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In this paper, we study the weak gravitational lensing in the spacetime of rotating regular black
hole geometries such as Ayon-Beato-Garcı́a (ABG), Bardeen, and Hayward black holes. We calculate
the deflection angle of light using the Gauss-Bonnet theorem (GBT) and show that the deflection of
light can be viewed as a partially topological effect in which the deflection angle can be calculated
by considering a domain outside of the light ray applied to the black hole optical geometries. Then,
we demonstrate also the deflection angle via the geodesics formalism for these black holes to verify
our results and explore the differences with the Kerr solution. These black holes have in addition to
the total mass and rotation parameter, different parameters as electric charge, magnetic charge, and
deviation parameter. Newsworthy, we find that the deflection of light has correction terms coming
from these parameters which generalizes the Kerr deflection angle.
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I. INTRODUCTION

Since Einstein discovered general theory of relativity in 1915 [1], Einstein’s theory has been subjected to numerous
experimental tests. It turns out that, experimental results are quite well in agreement with theoretical predictions
of this theory, starting from astrophysics observations, but also a number of other precise confirmed experiments
[2–5]. Some of the predictions are exciting: gravitational waves which were recently detected by LIGO [3, 4], gravi-
tational lensing and bending of light, black holes, wormholes and others. The gravitational lensing has been studied
previously in the literature using different types of spacetimes with strong lensing or weak lensing.

In this paper, we focus on the weak gravitational lensing using the Gauss-Bonnet theorem (GBT) also known as
the Gibbons-Werner method (GWM). Since the black holes can not be observed directly, one way to ensure their
existence is to study the geodesic equations of light rays in the curved spacetime geometry due to the presence of
black holes. In this way, one can extract valuable information from black holes and detect their features. Weak
gravitational lensing is an interesting method, however in most of the cases the strong lensing regime is needed;
strong lensing provides more information from experimental point of view to detect other exotic objects or ultra-
compact objects such as boson stars [6]. In the near future, scientists expect to detect the horizon of a black hole
using the Event Horizon Telescope (EHT) [7]; so, that this topic has acquired a great interest, and many authors
focus on it to obtain correct results [8–39].

Recently, Gibbons and Werner [40] have changed the standard viewpoint related to the way we usually calculate
the deflection angle. They have showed that one can calculate the deflection angle in a very elegant way, namely
they have used the GBT in the context of the optical geometry. The physical significance relies in the fact that one can
view the bending of light ray as a global effect which is different from the standard viewpoint where the bending of
light is usually associated within a region with a radius compared to the impact parameter. In this method, one shall
only focus on a non-singular domain outside of the light ray. For asymptotically flat spacetimes the deflection angle
can be calculated by the following equation:

α̂ = −
∫ ∫

S∞
Kdσ,

where K is the Gaussian optical curvature, and dσ is the surface element of the optical geometry. Note that the
above expression for the deflection angle holds in the case of asymptotically flat spacetimes, whereas in the case
of non asymptotically flat metric only a finite distance corrections can be studied. Very recently, Werner has been
able to extend this method to cover Kerr black holes using the Finsler-Randers type metric. More specifically, he has
applied the Nazım’s method to construct a Riemannian manifold osculating the Randers manifold [41]. In addition,
this method has been extended to the wormhole geometries and non-asymptotically flat spacetimes with topological
defects [42]. This method has been used in a number of papers [43–53], among others we note that the GBT has been
used in the interesting papers by Ishihara et al. [54–56], in which the deflection angle for finite distances for a static
(including the presence of the cosmological constant), and stationary metrics, is studied in a rather different setup.
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Classical singularities in general relativity break down the laws of physics. Singularities appear from the cosmo-
logical Big Bang theory to black holes where they are hidden behind the event horizon of a black hole. It is widely
believed that quantum mechanics forbids the physics-ending singularities, but until today the problem of singular-
ities remains an open problem in physics. To overcome the problem of singularities in black holes, many physicists
have tried to construct regular black holes even in the context of classical general relativity. In this line of research we
point out the Ayon-Beato-Garcia black hole (ABG) [57, 58], Bardeen regular black holes [59] and Hayward regular
black holes [60], which were obtained by finding a new mass function, and we obtain the deflection angles [61–66],
in order to explore the difference with the Kerr black hole solution in the weak gravitational lensing. In doing so, we
extend the GBT method to rotating black holes with electric and magnetic charge for the first time.

This paper is organized as follows. In Section II we start by reviewing some of the basic concepts related to
Finsler geometry. By introducing the ABG-Randers optical metric and followed by the Gaussian optical curvature
we calculate the deflection angle. We study also the geodesic equation to verify our results. In Section III, we evaluate
the deflection angle in the spacetime of a Bardeen black hole. In Section IV, we perform the same analysis for the
Hayward regular black hole. Hence, we finalize our results in Section V.

