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Abstract

We construct new solutions of ten-dimensional supergravity with sixteen
supercharges which describe the backreaction of Dp-branes with spheri-
cal worldvolume. These solutions are holographically dual to the (p + 1)-
dimensional maximally supersymmetric Yang-Mills theory on Sp+1. The
finite size of the sphere provides an IR cut-off for the gauge theory which is
manifested in the supergravity solution as a smooth cap-off of the geometry.
In the UV the size of the sphere plays no role and the backgrounds asymp-
tote to the well-known supergravity solutions that describe the near-horizon
limit of flat Dp-branes. We compute the on-shell action of our spherical
brane solutions and show that it is in agreement with recent supersymmetric
localization results for the free energy of maximal SYM theory on Sp+1.

Dedicated to the memory of Joe Polchinski.
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1 Introduction

Brane solutions in supergravity have offered multiple important insights into
the structure of string theory, supergravity, and holography. They were first
constructed as extremal black branes in ten- and eleven-dimensional supergravity
which preserve half of the maximal supersymmetry [1]. An important insight
came from the realization that they should be thought of as sourced by the D-
and M-branes of string and M-theory [2], based on the earlier work [3, 4]. The
dichotomy between the gauge theory living on the worldvolume of the D-branes
and their backreacted p-brane solutions ultimately led to the development of the
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gauge/gravity duality [5–7] and to important insights into black hole physics in
string theory [8].

In the standard treatment of Dp-brane supergravity solutions the world-volume
of the brane is (p + 1)-dimensional flat space, R1,p. For general values of p the
near-horizon limit of the supergravity background exhibits a singularity where the
running dilaton diverges. This bodes well for the holographic interpretation of these
backgrounds as dual to (p+ 1)-dimensional maximally supersymmetric Yang-Mills
(SYM) theory on R1,p. For general values of p this theory is not conformal and it is
expected that the weakly curved region of the supergravity solution is dual to the
regime of strong gauge coupling while for small values of the running coupling the
supergravity description is not valid and the background develops a singularity [9].

Given the importance of flat Dp-branes and their supergravity description it is
natural to explore the more general situation when the worldvolume of the brane is
curved. Since supersymmetry offers a great deal of calculational control which often
elucidates the underlying physics, one is led to look for curved supersymmetric
Dp-branes. Indeed, this question was addressed in [10] where Dp-branes with
worldvolumes of the form R1,m×Mq, with m+ q = p andMq a general Euclidean
manifold, were studied. To preserve supersymmetry the worldvolume theory on
the brane is partially topologicallly twisted onMq [11]. This setup has a beautiful
extension into the arena of holography as emphasized in [12]. However it is well-
known that the topological twist is not the only way by which a supersymmetric
gauged theory can be placed on a curved manifold, see for example [13–16]. A
particularly simple example of a curved manifold on which a SYM theory can be
placed in a supersymmetric way is offered by the sphere equipped with an Einstein
metric [13]. Thus it is natural to ask whether this gauge theory construction
admits a realization in string theory on the world-volume of spherical Dp-branes
and how to construct the supergravity solutions describing the backreaction of
these branes. The goal of this work is to address this question from the point of
view of supergravity and holography.

Our approach to construct the supergravity solutions describing spherical
Dp-branes is informed by the knowledge of the Lagrangian of the maximally
supersymmetric Yang-Mills theory on Sp+1 for p ≤ 6 [13, 17]. For general values of
p 6= 3 the maximal SYM theory is not conformal and coupling it to the curvature
of the sphere while preserving sixteen supercharges necessitates certain couplings
in the Lagrangian. These couplings in turn break the R-symmetry of the SYM
theory1 from SO(1, 8 − p) to SO(1, 2) × SO(6 − p). It is natural to assume that
the world-volume theory for spherical Dp-branes at low energies is the same as
this maximal SYM on Sp+1. The symmetry breaking pattern combined with the
presence of sixteen supercharges then leads to a very restrictive ansatz for the type
II supergravity backgrounds describing the spherical branes. Nevertheless it is still
difficult to solve the supergravity BPS equations and find the explicit solutions
directly in ten dimensions. We circumvent this impasse by employing the well-

1The R-symmetry group is non-compact due the fact that the SYM theory is defined in
Euclidean signature.
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known technique of reducing the ten-dimensional supergravity theory to an effective
gauged supergravity in p+ 2 dimensions. The spherical brane solutions of interest
are then found as supersymmetric domain walls in this gauged supergravity with
non-trivial profiles for the metric as well as three scalar fields.2 These scalar fields
are the supergravity manifestation of the running gauge coupling of SYM theory
and the couplings in the Lagrangian on Sp+1 that need to be turned on to preserve
supersymmetry. Working with this p+ 2-dimensional gauged supergravity we are
able to construct explicitly the supersymmetric spherical domain wall solutions of
interest and then use standard uplift formulae from the literature to convert them
to solutions of type II supergravity.

Our spherical brane solutions exhibit some common features which are in
harmony with the physics of the SYM theory. In the IR region of the geometry the
solution is regular and the radial coordinate combines with the metric on Sp+1 to
produce a smooth cap-off that locally looks like Rp+2. This behavior reflects the fact
that in the dual SYM theory the length scale associated with the sphere provides
and IR cut-off for the dynamics and one cannot probe energies smaller than this
scale. This type of smooth cap-off of supergravity solutions dual to non-conformal
gauge theories on a sphere is a familiar feature from recent holographic studies
of mass deformations of three-dimensional ABJM, four-dimensional N = 4, and
five-dimensional D4-D8 SCFTs [18–22]. In the UV region of the spherical brane
solutions the background is the same as the near-horizon limit of the usual flat
Dp-brane backgrounds [1], albeit with Euclidean worldvolume. This behavior is
also in line with the dual gauge theory where at high energies the radius of the
sphere should not affect the dynamics and one expects to recover the physics of
SYM theory in flat space.

Part of the motivation for constructing the supergravity solutions describing
spherical Dp-branes is to be able to make contact with recent results on supersym-
metric localization for maximal SYM on Sp+1 [17, 23]. The free energy, i.e. the
logarithm of the path integral, of the SU(N) SYM theory can be computed in the
large N limit by taking a continuous approximation of the matrix model arising
from the localization calculation. It was found in [23] that this large N free energy
scales as

F ∼ N2λ
p−3
5−p

eff , (1.1)

where λeff(E) = g2
YMNE

p−3 is the effective ’t Hooft coupling of the gauge theory
at energy scale E. Given our explicit supergravity solutions describing spherical
branes it is tempting to compute this free energy holographically and compare
with the supersymmetric localization result. This calculation is somewhat subtle
due to the fact that the solutions of interest are not asymptotically AdS and thus
one cannot rely on the standard holographic dictionary. Nevertheless it is possible
to use the results in [24–26] to evaluate the on-shell action of the spherical brane
solutions and reproduce the scaling of the free energy with N and λeff in (1.1).

The spherical Dp-brane solutions can also be interpreted from a different vantage
point. It is standard in the context of non-conformal holography to encounter

2For p = 6 there are only two scalar fields needed in the eight-dimensional supergravity theory.

4



supergravity solutions that exhibit IR singularities, see for example [9, 25,27–30].
Whenever these singularities are physically acceptable they are interpreted in the
dual field theory as arising from a free or gapped phase of the IR dynamics [29]. The
singularity is usually remedied by replacing the singular background by a black hole
solution with the same asymptotics and a regular horizon. In the dual gauge theory
this corresponds to turning on finite temperature, which in turn introduces a finite
IR cut-off in the gauge theory. In the context of the flat Dp-brane solutions this is
discussed in some detail in [9]. Our spherical brane solutions provide an alternative
way to excise the singularity of flat Dp-brane supergravity backgrounds. Due to the
finite length scale introduced by the sphere one finds a smooth cap-off of the metric
instead of a singularity in the IR region of the geometry. We interpret this as a
gravitational manifestation of the the IR cut-off for the gauge theory on Sp+1. The
difference with the more common finite temperature cut-off is that spherical branes
preserve sixteen supercharges which may provide better calculational control in
some circumstances. We believe that this is the unique IR cut-off compatible with
the maximal number of supercharges for a non-conformal SYM theory.

We start in the next section with a review of maximally SYM theory on Sp+1.
We continue in Section 3 with a review of the well-known flat Dp-brane solutions.
In Section 4 we present the general spherical Dp-brane solutions in a unified manner
and summarize how we arrive at them by uplifting supersymmetric domain wall
solutions of lower-dimensional gauged supergravity. In Section 5 we discuss the
physical interpretation of these spherical brane solutions for 1 ≤ p ≤ 6. Our
supergravity backgrounds have a clear holographic interpretation which we discuss
in Section 6. Section 7 is devoted to our conclusions and a short discussion. In the
three appendices we present our conventions, review the known flat Euclidean D-
brane solutions of type II supergravity, and summarize the various lower-dimensional
gauged supergravity theories used to construct the spherical brane solutions.

2 SYM theory on a sphere

An important guiding principle for constructing supersymmetric spherical Dp-brane
solutions is the fact that the low-energy dynamics on the worldvolume of D-branes
in flat space is given by a maximally supersymmetric Yang-Mills theory. Thus it is
natural to expect that for spherical Dp-branes the low-energy physics is the same
as that of maximal SYM theory on Sp+1. Since for general values of p, maximal
SYM is not conformal it is non-trivial to couple it to the curvature of the sphere. It
is therefore useful to briefly review the construction of the Lagrangian of maximal
SYM on Sp+1.

