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Abstract

We review the recently proposed Dirac composite fermion theory of the half-filled

Landau level.

1 INTRODUCTION

The fractional quantum Hall effect (FQHE) was discovered in 1982 [1], only a couple of years

following the discovery of the integer quantum Hall effect (IQHE). Being one of the most

nontrivial problems of condensed matter physics, the FQHE has attracted the attention of

theorists ever since. One of the earliest and most influential works is that by Laughlin [2].

The aim of the current review is to survey recent progress in the understanding of one

particular, but important, aspect of the FQHE: the composite fermion (CF) in the half-filled

Landau level [3]. In particular, we review the arguments leading to the Dirac CF theory [4].

The quantum Hall problem is attractive for theorists partly because of its very simple

starting point: a Hamiltonian describing particles moving on a two-dimensional plane, in a

constant magnetic field, and interacting with each other through a two-body potential,

H =

N
∑

a=1

(pa +A(xa))
2

2m
+
∑

〈a,b〉

V (|xa − xb|). (1)

Here A is the gauge potential corresponding to a constant magnetic field. The two-body

potential V is normally taken to be the Coulomb potential V (r) = e2/r, but many results are

valid for a large class of repulsive interactions. The quantum Hall states are characterized

by many physical properties, including a quantized Hall resistivity, a vanishing longitudinal

resistivity, a bulk energy gap, edge modes, etc. For the purpose of this article, we take the

existence of an energy gap to be the defining property of the quantum Hall states. A very

simplified summary of the experimental situation is as follows: For certain values of the

filling factor, defined as

ν =
ρ

B/2π
, (2)
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where ρ is the two-dimensional electron density, the system is in one of the quantum Hall

states with an energy gap. The values of ν for which there is a gap are either integers, in

which case we have an IQHE, or rational numbers, which correspond to the FQHE.

The existence of a gap for integer ν can be understood on the basis of the approximation

of noninteracting electrons. In a magnetic field B, the energy eigenvalues of the one-particle

Hamiltonian are organized into Landau levels,

En =
B

m

(

n+
1

2

)

. (3)

The degeneracy of each Landau level is B/2π per unit area. At integer ν, states with n < ν

are filled and those with n ≥ ν are left empty. The system then has a gap equal to the

spacing between Landau levels, which is ωc = B/m.

In contrast to the IQHE, the FQHE cannot be understood from the noninteracting limit.

For example, when 0 < ν < 1, the lowest Landau level (LLL; n = 0) is partially filled,

so the noninteracting Hamiltonian has an exponentially large (in the number of electrons)

ground-state degeneracy. The miracle of the FQHE is that for certain rational values of ν,

interactions between electrons lead to a gap.

There are two energy scales in the fractional quantum Hall (FQH) problem. The first

scale is the cyclotron energy ωc = B/m, whereas the second scale is the interaction energy

scale. In the case of the Coulomb interaction, the latter energy scale can be estimated as

the potential energy between two neighboring electrons,

∆ =
e2

r
∼ e2

√
B. (4)

The FQH problem is usually considered in the limit ∆ ≪ ωc. This limit is reached exper-

imentally by taking B → ∞ at fixed ν; theoretically it is also reached by taking m → 0

at fixed B. When ∆ ≪ ωc one can ignore all Landau levels above the lowest one, and the

problem can be reformulated as pertaining to a Hamiltonian which operates only on the

LLL,

H = PLLL

∑

〈a,b〉

V (|xa − xb|), (5)

where PLLL is the projection to the LLL. This extremely simple Hamiltonian, believed to

underlie all the richness of FQH physics, cannot be solved by traditional methods of pertur-

bation theory owing to the lack of a small parameter. In particular, there is only one energy

scale—the Coulomb energy scale ∆. The FQH problem is essentially nonperturbative.

2 FLUX ATTACHMENT

One of the most productive ideas in the FQH physics has been the idea of the CF. Theo-

retically, the notion of the CF itself comes from another concept called flux attachment [5],
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which was applied to the FQHE in a number of groundbreaking works [3,6–8]. Here, I review

the standard textbook field theory of the CF, although later on I argue that it needs some

nontrivial modification to become the correct low-energy effective theory.

In the FQH case, one “attaches” an even number (in the simplest case, two) of magnetic

flux quanta to an electron, transforming it to a new object called the CF. In the field theory

language, one starts from a theory of interacting electrons ψe in (2+1) dimensions in a

background magnetic field

L = iψ†
e(∂t − iA0)ψe −

1

2m
|(∂i − iAi)ψe|2 + . . . (6)

where . . . stand for interaction terms, and derives, following a certain formal procedure, a

new Lagrangian for the CF ψ,

L = iψ†(∂t − iA0 + ia0)ψ − 1

2m
|(∂i − iAi + iai)ψ|2 +

1

2

1

4π
ǫµνλaµ∂νaλ + . . . (7)

The Chern-Simons (CS) term in Eq. (7) encodes the idea of flux attachment. In fact, the

equation of motion obtained by differentiating the action with respect to a0 reads

2ψ†ψ =
b

2π
, b = ∇× a, (8)

which means that the magnetic fluxes of the dynamic gauge field aµ are tied to the location

of the CFs, with two units of fluxes per particle.

