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Leaky-mode photonic lattices exhibit intricate resonance effects originating in quasi-guided 

lateral Bloch modes. Key spectral properties are associated with phase-matched modes at the 

second (leaky) stop band. One band edge mode suffers radiation loss generating leaky-mode 

resonance whereas the other band edge mode becomes a bound state in the continuum (BIC). 

Here, we present analytical and numerical results on the formation and properties of the leaky 

stop band. We show that the frequency of the leaky-mode resonance band edge, and 

correspondingly the BIC edge, is determined by superposition of Bragg processes chiefly 

generated by the first two Fourier harmonics of the spatial modulation. We derive conditions for 

the band closure and band flip wherein the leaky edge and the bound-state edge transit across the 

band gap. Our work elucidates fundamental aspects of periodic photonic films and has high 

relevance to the burgeoning field of metamaterials.  

 

Metamaterials constitute a new class of photonic platforms wherein principal performance metrics 

are controlled by the properties of a collection of subwavelength particles. Periodic and aperiodic 

metasurfaces and metagratings can be fashioned to provide complex functionality in extremely compact 

format even as single-layer films. Lossless dielectric media are particularly promising for high-

efficiency applications [1]. Thus, there is great interest in exploring metamaterials as building blocks 

for high-performance photonic devices including metalenses [2], perfect reflectors [3], and meta-

holograms [4]. Advances in theoretical modeling, numerical design methods, fabrication, and physical 

and spectral characterization are discussed in numerous recent review articles [5-8]. 

Periodic subwavelength metastructures, including one-dimensional (1D) and two-dimensional (2D) 

metagratings in photonic-crystal slab geometry, are governed by principles that depend strongly on the 

scale of the operational wavelength  relative to the period . In the deep subwavelength regime 

Λ λ, classic effective-medium theory [9] becomes accurate and the material is effectively 

homogenized enabling facile phase control, anti-reflection properties, and polarization manipulation. In 

the subwavelength resonance regime with the period moderately smaller than the wavelength Λ λ,

effective medium theory fails on account of coupling of incident light to lateral leaky resonant modes. 

Such devices exhibit guided-mode resonance (GMR) effects caused by lateral Bloch modes in both 1D 

and 2D periodic lattices [10]. The resonance regime enables a great variety of novel device concepts 

including efficient wide-band reflectors, narrow bandpass filters, and polarizers [11].  

In this paper, we address fundamental properties of the photonic band structure of resonant leaky-

mode metamaterials. The band structure admits a leaky edge and a non-leaky edge for each supported 

resonant Bloch mode if the lattice is symmetric. The non-leaky edge is associated with a bound state in 

the continuum (BIC), or embedded eigenvalue, currently of great scientific interest [12-21]. It is 

possible to control the width of the leaky band gap by lattice design. In particular, as a modal band 

closes, there results a quasi-degenerate state—this state is remarkable as it is possible to transit to it by 

parametric and material choice as shown in this paper. The transition to, and across, this point executes 

a band flip. The physical mechanisms inducing the band closure and the band flip have thus far not been 

explained. Hence, using semi-analytical and rigorous numerical methods, we characterize band flips 

and BICs relative to lattice harmonic content and device parameters. We treat a simple 1D photonic 

lattice supporting counterpropagating Bloch modes in a single polarization state. This canonical case 

brings forth all the principal properties and can readily be extended to 2D lattices. The band-flip concept 

provided here has relevance to general periodic photonic lattices and metamaterials that are of high 

interest in various branches of photonics as summarized above [1-8]. 
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Results 

Lattice structure and perspective 

Figure 1 illustrates our simple model and the attendant schematic dispersion relations indicating the 

band flip. As noted in Fig. 1a, we analyse a single 1D periodic layer with thickness d with binary 

dielectric-constant modulation enclosed by a substrate with dielectric constant εs and a cover region of 