Maximally supersymmetric Yang-Mills theory in d = p+ 1 dimensions has 16
real supercharges and consists of a vector multiplet transforming in the adjoint
representation of the gauge group G. The fields in this multiplet are the gauge
field Aµ, 9 − p real scalar fields, Φm, and 16 fermionic degrees of freedom, or
gaugini, collectively denoted by Ψ. Depending on the dimension and signature of
space-time the fermionic degrees of freedom are arranged into spacetime spinors as
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Dimensions Lorentzian Euclidean
7 1 2 (Majorana)
6 2 (Weyl) 2 (Majorana)
5 2 2
4 4 (Majorana) 4 (Weyl)
3 8 (Majorana) 4
2 16 (Majorana-Weyl) 8 (Majorana)

Table 1: Number of minimal spinors in each dimension used in Lorentzian and
Euclidean field theories. The conditions the spinors satisfy are indicated in brackets.
In all cases we denote the collective 16-component fermion with the symbol Ψ.

summarized in Table 1. The index m, which labels the scalar fields, transforms
in the fundamental representation of the R-symmetry group, which is SO(9− p)
for Lorentzian3 theories and SO(1, 8− p) for the Euclidean ones. We are mostly
interested in Euclidean theories, as we intend to study SYM on Sp+1, but for the
moment we keep the discussion general and discuss both cases.

The classical action for the (p+ 1)-dimensional maximal SYM theory on flat
space can be derived by dimensional reduction of the unique SYM action in ten
dimensions, see for instance [31]. Note that to obtain the Euclidean theory one
must perform a timelike dimensional reduction. Explicitly the Lagrangian of the
d-dimensional SYM theory on flat space reads4

LSYM =
1

2g2
YM

Tr
[
−FµνF µν −DµΦmD

µΦm + Ψ̄γµDµΨ

−1

2
[Φm,Φn][Φm,Φn] + Ψ̄Γm[Φm,Ψ]

]
. (2.1)

Here Ψ̄ = Ψ†Γ0 is the Dirac adjoint with Γ0 the ten-dimensional gamma matrix
along the time direction.5 The Yang-Mills field strength is given by Fµν = 2∂[µAν] +
[Aµ, Aν ], and the gauge covariant derivatives are

DµΦm = ∂µΦm + [Aµ,Φm] , DµΨ = ∂µΨ + [Aµ,Ψ] . (2.2)

The m,n indices are raised and lowered with the flat metric on R9−p for Lorentzian
theories or R1,8−p for Euclidean theories. For Euclidean theories this implies that
one of the scalar fields, Φ0, has the wrong sign kinetic term. Notice also that the
scalar-fermion interaction term involves internal gamma matrices, Γm, associated
with the R-symmetry.

The Yang-Mills coupling constant, gYM, is dimensionful for d = p + 1 6= 4,
and the mass dimension is given by [g2

YM] = 3 − p. This means that maximal
3We work with a “mostly +” signature.
4Since we are interested in QFTs we take p ≥ 1. We also set the θ-term in the four-dimensional

SYM action to zero.
5We use conventions in which the (9− p)-dimensional gamma matrices are denoted by Γm

and the (p+ 1)-dimensional ones are γµ. The Clifford algebra is {γµ, γν} = 2gµν , with gµν the
metric on space-time.
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SYM theories are non-renormalizable for p > 3 and have to be incorporated in a
UV complete theory at high energies. Indeed, maximal SYM in five dimensions,
i.e. p = 4, is conjectured to grow an extra dimension at high energies and flow
towards the (2,0) CFT in six dimensions [32, 33]. Maximal SYM in six dimensions
is expected to be UV completed by a non-gravitational but non-local theory called
little string theory. Little string theory comes in two flavors, depending on the
chirality of the supercharges in six dimensions. Six-dimensional SYM has (1, 1)
supersymmetry and therefore flows towards the corresponding (1, 1) little string
theory in the UV, see [34,35] for reviews and further references. For p > 5 maximal
SYM has a UV completion within string theory as the worldvolume theory on
Dp-branes. For p ≤ 3 the UV physics is under better control. When p = 3 it is
well-known that maximal SYM is conformally invariant and thus UV finite. For
p < 3 the YM coupling is asymptotically free and the physics at low-energies is
strongly coupled. The theory in three dimensions, i.e. p = 2, is believed to flow
to the interacting ABJM CFT which has maximal supersymmetry and describes
the low-energy dynamics of M2-branes [36]. The IR dynamics of the maximal
two-dimensional SYM is somewhat more involved, see [37] for a recent discussion.

Placing SYM on curved backgrounds such as Sp+1 via a minimal coupling, i.e.
replacing ηµν with gµν and partial with covariant derivatives in (2.1), results in
an action that in general does not posses any supersymmetry. This is because
constant supersymmetry transformation parameters, ε, do not exist on a general
curved manifold. The supersymmetry transformation of the action is proportional
to the derivative of ε which in general does not vanish. Understanding which
supersymmetric QFTs can be placed on which curved manifolds while preserving
some amount of supersymmetry can be done systematically using the formalism
described in [15]. For maximal SYM on Sp+1 this question was addressed in the
earlier work [13], see also [14,17].

In this paper we are interested in the maximal SYM theory placed on Sp+1

with metric R2dΩ2
p+1 where R is the radius of the sphere and dΩ2

p+1 is the unit
radius6 Einstein metric on Sp+1. It was shown in [13] that these Euclidean theories
can preserve 16 real supercharges and the supersymmetry parameter obeys the
equation

∇µε =
1

2R
γµΓε with Γ = Γ012 , (2.3)

This construction only works for p ≤ 6. This is closely related to the fact that
superconformal algebras only exist in six or fewer dimensions. The action for
maximal SYM on Sp+1 is explicitly given as a deformation of the action in (2.1).
First we have to introduce a minimal coupling of the Lagrangian in (2.1) to the
metric on the sphere. In addition, to ensure that the the supersymmetry generated
by the spinor in (2.3) is preserved, we have to add the following extra terms to the

6The Ricci scalar of the sphere with metric R2dΩ2
p+1 is equal to p(p+1)

R2 .
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Lagrangian

δL = − 1

R2
Tr [(p− 1)ΦmΦm + (p− 3)ΦaΦ

a]

+
1

2R
(p− 3)Tr

[
Ψ̄ΓΨ− 8Φ0[Φ1,Φ2]

]
, (2.4)

where the index a only runs from 0 to 2 and is contracted using the Lorentzian
metric just like the m,n indices [13]. The Lagrangian in (2.4) for p 6= 3, 6 breaks
the SO(1, 8− p) R-symmetry group of the maximal theory in Euclidean space to
the subgroup7

SU(1, 1)× SO(6− p) . (2.5)

This symmetry breaking pattern is an important guiding principle for constructing
the spherical brane solutions of ten-dimensional supergravity.

There are at least three important reasons to study SYM theories on Sp+1.
First, this is a maximally symmetric space which is also the unique curved manifold
on which one can preserve 16 supercharges. Placing a supersymmetric theory on
a sphere is an essential ingredient in the context of supersymmetric localization
and indeed it was recently shown in [17], following the seminal work [14], how to
study the partition function of maximal SYM using this method for any 1 ≤ p ≤ 6.
This in turn paves the way to compute exactly certain supersymmetric correlation
functions of the SYM theory. Finally, the radius, R, of the sphere provides a
natural IR cut-off for the dynamics of the SYM theory which is compatible with
supersymmetry. This is especially important in the holographic context where the
IR physics of SYM theories for p 6= 3 results in singularities of the dual supergravity
solutions. These can be resolved by introducing finite temperature in the form
of a black hole horizon [9]. The finite temperature is a convenient IR regulator
which however breaks supersymmetry completely. As we show below, our spherical
Dp-brane solutions, which are holographically dual to the maximal SYM on Sp+1,
are regular in the IR while preserving all 16 supercharges.

3 D-branes in flat space

Before embarking on the journey towards constructing supergravity solutions
describing Dp-branes with a spherical worldvolume we first review the physics
of their flat counterparts. Black branes are solution of ten-dimensional type II
supergravity that source the metric, the dilaton, as well as (p + 2)-form field
strengths [1]. The solutions are characterized by their conserved electric charge
µp and the ADM tension Tp. These branes break either all of the original 32
supercharges of type II supergravity or only half of them. We will focus on the
latter case for which the branes are extremal in the sense that their tension equals
their charge, i.e. Tp = µp. Within string theory these supergravity backgrounds
are interpreted as the backreaction of a large number of fundamental Dp-branes on

7For p = 6 the R-symmetry group is SO(1, 2) ' SU(1, 1) and is preserved by the Lagrangian
in (2.4).
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the ten-dimensional geometry in which they are immersed [2]. This interpretation
has passed many consistency checks in string theory and ultimately led to the
AdS/CFT correspondence. The low-energy physics on the flat worldvolume of
the fundamental Dp-branes is described by maximal SYM in flat space. This
implies that upon gravitational backreaction the supergravity solution describing
supersymmetric black branes is holographically dual to this SYM theory as first
suggested in [9].