There are two features of the field theory (7) (which I call the HLR field theory after

Halperin, Lee & Read, who used it to study the half-filled Landau level [3]) that are rather

trivial but worth listing here for future reference:

• The number of CFs is the same as the number of electrons. It cannot be otherwise if

the CF results from attaching magnetic fluxes to an electron.

• The action contains a Chern-Simons term for aµ. As demonstrated above, this term

encodes in mathematical terms the idea of flux attachment.

In the literature, it is often stressed that transformation from Eq. (6) to Eq. (7) can be

done in an exact way (see, e.g., Ref. [8]). Unfortunately that also means that the theory (7)

cannot be solved exactly. To make any progress at all, one must start with some approxima-

tion scheme, and in every work so far this has been the mean field approximation in which

one replaces the dynamical gauge field aµ by its average value determined from Eq. (8).

Because in the Lagrangian (7) the gauge fields A and a enter through the difference A− a,

and the density of the CFs is the same as the density of the original electrons, the effective

average magnetic field acting on ψ is

Beff = B − 〈b〉 = B − 4πρ. (9)
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Translated to the language of the filling factors,

ν =
ρ

B/2π
and νCF =

ρ

Beff/2π
, (10)

the equation becomes

ν−1
CF = ν−1 − 2. (11)

In particular, the values ν = n
2n+1

map to νCF = n. In this way, we have mapped the FQH

problem for the electrons to the integer quantum Hall (IQH) problem for the CFs, which

gives an explanation for the emergence of an energy gap. Experimentally, one finds quite

robust quantum Hall plateaus at these values of ν, up to n ≈ 10.

Another sequence of quantum Hall plateaus are found at ν = n+1
2n+1

. Now ν > 1
2
so the

effective average magnetic field Beff is negative; i.e., Beff points to the direction opposite to

the direction of the original B. The CFs still form IQH states, with n + 1 filled Landau

levels [νCF = −(n+ 1)]. Together, the two series of FQH plateaus at ν = n
2n+1

and ν = n+1
2n+1

are called the Jain sequences of plateaus.

One of the most spectacular successes of the CF theory is the prediction of the nature

of the ν = 1
2
state (the half-filled Landau level) [3]. At this filling fraction, the average

effective magnetic field is equal 0, and the CF should form a gapless Fermi surface. HLR

theory thus predicts that the low-energy excitation is the fermionic quasiparticle near the

Fermi surface. There is strong experimental evidence that this is indeed the case [9–11]

and that the CF is a real physical object—a quasiparticle near half filling—and not just a

mathematical construct.

Despite its astounding success, the quantum field theory (7) has been criticized on various

grounds. The criticism leveled most often against the theory (7) is the lack of any information

about the projection to the LLL. In particular, the energy gap predicted by the mean-field

picture is Beff/m, which, for generic ν, is of order ωc instead of ∆. To remedy the issue, one

has to assume that the energy gap is determined by an effective mass m∗, postulated to be

parametrically B/∆. In particular, m∗ is assumed to remain finite in the limit m→ 0.

In fact, there are two parts to the energy scale problems. The first part is to derive, from

microscopic calculations, the finite value ofm∗ in the limit m→ 0. This is a difficult problem

and we limit ourselves here by noting a few past attempts to address it [12–14]. However,

if our goal is only to capture the low-energy physics, i.e., physics at energy scales much

smaller than the Fermi energy, then one should simply take the effective mass m∗ as an input

parameter, as in Landau’s Fermi liquid theory. The second problem is to make the low-energy

effective field theory with m∗ consistent with the fundamental symmetries of the original

theory of electrons with a much smaller mass. Here one expects a relationship similar to the

relationship between the effective mass m∗ and the Fermi-liquid parameter F1 in Landau’s

Fermi liquid theory. This program was pursued in the 1990s and lead to the development of

improvements to the HLR theory like the “magnetized modified RPA (MMRPA)” of Simon,

Stern and Halperin. (For a field-theoretic interpretation of the MMRPA, see Ref. [15]). In
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principle, the problem can also be solved by using the Newton-Cartan formalism, developed

to make explicit the role of Galilean symmetry (see, e.g., Refs. [16–19]).

Interestingly, most recent progress in the physics of the half-filled Landau level has arrived

from an attempt to address another problem, historically regarded as less important and

subordinate to the energy scale problem: the lack of particle-hole (PH) symmetry.

3 THE PROBLEM OF PARTICLE–HOLE SYMMETRY

A system of nonrelativistic particles interacting through a two-body interaction has two

discrete symmetries: parity, or spatial reflection (x → x, y → −y), which we denote as P ,

and time reversal, which we call T . In a constant uniform magnetic field both P and T are

broken, but PT is preserved. PT transforms the wave function in the following way

Ψ(xi, yi) → Ψ′(xi, yi) = Ψ∗(xi,−yi). (12)

Interestingly, all wave functions that have been proposed, including the Laughlin [2] and

Moore-Read [20] wave functions, are invariant under PT .

