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ABSTRACT

Using trajectories from acoustically tracked (RAFOS) floats in the Gulf of Mexico, we construct
a geography of its Lagrangian circulation within the 1500–2500-m layer. This is done by building
a Markov-chain representation of the Lagrangian dynamics. The geography is composed of weakly
interacting provinces that constrain the connectivity at depth. The main geography includes two
provinces of near equal areas and separated by a roughly meridional boundary. The residence time
is about 4.5 (3.5) years in the western (eastern) province. The exchange between these provinces
is effected through a slow cyclonic circulation, which is well constrained in the western basin by
preservation of f/H, where f is the Coriolis parameter and H is depth. Secondary provinces of
varied shapes covering smaller areas are identified with residence times ranging from about 0.4 to 1.2
years or so. Except for the main provinces, the deep Lagrangian geography does not resemble the
surface Lagrangian geography recently inferred from satellite-tracked drifter trajectories. This implies
disparate connectivity characteristics with potential implications for pollutant (e.g., oil) dispersal at
the surface and depth. A ventilation conduit through the southeastern corner of the domain from
the Caribbean Sea balanced by weak vertical exchange is also inferred. This is supported by the
inspection of satellite-tracked profiling (Argo) floats, which, while forming a smaller dataset and
having seemingly different water-following characteristics than the RAFOS floats, replicate the main
aspects of the Lagrangian geography. Finally, consistency with independent results from a chemical
tracer release experiment is found to provide additional support to the results.
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1. Introduction

The oil spill produced by the Deepwater Hori-

zon drilling rig explosion in May 2010 (Lubchenco

et al. 2012) has motivated great interest in the La-
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grangian circulation of the Gulf of Mexico (GoM).
This is reflected in the execution in recent years of
a number of field campaigns dedicated to observe
its surface Lagrangian circulation. A main reason
for investigating the surface Lagrangian circulation
is found in the very tangible effects it had on the
evolution of the oil slick that emerged from the ocean
floor (Olascoaga and Haller 2012). The main cam-
paigns have been the Grand LAgrangian Deployment
(GLAD) in July 2012 (Olascoaga et al. 2013; Poje
et al. 2014; Beron-Vera and LaCasce 2016) and the
LAgrangian Submesoscale ExpeRiment (LASER) in
February 2016 (Miron et al. 2017; Novelli et al. 2017).
These two campaigns contributed to nearly duplicate
the satellite-tracked surface drifter database existing
prior to the oil spill, which consisted mainly of drifter
trajectories from the National Oceanic and Atmo-
spheric Administration (NOAA) Global Drifter Pro-
gram (GDP, Lumpkin and Pazos 2007) and the Sur-
face Current Lagrangian-Drifter Program (SCULP,
Sturgers et al. 2001; Ohlmann and Niiler 2005), see
Miron et al. (2017) for details.

Large amounts of oil were reported to stay sub-
merged and to persist for months without substan-
tial biodegradation (Camilli et al. 2010). Yet the
effects that the deep Lagrangian circulation had on
the submerged oil remained elusive, which directly
or indirectly motivated the execution of experiments
to also observe the Lagrangian circulation at depth.
One experiment consisted in a deployment of acous-
tically tracked floats in a mission that started in 2011
and lasted out to 2015 (Hamilton et al. 2016). This
contributed to augment the existing submerged float
database, consisting mainly of profiling floats from
a dedicated experiment (Weatherly et al. 2005) and
routine sensing of the deep global ocean (Roemmich
et al. 2009). Another experiment involved the release
of a chemical tracer at depth in July 2012 near the
Deepwater Horizon site and its subsequent sampling
over the course of one year (Ledwell et al. 2016).

An aspect of the deep Lagrangian circulation high-
lighted by the dedicated profiling float experiment
(Weatherly et al. 2005) was the restricted communi-
cation between the eastern and western GoM basins
and also a cyclonic circulation at about 900 m in
the southwestern sector. Analysis of the acoustically
tracked float trajectories in the western basin (Pérez-
Brunius et al. 2017) from the recent experiment
(Hamilton et al. 2016) further revealed the existence
of a cyclonic boundary current below 900 m and a
cyclonic gyre in the abyssal plain consistent with nu-
merical studies (Oey and Lee 2002), and the analy-
sis of hydrographic data (DeHaan and Sturges 2005)
and deep-water moorings (Tenreiro et al. 2018). Di-
rect inspection of the same acoustically tracked float

trajectories (Pérez-Brunius et al. 2017), as well as
rough estimates of connectivity between the eastern
and western basins (Hamilton et al. 2016), suggests
that the exchange between them occurs along the
boundary following a cyclonic circulatory motion. In
turn, the analysis of the dispersion of the chemical
tracer released at depth in the eastern basin (Ledwell
et al. 2016) concluded that homogenization by stir-
ring and mixing is substantially faster in the GoM
than in the open ocean. The main source of energy
in the deep eastern basin is presumably provided by
the Loop Current by inducing a deep flow through
baroclinic instabilities, deep eddies, and topographic
Rossby waves which can transfer energy toward the
western basin (Sheinbaum et al. 2016; Hamilton et al.
2016; Donohue et al. 2016).

The goal of this paper is to shed new light on
the deep Lagrangian circulation in the GoM by us-
ing probabilistic tools from nonlinear dynamical sys-
tems. These are applied on the above acoustically
tracked float trajectories with a focus on connectiv-
ity. Investigating connectivity with the probabilis-
tic nonlinear dynamics tools boils down to analyz-
ing the eigenvectors of a transfer operator approxi-
mated by a matrix of probabilities of transitioning
between boxes of a grid, which provides a discrete
representation of the Lagrangian dynamics (Froyland
et al. 2014). Markov-chain representations of this
type had originally been used to approximate almost-
invariant sets in nonlinear dynamical systems using
short-run trajectories (Hsu 1987; Dellnitz and Junge
1999; Froyland 2005), and in the ocean context to de-
termine the extent of Antarctic gyres in 2- (Froyland
et al. 2007) and 3-space (Dellnitz et al. 2009) dimen-
sions. This eigenvector method has been recently ap-
plied on drifter data to construct a geography of the
surface Lagrangian circulation (Miron et al. 2017).
A Lagrangian geography is composed of dynamical
provinces that delineate weakly interacting basins of
attraction for almost-invariant attractors, which im-
poses constraints on connectivity. Here we construct
a geography for the deep Lagrangian circulation, pro-
viding firm support to earlier inferences from the di-
rect inspection float trajectories and, furthermore,
revealing a number of aspects transparent to tradi-
tional Lagrangian data analysis.

2. Data

The main dataset analyzed in this paper is com-
posed of trajectories produced by a total of 154 quasi-
isobaric acoustically tracked RAFOS (SOund Fixing
And Ranging or SOFAR, spelled backward) floats
(Rossby et al. 1986) deployed in the GoM (Hamilton
et al. 2016). Starting in 2011, 121 floats ballasted for
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1500 m and 31 floats for a lower depth of 2500 m were
deployed in the following 2 years. Each float recorded
position fixes 3 times daily, with record lengths vary-
ing between 7 days and 1.5 years. This sampling is
too frequent for an estimated uncertainty of the order
of 5 km, so we here consider daily interpolated trajec-
tories. The float deployment during the first 2 years
of a 4-year-long program was performed by several
U.S. (Woods Hole Oceanographic Institution, Leidos
Corporation, University of Colorado) and Mexican
(Centro de Investigación Cient́ıfica y de Educación
Superior de Ensenada) teams sponsored by the U.S.
Bureau of Ocean Energy Management (BOEM). The
records of the last floats deployed ended in sum-
mer 2015. The recorded trajectories of all floats are
shown in Fig. 1 (deployment locations and final po-
sitions are indicated in blue and red, respectively).
The trajectories cover a region bounded for the most
part by the 1750-m isobath (dashed lines in Fig. 1
indicate, from outside to inside, the 1500-, 1750-,
and 2500-m isobaths). Note that while the floats
are too deep to escape the GoM through the Straits
of Florida (where the maximum depth is roughly 700
m), they are capable of escaping through the Yucatan
Channel (where the maximum depth is about 2000
m). Mooring measurements suggest that the latter is
indeed possible as they have revealed a countercur-
rent between 500 and 1750 m on the western and
eastern sides of the Yucatan Channel (Sheinbaum
et al. 2002). However, no float is seen to travel into
the Caribbean Sea. Confinement of the 1500- and
1750-m floats within the region bounded by the 1750-
m isobath suggests predominantly columnar motion.
This is confirmed by the analysis presented below,
which ignores the depth of the floats to maximize
the number of available trajectories.