εc. The periodic layer acts as a waveguide as well as a phase-matching element because its average 

dielectric constant ε = ε ρ(ε ε )avg l h l  is larger than ε s  and εc , where εh  and ε l  represent the high 

and low dielectric constants, respectively, and whereρ is the fill factor of the high dielectric constant 

part. The normally incident light is in the TE polarization state such that the electric field vector is along 

the y-direction. In this work, the average dielectric constant of the guiding layer is kept constant to 

highlight the effect of changes in index modulation clearly. We use a grating strength parameter

Δε = ε εh l to represent the level of refractive-index modulation. In this 1D case, photonic band gaps 

open up for media with εh and εl when 0 <ρ <1andΔε > 0 . As shown schematically in Fig. 1b, leaky-

mode resonance or, equivalently, GMR reflectance peaks corresponding to transmittance (T) nulls 

appear at the lower edge of the second (leaky) stop band when the values ofρ andΔε are small. The 

location of the resonance transits from the lower to the upper band edge as the values of ρ or Δε

increase with a corresponding transition of the BIC state as indicated. In general, if the lattice supports 

numerous leaky modes, each mode will undergo similar band flips as each mode possess a band gap 

[22]. In this paper, we limit our attention to the fundamental TE mode as this simplest case brings out 

the key properties of the band-flip effect.  

 

 

Figure 1 | Band flip in a leaky-mode resonant photonic lattice. a, Schematic of a resonant lattice 

with a normally-incident TE-polarized plane wave. b, Conceptual illustration of the band flip 

phenomenon. When the values ofρ andΔε are small, GMR (BIC in a red circle) occurs at the lower 

(upper) side of the second stop band. The band flip refers to the transition of the GMR (BIC) location 

from lower (upper) to upper (lower) band edge asρ andΔε increase.  

 

Semi-analytical dispersion model 

Dispersion relations pertinent to guided modes in periodic lattices can be obtained from the wave 

equation [23] 

  

2
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( ) ε( ) ( ) 0,
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where c is the speed of light in free space and f denotes frequency. To solve the equation, the periodic 

dielectric function ε( )r is expanded in a Fourier series and the electric field is expanded as plane waves 

as ( K)( ) i k n
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n
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
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 rr  where K=2/ is the magnitude of the grating vector and k is wavenumber 
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[24]. For the 1D symmetric lattice, the dielectric function can be expanded in an even cosine function 

series
0

ε( ) ε cos( K )n
n

z n z



 with Fourier coefficients given by 0ε ε avg and

1ε (2Δε / π) sin( πρ)n n n  .  

Central to our results is the dispersion relation relating frequency of light to its wavenumber thus 

determining the propagation properties of light in media [25-30]. For clear insight, we use a semi-

analytical dispersion model of the second stop band to study the band transitions; this model is then 

verified by rigorous finite-difference time-domain (FDTD) computations. Kazarinov and Henry (KH) 

employed coupled-mode theory to study the leaky stop band. For lattices with symmetric profiles, the 

KH model implies one leaky band edge whereas the other one is non-leaky [28]. In an alternative view, 

the non-leaky band edge can be understood as a BIC or symmetry-protected state. These states have 

been intensively studied because they can achieve localized states with infinite lifetimes implying, in 

principle, that there is no radiation decay [12-21]. 

The KH model solves the wave equation semi-analytically by retaining only the zeroth, first, and 

second Fourier harmonics. The spatial electric field distribution is approximated as

( , ) [ exp( K ) exp( K )] ( ) radE x z  A i z B i z φ x E    , where φ(x) characterizes the mode profile of the 

unmodulated waveguide and radE represents the radiating diffracted wave. Near the second stop band, 

the dispersion relation can be written as 

2 2
0 2 1 3 1 3Ω( ) Ω ( ) / (K ) / (K )k k h ih h ih h                              (2) 

where Re ImΩ Ω Ω 2π / Ki f c   represents the normalized frequency and 0Ω is the Bragg frequency 

under vanishing index modulation (~ homogeneous waveguide) and k is the Bloch wave vector in the 

periodically modulated waveguide [28,29]. The coefficient 1h  represents the coupling between a 

guided wave and a radiated wave, 2h  denotes coupling between two counter-propagating lateral 