In the LLL limit (∆ ≪ ωc), the projected Hamiltonian (5) has an additional discrete

symmetry: the PH symmetry, first considered in Ref. [21]. To define the PH symmetry, one

chooses a particular basis of LLL one-particle states ψk(x). This basis defines the electron

creation and annihilation operators c†k and ck. The many-body LLL Fock space is obtained by

acting products of creation operators on the empty Landau level |empty〉. PH conjugation,

Θ, is defined as an antilinear operator, which maps an empty Landau level to a full one

Θ : |empty〉 → |full〉 =
M
∏

k=1

c†k|empty〉, (13)

where M is the number of orbitals on the LLL. It also maps a creation operator to an

annihilation operator and vice versa,

Θ : c†k ↔ ck. (14)

One can show that the projected Hamiltonian maps to itself, up to an addition of a

chemical potential term,

Θ : HLLL → HLLL − µ0

∑

k

c†kck, (15)

where µ0 depends on the interaction V . This means that for µ = µ0/2, the Hamiltonian

HLLL − µN maps to itself: At this chemical potential the Hamiltonian is PH symmetric.

Under PH conjugation the filling factor ν transforms as

ν → 1− ν. (16)

In particular ν = 1/2 maps to itself under PH conjugation: The half-filled Landau level is at

the same time half empty. Furthermore, ν = n
2n+1

maps to ν = n+1
2n+1

: the two Jain sequences

of quantum Hall plateaus form pairs that map to each other under PH conjugation: ν = 1/3

and ν = 2/3, ν = 2/5 and ν = 3/5, etc.
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3.1 Status of Particle-Hole Symmetry in the Halperin–Lee–Read

Theory

Let us now ask what are the discrete symmetries of the HLR field theory (7). It is easy

to see that there is only one such symmetry, PT . The Chern-Simons theory does not have

any discrete symmetry which can be associated with PH conjugation. This reflects on the

asymmetry in the treatment of quantum Hall plateaus: the ν = n
2n+1

is described by an

integer quantum Hall state where the CFs fill n Landau levels, while its PH conjugate

ν = n+1
2n+1

by n+ 1 filled Landau levels.

The Fermi liquid state with ν = 1/2 presents a particularly baffling problem for PH

symmetry. Näıvely, one expects PH conjugation to map a filled state to an empty state and

vice versa. This would mean that the Fermi disk of the CFs, describing the Fermi liquid

state, maps to a hollow disk in momentum states: The states with momentum |k| > kF are

filled, and those with |k| < kF are empty. This is obviously silly.

What makes the PH symmetry problem seem hard is that PH symmetry is not the

symmetry of nonrelativistic electrons in a magnetic field [the theory (1)]. It only emerges as

the symmetry after taking the lowest Landau level limit [theory (5)]. The PH symmetry of

the LLL is not realized as a local operation acting on fields.

Per se, the different treatments of the two Jain’s sequences still do not imply that the

HLR theory is PH asymmetric. It is logically possible that, despite the appearance to the

contrary, the HLR theory would give physical results consistent with PH symmetry. This

nontrivial theoretical possibility has been pursued recently. Wang et al. [22] computed the

locations of the magnetoroton minima in the Jain states with ν = n
2n+1

and ν = n+1
2n+1

at

large n using the HLR theory and found that, surprisingly, these locations are symmetric

to leading and next-to-leading orders in 1/n (and coincide with the values calculated [23] in

the Dirac CF theory described later in this review).

Historically, one of the earliest puzzles posed by PH symmetry on the HLR theory has

been recognized in 1997 by Kivelson et al. [24]. When disorders are statistically PH sym-

metric, PH symmetry implies that at half filling σxy is exactly 1
2
(e2/h). In the random

phase approximations of the HLR theory, the resistivity tensor of the electrons is directly

related to the resistivity of the CFs: ρxy = ρCF
xy + 2h/e2. The CFs move in an average zero

magnetic field, hence one can set ρCF
xy = 0, which implies that ρxy = 2(h/e2). These two

results disagree with each other when the longitudinal conductivity σxx (or equivalently, the

longitudinal resistivity ρxx) is nonzero.

Here too, however, the more recent analysis by Wang et al. finds that the calculation

of the Hall conductivity of the CFs may be more subtle than previously thought [22]. The

reason is that one can not treat the density of the CFs as a constant in the presence of

disorder potential. Detailed calculations by Wang et al. show that, in certain regimes, the

CFs have Hall conductivity σCF
xy = −1

2
e2/h, exactly the value required so that the Hall

conductivity of the electrons is 1
2
e2/h as dictated by PH symmetry.
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However, it seems that that the behavior of the quantities considered in Ref. [22] are

exceptions rather than the rule. In fact, many other physical observables do not behave in

such a fortuitous way. For example, the susceptibility of the two Jain states, ν = n
2n+1

and

ν = n+1
2n+1

, computed from the MMRPA, differ from each other by a factor of (n+1)2/n2 [25].

Another example of the violation of PH symmetry in the HLR theory was found in Ref. [15].

In that study, it was shown that PH symmetry strictly determines the first q2 correction to

the Hall conductivity in the regime ω ≫ vF q,

σxy(ω, q) =
1

2

[

1− 1

4
(qℓB)

2

]

(17)

but the MMRPA of the HLR theory fails to get the correct value of −1
4
for the q2 correction;

instead, one would get 0 following the prescription of MMRPA. The discrepancy was traced

to the incorrect value of orbital spin assigned to the CF by the flux attachment procedure.