II. DEFLECTION ANGLE OF ROTATING REGULAR ABG BLACK HOLE

In this section, first we use the rotating Ayon-Beato-Garcı́a spacetime, which is a nonsingular exact black hole
solution of Einstein field equations coupled to a nonlinear electrodynamics and satisfy the weak energy condition.
The metric of the ABG black hole is written in the form [61, 62]:

ds2 = − f (r, θ)dt2 +
Σ
∆

dr2 − 2a sin2 θ (1− f (r, θ)) dφdt + Σdθ2 + sin2 θ
[
Σ− a2 ( f (r, θ)− 2) sin2 θ

]
dφ2 , (2.1)

with

f (r, θ) = 1− 2mr
√

Σ

(Σ + Q2)
3/2 +

Q2Σ

(Σ + Q2)
2 , (2.2)

Σ = r2 + a2 cos2 θ , (2.3)
∆ = Σ f (r, θ) + a2 sin2 θ . (2.4)

The ABG black hole metric can be further simplified by setting θ = π/2, in that case the function f (r) takes the
form

f (r) = 1− 2mr2

(r2 + Q2)
3/2 +

Q2r2

(r2 + Q2)
2 , (2.5)

Σ = r2 , (2.6)
∆ = Σ f (r) + a2 . (2.7)

We wish now to recast our ABG metric into the Finsler-Randers type metric of the general form [41]

F (x, v) =
√

ζij(x)vivj + βi(x)vi , (2.8)

provided ζ ijβiβ j < 1, in which ζij gives the Riemannian metric to be calculated from the ABG metric, while βi

represents a one-form. If we solve Eq. (2.1) for the null geodesic case i.e. ds2 = 0, the problem is simplified to study
the deflection of light in the equatorial plane by letting θ = π/2. In that case, we find the following ABG-Randers
optical metric

F
(

r, φ,
dr
dt

,
dφ

dt

)
=

√[
a2(1− f (r))2

f (r)2 +
Σ− a2( f (r)− 2)

f

] (
dφ

dt

)2
+

Σ
∆ f (r)

(
dr
dt

)2
− a(1− f (r))

f (r)
dφ

dt
. (2.9)

The physical significance of the ABG-Randers optical metric F relies in the remarkable feature of the Finsler
geometry, namely it provides a way to actually compute the null geodesics. In other words, there is a link of finding
null geodesics in our physical metric (2.1) with the problem of finding the null geodesics of a ABG-Randers optical
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metric which can be seen by recalling the Fermat’s principle. Since dt = F (x, dx), Fermat’s principle of least time in
the context of general relativity suggests that the null geodesics can be found from the following condition

δ
∫

γ
dt = δ

∫
γF

F (x, ẋ)dt = 0 . (2.10)

Hence, it is clear that the Rander-Finsler metric F naturally appears in the problem of finding null geodesics and
generalizes the Fermat’s principle. The Randers-Finsler metric is characterized by the Hessian

gij(x, v) =
1
2

∂2F 2(x, v)
∂vi∂vj , (2.11)

where x ∈ M, v ∈ Tx M. To this end we need to apply Nazım’s method which provides us to construct a Riemannian
manifold (M, ḡ) that osculates the ABG-Randers manifold (M,F ). For this purpose, we need to choose a vector
field v̄ tangent to the geodesic γF , such that v̄(γF ) = ẋ. In that case the Hessian reads

ḡij(x) = gij(x, v̄(x)) . (2.12)

It is obvious that, the choice of the vector field is not unique and affect the optical metric components but, the
crucial result which should be noted that a geodesic of the Randers manifold γF is also a geodesic γḡ of (M, ḡ) (see
[41] for details):

ẍi + Γi
jk(x, ẋ)ẋj ẋk = ẍi + Γ̄i

jk(x)ẋj ẋk = 0 , (2.13)

or γF = γḡ. One can choose the non-singular region SR ⊂ M to be bounded by the light ray γF and a curve γR in a
radial distance R from the coordinate origin. Furthermore, these curves can be parameterized as follows [41]

γF : xi(t) = ηi(t), t ∈ [0, l] (2.14)

γR : xi(t) = ζ i(t), t ∈ [0, l?] . (2.15)

In particular one can introduce, say τ = t/l, along the geodesic γF which belongs to the interval ∈ (0, 1), and
similarly τ? = 1− t/l with the interval ∈ (0, 1) along the curve γR. This means that one can pair each point ηi(τ)
on γF with ζ i(τ?) on γR if we set τ = τ?. In other words, one can show that there exists a family of smooth curves
xi(σ, τ), such that for pair of each point that there is precisely one curve which touches the boundary curve (see, Fig.
1).

FIG. 1: The figure shows the integration domain SR, namely the equatorial plane (r, φ), in which α̂ is the total deflection angle and b is the
impact parameter.

In addition we can say that xi(σ, τ) touches the curve γF at the boundary when ηi(τ) = xi(0, τ), where σ is a new
parameter. Then the following relation holds

η̇i(τ) =
dηi

dt
(τ) =

dxi

dσ
(0, τ) . (2.16)
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Likewise, we can say that xi(σ, τ) touches the curve γR when ζ i(τ) = xi(1, τ). This suggests that

ζ̇ i(τ) =
dζ i

dt
(τ) =

dxi

dσ
(1, τ) . (2.17)

In general, one can construct a smooth and nonzero tangent vector field

v̄i(x(σ, τ)) =
dxi

dσ
(σ, τ) , (2.18)

with a family of smooth curves which satisfy the following relation [41]

xi(σ, τ) = ηi(τ) + η̇i(τ)σ +A(τ)σ2 + B(τ)σ3 + yi(σ, τ)(1− σ)2σ2 , (2.19)

with

A(τ) = 3ζ i(τ)− 3ηi(τ)− ζ̇ i(τ)− 2η̇i(τ)ηi(τ),

B(τ) = 2ηi(τ)− 2ζ i(τ) + ζ̇ i(τ) + η̇i(τ) .