waveguide modes and 3h  is a coefficient related to the group velocity in the unmodulated waveguide 

with dielectric constant of ε avg . For TE modes, the three coefficients are given by [29,30] 
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where  ',G x x denotes the Green’s function for the diffracted field; see Supplementary Materials. As 

indicated in equation (2), the KH model yields two different frequencies for a given k. The leaky stop 

band with two band edges +
0 2 3Ω Ω /(K )  h h   and 0 2 1 3( 2 )/(K )  h i h h     opens at k = 0. At 

the band edge with frequency  obtained when the electric field distribution is an antisymmetric (sine) 

function ( A B ), there is no radiation loss because +Ω  is purely real. At the  band edge obtained 

when the field distribution is a symmetric (cosine) function ( A B ), the radiative loss is maximal with

1 3Im( ) 2 Re( )/(K )h h  . Hence, the band edge modes with the frequencies  and   are 

associated with GMR and BIC, respectively. 

 

Bragg-reflection superposition model of the leaky stop band 

We now show that the frequency location of the leaky-mode resonance band edge, or the BIC edge, 

is determined by superposition of Bragg processes denoted by ,BR q n  where q indicates the Bragg order 

and n denotes the Fourier harmonic of the dielectric constant modulation. As an approximation, we 

keep only the strongest Bragg processes which are BR2,1 operating as a second-order Bragg reflection 

off the first Fourier harmonic and BR1,2 defining a first-order Bragg reflection by the second harmonic. 

The Bragg reflection superposition model proposed here is based on the fact that the size of the second 

stop band is given by 2 1 3|Re( ) Re( )| 2| Im( )|/(K )h h h      from equation (2) with coupling 



4 

 

coefficients 1h and 2h related to the first and the second Fourier coefficients, respectively, as seen in 

equation (3). The band gap will disappear when 2 1Im( )h h because the two Bragg reflections 2,1BR

and 1,2BR are then balanced destructively.  

To accurately evaluate stop band formation by these Bragg processes, we calculate the band 

structures of pertinent 1D lattices by FDTD simulations [30,31]. In Fig. 2a, for a representative set of 

lattice parameters provided in the figure caption, the stop band denoted 1ΔΩ  is shown for a lattice 

having only the fundamental harmonic such that 0 1ε( ) ε ε cos(K )z z  . Dispersion curves (blue lines) 

obtained from the full non-approximated lattice are also plotted for comparison. Clearly, the FDTD 

results with the fundamental harmonic only are quite different from those with the full lattice. Figure 

2b shows stop band 2ΔΩ  formed by a first-order scattering process off the second harmonic. The full-

lattice band structure is close to the approximate structure denoting the importance of this partial 

scattering process. Figure 2c shows that the third order harmonic 3ε cos(3K )z cannot contribute to the 

second stop band by itself. Figure 2d illustrates that the band 12ΔΩ simulated with the first and second 

harmonics simultaneously agrees well with the band ΔΩ  simulated with the full non-approximated 

lattice. Moreover, there is excellent agreement with the dispersion curves calculated with the KH model. 

Hence, it is reasonable to conclude that the Bragg-reflection superposition model proposed here is valid 

to describe the second stop band of weakly to moderately modulated photonic lattices. 

 

 

Figure 2 | Computed stop bands for a 1D leaky-mode lattice relative to Fourier harmonic content. 

The dielectric functions vary for these examples. a, 0 1ε ε ε cos(K )z  , b, 0 2ε ε ε cos(2K )z  , and c, 

0 3ε ε ε cos(3K )z  . In d 0 1 2 ε ε ε cos(K ) ε cos(2K )z z   is used. Parameters for the FDTD 

simulations and KH model are 0.50Λ, ρ = 0.35, ε 1.00,cd    ε 2.25, Δε 1.00s    , and ε 4.00avg  . 

