on the left-hand-side expression will be dropped and

bcrit on the right-hand side has been given explicitly in Fig. 4 and implicitly by (4.8). Then,

in order to have globally regular solutions and to avoid gravitational collapse, we must have

0 < σ(b2)
∣∣∣
b=bQST

< 1 . (5.2)

The condition (5.2) translates into MS(b
2
QST) < 0, so that the effective mass at the defect

surface is negative. Adding a sufficiently negative effective mass to the defect decreases

the critical scale of the defect significantly, allowing for bQST ≥ b
(new)
crit . The effective-mass

function MS(W ) is still monotonic but starts from a negative value at W = b2.

For finite values of η̃, the ODEs (2.8) with nonstandard boundary condition σ(b2QST) < 1

from (5.2) [or MS(b
2
QST) < 0] can be solved numerically and give an ADM mass (4.7) which

can be negative, zero, or positive. Two numerical solutions are presented in Figs. 5 and

9



6 for parameters {η̃, b} = {1/10, 1/(ef)}, which correspond to a point above the curve of

Fig. 4. These numerical solutions have, depending on the value of the boundary condition

σ(b2) < 1, negative and positive ADM mass, as shown by the respective l(w) panels in

Figs. 5 and 6. The σ(b2) dependence of the two-dimensional solution space, at three fixed

values of η̃, is given in Fig. 4.4 of Ref. [3].

Next, consider the special case η̃ = 0+, or explicitly

f 2 ≪
(
Eplanck

)2 ≡ 1/(8πGN) , (5.3)

and assume a small enough value of the remnant-defect scale (5.1). From the definition (4.6)

and the ODE (3.2), there is then the following behavior: the value of MS(W ) stays close to

the negative value of MS(b
2
QST) from (5.2) and the asymptotic ADM mass (4.7) is negative.

For this special case, the negative ADM mass has been established by analytically solving

ODE (3.2) for η̃ = 0, with the trivial solution l(w) = const = l(y20). But the F (w) profile still

requires the numerical solution of ODE (2.8c) with σ2(w) replaced by σ̃2(w) ≡ 1/[1− l/
√
w ]

for constant l ≡ l(y20) < 0, where σ̃(w) and µ̃(w) = 1/σ̃(w) solve the ODEs (2.8a) and

(2.8b) at η̃ = 0. An explicit choice for bQST will be discussed in App. A, which also contains

numerical results for the F (w) profile. Additional numerical results are given in App. B.

Generally speaking, a negative ADM mass of the Skyrmion spacetime defect corresponds

to a negative active gravitational mass (see, e.g., Ref. [10] for a discussion of negative masses

in general relativity). The globally regular soliton then repels a distant test particle. Hence,

there is “antigravity” from this particular Skyrmion spacetime defect, as long as the defect

scale bQST and the coupling constant η̃ are small enough.

VI. DISCUSSION

In this article, we have explained why a particular Skyrmion spacetime defect solution

requires a negative ADM mass for its existence. In short, a nonstandard boundary condition

on one of the metric functions is needed, σ(b2) < 1, in order to avoid gravitational collapse

and, for a small enough value of the coupling constant η̃ ≡ 8π GN f 2, this boundary condition

at the defect surface directly gives a negative ADM mass at spatial infinity. Whether or not

such negative-gravitational-mass defects are present in the actual Universe depends on the

nature of the quantum-spacetime phase and its supposed transition to an emerging classical

spacetime. Needless to say, this quantum-spacetime phase is terra incognita.

Returning to the spacetime defect classical solution by itself, we have six general remarks

on the physics of the negative-gravitational-mass soliton. First, the negative ADM mass

found in Sec. V is not due to ponderable matter but to the gravitational fields at the defect

surface W = b2 (or Y = 0). Indeed, the vacuum solution (4.4) with RS ≡ 2GNM does

not have a point where the curvature diverges and where ponderable matter can be thought

to reside (the numerical value of constant M is set by the gravitational fields themselves

rather than by the ponderable matter). This behavior differs from that of the Schwarzschild

solution [given by metric (3.3) with functions µ̂(r) = 1/σ̂(r) = (1− 2GNM̂/r)], which does

have a point (r = 0) where the curvature diverges and where ponderable matter can be

thought to reside (this ponderable matter gives a positive numerical value for the constant

M̂).
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Figure 5. (Top row) Ansatz functions F (w), σ(w), and µ(w) of the numerical solution of the

reduced field equations (2.8). The parameters are η̃ ≡ 8πGN f2 = 1/10 and y0 ≡ efb = 1.