The full ten-dimensional supergravity solution describing Dp-branes with flat
worldvolume, with p ≤ 6, in asymptotically flat space and in string frame is (see
for example [38])

ds2
10 = H−1/2ds2

p+1 +H1/2ds2
9−p , (3.1)

eΦ = gsH
(3−p)/4 , (3.2)

Cp+1 = (gsH)−1 volp+1 . (3.3)

Here ds2
p+1 and ds2

9−p denote the flat metrics on R1,p and R9−p respectively, volp+1

is the volume form on R1,p and H is a harmonic function on R9−p. The harmonic
function has isolated singularities at the position of the branes. For a single stack
of Dp-branes at the origin we have ds2

9−p = dr2 + r2dΩ2
8−p, with dΩ2

8−p the unit
radius metric on a round 8− p sphere. The harmonic function in this case is

H = 1 +
gsN

µ6−pV6−pr7−p , (3.4)

where Vn−1 = 2πn/2/Γ(n/2) is the volume of the unit radius n-sphere. The
fundamental charge of a Dp-brane is given by8

µp =
2π

(2π`s)p+1
, (3.5)

and the Yang-Mills coupling constant of the worldvolume gauge theory is

g2
YM =

(2π)2gs
(2π`s)4µp

. (3.6)

The constants in (3.4) must satisfy a Dirac quantization condition. Indeed, inte-
grating the magnetic field strength over dΩ2

8−p leads to

1

2κ2
10µp

∫
?dCp+1 =

N(7− p)V8−p

2κ2
10µpµ6−pV6−p

= N , (3.7)

where the integer N is interpreted as the number of Dp-branes.
8The ten-dimensional Newton constant is related to the string length `s through 4πκ210 =

(2π`s)
8, therefore 2κ210µpµ6−p = 2π. Note that in our conventions the Newton constant does not

depend on gs.
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The field theory limit of Dp-branes in a holographic context was first studied
in [9] (see also [25]). Introducing the dimensionless radial coordinate U = r/(2π`s),
this limit is equivalent to zooming in on the near-horizon region of the branes:

gsN Up−7

2πV6−p
� 1 . (3.8)

Using (3.8), the metric and dilaton simplify to

ds2
10 = (gU)

7−p
2 ds2

p+1 + (gU)
p−7
2

(
dU2 + U2dΩ2

8−p
)
, (3.9)

eΦ = gs(gU)
(p−3)(7−p)

4 , (3.10)
Cp+1 = g−1

s (gU)7−pvolp+1 , (3.11)

where we have introduced g as9

(2π`sg)p−7 =
gsN

2πV6−p
. (3.12)

For 0 < p < 3 at high energies, U � 1, the string coupling becomes small
indicating that the theory is free in the UV. As discussed in Section 2 this is
the expected UV behavior of maximal SYM theory in 1 < d < 4 dimensions.
Conversely for 3 < p < 7 the dilaton increases at high energies indicating that
the field theory is strongly coupled. This again fits nicely with the fact that for
d > 4 the SYM theory is not renormalizable. Clearly the case p = 3 is special
since the string coupling is constant throughout the solution and the metric is
that of AdS5 × S5. This is the well-known holographic dual description of the
conformal N = 4 SYM theory in d = 4. The background in (3.9)-(3.11) possesses
ISO(1, p)× SO(9− p) isometry for p 6= 3 and SO(2, 4)× SO(6) for p = 3. This is
the same as the global symmetry group of the SYM theories discussed in Section 2.
It is therefore clear that this near-horizon solution nicely exhibits the physics we
expect from a holographic dual to SYM on flat space. We refer to [9] and references
thereof for further support of this holographic duality.

Our goal is to generalize the solutions in (3.9)-(3.11) and construct supergravity
backgrounds which correspond to spherical Dp-branes and provide a holographic
description of maximal SYM on Sp+1. This necessitates an understanding of how
to construct supergravity solutions for D-branes with Euclidean worldvolume. This
was addressed in several papers by Hull [39–41] where he argued that there are
Euclidean branes, or E-branes, not of regular type II string theory but of the
so-called type II∗ string theory. The existence of a low-energy supergravity limit of
these type II∗ string theories can be deduced independently from a supergravity
point of view [42]. The type II∗ supergravity theories admit E-brane solutions10 for
which the brane worldvolume is Euclidean and the time direction is transverse to
the brane worldvolume, i.e. E-branes resemble instantons. The E-brane solutions

9The real constant g will be identified with the coupling constant of the (p+ 2)-dimensional
gauged supergravity theory in which the brane solutions can be effectively described.

10Note that in the notation of [39–41] an E(p+ 1)-brane is the Euclidean version of a Dp-brane.
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can be obtained from the Dp-brane solutions above by analytically continuing
the time direction of the brane worldvolume into a spatial coordinate and at the
same time analytically continuing the polar angle of the sphere transverse to the
brane into a time-like coordinate. This analytic continuation results in changing
the worldvolume of the brane from R1,p to Rp+1 and the transverse S8−p sphere
in (3.9) to de Sitter space, dS8−p. The analytic continuation does not only affect
the metric, but also changes the R-R fields. In [39–41] all R-R fields are taken
to be real with “wrong sign” kinetic terms. In this paper we use an equivalent
formulation in which all R-R fields are imaginary with “usual sign” kinetic terms.
To ensure supersymmetry the Killing spinors for these E-branes have to satisfy
rather unusual reality conditions, this is explained in some detail in Appendix B.
Finally we note that solutions of the Lorentzian type IIA∗ string theory should
uplift to solutions of the so-called M∗ theory, see [39–41], which has the somewhat
exotic (2, 9) signature of the metric, i.e. two time-like and nine spatial dimensions.

4 Spherical branes

To construct the near-horizon solution for Euclidean Dp-branes wrapped on spheres
we can utilize intuition from the field theory discussion in Section 2 and make a
suitable ansatz for the ten-dimensional metric. The total isometry group of the
solution should be a direct product of the isometry group of the Sp+1 which the
Dp-brane is wrapping and the R-symmetry group of the Yang-Mills field theory in
p+ 1 dimensions:

SO(p+ 2)× SU(1, 1)× SO(6− p) . (4.1)

A ten-dimensional metric ansatz that implements these symmetries is given by

ds2
10 = ∆

[
dr2 +R2e2AdΩ2

p+1 + e2B
(

dθ2 + P cos2 θ dΩ̃2
2 +Q sin2 θ dΩ2

5−p

)]
.

(4.2)
The functions A, B, ∆, P , and Q depend on r and θ and satisfy suitable positivity
conditions such that the metric has the correct signature, while R is a constant
that sets the radius of Sp+1. The metric on a round n-sphere is denoted by dΩ2

n

with volume form voln. Clearly the dΩ2
p+1 and dΩ2

5−p factors in the metric realize
the SO(p+ 2)× SO(6− p) part of the isometry group in (4.1). The non-compact
SU(1, 1) factor in the R-symmetry of the SYM theory is realized as the isometry
group of two-dimensional de Sitter space with metric

dΩ̃2
2 = −dt2 + cosh2 t dψ2 , (4.3)

where ψ is 2π-periodic.
Note that for P = Q = 1 the metric in (4.2) simplifies significantly, namely the

metric transverse to the worldvolume of the branes is the round metric on dS8−p
which has SO(1, 8−p) isometry group, i.e. the same as for the Euclidean Dp-branes
in flat space discussed at the end of Section 3. Even without having an explicit
solution for spherical branes, intuition from field theory suggests that for values of
the radial coordinate much larger than the scale set by R the supergravity solution
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should reduce precisely to the Euclidean Dp-brane background with P = Q = 1.
This is suggested by the UV limit in the field theory where the curvature of Sp+1

should play no role in the dynamics of the SYM theory and it should reduce to
that in flat space.

In addition to the metric (4.2), we also have to make an ansatz for the type
II NS-NS and R-R form fields and the dilaton. Dp-branes are electrically charged
under Cp+1 and it is natural to expect there to be a component of Cp+1 along the
dΩ2

p+1 worldvolume of the branes. We should also allow for all other form fields in
the supergravity to have non-zero values as long as they preserve the isometry group
in (4.1). In addition the dilaton can be an arbitrary function of r and θ. With
this ansatz at hand one should analyze carefully the equations of motion and the
supersymmetry variations of the ten-dimensional supergravity theory imposing that
the background preserves 16 out of the 32 supercharges. This analysis should result
in a system of coupled non-linear partial differential equations for the unknown
functions in the ansatz. It is fair to assume that without any further insight it
will be difficult to solve explicitly this system of equations. Fortunately progress
can be made by employing a well-tested strategy in top-down holography, namely
reduce the ten-dimensional problem to a supergravity problem in p+ 2 dimensions.
This can be achieved by employing a consistent truncation of the ten-dimensional
supergravity to an appropriate gauged supergravity in p+ 2 dimensions.