Conditions for the constructive or destructive interaction between the 2,1BR and 1,2BR  scattering 

processes can be inferred from the coupling coefficients 1h and 2h . For the lattice shown in Fig. 1a, 2h

is positive (negative) when the fill factor ρ  is smaller (greater) than 0.5. But 1Im( )h is always positive 

irrespective ofρ . Since the size of the second band gap is proportional to 2 1| Im( )|h h , whenρ 0.5  

with 2 <0h , the size of the gap results from the addition of the two coupling coefficients. Whenρ 0.5 , 

on the other hand, the gap size is determined by the subtraction of the two coefficients and thus the band 

gap can reach a zero value. 

 

Symmetry properties of the band-edge modes 

The physics of band formation and band flips can be further understood from the electric field 

distributions of the band edge modes computed with FDTD simulations. At the edges of 1ΔΩ with

0 1ε( ) ε ε cos(K )z z   as shown in Figs. 3a,c the lower (upper) band edge modes have antisymmetric 

(symmetric) field (Ey) distributions irrespective of the value of ρ . At the edges of band 2ΔΩ with

0 2ε( ) ε ε cos(2K )z z  , on the other hand, electric field distributions are dependent on the value of the 

fill factor because the second Fourier harmonic 2ε (Δε / π) sin(2πρ)  changes its sign once from + to 
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– when ρ 0.5 . Figure 3 shows that the 1ΔΩ and 2ΔΩ bands have field distributions with matched 

symmetry at both edges for ρ 0.5 . This explains why GMR always appears at the upper edge when

ρ 0.5 . Here, the field patterns pertaining to the upper edge are symmetric (Fig. 3c,d) allowing 

constructive interaction, radiation, and resonance response. Moreover, this symmetry state is stable as

Δε increases such that the resonance remains at the upper edge irrespective of modulation level. In 

contrast, the lower edge antisymmetric field structure (Fig. 3a,b) cannot be excited at normal incidence; 

hence, there can be no resonance generation and the state is a symmetry-protected BIC. We can interpret 

processes 2,1BR and 1,2BR forming the two bands 1ΔΩ and 2ΔΩ as interacting destructively 

(constructively) when ρ 0.5  ( ρ 0.5 ) because the field distributions are opposite (same). As 

destructive interaction between the processes closes the gap and induces band flip, ρ 0.5 is the 

important case. In this case, it is possible to alter the field-symmetry structure via the ,BR q n  processes 

by varying the level of modulation. 

 

 

Figure 3 | Spatial electric field distributions at band edges. Simulated electric field (Ey) distributions 

at the lower band edges of a, 1ΔΩ and b, 2ΔΩ  and at the upper band edges of c, 1ΔΩ  and d, 2ΔΩ . At

1ΔΩ that is formed via process 2,1 BR symmetries of electric field distributions are irrespective ofρ . At 

2ΔΩ formed by process 1,2BR , on the other hand, the field distributions are reversed once due to the 

sign change of the second Fourier coefficient. Lattice parameters are the same as in Fig. 2 except that

ρ  varies.  

 

Band evolution relative to modulation strength 

Whereas the field distributions for ρ 0.5 are symmetry matched, the distributions for ρ 0.5 are 

mismatched as seen in Fig. 3. A physical resonance at normal incidence demands local field symmetry 

thus locating at the corresponding edge with the BIC forced to appear at the other edge. Here, the electric 

field distributions at the leaky stop band ΔΩ  are determined by the competition between Bragg 

processes 2,1BR and 1,2BR . When both ρ and Δε are small, the non-leaky antisymmetric (leaky 

symmetric) mode will locate at the upper (lower) band edge because the first order reflection 1,2BR

supresses the second order reflection 2,1BR . But when increases and approaches 0.5, there is a chance 

for 2,1BR to overwhelm 1,2BR because the strength of 1,2BR gets weaker and becomes zero as 2ε  

approaches zero. For a given value ofρ (< 0.5) , asΔε increases from zero there should exist a critical 

value of index modulation BFΔε where the band gap closes with 2 1Im( )h h . Before (After) the band gap 

closure, GMRs should appear at lower (upper) band edges. As the value ofρ gets closer to 0.5, a smaller 
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value of index modulation will be required for 2,1BR and 1,2BR to balance each other because the 

coupling coefficients 1h and 2h are proportional to 2[Δε sin(πρ)] andΔε sin(2πρ) , respectively. 