The boundary conditions at the defect surface w = (y0)
2 = 1 are: F = π, F ′ = −0.323978148,

σ = 1/3, and µ = 2.21176. (Middle row) Derived functions wF (w), l(w) ≡ √
w
[
1− 1/σ2(w)

]
, and

σ(w)µ(w). (Bottom row) Dimensionless Ricci curvature scalar R(w), dimensionless Kretschmann

curvature scalar K(w), and negative of the 00 component of the dimensionless Einstein tensor

Eµ
ν(w) ≡ Rµ

ν(w)− (1/2)R(w) δµν , where the explicit expressions are given in App. B of Ref. [1].
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Figure 6. Same as Fig. 5, but now with the following boundary conditions at the defect surface

w = (y0)
2 = 1: F = π, F ′ = −0.82561881304, σ = 1/

√
2, and µ = 0.725818.
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Second, the Skyrmion-spacetime-defect metric from (2.4) is degenerate: det gµν = 0 at

the defect surface Y = 0, which corresponds to an RP 2 submanifold. This degenerate metric

makes that the singularity [11] and positive-mass [12] theorems are not directly applicable,

allowing for a negative gravitational mass of the Skyrmion spacetime defect solution; see

Sec. 3.1.5 of Ref. [3] for further discussion. The special feature of the Skyrmion spacetime

defect solution is that certain geodesics at the defect surface Y = 0 cannot be continued

uniquely.

Third, the heuristic understanding of why there is degeneracy (det gµν = 0) at the de-

fect surface Y = 0 is as follows. The two-dimensional defect surface at Y = 0 corresponds

to the projective plane RP 2. Now, it is a well-known result that RP 2 cannot be differ-

entiably embedded in R
3 (i.e., without intersections); cf. p. 40 in Ref. [13] and Fig. 3 in

Ref. [4]. For us, this result then suggests that the third extra dimension Y emerging from the

two-dimensional defect surface (local coordinates X and Z) must have a vanishing metric

component gY Y at Y = 0, which is precisely the structure of our metric Ansatz (2.4) for

a finite value of σ(b2). If the metric component gY Y at Y = 0 does not vanish, then there

occur curvature singularities, as discussed in Sec. 5.2 of Ref. [5]. Note that our defect-surface

condition det gµν = 0 is invariant under nonsingular coordinate transformations.

Fourth, having established that the Skyrmion spacetime defect has a negative active

gravitational mass, as long as the defect scale b and the coupling constant η̃ are small

enough, the question arises as to the value of its inertial mass. A positive inertial mass

of the soliton-type solution would correspond to a dynamic violation of the equivalence

principle, but this would not be altogether surprising as the solution is known to violate the

standard elementary flatness property at the defect surface Y = 0; see the paragraph under

Eq. (2.29) in Ref. [6] for details.

Fifth, the negative-gravitational-mass Skyrmion spacetime defect may have other unusual

properties, such as the nonstandard parity eigenvalues of scalar-field scattering solutions (a

summary of the results appears in Sec. IV of Ref. [6]).

Sixth, and finally, it remains to perform a rigorous stability analysis of the negative-

gravitational-mass Skyrmion spacetime defect solution.

As to possible applications of antigravity by spacetime defects, two areas come to mind:

cosmology (dark matter and dark energy) and condensed matter physics (analogue-gravity

systems).
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Appendix A: Planck-scale defects

In Sec. V, we have given a general discussion of the antigravity effect coming from a

small enough defect scale b, but we did not specify the actual size of the defect scale. In

this appendix, we discuss a particular choice for the characteristic scale bQST of the defects,

12



where the defects are considered to be remnants from an earlier quantum-spacetime (QST)

phase.

First, restrict the matter sector of (2.3) to the following parameter domain:

f 2 ≪
(
Eplanck

)2 ≡ 1/(8πGN) ≈
(
2.44× 1018 GeV

)2
, (A1a)

e ≤ 1 , (A1b)

where the first inequality corresponds to η̃ ≪ 1 and where the origin of the upper bound on

the coupling constant e will be explained shortly. Next, assume that the characteristic scale

of the defects is given by the Planck length,

bQST = lplanck ≡
√

8πGN ~/c3 ≈ 8.10× 10−35 m , (A2)

which may very well be a typical scale of the quantum-spacetime phase (note the appearance

of ~ in the square root of the above expression).

With the assumptions (A1) and (A2), condition (5.1) holds directly [in the terminology

of the first two paragraphs of Sec. V, there is only the second possibility]. As explained in

Sec. V, condition (5.1) implies that the globally regular solution must have σ(b2QST) < 1 and

a corresponding negative ADM mass as given by (4.7). The reason is that, with η̃ ≪ 1, the

effective mass MS(W ) is approximately constant for all W values between b2 and infinity.

This behavior of nearly constant MS(W ), or equivalently nearly constant l(w) from (4.6),

is already visible in Fig. 7 with numerical results for η̃ = 10−4, e = 1, and defect scale

b = lplanck from (A2). Observe also that the behavior of the bottom-row panels in Fig. 7

rapidly approaches the behavior of the defect vacuum solution (cf. Sec. 3 in Ref. [4]) with

vanishing Ricci curvature tensor, R
(vac)
µν (w) = 0, and nonvanishing Kretschmann curvature

scalar, K(vac)(w) ∝ M2/w3.