That being said, and keeping in mind that our metric is asymptotically flat, we can choose an equation for the light
rays as follows

r(φ) =
b

sin φ
, (2.20)

with b being the impact parameter. From the light ray equation one can deduce the following components for the
vector field

v̄r =
dr
dt

= − cos φ, v̄φ =
dφ

dt
=

sin2 φ

b
. (2.21)

It is worth noting that the choose of the vector field is dictated by the light ray equation rγ. Note that our particular
equation of the light ray represents a straight line approximation, this will be important in the final result for the
deflection angle. In other words, due to the straight line approximation we expect our deflection angle to be correct
in leading order terms.

A. Gaussian optical curvature

We shall now continue to compute the metric components. To this end, we need to combine Eqs. (2.11), (2.21)
yielding the following non-zero components

ḡrr = −
2
[
−2(m + r

4 )
(

sin4 φr2 + b2 cos2 φ
)3/2

+ amr2 sin6 φ

]
r
(

sin4 φr2 + b2 cos2 φ
)3/2

−

[
18(m + r

9 )
(

sin4 φr2 + b2 cos2 φ
)5/2

− 7
(

13(m + r
13 )r

2 sin4 φ + b2 cos2 φ(m + r
7 )
)

r2 sin6 φ

]
Q2

r3
(

sin4 φr2 + b2 cos2 φ
)5/2 , (2.22)

ḡrϕ =
2a cos3 φm

r
(

sin4 φr2+b2 cos2 φ

b2

)3/2 −
b3aQ2 cos3 φ

(
17 sin4 φmr19 + sin4 φr20 + 11r17 cos2 φb2m + cos2 φb2r18

)
r20
(

sin4 φr2 + b2 cos2 φ
)5/2 , (2.23)

ḡϕϕ =

2r
[
−2amr2 sin6 φ− 3ab2m cos2 φ sin2 φ + (m + r

2 )
(

sin4 φr2 + b2 cos2 φ
)3/2

]
(

sin4 φr2 + b2 cos2 φ
)3/2

−
Q2
[

7(m + r
7 )
(

sin4 φr2 + b2 cos2 φ
)5/2

− 3a sin2 φ Ξ(r, a, m)

]
r
(

sin4 φr2 + b2 cos2 φ
)5/2 , (2.24)
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where

Ξ = 6
(

m +
r
9

)
r4 sin8 φ + 15 cos2 φ

(
m +

r
9

)
b2r2 sin4 φ + 7b4 cos4 φ

(
m +

r
7

)
. (2.25)

The determinant is given as

det ḡ = −
6r4ma sin6 φ + 6b2amr2 cos2 φ sin2 φ + 33

(
− 2

11 mr2 − 1
33 r3

) (
sin4 φr2 + b2 cos2 φ

)3/2

r
(

sin4 φr2 + b2 cos2 φ
)3/2

−
Q2
[
−51r2(m + r

11 )a sin6 φ− 45b2a cos2 φ(m + r
15 ) sin2 φ + 33(m + r

11 )
(

sin4 φr2 + b2 cos2 φ
)3/2

]
r
(

sin4 φr2 + b2 cos2 φ
)3/2 .(2.26)

The Gaussian optical curvature then can be found by noticing the relation R̄rφrφ = K det ḡ. In other words, we
can compute K as follows

K =
1√

det ḡ

[
∂

∂φ

(√
det ḡ
ḡrr

Γ̄φ
rr

)
− ∂

∂r

(√
det ḡ
ḡrr

Γ̄φ
rφ

)]
. (2.27)

Our computation reveals the following result

K = −2
m
r3 + 3

Q2

r4 + 12
Q2m

r5 +
15aG(r, φ)

r5 . (2.28)

Note that the first term corresponds to the Schwarzschild black hole, while the second and third term give the
charge contribution, finally the last term is a consequence of the rotation. Note that the function G(r, ϕ) is rather
complicated expression which is found to be
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G(r, φ) = − sin2 φ(
sin4 φr2 + b2 cos2 φ

)9/2

[ (11 Q2mr8

10
+

1
2

Q2r9 − 2
5

mr10
)
(sin (φ))16

− 1
2

r6b2
(

Q2m +
1
5

Q2r− 2
5

mr2
)
(sin (φ))14

+ r6b2 (cos (φ))2
(

Q2m +
11 Q2r

10
+

2
5

mr2
)
(sin (φ))12

+
42 b3r5 (cos (φ))2 (sin (φ))11

5

(
Q2m +

5 Q2r
42
− 4 mr2

21

)
+

9r4b2

2
(cos (φ))2 (sin (φ))10

×
((
−10 Q2mr2

9
− 2

9
Q2r3 +

4
9

r4m
)
(cos (φ))2 + b2

(
Q2m +

1
15

Q2r− 2
15

mr2
))

+
84 r5b3 (cos (φ))4 (sin (φ))9

5

(
Q2m +

5 Q2r
42
− 4 mr2

21

)
+

96 r4b4 (cos (φ))4 (sin (φ))8

5

(
Q2m +

1
8

Q2r− 5 mr2

96

)
− 21 r3b5 (cos (φ))4 (sin (φ))7

5

(
Q2m− 5 Q2r

21
+

2
7

mr2
)

− 2 r2b4 (cos (φ))4
(
−9 Q2mr2 (cos (φ))2 + b2

(
Q2m− 1

5
Q2r +

2
5

mr2
))