To complement the insights gained from the KH model and the full FDTD computations, we 

consider the simpler band structure of a half-wave layer stack of infinite lateral extent. As the structure 

is fully transmissive there is no reflection and the band is closed. Light with wavelength λ which satisfies 

the condition (λ / 2) h lt t  , where ρΛ εh ht  and (1 ρ)Λ εl lt    denote optical thickness of high 

and low index layers, respectively, transmits through each layer without reflection due to consecutive 

Fabry-Perot resonances. From this condition, we find the relationρ ε ( ε ε )l h l  when the band gap 

vanishes. For the leaky-mode resonant lattice with finite thickness under study here, we can by analogy 

infer the condition for the band gap closure h lL L orρ ( )l h lN N N  , where hN and lN represents 

the effective refractive index of the guided mode in a uniform waveguide with dielectric constant εh  

and ε l , respectively, and ρΛh hL N and (1 ρ)Λl lL N  are attendant effective optical path lengths. 

Effective indices ( ε )h hN  and ( ε )l lN  are functions of frequency due to waveguide dispersion. 

Before ( h lL L ) and after ( h lL L ) the band closure, GMRs appear at the lower and upper band edge, 

respectively. 

 

 

Table 1 | Simulated lattice modulation BFΔε at band flip. As ρ decreases from 0.5, the modulation 

strength BFΔε increases. The FDTD-simulated BFΔε are used to calculate BFρ ( )l h lN N N  . Here, 

hN and lN are calculated from waveguide theory by employing the relations BFε ε (1 ρ)Δεh avg   and

BFε ε ρΔεl avg  , respectively. 

ρ  0.49 0.48 0.47 0.46 0.45 

BFΔε  0.31 0.62 0.93 1.24 1.55 

BFρ  0.490 0.480 0.471 0.461 0.452 

 

In order to verify the dependence of BFΔε on  we investigate BFΔε through FDTD simulations with 

results for five different fill factors given in Table 1. It is seen that BFΔε increases from 0.31 to 1.55 

whenρ decreases from 0.49 to 0.45. In the simulations, we use the full non-approximated lattice and 

Δε is increased in the step of 0.01. We next check the validity of the relation BFρ ( )l h lN N N 

inferred from the half-wave stack. By employing the simulated values of BFΔε for the givenρ shown in 

Table. 1, effective indices hN and lN are first calculated via classic dielectric waveguide theory with BFρ

found subsequently. Table 1 reveals that the calculated BFρ via the half-wave model agrees well with 

the input values ofρ . Hence, we conclude that the relation for the band gap closure BFρ ( )l h lN N N 

is a good approximation.  

Figure 4a shows the evolution of the leaky-mode stop band under variation ofΔε forρ = 0.48 . As

Δε increases from zero, the band gap opens and its size increases. However, the gap decreases and 

becomes zero asΔε is further increased. On additional increase inΔε  the band gap reopens and its size 

grows again. These dynamics are associated with band flip as seen by investigating the complex part of 

the frequency ImΩ shown in Fig. 4b. Since the time dependence of the electric field as exp( Ω )i t is 

employed in our FDTD simulations, the time dependent modal radiation loss is represented by ImΩ with 

negative values. Figure 4b shows that the non-leaky (leaky) band edge mode associated with BIC (GMR) 

transits from the upper (lower) to the lower (upper) side of the stop band asΔε increases. 
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Figure 4 | Evolution of photonic bands under variation of index modulation. a, Simulated 

dispersion relations near the second stop band for six different values ofΔε . The band gap closes when

BFΔε = 0.62 . b, Relations between the imaginary part ImΩ and real part ReΩ of the frequency. Red 

circles indicate the non-leaky BIC band edges. In the FDTD simulations, we used structural parameters

0.50Λ, ρ = 0.48, ε 1.00, ε 2.25c sd      , and ε 4.00avg  . 