4.1 Supergravity in p+ 2 dimensions

The gauged supergravity theories of interest are maximally supersymmetric and
arise as consistent truncations of type II supergravity on S8−p. The vacua of these
supergravities are directly related to the field theory limits of Dp-branes discussed
in Section 3 and thus for p 6= 3 the vacuum breaks half of the supersymmetries.
In order to describe spherical branes we must analytically continue these gauged
supergravity theories so as to work with an Euclidean theory. After constructing
the solutions of interest we can uplift them to ten dimensions where we recover
the time direction, as in (4.2), and thus obtain a fully Lorentzian solution of
type II supergravity. In this section we start by briefly describing the Lorentzian
gauged supergravity theories before performing the analytic continuation. Since
the construction of the spherical brane solutions proceeds similarly in different
dimensions we present a uniform description of the Lagrangian and BPS equations
for all values of p. In Appendix C we give a more detailed discussion of the
supergravity theories in various dimensions used in this paper and their analytic
continuation.

The field theory discussion in Section 2 suggest that to construct the spherical
brane solutions of interest we can restrict to an SU(1, 1) × SO(6 − p) invariant
truncation of the maximally supersymmetric gauged supergravity theory. This
ensures that the R-symmetry of the SYM theory, realized as a gauge symmetry in
the supergravity theory, is preserved. In addition we are interested in supergravity
solutions which preserve the SO(p+ 2) isometry of the sphere which the branes are
wrapping. This in turn implies that all fields present in the gauged supergravity
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theory except the metric and scalar fields should be set to zero. As discussed in
detail in Appendix C, imposing these symmetries on the gauged supergravity leads
to a consistent truncation which includes only the metric and three real scalar
fields: the “dilaton” φ, a real scalar x and a pseudoscalar χ.11 These scalar fields
have a nice interpretation in the SYM theory on Sp+1. The dilaton is dual to the
Yang-Mills coupling, the scalar field x is dual to the bosonic bilinear mass term
Φ2, and the pseudoscalar is dual to the fermionic bilinear mass term Ψ2 which
appear in the field theory Lagrangian (2.4). It turns out that it is more convenient
to work with the scalar fields λ and β (discussed further in Appendix C) which
are linear combinations of the scalar fields x and φ. In terms of these fields, the
bosonic actions for the truncated gauged supergravity theories take the following
uniform form for 0 < p < 6

S =
1

2κ2
p+2

∫
?p+2

{
R +

3p

2(p− 6)
|dλ|2 − 1

2

(
|dβ|2 + e2β|dχ|2

)
− V

}
, (4.4)

where V is the scalar potential. It is clear from the kinetic terms that (β, χ) span
an SL(2)/SO(2) coset which can be conveniently parametrized by a single complex
scalar

τ ≡ χ+ ie−β . (4.5)

The kinetic term for τ can then be written in terms of the Kähler potential

K = − log

(
τ − τ̄

2

)
= β , (4.6)

as
Kτ τ̄ |dτ |2 =

1

4

(
|dβ|2 + e2β|dχ|2

)
, (4.7)

where Kτ τ̄ = ∂τ∂τ̄K is the Kähler metric. The scalar potential can be compactly
expressed in terms of a superpotential which is holomorphic in τ and reads:

W =

 −g e
1
2
λ
(

3τ + (6− p)ie−
p

6−p
λ
)

for p < 3 ,

−g e
3(2−p)
2(6−p)

λ
(

3ie
p

6−p
λ + (6− p)τ

)
for p > 3 .

(4.8)

Here g is the SO(9−p) gauge coupling constant of the maximal gauged supergravity
theory. The scalar potential is given by

V =
1

2
eK
(

6− p
3p
|∂λW|2 +

1

4
Kτ τ̄DτWDτ̄W −

p+ 1

2p
|W|2

)
, (4.9)

where Da = ∂a + ∂aK is the Kähler covariant derivative.
It is clear from the kinetic term of the scalar λ in (4.4) as well as the superpo-

tential in (4.8) that p = 6 has to be treated separately. This is in harmony with
the field theory discussion in Section 2 where it was shown that the R-symmetry is
unbroken upon placing SYM on S7. This in turn implies that in the supergravity

11The cases p = 3 and p = 6 are somewhat special and will be discussed separately below.
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theory we should retain only the complex scalar field, τ , and not include the scalar
λ. The eight-dimensional gravitational action for p = 6 then reads12

S =
1

2κ2
8

∫
?8

{
R− 2Kτ τ̄ |dτ |2 − V

}
, (4.10)

where
V =

1

2
eK
(

1

4
Kτ τ̄DτWDτ̄W −

7

12
|W|2

)
, (4.11)

and
W = −3ig . (4.12)

It is reassuring to observe that the supergravity action in (4.10) can be obtained
by a formal limit of the action in (4.4) by taking λ/(p− 6)→ 0 and p→ 6.

As mentioned above, due to the runaway potential for the dilaton φ there is no
vacuum solution of the gravitational theories in (4.4) and (4.10) that preserves all
32 supersymmetries.13 There are however domain wall solutions which preserve 16
supercharges and are closely related to the flat brane solutions in ten dimensions
discussed in Section 3, see for example [25]. These solutions are obtained by setting
χ = x = 0, or equivalently β = p

p−6
λ, and read

ds2
p+2 = dr2 + e

2(9−p)
(6−p)(p−3)

λds2
p+1 , e

(p−3)
6−p

λ =
g(3− p)2

2p
(r − r0) , (4.13)

where ds2
p+1 is the flat metric on Minkowski space and r0 is an integration constant

that can be set to zero by shifting appropriately the radial coordinate r. These
solutions can be uplifted to solutions of type II supergravity using the uplift
formulae discussed in Section 4.3. The end result of this uplift is given by the
following ten-dimensional background

ds2 = eλ
(

ds2
p+2 +

1

g2
e

2(p−3)
6−p

λdΩ2
8−p

)
, (4.14)

eΦ = gse
p(7−p)
2(6−p)

λ , (4.15)

F8−p =
7− p
gsg7−pvol8−p . (4.16)

This solution precisely matches the near-horizon limit of the flat Dp-brane solutions
in (3.9)-(3.10) where gU = e

2p
(6−p)(p−3)

λ and the number of branes N is related to
the supergravity coupling constant g via (3.12).

So far we have discussed only Lorentzian supergravities. However the spherical
branes of interest here have a Euclidean worldvolume and thus should be described
by Euclidean gauged supergravity theories. Such theories should be maximally
supersymmetric with an SO(1, 8− p) gauge group and should be closely related to

12Again we refer to Appendix C for more details on how to obtain this action from maximal
supergravity in eight dimensions.

13The case p = 3 is an exception.
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the more familiar SO(9− p) maximal gauged supergravity theories in Lorentzian
signature. These Euclidean supergravity theories are unfortunately not available in
the literature. We resolve this impasse by performing an analytic continuation of
the truncated Lorentzian supergravity theories described by the Lagrangians in
(4.4) and (4.10).

At the level of the action the analytic continuation is straightforward. The
metric becomes Euclidean and the only real modification to the action stems from
the fact that the pseudo scalar χ becomes imaginary

χ→ iχ . (4.17)

This results in the “wrong sign” kinetic term for χ. The scalar τ in (4.5) appears
to be a purely imaginary scalar field and thus is not appropriate to describe two
independent scalar fields. We must therefore consider τ = i(χ + e−β) and, what
used to be, its complex conjugate τ̃ = i(χ− e−β) as two independent scalar fields
in the Euclidean theory.14 Similarly we should work with two superpotentials, W
as defined in (4.8) and W̃ obtained by complex conjugation of W accompanied by
the replacement τ̄ → τ̃ ,

W̃ =

 −g e
1
2
λ
(

3τ̃ − (6− p)ie−
p

6−p
λ
)

for p < 3 ,

g e
3(2−p)
2(6−p)

λ
(

3ie
p

6−p
λ − (6− p)τ̃

)
for p > 3 .

(4.18)

The scalar potential of the Euclidean theory is obtained by replacing W by W̃ in
(4.9).

With this Euclidean supergravity theory at hand we are now in a position to
discuss how to construct the spherical branes of interest. We start by writing the
following metric ansatz compatible with the spherical symmetry of the worldvolume
of the brane

ds2
p+2 = dr2 +R2e2AdΩ2

p+1 . (4.19)

In addition we assume that the scalar fields and the warp factor A only depend on
the radial variable r. The constant R should be thought of as the radius of Sp+1

and is auxiliary since it can be absorbed into a redefinition of metric function A.15
To obtain the brane solutions with flat worldvolume one should take R →∞. As
we shall discuss below this is not a smooth limit, nevertheless it still proves useful
to keep the constant R explicitly in the formulae below.

Equipped with this ansatz we can plug it in the supersymmetry variations of
the (p+ 2)-dimensional gauged supergravity theory and look for solutions which
preserve 16 supercharges. This is discussed in some detail in Appendix C. The end
result is the following system of BPS equations which should be obeyed by the

14This is a familiar predicament from similar constructions of Euclidean supergravity solutions
in a holographic context [18,19].