(sin (φ))6

− 42 r3b5 (cos (φ))6 (sin (φ))5

5

(
Q2m− 5 Q2r

21
+

2
7

mr2
)

− 7 r2b6 (cos (φ))6 (sin (φ))4

10

(
Q2m− 20 Q2r

7
+

18 mr2

7

)
+

1
5

(
7 Q2 + 2 r2

)
rb7 (cos (φ))6 m (sin (φ))3 + Q2b8 (cos (φ))8 (m + r/5)

− 5 r2b6 (cos (φ))8
(

Q2m− 1
5

Q2r +
2
5

mr2
)
(sin (φ))2

+
1
5

(
14 Q2 + 4 r2

)
rb7 (cos (φ))8 m sin (φ)

]
. (2.29)

Note that the Gaussian optical curvature depends on the black hole parameters, a, m, and Q2. In the next section
we are going to evaluate the deflection angle with the help of the above result.

B. Deflection angle

Theorem: Let (SR, ḡ) be a non-singular and simply connected domain over the osculating Riemannian manifold (M, ḡ)
bounded by circular curve γR and the geodesic γḡ. Let K be the Gaussian curvature of (M, ḡ), and κ the geodesic curvature of
∂SR = γḡ ∪ γR. Then, the GBT can be stated as follows [40, 41]∫∫

SR

K dσ +
∮

∂SR

κ dt + ∑
k

αk = 2πχ(SR) . (2.30)

As we have already noted that dσ gives the surface element, αk represents the kth exterior angles, χ(SR) is known
as the Euler characteristic number. The geodesic curvature basically determines the deviation from the geodesic. By
definition we have κ(γḡ) = 0, because γḡ is a geodesic. Of particular importance is the geodesic curvature of γR in
a radial coordinate R from the coordinate origin. It can be calculated via

κ(γR) = |∇γ̇R γ̇R| . (2.31)



8

We can choose γR := r(ϕ) = R = const, in that case the radial part yields

(∇γ̇R γ̇R)
r = γ̇

φ
R
(
∂φγ̇r

R
)
+ Γ̄r

φφ

(
γ̇

φ
R

)2
. (2.32)

It is noted that the first term vanishes, while the second term can be calculated by the unit speed condition i.e.,
ḡφφγ̇

φ
Rγ̇

φ
R = 1. Since our optical geometry is asymptotically Euclidean we find that κ(γR) → R−1 as R → ∞.

The other point is the fact that as R → ∞, the sum of jump angles (αO), to the source S , and observer O, yields
αO + αS → π [40]. For constant R, the optical metric gives

lim
R→∞

dt = lim
R→∞

[√
a2(1− f (r))2

f (r)2 +
Σ− a2( f (r)− 2)

f
− a(1− f (r))

f (r)

]
dφ

→ Rdφ , (2.33)

where we have used the fact that

lim
R→∞

f (R)→ 1 . (2.34)

Finally one can shows that

lim
R→∞

κ(γR)
dt
dφ
→ 1 . (2.35)

Note that by construction, the source S and the observer O are assumed to be in the asymptotically Euclidean
region, thus the last equation clearly reveals our assumptions that our optical metric is asymptotically Euclidean.
Having computed the geodesic curvature from GBT it follows

∫∫
SR

K dS +
∮

γR

κ dt R→∞
=

∫∫
S∞

K dσ +

π+α̂∫
0

dφ = π , (2.36)

resulting with

α̂ = −
∫∫
S∞

Kdσ . (2.37)

After substituting the Gaussian optical curvature (2.28) into the last equation we find

α̂ ' −
π∫

0

∞∫
b

sin φ

[
−2

m
r3 + 3

Q2

r4 + 12
Q2m

r5 +
15aG(r, φ)

r5

] √
det ḡ dr dφ . (2.38)

Solving the non-rotating part in the above integral we find

I1 = −
π∫

0

∞∫
b

sin ϕ

(
−2

m
r3 + 3

Q2

r4 + 12
Q2m

r5

)√
det ḡdrdϕ

=
4m
b
− 3πQ2

4b2 −
16Q2m

3b3 . (2.39)

The rotating part gives

I2 = −
π∫

0

∞∫
b

sin ϕ

(
15aG(r, φ)

r5

) √
det ḡ dr dϕ = ±4ma

b2 ±
9896maQ2

15 b4 . (2.40)

The total deflection angle is found

α̂ =
4m
b
− 3πQ2

4b2 ±
4ma
b2 +O(Q2, a, m) , (2.41)

where the signs of positive and negative stand for a retrograde and a prograde light rays.
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C. Geodesics

The equations of the geodesics can be derived from the Lagrangian of a test particle [67]. For motion in the
equatorial plane, that is, θ = π/2 and θ̇ = 0, the Lagrangian results to be:

2L = − f (r)ṫ2 +
r2

∆
ṙ2 − 2a (1− f (r)) φ̇ṫ +

[
r2 − a2 ( f (r)− 2)

]
φ̇2 , (2.42)

where q̇ = dq/dτ, and τ is an affine parameter along the geodesic. Since the Lagrangian (2.42) is independent of
the cyclic coordinates (t, φ), then their conjugate momenta (Πt, Πφ) are conserved. Then, the equations of motion are
obtained from Π̇q − ∂L

∂q = 0, and yield

Π̇t = 0, Π̇φ = 0 , (2.43)

where Πq = ∂L/∂q̇ are the conjugate momenta to the coordinate q, and are given by