One must keep in mind, however, that the calculations in the HLR theory have been per-

formed within a random-phase approximation. The question about the effect of gauge-field

fluctuations need to be further investigated [26].

3.2 Spontaneous Breaking of Particle-Hole Symmetry?

Another logical possibility is that the Fermi-liquid ground state of the half-filled Landau

level spontaneously breaks PH symmetry. This possibility was investigated by Barkeshli et

al. [27]. If that is the case, there are two states at ν = 1/2: One corresponds to a Fermi

surface of “composite particles” and the other to that of “composite holes”; the two states

are degenerate with each other in the lowest-Landau level limit. In fact, it is believed that

on the second Landau level, the ground state is either a Pfaffian [20] or an anti-Pfaffian

state [28, 29], which are PH conjugates of each other but are distinct from each other,

breaking PH symmetry spontaneously.

However, there is no numerical evidence for this kind of spontaneous PH symmetry

breaking in the Fermi liquid state. In fact, the experimental result of Ref. [30] indicates, at

least näıvely, that the ν = 1/2 Fermi liquid is equally well interpreted as being made out

of composite particles or composite holes. There is now strong numerical evidence that the

ν = 1/2 state is PH symmetric [31].

4 DIRAC COMPOSITE FERMION

Having argued against a hidden PH symmetry of the HLR theory and a spontaneous breaking

of PH symmetry, we now consider the third, most nontrivial possibility: The low-energy

physics of the half-filled Landau level is described by a theory different from the HLR theory.

The theory must satisfy PH symmetry but also preserve all successful phenomenological

predictions of the HLR theory. The Dirac composite fermion theory, proposed in Ref. [4],
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satisfies these requirements. The essence of the theory is that the CF does not transform

into a composite hole under PH symmetry, but remains a composite particle. Only the

momentum of the CF flips sign under PH conjugation,

Θ : k → −k. (18)

Implicitly, we assume that the Fermi disk of the CFs transform into itself (a filled disk, not

a hollow disk).

Equation (18) is usually associated with time reversal. In the theory of Dirac CFs, the

CF is described by a two-component spinor field ψ, which transforms under PH conjugation

following the formula that is usually identified with time reversal,

ψ → iσ2ψ. (19)

There are several arguments one can put forward to argue that the CF has to be a massless

Dirac particle. One hint comes from the CF interpretation of the Jain-sequence states. Recall

that one problem with the standard CF picture is that the ν = n
2n+1

corresponds to the

composite fermion filling factor νCF = n, whereas ν = n+1
2n+1

maps to νCF = n + 1 (ignoring

the sign). By constrast, these two states are PH-conjugate pairs and should be described

by the same filling factor of the CF in any PH-symmetric theory. The most näıve way to

reconcile these different pictures is to replace the filling factors νCF = n and νCF = n + 1

with the average value νCF = n + 1
2
. But now we have a problem: We want to map the

FQHE in the Jain sequences to the IQHE of the CFs, but is it possible to have an IQH state

with half-integer filling factor? Indeed, it is, if the composite fermion is a massless Dirac

fermion. Half-integer quantization of the Hall conductivity is a characteristic feature of the

Dirac fermion, confirmed in experiments with graphene [32, 33].

The second argument in favor of the Dirac nature of the CF relies on a property of the

square of the PH conjugation operator Θ2 [31, 34]. It is intuitively clear that applying PH

conjugation twice maps a given state to itself, but there is a nontrivial factor of ±1 that one

gains by doing so. Consider a generic state on the LLL with Ne electrons,

|ψ〉 =
Ne
∏

i=1

c†ki |empty〉. (20)

Then under PH conjugation

Θ : |ψ〉 →
Ne
∏

i=1

cki|full〉 =
Ne
∏

i=1

cki

M
∏

j=1

c†j|empty〉. (21)

Applying Θ again one finds

Θ2 : |ψ〉 →
Ne
∏

i=1

c†ki

M
∏

j=1

cj |full〉 =
Ne
∏

i=1

c†ki

M
∏

j=1

cj

M
∏

k=1

c†k|empty〉 = (−1)M(M−1)/2|ψ〉. (22)
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This relationship is quite easy to interpret when M is an even number: M = 2NCF. Then

Θ2 : |ψ〉 → (−1)NCF |ψ〉. (23)

This formula suggests the following interpretation: NCF is the number of CFs of the state

|ψ〉, and each CF is associated with a factor of −1 under Θ2. This −1 factor is natural for

Dirac fermion.

In order to have a correct Θ2, we have to identify the number of CFs with half the number

of orbitals on the LLL: NCF = M/2, which is independent of the number of electrons Ne.

This contradicts the intuitive picture of flux attachment, in which the CF is obtained by

attaching two units of flux quanta to an electron. However, that is expected: In a theory

that treats particles and holes in a symmetric way, the number of CFs has to be in general

different from the number of electrons, otherwise it would have to be equal to the number

of holes as well.