15To stay in the regime of validity of supergravity we have to make sure that ReA is larger
than the Planck and the string scales throughout the solution.
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metric function and the three scalar fields:

(λ′)2 = eK
(

6− p
3p

)2

(∂λW)(∂λW̃) , (4.20)

(λ′)(τ ′) = eK
(

6− p
12p

)
(∂λW)Kτ τ̃Dτ̃W̃ , (4.21)

(λ′)(τ̃ ′) = eK
(

6− p
12p

)
(∂λW̃)Kτ̃ τDτW , (4.22)

(λ′)(A′ −R−1e−A) = −eK
(

6− p
6p2

)
(∂λW)W̃ , (4.23)

(λ′)(A′ +R−1e−A) = −eK
(

6− p
6p2

)
(∂λW̃)W , (4.24)

where Kτ̃ τ is the inverse of the Kähler metric in (4.7). Equations (4.20), (4.21), and
(4.22) arise from the spin-1

2
supersymmetry variations of the gauged supergravity

theory, while (4.23) and (4.24) arise from the spin-3
2
variations.

Equations (4.23) and (4.24) lead to a first order differential equation together
with the following algebraic relation for the metric function A(r)

eA =
1

Rg2

2p

6− p
τ̃ − τ
τ̃ + τ

e
2(p−3)
6−p

λ(λ′) . (4.25)

Fortunately these two equations are compatible with each other. In addition one
can explicitly check that all BPS equations in (4.20)-(4.24) are compatible with
the second order equations of motion derived from the action in (4.4) after the
analytic continuation in (4.17).16

Note that upon taking the limit R → ∞ in (4.20)-(4.24) accompanied with
τ = τ̃ , which in turn implies W = W̃ , we obtain the BPS equations for a domain
wall with flat slices. These equations are then solved by the Euclidean analog of
(4.13).

4.2 Analysis of the BPS equations

We now perform a preliminary analysis of the BPS equations (4.20)-(4.24). It
proves convenient to introduce a new parametrization of the scalar fields given by

τ = ie−
p

6−p
λ(X + Y ) , τ̃ = −ie−

p
6−p

λ(X − Y ) , for p < 3 ,

τ = ie
p

6−p
λ(X + Y ) , τ̃ = −ie

p
6−p

λ(X − Y ) , for p > 3 .
(4.26)

When the BPS equations are solved it is important to impose appropriate boundary
conditions in the IR. The physics of the SYM theory on Sp+1 suggests that the
supergravity solutions should cap off smoothly in the IR and it is thus natural

16The case p = 6 should again be treated separately and is discussed in more detail in
Appendix C.1.
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to look for solutions in which close to some finite value of the radial coordinate
r → rIR the metric looks like the metric on (p + 2)-dimensional flat space in
spherical coordinates

ds2
p+2 ≈ dr2 + (r − rIR)2dΩ2

p+1 . (4.27)

r

IR

UV

Rp+2

Figure 1: The regular geometries interpolate between flat Euclidean Dp-branes in
the UV and Rp+2 in the IR.

In the UV, i.e. for large values of r, the solution should asymptotically approach
the flat brane domain wall solution (4.13) as depicted in Figure 1. Notice that
in this UV limit one finds X = 1 and Y = 0. In the IR region the scalar fields
should approach a constant finite value in order to have a regular solution. These
IR values for the scalars can be found as the critical points of the superpotential
W (or W̃)

∂λW = DτW = 0 , (4.28)

which in terms of the new variables X, Y read:

XIR = p
3
, YIR = ±2(p−3)

3
, for p < 3 ,

XIR = p
(6−p)(p−2)

, YIR = ± 2(p−3)
(6−p)(p−2)

, for p > 3 .
(4.29)

The upper sign in the expressions above refers to a critical point of W whereas
the lower sign refers to a critical point of W̃. Notice that for p = 4 the critical
value of the superpotential is at the UV point X = 1. We will discuss this in more
detail below. Even though X and Y approach fixed values in the IR, the scalar λ
can take any value λ = λIR. As discussed in Section 6 below, λIR is related to the
effective gauge coupling constant of the dual SYM theory at the IR energy scale
set by the radius of the sphere.

Finally we want to point out that when solving the BPS equations in (4.20)-
(4.24) it sometimes proves useful to use the scalar X as a new radial variable. This
is possible since X is a monotonic function of the radial variable r in (4.19).

4.3 Uplift to ten dimensions

After this uniform treatment of the gauged supergravity theories in p+2 dimensions
and their spherical brane solutions, we provide general uplift formulae that we use
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to obtain the spherical brane solutions in ten dimensions. These are distilled from
the literature and brought into a universal form in Appendix C. In this section we
merely quote the results. The ten-dimensional metric takes the expected form in
(4.2)

ds2
10 =

eλ√
Q

(
ds2

p+2 +
e

2(p−3)
6−p

λ

g2

(
dθ2 + P cos2 θ dΩ̃2

2 +Q sin2 θ dΩ2
5−p

))
. (4.30)

The squashing functions P andQ are determined in terms of the gauged supergravity
scalars as

P =

{
X
(
X sin2 θ + (X2 − Y 2) cos2 θ

)−1 for p < 3 ,

X
(

cos2 θ +X sin2 θ
)−1 for p > 3 ,

(4.31)

Q =

{
X
(

sin2 θ +X cos2 θ
)−1 for p < 3 ,

X
(
X cos2 θ + (X2 − Y 2) sin2 θ

)−1 for p > 3 .
(4.32)

The ten-dimensional dilaton is

e2Φ = g2
se

p(7−p)
6−p

λ P Q
1−p
2 , (4.33)

and the non-vanishing type II form fields are given by

B2 = e
p

6−p
λ Y P

g2X
cos3 θ vol2 ,

C5−p = ie−
p

6−p
λ Y Q

gsg5−pX
sin6−p θ vol5−p ,

C7−p =
i

gsg7−p

(
ω(θ) + P cos θ sin6−p θ

)
vol2 ∧ vol5−p .

(4.34)

Here vol5−p and vol2 refer to the volume forms on dΩ2
5−p and dΩ̃2

2, respectively, see
(4.2) and (4.3). The function ω(θ) is defined such that in the UV the derivative
of C7−p simply gives the volume form on the (8− p)–dimensional de Sitter space,
namely

d

dθ

(
ω(θ) + cos θ sin6−p θ

)
= (7− p) cos2 θ sin5−p θ . (4.35)

5 Details of the solutions

In this section we do a case-by-case study of the spherical brane solutions. The
simplest example is provided by the near-horizon geometry of Euclidean D3-branes.
It is simply given by H5 × dS5. Writing the metric on H5 in global coordinates

ds2
H5 = dη2 + sinh2 η dΩ2

4 , (5.1)

makes it clear that flat Euclidean D3-branes are described by the same supergravity
solution as spherical D3-branes. This is of course a reflection of the fact that the
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worldvolume N = 4 SYM theory is conformal and the four-sphere is a conformally
flat manifold. As discussed in Section 2 placing non-conformal maximal SYM
theories on spheres in a supersymmetric way must be accompanied by adding
particular mass terms in addition to the standard conformal coupling term to the
Lagrangian. In the bulk supergravity solutions this is manifested by modifying the
usual flat Euclidean Dp-brane solutions to new solutions of supergravity which we
exhibit explicitly below.

5.1 D6-branes

As discussed in Section 4.1, the case of spherical D6-branes is a degenerate limit
of our equations since now we only have two scalar fields instead of three. This
is consistent with the fact that for the maximal seven-dimensional SYM theory
on S7 the R-symmetry is unbroken. In addition we showed in (4.12) that the
superpotential is a purely imaginary constant which implies that the pseudoscalar χ
does not appear in the scalar potential. This in turn means that the BPS equations
derived in Appendix C.1 only result in first order equations for the scalar β and the
warp factor A. A first order equation for χ is obtained directly from the equations
of motion. We refer to Appendix C.1 for further details on the eight-dimensional
supergravity and the derivation of the BPS equations. Keeping this in mind it is
still useful to mimic the structure of the BPS equations with p < 6 and introduce
new scalar variables

τ = i(X + Y ) , τ̃ = −i(X − Y ) . (5.2)

In these variables the BPS equations together with the equation of motion for Y
reduce to the following system of coupled first order ODEs

(X ′)2 =
9

4
g2X + 36R−2e−14AX4 , (5.3)

Y ′ = 6R−1X2e−7A , (5.4)

(A′)2 =
1

16
g2X−1 +R−2e−2A , (5.5)

where by prime we denote a derivative with respect to r. We have checked that
this system of equations implies the equations of motion of the gauged supergravity
theory. To solve the flow equations in (5.3) it is convenient to use the metric
function A as a radial variable. One then finds

X = e6A . (5.6)

We then proceed by defining yet another radial coordinate

ρ = arcsinh
(

4

gR
e2A

)
, (5.7)

such that the metric takes the form

ds2
8 =

gR3

16
sinh ρ

(
dρ2 + 4dΩ2

7

)
, (5.8)
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and
X =

(
(gR/4) sinh ρ

)3
. (5.9)

The full solution of the gauged supergravity theory is obtained by integrating the
equation

dY

dρ
=

3

16
g3R3 sinh3 ρ tanh2 ρ . (5.10)

We will not need the lengthy analytic expression for Y (ρ) in our analysis and thus
refrain from presenting it here.