We also analyze trajectories recorded by all avail-
able (60) profiling floats in the GoM from the Argo
Program (Roemmich et al. 2009). Unlike RAFOS
float positions, Argo float positions are recorded ev-
ery 10 days after the float descends down to a parking
depth of 1000 m, where it drifts for 9 days, and fur-
ther to 2000 m to begin profiling temperature and
salinity in its ascend back to the surface. The tra-
jectories of the Argo floats roughly sample the same
area as the RAFOS floats albeit much less densely.
However, the way that the Argo floats sample the
deep Lagrangian circulation may be expected to dif-
fer from the way done it by the RAFOS floats, which
remain at all times parked at a fixed depth. Despite
this expectation, we show that Argo floats replicate
some important aspects of the deep circulation in-
ferred using the RAFOS floats.

A third set of independent data considered is com-
posed of concentrations of chemical tracer from a re-

lease experiment (Ledwell et al. 2016). In the exper-
iment, a 25-km-long streak of CF3SF5 was injected
on an isopycnal surface about 1100-m deep and 150
m above the bottom, along the continental slope of
the northern GoM, about 100-km southwest of the
Deepwater Horizon oil well, where oil was detected
at depth after its explosion. The tracer was sampled
between 5 and 12 days after release, and again 4 and
12 months after release.

3. Theory

a. Transfer operator and transition matrix

Let X ∈ R2 be a closed flow domain on the plane.
We assume that the Lagrangian dynamics is gov-
erned by an advection–diffusion process. A tracer
initialized at position y ∈ X (represented by a delta-
measure δy) therefore evolves passively T > 0 units
of time to a probability density K(x, y), with x ∈ X.
The function K(x, y) is clearly nonnegative, and we
normalize in x so that∫

X

K(x, y) dx = 1. (1)

The function K(x, y) is a (bounded) stochastic ker-
nel; cf., e.g., Sections 5.7 and 11.7 of Lasota and
Mackey (1994) for a discussion of stochastic kernels
and advection–diffusion equations, respectively. To
evolve a general initial density h : X → R+ forward
T units of time, we define a Markov operator, known
as the Perron-Frobenius operator, or more generally
a transfer operator, P : L1(X) 	, as

Ph(x) =

∫
X

K(x, y)h(y) dy. (2)

The density Ph(x) is the result of evolving h(x) for-
ward T units of time under the advection–diffusion
dynamics.

Note that the only time dependence is the duration
of time T . In particular, we do not model variation
of the advection–diffusion dynamics as a function of
initial time. This is appropriate for a probabilistic
description of the dynamics, as done in statistically
stationary turbulence (Orszag 1977), yet it is also a
consequence of the nature of the dataset considered
here. In either case the significance of the time homo-
geneity assumption can only be assessed a posteriori,
as we do here.

A discretization of the transfer operator can be at-
tained using a Galerkin approximation referred to as
Ulam’s method (Ulam 1979; Kovács and Tél 1989).
This involves partitioning the domain X into a grid
of N connected boxes {B1, . . . , BN} and projecting
functions in L1(X) onto the finite-dimensional ap-
proximation space VN := span{1B1

(x), . . . ,1BN
(x)},
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Fig. 1. Trajectories of RAFOS floats ballasted at 1500 (left) and 2500 (right) m in the Gulf of Mexico over 2011–2015.
Indicated are initial (blue dots) and final (red dots) positions of the floats. The dash lines indicate, from outside to inside, the
1500-, 1750-, and 2500-m isobaths.

where 1Bi
(x) = 1 for x ∈ Bi and 0 otherwise is the

indicator function of set Bi. Define πN : L1(X) →
VN by

πNh(x) =
N∑
j=1

∫
Bj
h(x) dx

area(Bj)
1Bj (x). (3)

To calculate the projected action of P on VN we com-
pute:

πNP1Bi
(x) =

N∑
j=1

∫
Bj
P1Bi

(x) dx

area(Bj)
1Bj

(x)

=
N∑
j=1

∫
Bj

∫
X K(x, y)1Bi(y) dydx

area(Bj)
1Bj

(x)

=
N∑
j=1

∫
Bj

∫
Bi
K(x, y) dydx

area(Bj)︸ ︷︷ ︸
=:Pij

1Bj
(x) (4)

The (i, j)-th entry of the array Pij represents an ap-
proximation of the kernel K(x, y) for y ∈ Bi, x ∈ Bj .
We assume from now on that the grid is regular, i.e.,
area(Bi) = area(Bj) for all 1 ≤ i, j ≤ N . Because
K(x, y) represents the density obtained by evolving
δy forward T units of time,

Pij =

∫
Bj

∫
Bi
K(x, y) dydx

area(Bi)
(5)

is the proportion of tracer beginning in Bi that is
found in Bj after T units of time (“proportion” be-
cause of integration over Bj and the property (1)),

averaged over the initial tracer in Bi (“averaged”
because of the integration over Bi and division by
area(Bi)).

If we are presented with tracer data in the form of
trajectories of individual tracer particles, by consid-
ering a sufficiently large number of particles over a
total time horizon [0, T ] we can estimate the entries
of Pij as

Pij ≈
# x ∈ Bi at t ∈ [0, T − T ] and Bj at t+ T

# x ∈ Bi at t ∈ [0, T − T ]
.

(6)
The transition matrix P ∈ RN×N defines a Markov-
chain representation of the dynamics, with the en-
tries Pij equal to the conditional transition proba-
bilities between boxes, which are represented by the
states of the chain.

The forward evolution of the discrete representa-
tion of h(x), h = (h1 · · · hN ), is calculated under left
multiplication, i.e.,

h(k) = hP k, k = 1, 2, . . . . (7)

We note that the discrete evolution described by
P introduces additional diffusion with magnitude of
the order of the box diameters (Froyland 2013).

b. Ergodicity, mixing, attracting sets, residence time,
and retention time

Because the transition matrix P is row stochastic,
i.e.,

∑N
j=1 Pij = 1 ∀i, 1 = (1 · · · 1) is a right eigen-

vector with eigenvalue λ = 1, i.e., P1 = 1. The
eigenvalue λ = 1 equals the spectral radius of P .
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The associated nonunique left eigenvector p is nor-
malized to a probability vector (

∑N
i=1 pi = 1) which

is invariant (because pP = p) and nonnegative (by
the Perron–Frobenius theorem, Horn and Johnson
1990).

We call P irreducible (or ergodic) if for each 1 ≤
i, j ≤ N there is an nij <∞ such that (Pnij )ij > 0.
All states of an irreducible Markov chain communi-
cate, the eigenvalue λ = 1 is simple, and the corre-
sponding left eigenvector p is strictly positive (Horn
and Johnson 1990). We call P aperiodic (or mixing)
if there is an i such that gcd{n ≥ 0 | (Pn)ii > 0} = 1.
For aperiodic P one has p = limk→∞ hP k for any ini-
tial probability vector h.