Let us now give the promised derivation of (A1b). From Fig. 1 for b → 0+, we obtain

Msol ∝ 1/b or explicitly Msol ∼ (70/y0) f/e. With the latter result inserted in condition

(4.8) for bcrit, condition (5.1) with b = bQST = lplanck translates into an upper bound on the

matter coupling, e <
√

κ 70/(4π) ≈ 1.73 for κ ≈ 0.54. In the bound (A1b), we have just

taken the number 1 instead of the more accurate number 1.73.

With the actual parameter value as stated in (A1b), the difference between the defect

scale b from (A2) and the critical scale bcrit is a finite negative number, b − bcrit < 0, and,

therefore, requires a finite negative value for σ(b2) − 1, in order to get a regular solution.

In turn, a finite negative value of σ(b2) − 1 corresponds to a finite negative value of l(b2)

as defined by (3.1), which implies, for η̃ sufficiently close to 0, a finite negative value of

limw→∞ l(w), i.e., a negative ADM mass, according to (4.6) and (4.7).

To summarize, for the matter theory (2.3) with restricted parameters (A1), remnant

spacetime defects with a length scale given by the Planck length (A2) have a negative ADM

mass, as long as they correspond to globally regular solutions. The implicit assumption, here,

is that general relativity gives a more or less reliable description even for extremely small

length scales as given by (A2). But it is also possible that the defect scale is significantly

larger than the Planck length, bQST = ζ lplanck with a numerical factor ζ ≫ 1, provided the

matter coupling constant is correspondingly reduced, e ≤ 1/ζ ≪ 1.
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Figure 7. (Top row) Ansatz functions F (w), σ(w), and µ(w) of the numerical solution of the

reduced field equations (2.8). The parameters are η̃ ≡ 8π GN f2 = 10−4, e = 1, and y0 ≡
efb = eflplanck = 10−2. The boundary conditions at the defect surface w = (y0)

2 = 10−4 are:

F = π, F ′ = −2.27604760, σ = 1/10, and µ = 9.99298. (Middle row) Derived functions wF (w),

l(w) ≡ √
w
[
1− 1/σ2(w)

]
, and σ(w)µ(w). (Bottom row) Dimensionless Ricci curvature scalar

R(w), dimensionless Kretschmann curvature scalar K(w), and negative of the 00 component of the

dimensionless Einstein tensor Eµ
ν(w) ≡ Rµ

ν(w) − (1/2)R(w) δµν .

Appendix B: Additional numerical results

The numerical results of Ref. [1] are incorrect, because one of the three ODEs used

contained some erroneous terms. As mentioned in Sec. II, the ODE (13a) in Ref. [1] needs

to be replaced by (2.8a). In this appendix, we present the corrected numerical results.

Taking the parameter values {η̃, b} = {1/20, (1/
√
2)/(ef)}, Fig. 8 replaces Figs. 2 and

3 of Ref. [1] and Fig. 9 replaces Fig. 4 of Ref. [1]. The boundary value σ(b2) = 1 in Fig. 8

has been chosen to give approximately the same asymptotic l value as in Fig. 3 of Ref. [1].

Remark that the parameter values {η̃, b} of Fig. 8 correspond to a point just below the

curve of Fig. 4.

Figure 9 shows that the Ansatz functions of the numerical solution are perfectly smooth

at the defect surface Y = 0, as are the Ricci and Kretschmann curvature scalars and the

energy density.
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Figure 8. (Top row) Ansatz functions F (w), σ(w), and µ(w) of the numerical solution of the

reduced field equations (2.8). The parameters are η̃ = 1/20 and y0 = 1/
√
2. The boundary

conditions at the defect surface w = (y0)
2 = 1/2 are: F = π, F ′ = −1.9718377138, σ = 1, and

µ = 0.564337. (Middle row) Derived functions wF (w), l(w) ≡ √
w
[
1− 1/σ2(w)

]
, and σ(w)µ(w).

(Bottom row) Dimensionless Ricci curvature scalar R(w), dimensionless Kretschmann curvature

scalar K(w), and negative of the 00 component of the dimensionless Einstein tensor Eµ
ν(w) ≡

Rµ
ν(w) − (1/2)R(w) δµν .

0 0.1 0.2 0.3 0.4 0.5
ÈyÈ0

0.2

0.4

0.6

0.8
R@wD�8

0 0.1 0.2 0.3 0.4 0.5
ÈyÈ0

0.1

0.2

0.3

0.4
K@wD�102

0 0.1 0.2 0.3 0.4 0.5
ÈyÈ0

0.2

0.4

0.6

0.8
-E0

0@wD�4

0 0.1 0.2 0.3 0.4 0.5
ÈyÈ0.8

0.9

1

1.1

1.2
F@wD�Π

0 0.1 0.2 0.3 0.4 0.5
ÈyÈ0.8

0.9

1

1.1

1.2
Σ@wD

0 0.1 0.2 0.3 0.4 0.5
ÈyÈ0.4

0.5

0.6

0.7

0.8
Μ@wD

Figure 9. Core behavior of the functions from Fig. 8, in terms of the dimensionless quasiradial

coordinate y ∈ R. The coordinate w is given by w ≡ (y0)
2 + y2 = 1/2 + y2.
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