Many of the interesting properties of this solution are only apparent when
uplifted to ten or eleven dimensions. Unfortunately we are not able to directly
use the general formulae presented in Subsection 4.3 since they are not valid for
p = 6. Nevertheless, since our eight-dimensional solution is rather simple the uplift
formulae of [43] can be readily applied and yield the following type IIA background

ds2
10 =

R2e2Φ/3

g
2/3
s

(
1

4
dρ2 + dΩ2

7 +
1

16
sinh2 ρ dΩ̃2

2

)
, (5.11)

H3 =
3

g2g2
s

e2Φdρ ∧ vol2 , (5.12)

F2 =
i

gsg
vol2 , (5.13)

e2Φ = g2
s

(
gR
4

sinh ρ

)3

. (5.14)

For ρ→ 0 the metric and dilaton approach that of a D6-brane in flat space:

ds2
10 ≈

1√
H
R2dΩ2

7 +
√
H
(

dr̃2 + r̃2dΩ̃2
2

)
, (5.15)

e2Φ ≈ (H)−3/2 , (5.16)

where 16r̃ = g(Rρ)2 and H = 1/gr̃. The function H is precisely the harmonic
function for N D6-branes in the near-horizon limit upon replacing g with N using
(3.12)

H =
gsN`s

2r̃
. (5.17)

We thus conclude that ρ→ 0 should be identified with the UV limit of the dual
gauge theory. In the limit ρ → ∞ we should be exploring the IR regime of
the field theory where the finite size of S7 should play a role. Indeed the eight-
dimensional metric (5.8) in this limit caps off in the expected regular manner
wheras the dilaton blows up. This is an indication that we must further uplift
our type IIA solution to eleven dimensions and interpret it in M-theory. The
uplift to eleven dimensions has to be done with some care because the two-form
field strength F2 and its one-form potential, C1, are imaginary. The one-form
potential appears in the eleven-dimensional metric as a Kaluza-Klein vector and so
if it is imaginary it would render the eleven-dimensional metric complex. This is

20



resolved by remembering that, as discussed in Section 3, our type II solutions can
be interpreted as solutions of Hull’s type II∗ theories [39]. Hull has argued in [41]
that the type IIA∗ theory uplifts to an eleven-dimensional version of M-theory
with two time directions called M∗-theory. In our formulation this means that we
can apply the standard uplift formulae presented in Appendix A with a purely
imaginary M-theory circle parametrized by iω with ω ∈ R. Doing this for the
solution in (5.11) we obtain, quite surprisingly, a metric on H2,2/ZN × S7 where
H2,2 ≡ SO(3, 2)/SO(2, 2). Explicitly we find

ds2
11 =

R2

4g
2/3
s

(
ds2

4 + 4 dΩ2
7

)
, (5.18)

where

ds2
4 = dρ2 − 1

4
sinh2 ρ

(
dt2 − cosh2 t dψ2 + (N−1dω − sinh t dψ)2

)
, (5.19)

is a metric on H2,2 with three-dimensional anti-de Sitter spacetime boundary, albeit
in the wrong signature. Even though the coordinate ω is timelike, it should still
be treated as periodic, just like in the standard relation between type IIA and
eleven-dimensional supergravity. We have parametrized the M∗-theory circle such
that ω has periodicity ω ∼ ω + 4π. Notice that crucially the metric on AdS3 is
not regular unless N = 1. In fact the structure of the metric is precisely that of
an extremal BTZ black hole. The analytic continuation of this metric to eleven
spacelike dimensions yields a metric on

H4/ZN × S7 , (5.20)

where the four-dimensional hyperbolic space has a boundary that is a Lens space
S3/ZN . Given that the eleven-dimensional metric above is closely related to the
standard AdS4×S7 solution of eleven-dimensional supergravity, it is not surprising
to find that up to factors of N , the four-form flux is the standard one

G4 =
3i

2g2g2
s`s

(
gR
4

sinh ρ

)3

dρ ∧ vol2 ∧ dω =
3i

L4

volH2,2 , (5.21)

where we have introduced
L4 =

R
2g

1/3
s

. (5.22)

As expected we also find that the M2-brane flux

NM2 =
1

(2π`s)6i

∫
G7 =

2L6
4

π2`6
s

∈ Z , (5.23)

is properly quantized. The explicit appearance of i in (5.21) and (5.23) is a result of
our choice of conventions for IIA∗ and M∗ theories. We will discuss the holographic
interpretation of this curious eleven-dimensional background further in Section 6.
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5.2 D5/NS5-branes

For p = 5 the solution is constructed in the maximal SO(4) gauged supergrav-
ity in seven dimensions [44] which arises as a consistent truncation of type IIB
supergravity on S3, see [25]. Just like the well known SO(5) gauged theory [45], ob-
tained by reducing eleven-dimensional supergravity on S4, this theory has maximal
supersymmetry.

Using the three scalar truncation of the SO(4) theory discussed in Appendix
C.2 one can derive the BPS equations given in (4.20)-(4.24). As mentioned in the
previous section it is convenient to use X as a coordinate and express the remaining
scalar fields Y and λ as functions of X. The solutions to the BPS equations are
then fully determined by the following ODE

dY 2

dX
=
Y 2

X

(
1− 16X + 15X2 − 9Y 2

2− 8X + 6X2 − 3Y 2

)
, (5.24)

together with the integral

λ(X) = λIR +

∫ X

XIR

3 dx

5
(
1− x

) [(x− 1

3

)d log Y (x)

dx
− 1

]
. (5.25)

In terms of the new coordinate, the seven-dimensional metric takes the form

ds2
7 =

(1− 3X)2 − 9Y 2

g2Xe4λ

(
dX2

(2− 8X + 6X2 − 3Y 2)2 +
X2

Y 2
dΩ2

6

)
. (5.26)

Unfortunately we have not been able to find an analytic solution to the equations
above that connects the IR values of X and Y given in (4.29) to the UV values
X = 1, Y = 0. To construct such a solutions to (5.24), we therefore have to
resort to numerical methods. As will become quite familiar when solving the
supergravity BPS equations for various values of p, the solution for Y as a function
of X is completely fixed by the IR boundary conditions (4.29). The only physical
integration constant that appears in the solution is the value of the scalar λ in
the IR and conveniently λIR only appears as an additive constant in the integral
expression (5.25). A numerical plot of the solution is given in Fig. 2. Its uplift to
a solution of type IIB supergravity is given by the formulae in Section 4.3 with
p = 5.

As discussed above, the numerical solution interpolates between a regular IR
region where X, Y , and λ approach a constant value and the metric caps off
smoothly and the near-horizon geometry of D5-branes in the UV. The uplift to ten
dimensions provides a full solution to the type II supergravity equations of motion
describing D5-branes wrapped on S6. Furthermore by an SL(2,R) transformation
we can obtain a solution describing NS5-branes (or more generally (p, q)-fivebranes)
wrapped on S6 and all equations of motion of course remain satisfied. The wrapped
NS5-brane solution is particularly interesting since the sphere provides an IR cut-off
of the linear dilaton geometry sourced by NS5-branes in flat space. As briefly
discussed in Section 2, the UV completion of SYM theories in six dimensions is
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Figure 2: A numerical solution for the functions Y (X) and λ(X) in the case p = 5.
Notice that since (5.24) is quadratic in Y , the function −Y is also a solution with
λ unchanged. The far UV region is at Y = 0, X = 1 and the IR region where the
S6 smoothly caps of is indicated by the solid dots.

believed to be given by a non-local, non-gravitational theory called little string
theory (LST). This theory can be understood as the decoupling limit of NS5-branes
where the string coupling vanishes gs → 0 [46]. A holographic model for LST was
considered in [47] and studied in more detail in [48, 49]. The original construction
is based on the linear dilaton vacuum which is simply the near-horizon limit of N
flat NS5-branes.17 The metric and dilaton of this type IIB solution are

ds2
10 = ds2

6 + dη2 + g−2dΩ2
3 , Φ = log gs − gη , (5.27)

where g2 = gsN
−1`−2

s . Although these fields together with a Yang-Mills instanton
provide an exact background of heterotic string theory [50], interpreting it in the
context of holography is somewhat problematic due to the singular bahaviour of the
dilaton for large negative η. In particular, it makes the holographic computation
of LST correlation functions impossible without further information about the
singular region η → −∞ [47]. In [48,49] a resolution of the singularity was proposed
whereby the N NS5-branes are spread out on a circle breaking the SO(4) isometry
group of the space transverse to the branes to an SU(2) subgroup. In a T-dual
frame the singularity corresponds to the origin of an ALE space

zN1 + z2
2 + z2

3 = 0 , (5.28)

and the resolution of the singularity is achieved by introducing a non-zero right-
hand side in (5.28). Our type IIB supergravity solution provides an alternative

17This background can be obtained from (3.9) for p = 5 by an SL(2,R) transformation.
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way to resolve the problem. Remember that the singularity can be understood
as a result of the dual SYM theory becoming weakly coupled in the IR. As we
have explained, placing the SYM on S6 introduces an effective IR cut-off set by
the radius of the sphere. In the supergravity description this is manifested by the
smooth cap-off of the geometry in the IR. More explicitly we find that the dilaton
of our spherical NS5-brane background takes the form

Φ = log

(
gs
√
P

X

)
− 5λ , (5.29)

which in the IR reduces to

ΦIR = log

(
3gs√

5(3 sin2 θ + 5 cos2 θ)

)
− 5λIR , (5.30)

and therefore eΦ can be made arbitrarily small throughout the full solution by
suitably tuning λIR. It will be most interesting to understand better this spherical
NS5 background and its implications for the physics of LST.