4.1 The Field Theory of the Dirac Composite Fermion

The minimal version of the theory of the Dirac CF has the following Lagrangian,

L = iψ†[∂t − ia0 − vFσ
i(∂i − iai)]ψ − 1

4π
ǫµνλAµ∂νaλ +

1

8π
ǫµνλAµ∂νAλ, (24)

where aµ is a dynamical gauge field. The kinetic term in Eq. (24) contains, instead of the

speed of light, a Fermi velocity vF, determined by microscopic physics. The Lagrangian (24)

is similar to (7) after the replacement a → a + A, with two differences. One is the Dirac

nature of the CF ψ. The other is the absence of the CS term ada in the Lagrangian: Such

a term (as also the mass term for ψ), if present, would disallow any discrete symmetry that

could be identified with PH symmetry. Interestingly, each of such modifications to the HLR

theory would shift the filling factors of the Jain-sequence plateaus, but together the shifts

cancel each other, and the Jain sequences remain unchanged (see below).

Differentiating (24) with respect to A0, one obtains the electron density

ρ =
δS

δA0
=
B − b

4π
. (25)

On the other hand, the equation of motion obtained by differentiating the action with respect

to a0 is

ψ̄γ0ψ =
B

4π
, (26)

i.e., the CF density is set by the external magnetic field. Thus, the role of the magnetic field

and the density is flipped when one goes from the original electrons to the CFs. This is the

salient feature of particle-vortex duality, well known for bosons [35, 36] but not, until this

example, for fermions.
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If one defines the filling factors of the electron and the CF as

ν =
2πρ

B
and νCF =

2πρCF

b
, (27)

respectively, then from Eqs. (25) and (26), we find that they are related by

νCF = − 1

4(ν − 1
2
)
. (28)

In particular, ν = n
2n+1

maps to νCF = n+ 1
2
, which is the filling factor of an integer quantum

Hall state of a Dirac fermion. The PH conjugated state ν = n+1
2n+1

maps to νCF = −(n + 1
2
),

which is the same filling factor, but in a magnetic field of the opposite sign, manifesting the

PH symmetry.

It should be emphasized that the Dirac nature of the CF does not mean that there is a

Dirac cone for the CF. The tip of the cone is at k = 0, whereas the CF, as a low-energy mode,

exists only near the Fermi surface. The Dirac nature of the CF, strictly speaking, only means

that the fermionic quasiparticle has a Berry phase of π around the Fermi surface. It is easy

to show that such a Berry phase follows from Eqs. (18) and (23). The quasiparticle Berry

phase has been identified as a important ingredient of Fermi liquids [37], but the possibility

of such a phase for the CF in FQHE has been overlooked in the literature until very recently.

4.2 Galilean Invariance and Electric Dipole Moment

It has to be emphasized that the energy scale problem still exists, under a different guise, in

the Dirac CF theory. This problem now appears as the problem of the origin of the Fermi

velocity of the CF. The scale of the Fermi velocity should be set by the interactions, but, as

before, there is no simple way to calculate it from the microscopic theory.

If one takes the Fermi velocity of the CF as an input parameter, one still has to make sure

that the theory of the CF exhibits the symmetry of the original theory, in particular, the

Galilean invariance. It is crucial that Galilean invariance is implemented into the effective

theory; important properties, like the q4 behavior of the susceptibility at small q, follow from

it. However, the Dirac action is not invariant under Galilean transformation,

ψ(t,x) → ψ′(t,x) = ψ(t,x− vt). (29)

To make the Dirac action Galilean invariant, one needs to add an additional term to the

effective Lagrangian, replacing

iψ†∂tψ → iψ†∂tψ +
i

2

ǫijEj

B
(ψ†Djψ −Djψ

†ψ). (30)

Because the electric field transforms under Galilean transformation as Ei → Ei − ǫijvjB,

the action is now Galilean invariant. The new term has a very intuitive physical meaning:
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It implies that the CF has an electric dipole moment with respect to the external electro-

magnetic field, with the dipole moment perpendicular to the momentum: d = −ℓ2Bp × ẑ,

realizing an old idea by Read [38, 39].

The dipole picture has been revived recently by Wang & Senthil in the context of the

Dirac CF [40]. They suggest that the dipole moment provides a way to understand the origin

of the Berry phase of the CF around the Fermi surface. In this picture, the CF is a pair

made up of an electron and a correlation hole that form an electric dipole, with the value of

the dipole moment perpendicular to the direction of the momentum. When a CF is dragged

around the Fermi surface, the dipole rotates and the fermion acquires a Berry phase because

of the external magnetic field. A simple calculation shows that the Berry phase is equal to π

when the CF makes a circle of radius exactly equal to the Fermi momentum in momentum

space.

The simplicity of this explanation of the Berry phase may be deceptive, however. If one

takes the above dipole picture literally, one finds not only a global Berry phase but also a

local Berry curvature that is uniform in momentum space. A massless Dirac fermion, in

contrast, has only a global Berry phase but no local Berry curvature. Thus, the connection

between the Berry phase and the dipole moment may not be straightforward. Within the

low-energy effective theory embodied by Eqs. (24) and (30), the Berry phase and the dipole

moment appear as separate ingredients.