Πt = − f (r)ṫ− a(1− f (r))φ̇ ≡ −E , Πr =
r2

∆
ṙ and Πφ = −a(1− f (r))ṫ + (r2 − a2( f (r)− 2))φ̇ ≡ L , (2.44)

where E and L are dimensionless integration constants associated to each of them. So, the Hamiltonian is given by

H = Πt ṫ + Πφφ̇ + Πr ṙ−L (2.45)

2H = −E ṫ + L φ̇ +
r2

∆
ṙ2 ≡ −m̄2 . (2.46)

Now, by normalization, we shall consider m̄2 = 0 for photons. Therefore, we obtain

ṫ =
2a2E− aL + Er2 + a(L− aE) f (r)

a2 + r2 f (r)
, (2.47)

φ̇ =
aE + f (r)(L− aE)

a2 + r2 f (r)
, (2.48)

ṙ2 =
a(2aE2 − 2EL) + E2r2 − f (r)(L− aE)2

r2 . (2.49)

The distance of the closest approach r0 for the metric (2.1) can be obtained from ṙ = 0, which yields

r0

b
=

√√√√1−
( a

b

)2
+ r2

0

(
1− a

b

)2
(

Q2

(Q2 + r2
0)

2
− 2m

(Q2 + r2
0)

3/2

)
, (2.50)

where b = L/E is the impact parameter.
Now, following [29] the bending angle can be determined by the expression

α̂ = 2
∫ ∞

r0

∣∣∣∣dφ

dr

∣∣∣∣ dr− π , (2.51)

which yields

α̂ =
4m
b
− 3πQ2

4b2 ±
4ma
b2 +O(Q2, a, m) , (2.52)

where we use the change of variables u = r0/r; then, we substitute the impact parameter given by the Eq. (2.50),
and we expand in Taylor series around m, a, and Q. Finally, we consider r0 ≈ b. In Fig. 2 we plot the deflection of
light in the background of a rotating regular ABG black hole by solving numerically the Eqs.(2.48) and (2.49).
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FIG. 2: The deflection of light in the background of a rotating regular ABG black hole with E = 2, L = 5, m = 0.3,
Q = 0.1 and a = 0.1. The circle corresponds to the closest approach (r0 = 2.158) to the black hole.

III. DEFLECTION ANGLE BY ROTATING REGULAR BARDEEN BLACK HOLE

In this section, we study the deflection angle by rotating Bardeen regular black hole. The spacetime metric of the
rotating Bardeen regular black hole reads [62]:

ds2 = −
(

1− 2Mbr
Σ

)
dt2 − 4aMbr sin2 θ

Σ
dtdφ +

Σ
∆

dr2 + Σdθ2 +

(
r2 + a2 +

2a2Mbr sin2 θ

Σ

)
dφ2 , (3.1)

where

Σ = r2 + a2 cos2 θ , (3.2)
∆ = r2 − 2Mbr + a2 , (3.3)

Mb = m
(

r2

r2 + g2
?

)3/2

, (3.4)

in which g? is the magnetic charge due to the non-linear electromagnetic field. In this case, we find the following
expression for the optical metric

F
(

r, φ,
dr
dt

,
dφ

dt

)
=

√
r4

∆(∆− a2)
(

dr
dt

)2 +
r4∆

∆− a2 (
dφ

dt
)2 − 2mar

∆− a2

(
r2

r2 + g2
?

)3/2 dφ

dt
, (3.5)
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ḡrr = −
2
[
−2(m + r

4 )
(

sin4 φr2 + b2 cos2 φ
)3/2

+ amr2 sin6 φ

]
r
(

sin4 φr2 + b2 cos2 φ
)3/2 −

g2
?m
[

3ar2 sin6 φ + 6
(

sin4 φr2 + b2 cos2 φ
)3/2

]
r3
(

sin4 φr2 + b2 cos2 φ
)3/2 ,

ḡrφ =
2ab3 cos3 φm

r
(

sin4 φr2 + b2 cos2 φ
)3/2 −

3ab3 cos3 φmg2
?

r3
(

sin4 φr2 + b2 cos2 φ
)3/2 , (3.6)

ḡφφ =

2r
[
−2amr2 sin6 φ− 3ab2m cosφ sin2 φ + (m + r

2 )
(

sin4 φr2 + b2 cos2 φ
)3/2

]
(

sin4 φr2 + b2 cos2 φ
)3/2

−
3g2

?m
[
−2ar2 sin6 φ− 3ab2 cos2 φ sin2 φ +

(
sin4 φr2 + b2 cos2 φ

)3/2
]

r
(

sin4 φr2 + b2 cos2 φ
)3/2 . (3.7)

With the determinant

det ḡ = r2 −
6rm

[
a sin2 φ−

√
cos4 φr2 + (b2 − 2r2) cos2 φ + r2

]
√

cos4 φr2 + (b2 − 2r2) cos2 φ + r2

+
9g2

?m
[

a sin2 φ−
√

cos4 φr2 + (b2 − 2r2) cos2 φ + r2
]

r
√

cos4 φr2 + (b2 − 2r2) cos2 φ + r2
. (3.8)

Then the Gaussian optical curvature is

K = −2m
r3 +

18mg2
?