Leaky band flattening 

Out-of-plane radiation at the leaky edge with a bound state at the opposing edge are primary aspects 

of the photonic lattices under study herein. Band flips and bound-state transitions have been formulated 

above. An additional interesting finding from these studies is that there exist a finite range of Bloch 

wave vectorsΔk where ReΩ / k  becomes zero as seen in Fig. 4a with BFΔε = 0.62 and shown enlarged 

in Fig. 5a. When the band gap closes with 2 1Im( )h h , the dispersion relation in equation (2) can be 

rewritten as 

2 2
BF 0 1 3 1 3 1 3Ω ( ) Ω Im( ) / (K ) Re( ) / (K ) Re( ) / (K ).k h h k h h i h h                      (4) 

Equation (4) shows that the existence of the out-of-plane radiative loss flattens the dispersion curves 

because BF BF 0 1 3Re[Ω ( )] Re[Ω ( )] Ω Im( ) / (K )k k h h    when 2 2
1Re( )k h . Comparing to the half-

wave stack model, the band gap closes when ρ ε ( ε ε )l h l  as shown above. However, Fig. 5b 

shows that the dispersion curves cross as straight lines and ReΩ / 0k   at 0k when the band closes. 

Recently, the linear dispersion associated with the stack model, called Dirac cone dispersion, has 

attracted much attention because a 2D photonic lattice with a Dirac cone at 0k  can act as a zero-

refractive-index metamaterial with unusual light propagation properties [33,34]. It is the out-of-plane 

radiative loss associated with the leaky-mode lattice that flattens the band and prevents formation of a 

Dirac-cone-type band structure as seen in Fig. 5.  
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Figure 5 | Dispersion relations at band gap closure. a, Magnified dispersion relations for a leaky-

mode lattice with BFΔε = 0.62 shown in Fig. 4a. The out-of-plane radiation loss flattens the dispersion 

curves in a finite range of Bloch wave vectors. b, Simulated dispersion relations for a non-leaky half-

wave photonic lattice with ρ = 0.48  and ε 4.00avg  . When BFΔε = 0.64 , the band gap closes and two 

straight-line dispersion curves cross. The band closes when the relationρ ε ( ε ε )l h l  is satisfied. 

 

Discussion 

Our analysis of the band structure of leaky-mode photonic lattices shows that the band gap is 

primarily controlled by first-order Bragg diffraction by the second Fourier harmonic lattice component. 

However, near fill-factor of 0.5, second-order Bragg diffraction by the fundamental Fourier harmonic 

becomes competitive with the primary process. It is the destructive interference of these major processes 

that closes the gap and induces a band flip whereby the leaky edge and the bound-state edge transit 

across the band gap. Therefore, the band does not close at fill factor being identically 0.5 as often 

assumed. As the grating modulation strength increases, the transition point is increasingly pulled away 

from this value.  

For this work, we employ a semi-analytic diffraction model due to Kazarinov and Henry [28]. Even 

though it requires determination of Green’s functions, it provides direct insight into the operative 

processes by identification of coupling coefficients and their explicit parametric connections to the 

lattice parameters. Thus, the physical explanations can be argued straightforwardly and convincingly. 

We verify all approximate computations with simulations of the full lattice using rigorous FDTD 

models. Additionally, we make interesting connections with a half-wave stack lattice that is fully 

transmissive at band closure; this further informs the fundamental band properties of the leaky-mode 

lattice.  

This research is limited to the simplest possible 1D lattice under weak or moderate levels of spatial 

modulation. Nevertheless, the essential band properties including resonance-edge and BIC-edge band 

flip, edge-mode electric-field structure, symmetry properties, and leaky-band flattening are brought out. 

Other lattices with arbitrary unit-cell structure and harmonic content can be treated analogously. The 

extension of this work to 2D lateral modulation as in photonic-crystal slabs is also feasible with many 

new insights expected. Thereby fundamental aspects of the band properties of 2D periodic photonic 

films and metamaterial structures can be understood. 