5 CONSEQUENCES OF THE DIRAC COMPOSITE FERMION

The Dirac CF theory has distinct consequences, which are, in principle, verifiable in experi-

ments and numerical simulations. By construction, it leads to PH-symmetric results where

the HLR theory violates PH symmetry. For example, the susceptibilities of the ν = n
2n+1

and ν = n+1
2n+1

states are now the same [25].

It is numerical simulations [31] that provide the currently most nontrivial test of the

Dirac nature of the CF. The numerical finding is the disappearance, attributable to particle-

hole symmetry, of the leading 2kF singularity in certain correlation functions. In a Fermi

liquid, typical two-point correlation functions exhibit nonanaliticity at twice the Fermi mo-

mentum (2kF singularities) due to intermediate states involving a particle and a hole near

diametrically opposite points on the Fermi surface. In the case of the (2+1)d massless Dirac

fermion, it is well known that two-point correlation functions of time-reversal invariant op-

erators are free from the leading 2kF singularity in a generic two-point correlator. This is

caused by the quasiparticle Berry phase π around the Fermi surface that forbids the cre-

ation, by a time-reversal invariant operator, of a PH pair where the particle and the hole

carry opposite momenta. In the half-filled Landau level, the role of time reversal is played

by PH symmetry; therefore to test the Berry phase one should look for the absence of the

leading 2kF singularity in correlation functions of a PH symmetric operator. The electron

density operator ρ = ψ†
eψe is not PH symmetric (the deviation of the density from the mean
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density, δρ = ρ − ρ0, flips sign under PH conjugation), but one can easily write down more

complicated operators that are PH symmetric, for example, δρ∇2ρ. In Ref. [31] the leading

2kF singularity in the correlation function of such an operator was shown to disappear when

PH symmetry is made exact (and to reappear when PH symmetry is violated), confirming

the Dirac nature of the CF.

There are also predictions about transport that are, strictly speaking, consequences of

PH symmetry. If one introduces the conductivities σxx and σxy, and the thermoelectric

coefficients αxx and αxy, so that

j = σxxE+ σxyE× ẑ+ αxx∇T + αxy∇T × ẑ, (31)

then at exact half filling, PH symmetry implies [4, 41]

σxy =
1

2

e2

h
and αxx = 0. (32)

A manifestly PH symmetric theory like the Dirac composite fermion theory reproduces these

results automatically [41].

In real samples one expects that PH symmetry is not exact due to the mixing of higher

Landau levels. When the breaking of PH symmetry is small, one can expect its effect to

be parametrized by a single number: the Berry phase that the CF acquires along the Fermi

circle [41].

5.1 The PH-Pfaffian State

One consequence of the Dirac CF theory is the existence of a new gapped state at half filling

that is PH symmetric. When the CFs undergo Bardeen-Cooper-Schrieffer (BCS) pairing, the

resulting state is a gapped quantum Hall state. In the traditional HLR theory, the pairing

between fermions has to be in a channel with odd orbital moment to be consistent with

Fermi statistics. The Dirac nature of the composite fermion, in contrast, requires the BCS

gap to carry an even orbital moment. The simplest pairing channel is [4]

〈εαβψαψβ〉, (33)

and does not break either PT or PH symmetry. The state is the quantum Hall analog of

the so-called T-Pfaffian state, a proposed fully gapped state on the interacting surface of

topological insulators [42–45]. The PH-Pfaffian state is distinct from the Pfaffian state and

the anti-Pfaffian state, which are not PH symmetric and are the PH conjugates of each

others. In particular, the shift of the PH-Pfaffian state is equal to 1, whereas the shift of the

Pfaffian is 3 and the anti-Pfaffian state carries shift of −1.

Within the Dirac composite fermion theory, the Pfaffian and anti-Pfaffian states involve

pairing with orbital moments ±2, i.e., with order parameters 〈εαβψα(∂x ± i∂y)
2ψβ〉. The

Dirac CF thus provides a symmetric treatment of the Pfaffian and anti-Pfaffian states, with

12



the PH-Pfaffian state situating exactly at the midpoint in terms of the orbital moment of

the Cooper pair.

In the HLR theory, the orbital moment of the Cooper pair is shifted by one unit compared

to the Dirac theory. The Pfaffian state appears as a px + ipy pairing of the CFs. This

interpretation of the Pfaffian state has been known for a long time. The PH-Pfaffian state

also corresponds to p-wave pairing, but here the orbital moment is of the opposite sign, i.e.,

px− ipy pairing. Finally, to get the anti-Pfaffian state from the usual HLR theory, one would

pair the CFs in the ℓ = −3 orbital moment channel. The HLR theory does not explain why

the ℓ = 1 and ℓ = −3 paired states have the same energy.

At this moment, there is no simple particle-hole symmetric wavefunction for the PH-

Pfaffian state (except ones that involve explicit symmetrization of two PH conjugate wave-

functions). However, there seem to exist wavefunctions that are quite close to being PH

symmetric. One simple proposed wave function is [46] (omitting the Gaussian factor)

Ψ(z1, · · · , zn) = Pf

(

1

∂zi − ∂zj

)

∏

〈ij〉

(∂zi − ∂zj )
∏

〈ij〉

(zi − zj)
3. (34)

This wavefunction has a large overlap with its PH conjugate, at least for relatively small

number of particles.