r5 +
27amS(r, φ)

r5 , (3.9)

with

S(r, φ) = − sin2 φ(
sin4 φr2 + b2 cos2 φ

)7/2

[ (14 g2
?r6

9
− 2/9 r8

)
(sin (φ))12

− 1/6 b2r4
(

g2
? − 2/3 r2

)
(sin (φ))10 +

31 b2r4 (cos (φ))2 (sin (φ))8

9

(
g2
? +

4 r2

31

)
+

(
2 b3g2

?r3 − 8 b3r5

9

)
(cos (φ))2 (sin (φ))7

+ 1/3
(
−5 r2 (cos (φ))2 + 2 b2

)
b2r2 (cos (φ))2

(
g2
? − 2/3 r2

)
(sin (φ))6

+

(
4 b3g2

?r3 − 16 b3r5

9

)
(cos (φ))4 (sin (φ))5 + 1/18

(
97 g2

? − 18 r2
)

b4r2 (cos (φ))4 (sin (φ))4

+ 1/3 b5r (cos (φ))4
(

g2
? + 2/3 r2

)
(sin (φ))3 + (cos (φ))6 b6g2

+ 5/3 b4r2 (cos (φ))6
(

g2
? − 2/3 r2

)
(sin (φ))2 + 2/3 b5r (cos (φ))6

(
g2
? + 2/3 r2

)
sin (φ)

]
. (3.10)

Substituting these relations from GBT it follows the integral

α̂ ' −
π∫

0

∞∫
b

sin φ

(
−2m

r3 +
18mg2

?

r5 +
27amS(r, φ)

r5

) √
det ḡ dr dφ . (3.11)
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We can split this integral in two parts. The non-rotating contribution yields

I1 = −
π∫

0

∞∫
b

sin ϕ

(
−2m

r3 +
18mg2

?

r5

)√
det ḡdrdφ

=
4m
b
− 8g2

?m
b3 . (3.12)

For the second integral we find

I2 = −
π∫

0

∞∫
b

sin φ

(
S(r, φ)

4r11

) √
det ḡ dr dφ = ±4ma

b2 ∓
24mag2

?

b4 . (3.13)

Finally the total deflection angle of rotating Bardeen regular black hole is

α̂ =
4m
b
− 8g2

?m
b3 ± 4ma

b2 +O(m, a, g2
?). (3.14)

A. Geodesics equations

In this case, the Lagrangian associated with the motion of particles in the equatorial plane (θ = π/2 and θ̇ = 0)
results to be:

2L = −
(

1− 2Mb
r

)
ṫ2 − 4aMb

r
ṫφ̇ +

r2

∆
ṙ2 +

(
r2 + a2 +

2a2Mb
r

)
φ̇2 , (3.15)

where q̇ = dq/dτ, and τ is an affine parameter along the geodesic. Since the Lagrangian (3.15) is independent of the
cyclic coordinates (t, φ), then their conjugate momenta (Πt, Πφ) are conserved. Then, the equations of motion can be
obtained from Π̇q − ∂L

∂q = 0, and we obtain

Π̇t = 0 , Π̇φ = 0 , (3.16)

where Πq = ∂L/∂q̇ are the conjugate momenta to the coordinate q, and are given by

Πt = −
(

1− 2Mb
r

)
ṫ− 2aMb

r
φ̇ ≡ −E , Πr =

r2

∆
ṙ and Πφ = −2aMb

r
ṫ +
(

r2 + a2 +
2a2Mb

r

)
φ̇ ≡ L , (3.17)

where E and L are dimensionless integration constants associated to each of them. Therefore, the Hamiltonian is
given by

H = Πt ṫ + Πφφ̇ + Πr ṙ−L (3.18)

2H = −E ṫ + L φ̇ +
r2

∆
ṙ2 ≡ −m̄2 . (3.19)

Now, by normalization, we consider m̄2 = 0 for photons. Thus, for photons we obtain that

ṫ =
−2aMbL + Er3 + a2E(2Mb + r)

r(r2 − 2Mbr + a2)
, (3.20)

φ̇ =
2aMbE− 2MbL + rL

r(r2 − 2Mbr + a2)
, (3.21)

ṙ2 =
2(L− aE)2Mb + (a2E2 − L2)r + E2r3

r3 . (3.22)
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The distance of the closest approach r0 for the metric (3.1) can be obtained from ṙ = 0, which yields

r0

b
=

√√√√1−
( a

b

)2
− 2m

r0

(
1− a

b

)2
(

r2
0

g2
? + r2

0

)3/2

, (3.23)

where b = L/E is the impact parameter.
Therefore, the bending angle Eq. (2.51) is given by

α̂ =
4m
b
− 8g2

?m
b3 ± 4ma

b2 +O(a, m, g2
?) (3.24)

where, similar to the previous case, we use the change of variables u = r0/r, next, we substitute the impact parameter
given by the Eq. (3.23), then, we expand in Taylor series around m, a, and g?, and finally, we consider r0 ≈ b. In
Fig. 3 we plot the deflection of light in the background of a rotating Bardeen black hole by solving numerically the
Eqs.(3.21) and (3.22).

FIG. 3: The deflection of light in the background of a rotating regular Bardeen black hole with E = 2, L = 5,
m = 0.3, g? = 0.1 and a = 0.1. The circle corresponds to the closest approach (r0 = 2.154) to the black hole.