Suppose that P is irreducible on some class of
states S ⊂ {1, . . . , N}. We call S an absorbing closed
communicating class if Pij = 0 for all i ∈ S, j /∈ S,
and Pij > 0 for some i /∈ S, j ∈ S; cf. Froyland et al.
(2014). The set BS =

⋃
i∈S Bi ⊂ X forms an approx-

imate time-asymptotic forward-invariant attracting
set for trajectories starting in X =

⋃N
i=1Bi.

Markov chain theory also provides a very simple
means of determining the mean residence time in a
collection of boxes. For A ⊂ X let P |A be the tran-
sition matrix P restricted to the subset of indices
corresponding to boxes whose union is A. The mean
time τi of a trajectory initialized in box Bi to move
out of A, also known as the mean time to hit the com-
plement of A, is given by the solution of the linear
equation (cf., e.g., Norris (1998) and Dellnitz et al.
(2009) for its use in the context of ocean dynamics):

(Id−P |A)τ/T = 1, (8)

where Id is the identity matrix. The mean value of
τ within A is a measure of the residence time of the
entire set.

Another timescale related to residence time is the
time-asymptotic retention time. As before, let A (
X be the set for which we wish to allocate a retention
time and denote P |A the restriction of P to boxes
whose union is A. If P is mixing, the leading pos-
itive eigenvalue of P |A, λA, is strictly less than 1.
If one conditions on the fact that trajectories have
already remained in A sufficiently long (so they are
distributed like pA ≥ 0, the leading left eigenvector
of P |A), then the probability of remaining in A for
one more application of P is λA. The probability of
a point in A (distributed according to pA) remaining
in A for k ≥ 1 applications of P is

λkA∑∞
k=1 λ

k
A

=
λkA

λA/(1− λA)
= (1− λA)λk−1A . (9)

Hence, the mean retention time T for points in A
distributed according to pA is

T/T =
∞∑
k=1

(
(1− λA)λk−1A

)
· k

= (1− λA)
∞∑
k=1

kλk−1A

= (1− λA) · 1

(1− λA)2

=
1

1− λA
. (10)

Note that if the mean value of τ , τA, is computed
according to pA, i.e., τA =

∑
j∈A(pA)jτj , then τA =

T.

c. Lagrangian geography from almost-invariant de-
composition

Revealing those regions in which trajectories tend
to stay for a long time before entering another re-
gion is key to assessing connectivity in a flow. Such
forward time-asymptotic almost-invariant sets and
their corresponding backward-time basins of attrac-
tion can be framed (Froyland et al. 2014) by inspect-
ing eigenvectors of P with λ ≈ 1.

The magnitude of the eigenvalues quantify the geo-
metric rates at which eigenvectors decay. Those left
eigenvectors with λ closest to 1 are the slowest to
decay and thus represent the most long-lived tran-
sient modes (Froyland 1997; Pikovsky and Popovych
2003). For a given λ ≈ 1, a forward time-asymptotic
almost-invariant set will be identified with the sup-
port of similarly valued and like-sign elements in the
left eigenvector. Regions where the magnitude of the
left eigenvector is greatest are the most dynamically
disconnected and take the longest times to transit to
other almost-invariant sets.

The multiple backward-time basins of attraction
are identified by boxes where the corresponding
right eigenvectors take approximately constant val-
ues (cf. Koltai 2011, for the simpler single basin case).
Decomposition of the ocean flow into weakly dis-
joint basins of attraction for time-asymptotic almost-
invariant attracting sets using the above eigenvector
method has been shown (Froyland et al. 2014; Miron
et al. 2017) to form the basis of a Lagrangian geog-
raphy of the ocean, where the boundaries between
basins are determined from the Lagrangian circula-
tion itself, rather than from arbitrary geographical
divisions.

We note that the eigenvector method differs from
the flow network approach (Rossi et al. 2014; Ser-
Giacomi et al. 2015). The eigenvector method
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analyzes time-asymptotic aspects of the dynamics
through spectral information from the generating
Markov chain, while the flow network approach com-
putes various graph-based quantities for finite-time
durations to study flow dynamics.

4. Results

a. Building a Markov-chain model

To discretize the deep-ocean Lagrangian dynamics
in the GoM, we laid down on the region X spanned
by the trajectories of the RAFOS floats in Fig. 1 a
grid with N = 946 boxes of roughly 25-km a side.
The size of the boxes was selected to maximize the
grid’s resolution while each individual box is sampled
by enough trajectories (recall that the float’s position
is determined with a precision of about 5 km, so the
uncertainty area around a float’s location is roughly
8 times smaller than the area of a box in the grid).
Figure 2 shows number of floats per box in the grid,
independent of time over the entire 2011–2015 period
(left) and within each season in this period (right).
Regions not visited by floats are found in each sea-
son, particularly in winter. Ignoring time, there are
on average 86 floats per box, with 1 box having as
many as 286 floats and 7 boxes only 1 float. Overall,
while the float coverage may not be dense enough to
carry out a seasonal analysis, it is sufficient in space
to build a Markov-chain model that assumes time ho-
mogeneity (Maximenko et al. 2012; van Sebille et al.
2012; Miron et al. 2017; McAdam and van Sebille
2018).

Before getting into the specifics of the computation
of the transition matrix P defining the Markov chain,
it is important to note that formula (5) for P does
not require the number of trajectories that sample
the boxes in the partition to be equal for each box.
Thus the nonuniform sampling of the RAFOS floats
is not an impediment for computing P . Nevertheless,
to make sure that this does not introduce any biases
in our analysis, we have also computed various P s
by randomly choosing a fixed number (50) of trajec-
tories. This required us to eliminate 94 boxes from
the original partition. The resulting P s were found
to produce results that could not be distinguished
from those produced by the P computed using all
available trajectories, as done as follows.

Using formula (6), we computed the Pij entry
of the transition matrix by counting the number of
floats that starting in box Bi on any day landed in
box Bj after T = 7 days within the entire record
of float data, which lasts T ≈ 4 years. A transi-
tion time T = 7 days in general guarantees interbox
communication. Furthermore, T = 7 days is larger
than the Lagrangian decorrelation timescale, which

we estimated to be of about 5 days for half decorre-
lation consistent with earlier estimates (cf. LaCasce
2008). Markovian dynamics can be expected to ap-
proximately hold as there is negligible memory far-
ther than 7 days into the past. A similar reasoning
was applied in applications involving surface drifters
(Maximenko et al. 2012; van Sebille et al. 2012; Miron
et al. 2017; McAdam and van Sebille 2018), in which
case the transition time was taken shorter due to
the shorter decorrelation time near the ocean sur-
face (LaCasce 2008). The results presented below
were found insensitive to variations of T in the range
7–21 days.

b. Assessing communication within the Markov
chain

A Markov chain can be seen as a directed graph
with vertices corresponding to states in the chain,
and directed arcs corresponding to one-step transi-
tions of positive probability. This allows one to ap-
ply Tarjan’s algorithm (Tarjan 1972) to assess com-
munication within a chain. Specifically, the Tarjan
algorithm takes such a graph as input and produces
a partition of the graph’s vertices into the graph’s
strongly connected components. A directed graph
is strongly connected if there is a path between all
pairs of vertices. A strongly connected component
of a directed graph is a maximal strongly connected
subgraph and by definition also a maximal commu-
nicating class of the underlying Markov chain.