It is not at all clear if the PH-Pfaffian state can be realized with any two-body interactions.

Numerical simulations either show a Fermi liquid state or a PH-breaking gapped state [31].

On the other hand, Ref. [47] argue that the PH-Pfaffian state may be stabilized by the

mixing with higher Landau levels and impurities (note that the topological order of the PH-

Pfaffian does not require PH symmetry to exist) and it may present a viable alternative for

the ν = 5/2 plateau.

6 UNDERSTANDING THE ORIGIN OF THE DIRAC

COMPOSITE FERMION

As described above, much theoretical and numerical evidence implies that the quasiparticle

of the ν = 1/2 state has to be a Dirac CF. This means, in particular, that the old, intuitive

picture of a CF as an electron with two attached flux quanta (or rather, an electron as a CF

with two attached flux quanta) cannot be literally correct.

It is perhaps fair to say that at this moment there is no completely satisfactory derivation

of the Dirac CF theory from the microscopic theory of fermions on the LLL. An attempt to

embed the Girvin–MacDonald–Platzman algebra into that of Dirac CF was made in Ref. [48].

The role of the gauge field, however, is not clear in this mapping.

Most other attempts to derive the theory of Dirac CFs are actually aimed at deriving a

zero magnetic field version: the duality between the free Dirac fermion, defined by the action

LA = iΨ̄γµ(∂µ − iAµ)Ψ, (35)
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and a theory of a fermion coupled to an gauge field which we call parity-invariant QED3, or

QED3 in short,

LB = iψ̄γµ(∂µ − iaµ)ψ − 1

4π
ǫµνλAµ∂νaλ. (36)

(A more accurate version of LB will be given later.) It is usually claimed that the duality

between the two theories (35) and (36) implies the CF theory of the half-filled Landau

level. The argument runs as follows: A finite magnetic field in free Dirac fermion theory

corresponds to a finite density in QED3, and at finite density, the fermions of QED3 form a

Fermi liquid. This line of argument, however, hides an important subtle point. For a free

fermion in an external magnetic field, the ground state is exponentially degenerate. If the

conjectured duality is valid, then QED3 must have finite entropy at finite density—a very

unusual situation in quantum field theory indeed, which does not have a direct relationship

with the quantum Hall state at ν = 1/2. What is implicitly assumed here is that small

interactions in theory A make the ground state in theory B unique and Fermi-liquid like.

In particular, the Fermi velocity of the CF is determined by terms not present in the basic

Lagrangians (35) and (36). One recognizes here the energy scale problem in a different guise.

Another subtlety of the duality is the stability of the theory (36). The question is related

to the question about the fate of scale invariance in a theory of Nf flavors of fermions coupled

to a gauge field. At large Nf the theory is conformal; however, it is not clear what is the

situation at small Nf . Approaches based on the gap equation (unreliable because they rely

on uncontrolled truncations of the Schwinger–Dyson equation) give rather high values of

N crit
f ; however a lattice simulation [49] implies that the theory remains conformal down to

Nf = 2.

One promising approach to derive the duality is the “wire construction” by Alicea,

Mross & Motrunich [50]. Here one discretizes the Dirac fermion theory into a set of (1+1)-

dimensional fermions and then applies the well-developed machinery of bosonization to these

theories. One then applies a linear nonlocal transformations on the bosons and refermionizes

the resulting theory. The result is a discretized version of the CF coupled to a gauge field.

This approach provides the most explicit mapping of fields between the two sides of the du-

ality. The existence of the continuum limit is assumed, and the approach breaks rotational

invariance and continuous translational invariance.

In the rest of the section we will describe a promising approach pioneered in recent

works [51, 52]. This approach is particularly interesting since it places the quantum Hall

problem in the context of a large “web of dualities” between different (2+1)-dimensional

gauge theories.

The duality between free Dirac fermion and parity-invariant QED3 is similar to the more

familiar duality between the a complex scalar field theory near the Wilson–Fisher fixed point

(Wilson–Fisher scalar) and that of a scalar field coupled to a U(1) gauge field near the phase

transition between the Coulomb phase and the Higgs phase. One of the most important

recent insights has been the understanding that the two dualities are consequences of a

perhaps more elementary, seed duality. The latter duality is a relativistic version of flux
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attachment.

In this section, the following shortcut notation is used: ada ≡ ǫµνλaµ∂νaλ, Ada ≡
ǫµνλAµ∂νaλ. Moreover, capital letters (A) refer to background gauge fields, lower-case letters

(a, b, etc.) refer to dynamical gauge fields. The seed duality is between a relativistic bosonic

theory coupled to a CS gauge field a, and a relativistic fermionic theory,

L(φ, a) + 1

4π
ada+

1

2π
Ada⇔ L(ψ,A)− 1

2

1

4π
AdA. (37)

Here L(φ, a) includes all terms consistent with symmetry, including the mass term m2|φ|2
whose coefficient needs to be tuned to a critical point, and a |φ|4 term whose coefficient is

assumed to flow, in the infrared, to a Wilson-Fisher-like fixed point. On the right-hand side

is the theory L(ψ,A), which involves a two-component fermion coupled to the external field

A. Without the CS term AdA, the right-hand side is parity and time-reversal invariant when

the mass of the fermion is zero. The statement of the duality is that if one takes the path

integral of the exponent of the actions on both side over all fields except the background

fields (i.e., φ and a on the left-hand side and ψ on the right-hand side), one gets the same

functional of the external field A.