IV. DEFLECTION ANGLE BY ROTATING REGULAR HAYWARD BLACK HOLE

In this section, we investigate the deflection angle by rotating Hayward regular black hole. The spacetime metric
of the rotating Hayward regular black hole reads [62]:

ds2 = −
(

1− 2Mhr
Σ

)
dt2 − 4aMhr sin2 θ

Σ
dtdφ +

Σ
∆

dr2 + Σdθ2 +

(
r2 + a2 +

2a2Mhr sin2 θ

Σ

)
sin2 θdφ2 , (4.1)

where

Σ = r2 + a2 cos2 θ , (4.2)

∆ = r2 − 2Mhr + a2 , (4.3)

and in the equatorial plane the mass function is given by:

Mh = m
r3

r3 + g3 , (4.4)
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being g the rotation parameter. We find the following expression for the optical metric:

F
(

r, φ,
dr
dt

,
dφ

dt

)
=

√
r4

∆(∆− a2)
(

dr
dt

)2 +
r4∆

∆− a2 (
dφ

dt
)2 − 2mar

∆− a2

(
r3

r3 + g3

)
dφ

dt
, (4.5)

with metric components:

ḡrr = −
2
[
−2(m + r

4 )
(

sin4 φr2 + b2 cos2 φ
)3/2

+ amr2 sin6 φ

]
r
(

sin4 φr2 + b2 cos2 φ
)3/2 +

2mg3
(

ar2 sin6 φ− 2
(

sin4 φr2 + b2 cos2 φ
)3/2

)
r4
(

sin4 φr2 + b2 cos2 φ
)3/2 ,

ḡrφ =
2ma cos3 φ

r
(

sin4 φr2+b2 cos2 φ

b2

)3/2 −
2ma cos3 φg3

r4
(

sin4 φr2+b2 cos2 φ

b2

)3/2 , (4.6)

ḡφφ =

2r
[
−2amr2 sin6 φ− 3ab2m cos2 φ sin2 φ + (m + r

2 )
(

sin4 φr2 + b2 cos2 φ
)3/2

]
(

sin4 φr2 + b2 cos2 φ
)3/2 (4.7)

−
2mg3

[
−2ar2 sin6 φ− 3ab2 cos2 φ sin2 φ +

(
sin4 φr2 + b2 cos2 φ

)3/2
]

r2
(

sin4 φr2 + b2 cos2 φ
)3/2 . (4.8)

The determinant is given by

det ḡ = r2 −
6rm

[
a sin2 φ−

√
cos4 φr2 + (b2 − 2r2) cos2 φ + r2

]
√

cos4 φr2 + (b2 − 2r2) cos2 φ + r2

+
6g3m

[
a sin2 φ−

√
cos4 φr2 + (b2 − 2r2) cos2 φ + r2

]
r2
√

cos4 φr2 + (b2 − 2r2) cos2 φ + r2
. (4.9)

Our computation reveals the following relation

K = −2
m
r3 + 20

mg3

r6 +
36amH(r, φ)

r6 , (4.10)

in which

H(r, φ) =
sin2 φ(

sin4 φr2 + b2 cos2 φ
)7/2

[ (
5/4 g3r6 − 1/6 r9

)
(sin (φ))12

+
(
−1/12 g3r4 + 1/12 r7

)
b2 (sin (φ))10 + (cos (φ))6 b6g3

+ 10/3 r4b2 (cos (φ))2
(

g3 + 1/10 r3
)
(sin (φ))8

+ 7/6 r3
(

g3 − 4/7 r3
)

b3 (cos (φ))2 (sin (φ))7

+ 1/3 r2b2 (cos (φ))2
(

g2 + gr + r2
) (
−5/2 r2 (cos (φ))2 + b2

)
(g− r) (sin (φ))6

+ 7/3 r3
(

g3 − 4/7 r3
)

b3 (cos (φ))4 (sin (φ))5

+ 13/3 r2
(

g3 − 9 r3

52

)
b4 (cos (φ))4 (sin (φ))4

+ 1/3 rb5 (cos (φ))4
(

g3 + 1/2 r3
)
(sin (φ))3

+
(

5/6 g3r2 − 5/6 r5
)

b4 (cos (φ))6 (sin (φ))2 + 2/3 rb5 (cos (φ))6
(

g3 + 1/2 r3
)

sin (φ)
]

. (4.11)
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Going through the same procedure the deflection angle can be calculated by the following integral

α̂ ' −
π∫

0

∞∫
b

sin φ

(
−2

m
r3 + 20

mg3

r6 +
36amH(r, φ)

r6

) √
det ḡ dr dφ . (4.12)

After we evaluate the first integral we find

I1 = −
π∫

0

∞∫
b

sin ϕ

(
−2

m
r3 + 20

mg3

r6

)√
det ḡdrdφ

=
4m
b
− 15mπg3

8b4 . (4.13)

The second integral gives

I2 = −
π∫

0

∞∫
b

sin φ

(
36amH(r, φ)

r6

) √
det ḡ dr dφ = ±4ma

b2 . (4.14)

Consequently the total deflection angle of rotating Hayward regular black hole results:

α̂ =
4m
b
− 15mπg3

8b4 ± 4ma
b2 . (4.15)

A. Geodesics equations

The Lagrangian associated with the motion of particles in the equatorial plane (θ = π/2 and θ̇ = 0) of a rotating
regular Hayward black hole is given by

2L = −
(

1− 2Mh
r

)
ṫ2 − 4aMh

r
ṫφ̇ +

r2

∆
ṙ2 +

(
r2 + a2 +

2a2Mh
r

)
φ̇2 , (4.16)

being q̇ = dq/dτ, and τ is an affine parameter along the geodesic. Such as the previous analysis the Lagrangian
(4.16) is independent of the cyclic coordinates (t, φ). So, their conjugate momenta (Πt, Πφ) are conserved. Then, the
equations of motion are obtained from Π̇q − ∂L