Applying the Tarjan algorithm to the directed
graph associated with the Markov chain derived us-
ing the float trajectory data, we found a total of four
maximal communicating classes. Each one of these
classes is indicated with a different color in Fig. 3.
One class, denoted SL, is large, composed of the ma-
jority of the states in the chain or boxes of the par-
tition (935 out of a total of N = 946). From direct
computation, Pij = 0 for all i ∈ SL, j /∈ SL, i.e., SL

is closed. The classes in the complement of SL are
small, with 2 formed by a single state and another
one formed by 9 states. Direct computation shows
that (Pm)ij > 0 for some m for all i /∈ SL, j /∈ SL.
This reveals that SL is absorbing. Because SL is com-
municating and closed, P restricted to SL, i.e., P |SL ,
is irreducible and provided that no state repeatedly
occurs, it will be mixing, i.e., a unique, limiting in-
variant probability density will be supported on SL.
Because SL is absorbing, its small complement can
be safely ignored from the analysis without affecting
the results by replacing P with P |SL .
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Fig. 2. For daily interpolated trajectories, number of RAFOS floats per box in the grid into which the domain visited has
been discretized, independent of time over the entire 2011–2015 period (left) and within each season in this period (right). The
dashed line, here and all the subsequent figures, represent the 1750-m isobath.

Fig. 3. Grouping of the states of the Markov chain associ-
ated with the matrix P of transition probabilities of RAFOS
floats moving over 7 days between boxes of the partition of the
domain spanned by their trajectories into classes according to
their communication type. Boxes indicated with the same
color belong to the same class. There are 4 maximal com-
municating classes, with a large class (yellow) encompassing
most of the states in the Markov chain (boxes of the partition)
which is absorbing.

c. Forward evolution of the probability density of a
tracer

Figure 4 shows selected snapshots of the push for-
ward of the probability density of a tracer initially
uniformly distributed within the layer between 1500
and 2500 m in the GoM under the discrete action of
the underlying flow map. At the coarse-grained level

given by the grid defined above, this is defined by
(7) with h = 1/N and P as derived using the float
data. Because we used 7-day-long trajectory pieces
to construct P , one application of P is equivalent to
evolving in forward time for T = 7 d. Note that the
density eventually settles on a nonuniform distribu-
tion which appears to be invariant.

The regions where the density distribution of Fig.
4 locally maximizes represent vertical “outwelling”
sites. Likewise, there is vertical “inwelling” in the
regions where the density locally minimizes. Volume
conservation in either case implies vertical motion.
While the direction of this motion cannot be deter-
mined from the analysis of the float trajectories on
a single layer, some sense may be made of its mag-
nitude by comparing area change estimates obtained
using the deep floats and the satellite-tracked surface
drifter data employed in Miron et al. (2017).

Let ai be the area of box Bi of the domain on
which the float trajectories lie. After 1 application
of P , equivalently 7 d, we have a′i :=

∑N
j=1 ajPji.

If the flow were area-preserving, we would expect
a′i = ai. At depth, area dispersion (a′i > ai) corre-
sponds to vertical inwelling, while area concentration
(a′i < ai) to vertical outwelling. At the surface, area
dispersion and concentration correspond to up- and
downwelling, respectively. In Fig. 5 we show prob-
ability density function (PDF) estimates of relative
area change a′i/ai − 1 ≥ −1 inferred using deep float
data (red) and surface drifter data (blue). The sur-
face relative area change is computed over 7 days
and using a partition into boxes of similar size as
at depth, approximately 625 km2. Note that both
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Fig. 4. Selected snapshots of the evolution of an initially uniformly distributed tracer probability density under the action of
the underlying flow map, whose discrete representation is provided by the float-data-derived transition matrix P .

Fig. 5. Probability density function estimates of relative
area change computed over 7 days using the RAFOS deep
float data (red) and satellite-track surface drifter data (blue).

PDFs peak at 0, with the drifter PDF showing longer
tails toward large positive values and higher negative
values than the float PDF. Overall area preservation
is seen to dominate equally at the surface and depth,
while a larger tendency to disperse and concentrate
areas is observed at the surface than at depth.

d. Analysis of the Markov chain’s eigenspectrum

We now proceed to determine the level of connec-
tivity within the horizontal domain in the layer vis-
ited by the deep floats by applying the eigenvector
method on the matrix P .

The eigenspectrum of P is composed of a total of
N = 946 eigenvalues. As noted above, only eigenvec-
tors of P corresponding to eigenvalues close to unity
are relevant, and because P is very sparse, one may
use Lanczos-type methods Lehoucq et al. (1998) to
compute the n � N largest eigenvalues. With this

in mind, we show in Fig. 6 the eigenspectrum of P
restricted to λ > 0.9. This top 10% portion of the
eigenspectrum includes 10 eigenvalues, yet not all 10
associated eigenvectors might need to be taken into
account. Indeed, thinking of λn < 1 as a decay rate
for a signed density revealed by the nth left eigen-
vector of P , if a large spectral gap between two col-
lections of eigenvalues is present, then the densities
revealed by the eigenvectors associated with eigenval-
ues prior to the gap will decay much more slowly and
survive over much longer timescales than the densi-
ties revealed by the eigenvectors associated with the
eigenvalues after the gap. Therefore, the presence of a
pronounced eigengap provides rationale for stopping
eigenvector analysis. However, inspection of Fig. 6
does not reveal any gap that strongly suggests a cut-
off for analysis except, perhaps, at n = 8 or n = 6.
Yet only the gap at n = 6 may be considered signifi-
cant with respect to the uncertainty of the eigenvalue
computation. The gray shade in Fig. 6 represents an
uncertainty of the computation of λn as measured
by the median absolute deviation about λn in an en-
semble of 1000 realizations computed from transition
matrices constructed using randomly perturbed float
trajectories with 5 km amplitude, corresponding to
the float positioning accuracy. This uncertainty mea-
sure grows noticeably beyond n = 8, making the
gap there not significant. This suggests, in the ab-
sence of evidence establishing any better criterion,
that the analysis should not be extended beyond the
6th eigenvector. It must be noted that we have so
far implicitly referred to the real eigenspectrum of P .
Interspersed among the dominant eigenvalues (in ab-
solute magnitude) are complex-conjugate eigenvalue
pairs. We will discuss a relevant complex eigenvector
pair after discussing the real eigenvectors, restricted
to the first 6 as just articulated.

As expected from the assessment of communica-
tion within the Markov chain associated with P , to
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Fig. 6. A portion of the discrete eigenspectrum of the tran-
sition matrix P showing the top 10 real eigenvalues (circles)
and uncertainties (gray shade) representing the median ab-
solute deviation about them in ensemble of eigenvalues com-
puted using transition matrices produced by randomly per-
turbing the float trajectories.

numerical precision its largest eigenvalue, λ1 = 1, is
simple. The corresponding left and right eigenvec-
tors are shown in the left and right panels of Fig. 7,
respectively. The right eigenvector is flat as required
by row-stochasticity of P , which is exactly satisfied
given that no floats exit the domain X on which P is
defined (the physical significance of this domain be-
ing closed is discussed below). The left eigenvector
is positive within the absorbing closed communicat-
ing class of states of the Markov chain, which covers
most of the boxes of the partition (cf. Fig. 3), and
vanishes elsewhere. Furthermore, the structure of
the left eigenvector resembles quite closely the dis-
tribution of the probability density in the rightmost
panel of Fig. 4. More precisely, this is nearly equal to
the left eigenvector when normalized by the area of
the boxes in the partition, confirming its invariant,
limiting nature.

The top left and right panels of Fig. 8 respectively
show the left and right eigenvectors associated with
the 2nd largest eigenvalue of P , λ2 = 0.9943. Note
that the left eigenvector takes a single sign within
each side of a zero-level curve that partitions the
floats’ domain into two regions. Two basins of at-
traction are identified by the right eigenvector. These
are given by the regions where the right eigenvector
is approximately flat, i.e., approximately looks like 1.
Splitting the domain into two regions between which

there is weak interaction, the western (eastern) re-
gion constitutes a basin of attraction for the attrac-
tors revealed by the left eigenvector in the western
(eastern) side of the domain. To make the connection
between forward-time attractors and backward-time
basins of attraction explicit, the eigenvectors have
been assigned (in this and the subsequent figure)
signs such that positive (negative) portions of the
right eigenvector map to positive (negative) portions
of the left eigenvector under repeated right multipli-
cation by P . These attractors are not invariant, but
rather will retain tracer for a finite period of time (in-
tramixing timescales, loosely referred to as invariance
timescales in Miron et al. (2017), can be estimated
by thinking of λ < 1 as a decay rate as noted above;
more insightful measures of the invariance time of a
set are provided by the residence and retention times
in the set, which are considered below).