The duality has not been proven but can be checked in the massive limits. In particular

• When the φ field is massive (with positive m2), one can integrate out φ to get nothing.

The field a can now be integrated out, and one gets, on the bosonic side, − 1
4π
AdA.

On the fermionic side, this corresponds to a positive sign of the mass of the fermion.

Integrate out the fermion, one also gets − 1
4π
AdA.

• When φ condenses (negative m2), a becomes massive. Integrating out a now gives

nothing. On the fermionic side, the fermion mass is negative. Integrating out the

fermion, then one cancels out the AdA CS term.

From the seed duality whole web of different dualities can be derived in an almost me-

chanical manner. We present here a few illustrative cases. If one gauges the gauge field A,

replacing A → b, and added a term 1
2π
Adb, with A being a new background field and b a

field to be integrated over, one gets the following duality:

L(φ, a) + 1

4π
ada+

1

2π
bda+

1

2π
Adb⇔ L(ψ, b)− 1

2

1

4π
bdb+

1

2π
Adb. (38)

On the left-hand side, one can integrate over b and then a to obtain a new duality:

L(φ,A) + 1

4π
AdA⇔ L(ψ, a)− 1

2

1

4π
ada+

1

2π
Ada. (39)

This can be interpreted as the statement that a fermion with attached flux is a boson. Note

that the right-hand side is gauge invariant: the CS term with half-integer coefficient can be

thought of as coming from the Pauli–Villars regularization of L(ψ, a) when the Pauli–Villars

mass goes to infinity.
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The bosonic particle-vortex duality can now be derived from the boson-fermion dualities

by a series of formal manipulations. We start from the duality (39), move the AdA term

from the left-hand side to the right-hand side, and promote A to a dynamical gauge field as

done before. We find

L(φ, b) + 1

2π
Adb⇔ L(ψ, a)− 1

2

1

4π
ada +

1

2π
bda− 1

4π
bdb+

1

2π
Adb. (40)

The integral over b on the right-hand side is a Gaussian integral, with the saddle point at

b = a+ A. We find after the integration

L(φ, b) + 1

2π
Adb⇔ L(ψ, a) + 1

2

1

4π
ada +

1

2π
Ada+

1

4π
AdA. (41)

Using the time-reversed version Eq. (39) and applying charge conjugation, we find

L(φ, a) + 1

2π
Ada⇔ L(φ̃, A), (42)

which is the well known bosonic particle-vortex duality [35,36]. Although the duality is well

known, the success in deriving it gives one some confidence of the correctness of the original

seed duality.

A similar set of manipulations lead to the fermionic particle-vortex duality, we start from

the duality (39), moving the AdA term to the right-hand side,

L(Φ, A) ⇔ L(ψ, a)− 1

2

1

4π
ada+

1

2π
Ada− 1

4π
AdA. (43)

Now we gauge A on both sides (A → b), but add to the action − 1
4π
bdb + 1

2π
Adb before

integrating over b,

L(φ, b)− 1

4π
bdb+

1

2π
Adb⇔ L(ψ, a)− 1

2

1

4π
ada+

1

2π
bda− 2

4π
bdb+

1

2π
Adb. (44)

Using the time-reversed version of Eq. (37) one can transform the left-hand side to a fermionic

theory. After moving the terms AdA between sides, one finds at the end

L(ψ̃, A) ⇔ L(ψ, a)− 1

2

1

4π
ada+

1

2π
bda− 2

4π
bdb+

1

2π
Adb− 1

2

1

4π
AdA. (45)

This is more accurate version of the fermionic particle-vortex duality that would underlie

the CF picture of the half-flled Landau level. The previous, näıve version of the duality is

obtained by trying to integrate over a. The saddle point equation for this equation is

db− 2da+ dA = 0, (46)

and if one sets a = (b + A)/2 (which in general violates the quantization condition) one

obtains the fermionic duality mentioned above. The fact that the right-hand side of Eq. (45)

is a time-reversal symmetric theory is not obvious, but can be demonstrated [52].

A whole web of dualities can be derived from the basic boson–fermion duality in a manner

similar to the one we have used above. A full account of these duality is beyond the scope of

this review. Some remarkable insights obtained in this direction include a self-dual theory

of Ref. [53] and various descriptions of a possible SO(5) quantum critical point [54].
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7 CONCLUSION

We have presented arguments in favor of the Dirac nature of the CF. The Dirac CF provides

a very simple solution to a number of puzzles that have been plaguing the field theory of

the CF for a long time. Regarded as a low-energy effective theory, the Dirac CF theory,

modified to include the electric dipole moment of the CF, provides a description consistent

with low-energy constraints.

We have also reviewed various physical consequences of the Dirac CF theory. While most

features of the HLR theory is preserved by the Dirac CF theory, the latter leads to distinct

physical consequences, which are only started to be explored experimentally [55].
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