∂q = 0, and yield

Π̇t = 0, Π̇φ = 0 , (4.17)

where Πq = ∂L/∂q̇ are the conjugate momenta to the coordinate q, and is given by

Πt = −
(

1− 2Mh
r

)
ṫ− 2aMh

r
φ̇ ≡ −E , Πr =

r2

∆
ṙ , and Πφ = −2aMh

r
ṫ +
(

r2 + a2 +
2a2Mh

r

)
φ̇ ≡ L ,

(4.18)
where E and L are dimensionless integration constants associated to each of them. Thus, the Hamiltonian is given
by

H = Πt ṫ + Πφφ̇ + Πr ṙ−L (4.19)

2H = −E ṫ + L φ̇ +
r2

∆
ṙ2 ≡ −m̄2 . (4.20)

Now, by normalization, we consider m̄2 = 0 for photons. So, we obtain
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ṫ =
rE(r2 + a2)− 2a(L− aE)Mh

r(r2 − 2rMh + a2)
, (4.21)

φ̇ =
2aEMh + rL− 2LMh

r(r2 − 2rMh + a2)
, (4.22)

ṙ2 =
r
(
E2 (a2 + r2)− L2)+ 2Mh(L− aE)2

r3 . (4.23)

In this case, the distance of the closest approach r0 for the metric (3.1) obtained from ṙ = 0, yields

r0

b
=

√√√√1−
( a

b

)2
− 2m

r0

(
1− a

b

)2
(

mr3
0

g3 + r3
0

)
, (4.24)

where b = L/E is the impact parameter.
Therefore, the bending angle Eq. (2.51) yields

α̂ =
4m
b
− 15mπg3

8b4 ± 4ma
b2 . (4.25)

Here we use the change of variables u = r0/r, we substitute the impact parameter given by the Eq. (4.24), we expand
in Taylor series around m, a, and g; and finally, we consider r0 ≈ b. In Fig. 4 we plot the deflection of light in the
background of a rotating Hayward black hole by solving numerically the Eqs. (4.22) and (4.23).

FIG. 4: The deflection of light in the background of a rotating Hayward black hole with E = 2, L = 5, m = 0.3,
g = 0.1 and a = 0.1. The circle corresponds to the closest approach (r0 = 2.153) to the black hole.

V. CONCLUSION

In this paper, we have investigated the deflection angle of light by rotating regular black holes such as Ayon-Beato-
Garcı́a, Bardeen and Hayward black hole. Starting from the physical metrics we have found the corresponding
Rander-Finsler type metric which basically provides a way to compute the deflection angle in terms of GBT. We
have extended the Werner’s geometric method by including the electric charge Q, magnetic charge g?, and deviation
parameter g which generalizes the expression for the Gaussian optical curvature, optical metric components, and
finally the deflection angle.
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In particular we have found that for the rotating regular black holes the total deflection angles are

α̂ABG =
4m
b
− 3πQ2

4b2 ±
4ma
b2 +O(Q2, a, m) , (5.1)

α̂B =
4m
b
− 8g2

?m
b3 ± 4ma

b2 +O(a, m, g2
?) , (5.2)

α̂H =
4m
b
− 15mπg3

8b4 ± 4ma
b2 +O(a, m, g3), (5.3)

for the ABG, Bardeen and Hayward regular black holes respectively. Thus, as these black holes have in addition
to the total mass and rotation parameter, different parameters as electric charge, magnetic charge, and deviation
parameter the deflection of light has correction terms coming from these parameters which generalizes the Kerr
deflection angle

α̂K =
4m
b
± 4ma

b2 . (5.4)

It is worth noting that, our results show that the deflection angle is smaller than the Kerr deflection angle, see Fig. 5.
In other words the contribution coming from the black hole parameters such as Q, g? and g, is different in magnitude;
however, in all three cases the light rays always bend outward the black holes which is indicated by the minus sign.
In Fig. 5, we show the behavior of the deflection angle of the light for the regular black hole geometries as function of
the impact parameter. We observe that could exist discrepancies between predictions for the value of the deflection
angle of the light for regular black holes for small values of the impact parameter, being the deflection angle smaller
than the Kerr deflection angle. However, such discrepancy decreases when the impact parameter increases. In
addition, we have checked our results of deflection angle using the geodesics formalism and we have shown to be
exact in leading order terms.

ABG

Bardeen

Hayward

Kerr

0.2 0.3 0.4 0.5 0.6 0.7 0.8
b0.0

0.5

1.0

1.5

2.0

2.5

3.0
α

FIG. 5: The deflection of light by ABH, Bardeen, Hayward and Kerr black holes for the values of
m = Q = a = g = g? = 0.1.

It is important to realize that the agreement between these two methods breaks down for second order terms,
for example, in the case of a rotating Bardeen regular black hole the geodesic approach gives δα̂B = ∓12mag2

?/b4,
whereas with the Gauss-Bonnet theorem one finds δα̂B = ∓24mag2

?/b4. Such inconsistency is to be expected con-
sidering the fact that one must choose a different equation for the light ray rγ which incorporates the black holes
parameters. We plan in the near future to extend our analytical analysis in the Gauss-Bonnet theorem to the second
order terms to remove such an inconsistency.
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