Inspection of the left eigenvector associated with
the 3rd largest eigenvalue of P , λ3 = 0.9822, reveals
further attracting sets, but with shorter invariance
timescale (Fig. 8, middle-left panel). One such set in
particular, highlights a tendency of the Lagrangian
motion to circulate along the 1500-m isobath on the
western side of the domain for tracers initially cov-
ering a large sector in the center of the domain. The
latter is revealed in the right eigenvector (Fig. 8,
middle-right panel), which is nearly flat in the noted
central sector. The right eigenvector is also approxi-
mately flat on two regions flanking this sector which
are weakly connected through a very narrow chan-
nel running along the southern edge of the domain.
The two regions cover the entire domain, forming two
basins of attraction for almost-invariant sets in the
regions of the left eigenvector with like sign.

Additional almost-invariant attracting sets (with
shorter invariance timescales) and corresponding
basins of attraction are revealed by the left–right
eigenvector pairs associated with the 4th to 6th
eigenvalues of P (cf., e.g., the 5th pair in the bot-
tom row of Fig. 8). Patching together these and the
above basins of attraction the various Lagrangian ge-
ographic partitions shown in Fig. 9 are obtained.

e. Lagrangian geography

Rather than thresholding right eigenvectors as in
prior applications (Froyland et al. 2014; Miron et al.
2017), the various provinces in each Lagrangian geog-
raphy constructed here were automatically obtained
by applying a k-means clustering algorithm (Kauf-
man and Rousseeuw 1990) that minimizes squared
Euclidean distance as outlined in Algorithm 1 of
Froyland (2005), but with the weighted fuzzy clus-
tering replaced with k-means clustering. The main
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Fig. 7. Left (left panel) and right (right panel) eigenvectors associated with the largest eigenvalue of P , λ1 = 1. The left
eigenvector is invariant: pP = p. The right eigenvector, a vector of ones by row-stochasticity of P , is mapped after infinitely
many applications of P to the left eigenvector (limk→∞(1/N)Pk = p), thereby representing a single basin of attraction for the
invariant attractor revealed by the left eigenvector.

geographic partition in the left panel of Fig. 9 was
obtained by seeking k = 2 clusters in the 2nd
right eigenvector of P . Refined geographic partitions,
shown in the middle and right panels, resulted by
considering more eigenvectors in the relevant set sug-
gested by the eigenvalue uncertainty computation
and eigengap inspection. The refined partition in
the right panel of Fig. 9 was obtained by seeking
k = 6 clusters in the 2nd through 6th right eigenvec-
tor. The middle panel shows an intermediate parti-
tion resulting from seeking k = 4 clusters in the 2nd
through 4th right eigenvector. Seeking k = 2 clus-
ters from the 2nd eigenvector is an obvious choice
that follows from direct inspection of this eigenvec-
tor. Seeking k = K > 2 clusters from the 2nd
through Kth eigenvectors assumes that each right
eigenvector adds a new province to the geography at
a time. The silhouette value −1 ≤ s ≤ 1 (Rousseeuw
1987) is a measure of how similar an object is to its
own cluster compared to other clusters, with a large
s indicating that the object is well matched to its
own cluster and poorly matched to neighboring clus-
ters. The mean s equals to 0.91, 0.54 and 0.56 for
the clusters identified using k = 2, 4, and 6 when the
first 2, 4, and 6 right eigenvectors are taken into ac-
count, respectively. Larger k in the latter two cases
can produce more consistent clusters, albeit much
smaller and hence with shorter residence or reten-
tion times, so we have not considered them.

In the 2-eigenvector geography 2 large provinces,
one western (WE) and another one eastern (ES),
split the domain nearly in half. The 4-eigenvector
geography incorporates two provinces in WE: a small
northern subprovince (WN) and another southern

subprovince (WS) even smaller. The 6-eigenvector
geography incorporates to WE these same small sub-
provinces and another, much larger, central sub-
province (WC). Province ES is not modified by the
4-eigenvector geography, while the 6-eigenvector ge-
ography alters it by the addition of a small northern
subprovince (EN).

As constructed, the provinces of the above La-
grangian geographies only weakly dynamically inter-
act. This imposes constraints on connectivity within
the 1500-to-2500-m layer in the GoM. More specifi-
cally, the communication between any two provinces
is constrained locally by the level of invariance of
the attractors contained within each of them and
remotely by that of any attractors outside of the
provinces but sufficiently close to them.

The level of communication among provinces can
be assessed by the computation of forward-time
conditional transition probabilities between pair of
provinces. Over 7 days, the mean inter-province
probability percentages are 98.5, 97.5, and 94.3 for
the 2-, 4-, and 6-eigenvector geographic partitions.
Note that these are high, indicating weak intra-
province dynamical interaction. Note also that the
percentages decrease as the number of provinces in
the geography increases. This reflects in part that
communication within large provinces is less con-
strained than across their boundaries. The resulting
transition matrices restricted to the various geogra-
phies are not symmetric, revealing the asymmetric
nature of the Lagrangian dynamics in time. The
asymmetry grows with the number of provinces in
the partition, as can be expected.
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Fig. 8. As in Fig. 7, but for λ2 = 0.9943 (top), λ3 = 0.9822 (middle), and λ5 = 0.9701 (bottom). The left eigenvector
reveals the locations of almost-invariant sets of forward-time attraction. The corresponding backward-time basins of attraction
are revealed by the right eigenvector. The sign assignment is such that positive (negative) right eigenvector portions map to
positive (negative) left eigenvector portions under repeated left multiplication by P .

From left to right, Figure 10 shows residence time
estimates according to formula (8) within each of
the provinces in the 2- to 6-eigenvector Lagrangian
geographies. Note that τ decreases outward down
to τ = 0 at the boundaries of the provinces. As

expected, the maximum values tend to be attained
where the right eigenvectors of P locally maximize
(in absolute magnitude). These regions, as described
above, correspond to basins that are attracted to-
ward forward time almost-invariant attracting sets.
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Fig. 9. Lagrangian geography of dynamically weakly interacting provinces formed by the domains of attraction associated
with the most persistent attractors. Geographic partitions based on the analyses of the 2nd right eigenvector, 2nd through 4th
right eigenvectors, and 2nd through 6th right eigenvectors are shown in the left, middle, and right panels, respectively.

The small values of τ attained in the periphery of
the provinces (basins of attraction corresponding to
those attractors) simply indicate that mixing with
neighboring provinces begins at their boundaries.

The residence time calculation shows a west–east
asymmetry in the 2-eigenvector geography, with the
WE province having longer residence times than the
ES province. Specifically, the mean residence time in
WE (ES) province is of about 4.53 (3.38) years. It
must be mentioned that the mean here is taken with
respect to a uniform probability distribution, i.e., it is
computed as an average according to Lebesgue (area)
measure. As noted earlier in the paper, mean resi-
dence times computed using (8) coincide with reten-
tion times (10) based on the likelihood of a trajectory
to survive in a given set if the mean in the former is
taken according to the probability distribution given
by the leading left eigenvector of P restricted to the
set in question. The resulting mean residence (or,
equivalently, retention) times are 4.74 and 3.74 years
for the WE and ES provinces, respectively, which are
very similar to the values stated above.

The provinces in the 4- and 6-eigenvector geogra-
phies have shorter residence times. For instance, on
average within the WE, WS, WC, WW, ES, and
EN provinces in the 6-eigenvector partition these are
about 0.74, 0.90, 0.48, 0.64, 1.18, and 0.38 years,
respectively. Shorter residence times in sets cover-
ing smaller areas are expected. But note the short
residence time of the WC province despite its large
coverage.