5.3 D4-branes

Our solutions for spherical D4-branes are constructed in a six-dimensional gauged
supergravity theory obtained by reducing the maximal SO(5) gauged supergravity
in seven dimensions on a circle. As explained in more detail in Appendix C.3, we
first introduce a seven-dimensional scalar x that breaks SO(5) → SU(2) × U(1)
together with a U(1) gauge field A. Reducing this theory on a circle introduces
the dilaton φ as well as an additional scalar field arising from the component of
the gauge field on the reduction circle, i.e. A = χdω where ω is the coordinate on
the circle. As a result we obtain the desired three scalar fields, x, φ and χ.18 After
rewriting the BPS equations with the scalar X as a coordinate the system reduces
to a single ODE which controls the full solution

dY 2

dX
=
Y 2(1− 12X + 12X2 − 4Y 2)

2X(1−X)(1− 2X)
. (5.31)

This equation is solved by

Y 4 = cX(1−X)
(

(1− 2X)2 − 4Y 2
)2

, (5.32)

where c is an integration constant. The critical point of the superpotential deter-
mines the IR values of the scalar field as in (4.29) which for p = 4 yields XIR = 1
and YIR = ±1/2. However, the analytic solutions (5.32) only reach the IR for
diverging c, i.e. when (1− 2X)2− 4Y 2 = 0. This is a solution to the BPS equation
(5.31) but it is not physical since the metric

ds2
6 =

(1− 2X)2 − 4Y 2

g2Xeλ

(
dX2

4(1− 2X)2(X − 1)2
+
X2

Y 2
dΩ2

5

)
, (5.33)

18These scalars are the ones discussed in Section 4.1.
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vanishes completely. All solutions in (5.32) with finite c correspond to gravitational
domain walls with singular IR behavior. These singular flows still provide solutions
to the ten-dimensional equations of motion via the uplift formulae in Section 4.3.
Furthermore an uplift of these solutions to eleven-dimensional supergravity is given
in Section C.3. Still, the conclusion remains that there is no smooth solution
with running scalar X that connects the UV to a regular IR. This is perhaps not
surprising since the IR value of the scalar X is located at X = 1 which is also the
UV value for X.

We are thus lead to explore solutions with constant X = 1. The original BPS
equations (4.20)-(4.24) are solved by 2Y = e2λIR−2λ where λIR is an integration
constant. The BPS equation for λ then reduces to

(λ′)2 =
g2

16
e−5λ

(
e4λ − e4λIR

)
. (5.34)

Notice that the scalar χ = e2λIR/2 is constant (cf. (4.5) and (4.26)). Using λ as a
coordinate, the six-dimensional metric can be written as

ds2
6 =

8e3λ−2λIR

g2

(
sinh−1(2λ− 2λIR)dλ2 + sinh(2λ− 2λIR)dΩ2

5

)
. (5.35)

Since the six-dimensional supergravity theory used to construct this solution is
obtained from a reduction of the maximal seven-dimensional SO(5) gauged super-
gravity it is possible to uplift the solution above to seven dimensions. Performing
this uplift, see Appendix C.3, one finds that the metric and the scalar fields in
seven dimensions are simply that of the maximally supersymmetric AdS7 (or rather
H7) vacuum of the gauged supergravity, albeit with an asymptotic S5 × S1 metric
on the boundary. There is however also a non-vanishing gauge field A = χdω,
see (C.29), which is pure gauge since the six-dimensional scalar field χ is constant.
Note that due to the topology of S1 it requires a large gauge transformation to set
the field A to zero.

The six-dimensional spherical D4-brane solution above can also be uplifted to
ten-dimensional type IIA supergravity. The explicit form of the solution is

ds2
10 =

eλ√
Q

(
ds2

6 +
eλ

g2

(
dθ + cos2 θ dΩ̃2

2 +Q sin2 θ dζ2
))

, (5.36)

e2Φ = g2
se

6λQ−3/2 , (5.37)

B2 =
e2λIR

2g2
cos3 θ vol2 , (5.38)

C1 =
ie2λIR

2gsg
e−4λQ sin2 θ dζ , (5.39)

C3 = − i

gsg3
cos3 θ vol2 ∧ dζ . (5.40)

This background is of the general form discussed in Section 4.3 with

P = 1 , Q = 4
(
4− e4λIR−4λ sin2 θ

)−1
. (5.41)
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In the IR region the scalar λ which determines the behavior of the dilaton is finite
and approaches the constant λIR. In the UV region however, the scalar λ diverges
and the the type IIA dilaton blows up. This indicates that the proper description of
the solution is in eleven-dimensional supergravity. To find this eleven-dimensional
background we can use the uplift formulae in Appendix A. However, just like in
Section 5.1, we should remember that we are working in the type IIA∗ theory
of Hull which uplifts to the M∗-theory in which the eleven-dimensional circle is
timelike. We take this into account by using a pure imaginary x11. Keeping this in
mind we find the following eleven-dimensional background

ds2
11 =

1

g
2/3
s g2

(
8e2λ̃

(
dλ̃2

sinh 2λ̃
+ sinh 2λ̃ dΩ2

5

)
− 4e4λ̃dω2

+ dθ2 + cos2 θdΩ̃2
2 + sin2 θ(dω − dζ)2

)
, (5.42)

A3 =
i

gsg3
cos3 θ (dω − dζ) ∧ vol2 , (5.43)

where we shifted λ̃ = λ − λIR and the eleventh direction is parametrized by
ggse

2λIRx11/2 = iω. This eleven-dimensional solution is valid in the limit when λ̃ is
very large. As it turns out the first line of (5.42) is simply the global metric on AdS7

whereas the second line is a metric on four-dimensional de Sitter space. Indeed
the full solution is the analytic continuation of the well-known AdS7 × S4 solution
of standard eleven-dimensional supergravity to the M∗-theory. It is encouraging
to find that in the far UV region of our spherical D4-brane solution we find the
metric in (5.42) which should be associated with the near-horizon limit of Euclidean
M5-branes. This is in line with the expectation discussed in Section 2 that the five-
dimensional maximally symmetry SYM theory on S5 flows to the superconformal
(2, 0) theory on S5 × S1 in the UV.

5.4 D2-branes

Spherical D2-branes are constructed in maximal supergravity in four dimensions
with ISO(7) gauge symmetry. This theory was first constructed by Hull in [51]
and later argued to arise as a consistent truncation of type IIA supergravity on
S6 [52], see Appendix C.4 for more details. Using once again the scalar X as radial
coordinate we can reduce the set of BPS equations (4.20)-(4.24) to a single ODE

dY 2

dX
=
Y 2(7X2 − 4X − Y 2)

X(2X(X − 1) + Y 2)
. (5.44)

This ODE is solved by

Y 4 = cX
(
X(X − 1)− Y 2

)3

, (5.45)

where c is an integration constant. After setting c = −1 we obtain a solution
connecting the UV values of the scalars X = 1, Y = 0 with their IR values as
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in (4.29) with p = 2. This choice of integration constant still leaves us with six
distinct solutions for Y (X). However, two of them, Y = ±X, are not physical since
the metric

ds2
4 =

X2 − Y 2

g2Xe−λ/2

(
dX2

(2X(X − 1) + Y 2)2
+
X2

Y 2
dΩ2

3

)
(5.46)

vanishes for these flows. Of the remaining four solutions, only two flow to the
(regular) IR. These are given by

Y 2 =
(1−X)

2X

(
(1−X)(1 + 2X) +

√
(1−X)(1 + 3X)

)
. (5.47)

The BPS equation for λ can now be readily integrated and yields

e2(λ−λIR) = 1−X +
Y 2

X
, (5.48)

with Y 2 given by (5.47). To illustrate this analytic solutions we plot it in Figure 3.

Y(X)

e
λIR-λ (X)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.0

0.2

0.4

0.6

0.8

1.0

X

•

•

Figure 3: The full analytic solution for the functions Y (X) and λ(X) in the case
p = 2. The UV region is at X = 1, Y = 0 and the IR region is indicated by the
solid dots.

This four-dimensional supergravity solution can be uplifted to a ten-dimensional
solution of type IIA supergravity using the uplift formulae in Section 4.3 with
p = 2. We have verified that all equations of motion in ten dimensions are satisfied
by the above solution. In the UV one finds that X → 1 and Y → 0 and the
ten-dimensional solution reduces to the near-horizon limit of D2-branes with flat
worldvolume. Although the four-dimensional solution is completely regular, see
(5.46), the ten-dimensional background appears to be singular in the IR due to
the fact that the metric function Q as defined in (4.32) blows up for X = 2/3
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and θ = 0. This problem can be circumvented completely by a double analytic
continuation

θ → π/2 + iθ̃ , ψ → iψ̃ , (5.49)

where θ appears in the uplift formula for the metric (4.30) and ψ is a coordinate
on the dS2 in (4.3). The analytic continuation (5.49) leaves the functions P and Q
positive in the full range of the new coordinates 0 ≤ θ̃ ≤ ∞ and 2/3 ≤ X ≤ 1 and
so the metric as well as the other fields are now regular. Furthermore the metric
remains with signature (1,9) where the θ̃ parametrizes the time direction. A careful
study of the form-fields shows that the continued solution is also a solution of type
IIA∗ with all R-R fields pure imaginary and NS-NS fields real. Finally, the global
symmetry of the solution matches with the field theory expectation (4.1) where
SU(1, 1) is now realized as the isometry group of the hyperbolic plane spanned
by (t, ψ̃). The need to perform the analytic continuation in (5.49) can perhaps
be traced to the fact that in the SYM Lagrangian in (2.4) the coefficient of one
of the bosonic bilinear terms changes sign as one goes from p > 3 to p < 3. This
interpretation is also consistent with the fact that we have to perform the same
analytic continuation for the supergravity solution describing spherical D1-branes.