 

Methods 

The rigorous results provided in this article are computed using FDTD simulations. We use the semi-

analytical KH model to obtain approximate solutions and to gain physical insight into the operative 

physics of the leaky-mode lattice under study. Further details are presented under Supplementary 

Materials. 
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Supplementary materials: Methods 

Semi-analytical calculation of dispersion relations.   
To obtain the dispersion curves in Fig. 2d from the KH model, the grating layer shown in Fig. 1a is 

treated as an approximate homogeneous waveguide with a dielectric constant ε = 4.avg  Three coupling 

coefficients 1h , 2h , and 3h in equation (3) are numerically calculated by employing the mode profile

( )φ x and Green’s function  ,G x x , summarized in the table below, for the three layer system 

composed of a cover (1), waveguide (2), and substrate (3) [30]. 

Layer ( )φ x   ,G x x  

1 1N γ xe  
2 2 2

1

2

2
21 23

2
2 21 23

( )

2 (1 )

ik x ik d ik x
ik x

ik d

t e r e e
e

ik r r e

  


 

2 2 2N(A +B )ik x ik xe e  

2 2 2 2 2 2

2 2

2 2

2 2
23 21 23

2 2
2 21 23 2 21 23

( ) ( )
, (0 )

2 (1 ) 2 (1 )

ik x ik d ik x ik x ik d ik x
ik x ik x

ik d ik d

e r e e r e r e e
e e  x x

ik r r e ik r r e

    
 

  
 

 

2 2 2 2 2

2 2

2 2

2
23 21 21

2 2
2 21 23 2 21 23

( ) ( )
, ( )

2 (1 ) 2 (1 )

ik d ik x ik x ik x ik x
ik x ik x

ik d ik d

r e r e e r e e
e e       x x d

ik r r e ik r r e

    
 

   
 

 

3 3NC γ xe  
2 3 2 2

3

2

( )
23 21

2
2 21 23

( )

2 (1 )

i k k d ik x ik x
ik x

ik d

t e r e e
e

ik r r e

  



 

Here 2 2
0εi i i ik iγ k β   represents the wave vector component along the x-direction in each layer, 

where iβ is the wave vector component along the lateral z-direction. 

2 2 2 2
1 32 2 1N 2 [(1/ 1/ ) ( )]k γ γ d k γ     for the normalization condition *( ) ( ) 1.φ x  φ x dx




  

Coefficients 2 1 2A ( ) 2k iγ k  , 2 1 2B ( ) 2k iγ k  , and 3 2( )
2 1 2 3C ( ) ( ) γ ik dk iγ k iγ e    are related to 

the eigenvalue equation 1 1
2 1 2 3 2π+ tan ( / ) tan ( / )k d m γ k γ k    for the modal dispersion of the m’th 

order mode. Coefficients 2 ( )ij i i jt k k k  and ( ) ( )ij i j i jr k k k k   are the transmission and 

reflection coefficients from the layer i to layer j. As shown in equation (3), the coupling coefficients 1h

, 2h , and 3h are frequency dependent. However, for convenience, in this study the coefficients are 

calculated at a frequency of 0Ω 0.571  , the center of the second stop band estimated from the 

dispersion properties of the equivalent homogeneous waveguide, and assumed to be frequency 

independent. The assumption for the frequency independent coupling coefficients are appropriate at 

near 0k   for small index modulation because the frequency under consideration varies across a limited 

range [29]. 

Finite-difference time-domain simulations.   
The simulations are carried out using a freely available software package MEEP [32]. Since the 

photonic structure studied here possesses a continuous symmetry in the y-direction, simulations are 

performed in a two-dimensional xz-plane. Computational cell of sizeΛ 8Λ , whereΛ is the grating 

period, is employed to obtain complex frequencyΩ( )k and spatial electric field distributions. For reliable 

and stable simulations, spatial resolution and discrete time step are set to Δ Δ Λ/50x z  and

Δ 0.5 Δ /t x c  , where c is the speed of light in free space. Periodic and perfectly matched layer boundary 

conditions are used in the x- and z-directions, respectively. 