The direct pushforward of tracers with P further
revealed that the slow exchange between the main
provinces is executed from east (west) to west (east)
through a northern (southern) corridor. This sug-
gests a slow cyclonic circulation in the deep GoM.
Such a preferred circulatory motion is consistent with
the peculiar shape of the geography in the western
side of the domain, which includes an enclave around

Table 1. Mean time (in years) to reach a province of the 6-
eigenvector Lagrangian geography indicated in the left column
starting from any province in the top row.

WE WC WW ES EN

WE 0.00 0.26 0.41 0.68 0.86

WC 1.05 0.00 1.46 1.73 1.91

WW 7.97 8.23 0.00 8.64 8.82

ES 1.51 1.76 1.90 0.00 0.20

EN 6.17 6.42 6.56 4.68 0.00

which tracers will tend to circulate before exchange
of material is effected. This explains the residence
time asymmetry of the main provinces.

The west–east residence time asymmetry can be
further realized by computing the time it takes on
average to hit or reach a given province starting in
another province. This can be done using (8) with
the region A set to the complement of the target
province. The result of this calculation for the 6-
eigenvector geographic partition is shown in Table
1. The top row shows source provinces and the left
column target provinces. Consider for example the
bottom row. The mean time to hit EN in the east-
ern basin starting on WC in the western side of the
domain is 6.17 years. Consider now the second-to-
top row. To reach WC from EN it takes on average
1.91 years. Consistent with west–east residence time
asymmetry, it takes more than three times as long to
reach EN from WC. Clearly, the mean time to reach
a given province starting in the same province is 0.
Note that WS has not been included in the table as
this province is never reached from outside.

5. Validation

a. Chemical tracer

The deep Lagrangian geography constructed here
and the surface Lagrangian geography computed by
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Fig. 10. Estimates of residence time within provinces in the 2- (left), 4- (middle), and 6-eigenvectors (right) Lagrangian
geographies. Note the scale range differences.

Miron et al. (2017) are globally different on the over-
lapping domains, suggesting that the surface La-
grangian motion is to a large extent decoupled from
the deep Lagrangian motion. An important excep-
tion is the partition by a roughly meridional bound-
ary of the surface and deep domains into two basins
of attraction for almost-invariant attractors revealed
by the inspection of eigenvectors of the correspond-
ing transition matrices with the 2nd-largest nonunity
eigenvalue (compare the left panel of Fig. 9 and the
left panel of Fig. 6 of Miron et al. (2017)).

The restricted connection at depth between the
eastern and western GoM was suggested by the be-
havior of profiling floats parked at about 900 m
launched in the eastern side, which tended to stay
there, and those launched in the western side, which
remained there for a long period of time (Weatherly
et al. 2005). Here we provide support for the sig-
nificance of the partition of the deep GoM domain
at a deeper level using the observed evolution of the
chemical tracer injected near the Deepwater Horizon
oil rig during the field experiment described by Led-
well et al. (2016).

The right panels of Fig. 11 show the distribution
taken by the chemical tracer 4 (top) and 12 (bottom)
months after release. The release site lies about 100-
km southwest of the cross, indicating the location
of the Deepwater Horizon rig. The circles are col-
ored according to the amount of tracer found during
in-situ casts, integrated vertically between 1000 and
2500 m. The colored background is a smoothed in-
terpolated map based on the station data. Note the
tendency of the tracer to spread over the eastern side
of the domain. After 12 months from release, little
tracer is seen to have traversed the zero-level set of
the left eigenvector of P with the largest eigenvalue
(indicated by a solid line). And note that absolutely
no tracer at all was detected during the in-situ casts
made well in the western side of the domain. This is
consistent with the expected fate of a tracer proba-
bility density initiated on the main eastern province

of the Lagrangian geography constructed from the
float data.

This expectation is confirmed by the evolution of
a tracer probability started from a source location
near the chemical tracer release site under the ac-
tion of the transition matrix P (Fig. 11, left panels).
Consistent with the chemical tracer evolution, the
(synthetic) tracer probability spreads similarly over
the eastern side of the domain without significantly
crossing the zero-level set of the largest nontrivial
eigenvector.

It must be noted, however, that as the tracer prob-
ability is continually being pushed forward under P ,
it will eventually spread over the western basin along
its northern boundary of the domain, describing a
cyclonic circulatory pattern as noted above consis-
tent with inferences made from the direct inspection
of float trajectories, the analysis of hydrography and
mooring data, and numerical simulations (Hurlburt
and Thompson 1980; Oey and Lee 2002; Mizuta and
Hogg 2004; DeHaan and Sturges 2005; ?; Hamilton
et al. 2016; Pérez-Brunius et al. 2017; Tenreiro et al.
2018). Also consistent with direct inspection of tra-
jectories (Hamilton et al. 2016; Pérez-Brunius et al.
2017), and high resolution modelled fields (?), some
probability tracer will circulate cyclonically around
the enclave inside the main western province of the
Lagrangian geography.

b. Profiling floats

Additional independent observational support for
the significance of the results obtained from the
analysis of the Markov-chain model derived using
the RAFOS floats is provided by the analysis of a
Markov-chain model constructed using Argo profil-
ing floats drifting at an average parking depth of 1000
m. At a shallower depth, the Argo trajectories sam-
ple a similar horizontal domain of the GoM as the
RAFOS trajectories, but less densely (there are only
60 Argo floats in the database analyzed). Also, the
temporal coverage of the Argo floats is not as ample
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Fig. 11. Comparison between the evolution of a tracer probability density under the action of the transition matrix P (left
column) and dispersion of a chemical tracer (right column) presented both after 4 (top row) and 12 (bottom row) months
of released about 100-km southwest of the Deepwater Horizon site (indicated by a cross). On the right column, the colored
background is an interpolated map based on column integral of tracer found during in-situ casts at the station locations (colored
circles). The solid line in each panel indicates the zero-level set of the left eigenvector of P associated with the 2nd largest
eigenvalue.

as the RAFOS floats. With these differences in mind
we constructed a matrix of probabilities of the Argo
floats to transitioning between the boxes of a grid
similar to that used with the RAFOS floats. The
transition time was set to 7 days as in RAFOS floats
analysis, which required us to interpolate the original
10-daily trajectories. The Markov chain associated
with the resulting P was found to be characterized
by an absorbing closed communicating class of states
spanning most boxes of the partition. Thus λ1 = 1
was found to be the only eigenvalue of P on the unit
circle, implying the existence of a limiting invariant
probability vector. The structure of the left–right
eigenvector pair for the 2nd eigenvalue is shown in
Fig. 12. Albeit more noisy and gappy, this pair shows
similarities with that of the P computed using the
RAFOS floats (Fig. 7, top row). Indeed, a partition
of the domain nearly into 2 basins of attraction is

evident. This adds confidence to the RAFOS float
analysis. It also suggests a tendency of the motion
to be preferentially columnar in the deep GoM (re-
call that the Argo floats ascend to transmit positions
at the surface while the RAFOS floats remain parked
at a fixed level at all times during an experiment).

6. Discussion

a. Cyclonic circulation and f/ H

The cyclonic circulation in the western side of the
GoM domain is well described by complex eigenvec-
tors of P . Let v± be a complex-conjugate left eigen-
vector pair of P with λ± = re± i θ, where θ ≥ 0.
After k applications of P , v±P

k = rkv±e± i kθ. View-
ing each complex component of v± as a vector in C,
if r ≈ 1 the latter represents a rotation of each such
vectors by an angle ±kθ. Furthermore, v±P

k returns
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Fig. 12. As in the top row of Fig. 8, but based on Argo profiling floats.

to v± after k∗ = 2π/θ applications of P . Because k∗
need not be an integer, v±P

k∗ will not in general
exactly coincide with v±, which represents almost-
cyclic sets. Figure 13 shows Re(v±P

k) where v±
corresponds to the leading λ± (for which r = 0.9775
and θ = 0.0239) for several k over an almost cycle
(with period k∗T = 5.0414 years). Independent of
whether v+ or v− is considered, note the cyclonic ro-
tation described in the western main province of the
Lagrangian geography.

Rectification of topographic Rossby waves has
been identified as a driver for the cyclonic circula-
tion along the boundary (Hurlburt and Thompson
1980; Oey and Lee 2002; Mizuta and Hogg 2004; De-
Haan and Sturges 2005). In linear, unforced, invis-
cid, barotropic and quasigeostrophic dynamics (Gill
1982), the vorticity changes only when there is mo-
tion across the f/H contours, where f is the Coriolis
parameter (twice the local vertical component of the
Earth’s angular velocity) and H is the fluid depth.
As such, f/H provides a restoring force, supporting
topographic Rossby waves, which through nonlinear
interaction can be rectified to give rise to a mean
flow directed mainly along f/H isolines (Colin de
Verdiere 1979). Here we test f/H conservation us-
ing the Markov-chain model and further assess its
effect on the evolution of probability tracer densities
in the domain.

Specifically, let Qj = fj/Hi be the mean value of
f/H inside box Bj in the partition. To first-order
approximation, Qj must be preserved along tracer
trajectories entering box Bj . To check this, we prop-
agate backward the observable f/H by k steps with
the transition matrix P . Define qi :=

∑N
j=1 P

k
ijQj ,

the ith component of the backward propagation of
Q, averaged over those boxes Bj that the forward
propagation of Bi intersects. If f/H were exactly

preserved along trajectories, then one would expect
qi = Qi.

Figure 14 shows εi := |qi/Qi − 1| after k = 52 ap-
plications of P (corresponding to 1-year forward evo-
lution). Note that f/H is preserved with 25% error
or less along the western and southern boundaries
of the domain and over a large region of the eastern
side of the domain. Because the restoring force pro-
vided by f/H is largest where f/H varies rapidly,
tracer trajectories initially on the western boundary
will be constrained to run along that boundary as
the gradient of f/H across isobaths there is large (f
is relatively constant in the domain). A similar be-
havior may be expected for trajectories starting on
the southern boundary across which f/H changes
rapidly. However, f/H is not uniformly preserved
along this boundary. Indeed, boxes where εi are in-
terspersed among boxes where this is small. As a
consequence, trajectories starting on that boundary
are not expected to be so constrained to run along. In
the eastern portion of the domain where εi is small,
the bottom is relatively flat. As a result, trajectories
starting will unlikely follow any particular H isoline
while nearly conserving f/H. Moreover, this will
tend to occupy the domain in question, which re-
sembles quite well the positive side of 2nd left eigen-
vector of P (cf. Fig. 8, upper panel). Finally, in the
large western region where εi is large, the trajectories
will wander unrestrained within the region, which it-
self resembles quite well the negative side of 2nd left
eigenvector of P .

The expected behavior of tracer trajectories de-
duced from the Markov-chain model is verified by the
behavior observed float trajectory patterns. This is
shown in Fig. 15 for groups of float trajectories that
have gone through selected sites along the boundary
of the domain (left) and the center of the western side
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Fig. 13. Snapshots of the forward evolution of the leading complex left eigenvector of transition matrix P over an almost cycle
(with a period of 60.5 months). The real part is shown. The result does not depend on the member of the complex-conjugate
eigenvector pair considered.

Fig. 14. For each box in the partition, absolute relative
error between f/H, where f is the Coriolis parameter and H
is depth, and the average of f/H according to the forward
evolution over 1 year of a probability vector supported in the
box. Dashed lines are the isobaths of 1750, 2500, 3000 m.

of the domain (right). Note, in the left panel, how
the red and orange trajectories tend to run along
the western boundary, while the green trajectories
are not so constrained to doing so along the south-
ern boundary. Observe too in this panel how the
blue trajectories cover the eastern side of the domain
consistent with f/H being preserved in that region.

Finally, note that the trajectories in the right panel
loop around in a largely unrestricted manner.

b. Homogeneization

The analysis of the chemical tracer injected at
depth suggested that homogenization in the GoM is
more rapid than in the open ocean (Ledwell et al.
2016). While the Markov-chain model constructed
here does not predict uniform homogenization in the
long run, it supports a limiting, invariant distribu-
tion which does not reveal a preferred region for ac-
cumulation but rather a multitude of different small
regions where some accumulation is possible. The
highly structured texture of this distribution suggests
partial homogenization in the long run. This can be
quite fast. For instance, for a tracer released in the
eastern side of the domain, it can take as short as 1
year or so to spread over that portion of the domain
(cf. Fig. 10) consistent with the good agreement be-
tween the forward evolution of a tracer probability
and the observed chemical tracer spreading (recall
Fig. 11). This corresponds well with the mean time
required for the EN province to hit the WE province,
which is of 0.86 years (cf. Table 1 and Fig. 9).

c. Ventilation

Below 1000 m the GoM is filled with oxygen-rich
water which is isolated from diffusive inflow of oxygen
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Fig. 15. Trajectories of floats that, having gone through the boxes indicated, are constrained by f/H conservation on different
levels (left) and are not constrained by f/H preservation.

from the surface by the presence of a layer of oxygen-
poor water (Nowlin et al. 2001). As standard deep-
water formation is very unlikely due to the extreme
cooling and salinity increase required for the surface
layer to sink, ventilation of the deep GoM has been
argued to be accomplished via horizontal transport
of oxygen-rich water from the Caribbean Sea (Rivas
et al. 2005).

The tendency of the Lagrangian motion as inferred
from the Markov-chain model constructed using the
RAFOS floats to conserve area more effectively than
that using surface drifters, together with the simi-
larities of the dominant eigenvectors of the transi-
tion matrices built using RAFOS and Argo floats, is
consistent with the above observations in that La-
grangian motion within the 1500–2500-m layer is
predominantly horizontal. However, the Markov-
chain model does not represent exchanges through
the boundary of the domain on which is supported
as the RAFOS floats deployed inside the domain do
not escape the domain.

Yet the above does not rule out the possibility
that floats deployed outside the domain eventually
enter the domain. Indirectly, this possibility is de-
scribed by our Markov-chain model. This is shown
in Fig. 16 for a tracer probability density initially at
the southeastern corner of the domain. Note that
it spreads over the domain, mainly cyclonically and
along the eastern boundary, under the action of P
as opposed to accumulate in the southeastern cor-
ner. This suggests a horizontal ventilation pathway
from the Caribbean Sea compensated by weak verti-
cal mixing.

It must be noted that there are no RAFOS floats
that can be used to verify the existence of that path-
way. However, the Argo floats might suggest it at
about 1000 m. This is shown in Fig. 17 for a few
Argo float trajectories that start in the Caribbean
Sea. We say “might” because we do not know for
certain that the Argo floats penetrate the GoM do-
main at their parking depth or at shallower level in
their ascend and descend. Ventilation might well be
taken place more effectively at a shallower level as
suggested by the observation that the core of the
North Atlantic Deep Water (NADW), which fills the
Caribbean Sea at depth, located between 1200 and
1300 m (Hamilton et al. 0).

d. Mean circulation

We close the discussion by showing that the results
obtained using the Markov-chain model could not
have been revealed by simply inspecting the mean
circulation deduced from the RAFOS float trajec-
tories. The top panel of Fig. 18 shows ensemble-
mean streamlines computed by integrating a steady
velocity field resulting from averaging the float ve-
locities in each box of the grid used to construct the
Markov-chain model. While the streamlines suggest
a cyclonic flow along the periphery of the domain es-
pecially on its western side, which is consistent with
the transfer operator analysis and also direct inspec-
tion of float trajectories (Hamilton et al. 2016), it is
difficult to find a correspondence among the many
sources and sinks with the various local minima and
maxima of the limiting, invariant distribution of the
Markov-chain model (cf. the rightmost panel of Fig.
4 or the left panel of Fig. 7). The differences with
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Fig. 16. Snapshots of the evolution under the action of the RAFOS-float-based transition matrix of a tracer probability density
initially in the southeastern corner of the domain.

Fig. 17. Trajectories of Argo profiling floats starting inside
the Caribbean Sea. Initial positions are indicated by a blue
dot and final positions by a red dot.

the Markov-chain model results are most clearly evi-
denced when the evolution of a tracer under the cor-
responding flow is compared with the push forward
of a tracer probability density under the transition
matrix P . Snapshots of the evolution of a narrow
Gaussian about near the chemical tracer injection
site are shown after 4 and 12 months in the bottom-
left and right panels of Fig. 18, respectively. Note
that the spread of the tracer is confined to the vicin-
ity of this site, which is in stark contrast with the
much wider spreading of a probability density source
initially near the same location under action of P or
the evolution of the chemical tracer injected nearby
(cf. Fig. 11).

7. Summary and concluding remarks

Analyzing acoustically tracked (RAFOS) float
data in the Gulf of Mexico (GoM), we have con-

structed a geography of its Lagrangian circulation
within the deep layer between 1500 and 2500 m re-
vealing aspects of the circulation transparent to stan-
dard Lagrangian data examination as well as con-
firming, and thus providing firm support to, other
aspects already noted from direct inspection of the
float trajectories. The analysis was done by applying
a probabilistic technique that enables the study of
long-term behavior in a nonlinear dynamical system
using short-run trajectories. The Lagrangian geogra-
phy is inferred from the inspection of the eigenvectors
of a transfer operator approximated by a transition
probability matrix P of the floats to moving over 1
week between boxes of a grid laid down on the do-
main visited by the floats. Such a transition matrix
provides a Markov-chain representation of the La-
grangian dynamics.

The basic geography has a single dynamical
province which constitutes the backward-time basin
of attraction for a time-asymptotic invariant attract-
ing set, which is revealed by the unique left eigen-
vector of P with unit eigenvalue. This suggests that
the residence time for tracers within the 1500–2500-
m layer is very long. This result together with the
tendency of the motion to preserve areas more effec-
tively at depth than at the surface as inferred using
satellite-tracked drifters suggest that transport and
mixing is predominantly lateral. This is consistent
with the idea that ventilation of the deep Gulf of
Mexico is accomplished by the influx of high-oxygen
from the Caribbean Sea through the Yucatan Chan-
nel at depth. While our Markov-chain model can-
not represent exchanges through its boundary, it in-
directly suggests a ventilation conduit through its
southeastern corner balanced by weak vertical mix-
ing. Some support to this inference was found to
be provided by profiling (Argo) floats deployed in
the Caribbean Sea, which were observed to enter the
GoM at depth.



J o u r n a l o f P h y s i c a l O c e a n o g r a p h y 19

Fig. 18. Ensemble mean streamlines computed using RAFOS float velocities (top) and snapshots at 4 (bottom-left) and
12 (bottom-right) months of the evolution under the corresponding flow of a narrow Gaussian initially centered about 100-km
southwest of the Deepwater Horizon oil rig, indicated by a cross.

Lateral transport and mixing inside the layer
scrutinized does not happen unrestrainedly. In-
deed, left eigenvectors of P with eigenvalues close
to unity reveal almost invariant sets that attract La-
grangian tracers originating in disconnected regions
where the corresponding right eigenvectors are nearly
flat. These backward-time basins of attraction de-
fine the provinces of a nontrivial Lagrangian geog-

raphy, which, because they are only weakly dynami-
cally interacting, impose constraints on connectivity
and thus on lateral transport and mixing of tracers.

The simplest nontrivial geographical partition in-
cludes 2 nearly equal-area western and eastern
provinces. Tracers initially released within these
main provinces tend to remain confined within for a
few years, with the western province retaining tracers
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for longer than the eastern province. Communication
between the provinces is accomplished through a cy-
clonic flow confined to the periphery of the domain,
which was shown to be highly constrained by con-
servation of f/H, where f is the Coriolis parameter
and H is depth, in the western side of the domain.
Smaller secondary provinces of different shapes with
residence times shorter than 1 year or so were also
identified, imposing further restrictions on connec-
tivity at shorter timescales.

Except for the main provinces, the secondary
provinces identified do not resemble those of the
surface Lagrangian geography recently inferred from
satellite-tracked drifter trajectories. This implies dis-
parate connectivity characteristics with possible im-
plications for pollutant (e.g. oil) dispersal at the sur-
face and depth.

The evolution of a chemical tracer from a release
experiment as well as the analysis of a smaller set
of Argo floats were shown to provide independent
support for the Lagrangian geography derived using
the RAFOS floats. It is quite remarkable that the
RAFOS and Argo floats produced similar Markov
chain representations of the Lagrangian dynamics of
the deep GoM given the different sampling charac-
teristics (parking depth, temporal coverage) of these
two observational platforms.

The good agreement between the results from
the RAFOS and Argo float analyses suggests that
the probabilistic tools employed here applied on the
global Argo float array may provide important in-
sight into the abyssal circulation of the world ocean.
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Sheinbaum, J., G. Athié, J. Candela, J. Ochoa, and
A. Romero-Arteaga, 2016: Structure and variability of
the Yucatan and loop currents along the slope and shelf
break of the Yucatan channel and Campeche bank. Dy-
namics of Atmospheres and Oceans, 76 (Part 2), 217
– 239, doi:https://doi.org/10.1016/j.dynatmoce.2016.08.
001, URL http://www.sciencedirect.com/science/article/
pii/S0377026516300501, the Loop Current Dynamics Ex-
periment.

Sheinbaum, J., J. Candela, A. Badan, and J. Ochoa, 2002:
Flow structure and transport in the Yucatan Channel. Geo-
physical Research Letters, 29, doi:10.1029/2001GL013990.

Sturgers, W., P. P. Niiler, and R. H. Weisberg, 2001: North-
eastern gulf of mexico inner shelf circulation study. Tech.
rep., MMS Cooperative Agreement 14-35-0001-30787.

Tarjan, R., 1972: Depth-first search and linear graph algo-
rithms. SIAM J. Comput., 1, 146–160.

Tenreiro, M., J. Candela, E. P. Sanz, J. Sheinbaum, and
J. Ochoa, 2018: Near-Surface and Deep Circulation Cou-
pling in the Western Gulf of Mexico. J. Phys. Oceanogr.,
48, 145–161, doi:10.1175/JPO-D-17-0018.1, https://doi.
org/10.1175/JPO-D-17-0018.1.

Ulam, S., 1979: A Collection of Mathematical Problems. In-
terscience.

van Sebille, E., E. H. England, and G. Froyland, 2012: Ori-
gin, dynamics and evolution of ocean garbage patches from
observed surface drifters. Environ. Res. Lett., 7, 044 040.

Weatherly, G. L., N. Wienders, and A. Romanou, 2005:
Intermediate-Depth Circulation in the Gulf of Mexico Esti-
mated from Direct Measurements, 315–324. American Geo-
physical Union, doi:10.1029/161GM22, URL http://dx.doi.
org/10.1029/161GM22.

https://doi.org/10.1175/JPO-D-17-0140.1
https://doi.org/10.1175/JPO-D-17-0140.1
http://www.sciencedirect.com/science/article/pii/S0377026516300501
http://www.sciencedirect.com/science/article/pii/S0377026516300501
https://doi.org/10.1175/JPO-D-17-0018.1
https://doi.org/10.1175/JPO-D-17-0018.1
http://dx.doi.org/10.1029/161GM22
http://dx.doi.org/10.1029/161GM22