As discussed in Section 3, flat D2-branes are singular in the IR since the dilaton
blows up. It is well-known that this singularity can be interpreted by going to
eleven-dimensional supergravity since flat D2-branes uplift to M2-branes smeared
over the M-theory circle. The IR singularity can therefore be understood as a direct
consequence of the smearing and its resolution is achieved by replacing the smeared
M2-branes by a point-like stack localized on the circle. In this way the singular
supergravity solution is resolved by replacing it with the AdS4 × S7 solution of
eleven-dimensional supergravity. On the gauge theory side this interpretation is
mirrored by the expectation that maximal SYM theory in three dimensions flows
to the conformal ABJM theory in the deep IR. For our spherical D2-brane solution
there is no singularity in the IR and in fact the dilaton is never so large as to
warrant an uplift to eleven dimensions. In the dual field theory the interpretation
is clear - placing three-dimensional maximal SYM on a three-sphere introduces an
IR cut-off and the RG flow never reaches the superconformal ABJM theory in the
IR. As a final comment we note that the spherical D2-brane supergravity solution
should lie in region (b) of Figure 1 in [9].

5.5 D1-branes

The final example we consider is the supergravity solution for spherical D1-branes.
In this case we have to deviate slightly from our general approach of first finding the
solution of interest in a lower-dimensional gauged supergravity and then uplifting
it to ten dimensions. The reason for this is that we are not aware of an appropriate
three-dimensional supergravity theory that is obtained by a consistent truncation
of type IIB supergravity on S8. Nevertheless we are still able to make progress and
find the solution directly in ten dimensions by solving a system of ODEs, which
resemble BPS equations derived from a three-dimensional supergravity theory,
and are obtained by analytically continuing the equations in Section 4.1 to p = 1.
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We then use the solution of these effective BPS equations in a ten-dimensional
background of the form presented in Section 4.3 with p = 1 and check explicitly
that the equations of motion of type IIB supergravity are obeyed. It is highly
non-trivial that this procedure works and we consider this sufficient evidence the
resulting solution describes the backreaction of spherical D1-branes.

To describe the solution we use again the scalar X to parametrize the radial
direction. The BPS equation for Y then reduces to

dY 2

dX
=

Y 2(7X2 + 1− Y 2)

X(2(X2 − 1) + Y 2)
. (5.50)

A particular solution to this ODE that interpolates between the IR at (X, Y ) =
(1/3,±4/3) and the UV at (X, Y ) = (1, 0) is

Y 2 =
(X + 1)(1−X)2

X
. (5.51)

Next, the equation for λ can be readily integrated, resulting in

λ = λIR +
5

2
log

1−X
2X

. (5.52)

The three-dimensional metric in (4.30) is explicitly given in terms of the scalars Y
and λ by

ds2
3 =

(1 +X)2 − Y 2

g2Xe−
4
5
λ

(
dX2

(2(1 +X)(X − 1) + Y 2)2
+
X2

Y 2
dΩ2

2

)
. (5.53)

One can then set p = 1 in the formulae in Section 4.3 and obtain an explicit solution
of type IIB supergravity.

Again we note that regularity in the IR completely fixes the profile for Y as
a function of X and the only integration constant of the solution is the one that
appears in the expression for λ in (5.52). A plot of the analytical solution for the
scalar fields is given in Figure 4. As was the case for the other spherical brane
solutions above we find that in the UV region the ten-dimensional background we
construct is asymptotic to the flat D1-brane solution of type IIB supergravity. In
the IR region the three-dimensional metric caps off smoothly which reflects the IR
cut-off provided by the scale of the S2 in the dual two-dimensional maximal SYM
theory. The ten-dimensional metric on the other hand exhibits a similar feature
as the D2-brane solution in that there is a region in the plane spanned by X and
θ for which the metric function Q becomes negative. Just as for the spherical
D2-brane solution we can cure this problem by performing the analytic continuation
(5.49). This renders the new ten-dimensional configuration a completely regular
background of type IIB∗ theory.

6 Holographic interpretation

It is natural to conjecture that the supergravity backgrounds presented in Sections
4 and 5 are holographically dual to the maximal SYM theory on Sp+1 described
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Figure 4: A analytic solution in the case p = 1. The UV region is at X = 1, Y = 0
and the IR is indicated by the solid dots.

in Section 2. So far we have presented some basic evidence for this duality — the
global symmetries and the supersymmetry of the gauge theory and the supergravity
solutions agree. More refined tests of this duality are harder to perform since
for p 6= 3 the SYM theory is not conformal and thus in general we do not have
an asymptotically AdSp+2 region in the geometry. This in turn implies that we
cannot rely on the standard holographic dictionary which is well-developed for
asymptotically AdS space-times. Nevertheless some progress can be made and our
goal in this section is to evaluate the on-shell action of the supergravity solutions
and compare the result with the free energy of the SYM theory on Sp+1 computed
by supersymmetric localization in [17,23].

It is important to emphasize that we are interested in the scaling of the free
energy of the SYM theory with the rank of the gauge group, N , and the effective
dimensionless ’t Hooft coupling λeff which is defined by

λeff(E) = g2
YMNE

p−3 , (6.1)

see for example [9]. Here E is the energy scale in the field theory at which the
coupling is defined. In the supersymmetric localization computation in [17, 23],
with which we want to compare our supergravity results, the energy scale is set
by the inverse radius of the sphere. It should also be noted that in this field
theory calculation there is an implicit choice of regularization scheme. The relation
between the energy scale in a non-conformal SYM theory and the “radial coordinate”
in a dual supergravity background is a subtle problem that has been discussed in a
similar context in [24–26]. We will make use of these results in the calculations
below.

In standard AdS holography the holographic computation of the free energy F
is performed by evaluating the renormalized on-shell action of the gravitational
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background. For our non-AdS backgrounds the procedure of holographic renormal-
ization is less developed and the calculation is more subtle. It is perhaps possible
to use the results of [26] to approach this problem in a more systematic fashion
however, since here we are mainly interested in the scaling of F with N and λeff,
we will circumvent going through the holographic renormalization procedure.

As discussed in Section 4.3, the p+ 2-dimensional supergravity action in (4.4)
is obtained by a dimensional reduction of type II ten-dimensional supergravity
on a (8 − p) dimensional de Sitter space equipped with a squashed metric. For
the purposes of evaluating the on-shell action we analytically continue all our
solutions to be fully Euclidean such that the de Sitter part of the metric becomes a
sphere. This is needed in order to obtain a finite Newton constant for the (p+ 2)-
dimensional effective supergravity theory whose on-shell action we are interested in
computing. The Newton constant in p+ 2 dimensions, κ2

p+2, is obtained by directly
integrating out the (8− p)-dimensional sphere starting from the ten-dimensional
action. Ignoring numerical volume factors coming from the integration over the
sphere we find that κ2

p+2 is related to the fundamental string theory parameters by

2κ2
p+2 =

2κ2
10g

2
s

vol8−p
∼ (2π`s)

8g2
sg

8−p . (6.2)

It turns out that to determine the scaling of the free energy with N and λeff
it is sufficient to find how the on-shell action scales with the integration constant
λIR. To this end we should find the scaling of the integrand in the action in (4.4)
with the metric function eA, which in turn depends on λIR through its dependence
on λ. This dependence is determined by rewriting the algebraic relation (4.25)
in the variables (X, Y ) using (4.26). We then make use of the fact that in these
variables the profiles for X and Y do not involve the integration constant λIR and
in fact λIR only appears as an additive constant to an explicit integral expression,
cf. (5.25) and (5.52). This means that we can easily determine the scaling of the
metric function with λIR:

ReA ∼ g−1e
p−3
6−p

λIR . (6.3)

It should be noted that for the supergravity solutions corresponding to flat Dp-
branes the integration constant λIR is not physical since it can be removed by
shifting the radial coordinate, see for example (4.13). For the spherical Dp-brane
backgrounds, however, λIR is physical since the shift of the radial coordinate can
be used to either fix the radial location of the IR region or to fix the value of λ in
the IR but not both simultaneously.

Combining all the pieces together one can show that all terms in the integrand
of the action in (4.4) scale in the same way with eλ which results in the following
scaling of the on-shell action, or alternatively the supergravity dual of the free
energy in the dual field theory,

Fsugra ∼
∫

(ReA)p

2κ2
p+2

∼ e
p(p−3)
6−p

λIR

(2π`sg)8g2
s

. (6.4)
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This expression is schematic since the on-shell action formally diverges due to the
integration over the infinite range of the radial coordinate and the asymptotic
behavior of the metric function eA in the UV region. These divergences should
be regularized by a proper application of a holographic renormalization procedure
for non-AdS space-times. Nevertheless, we believe that the scaling of the on-shell
action presented on the right hand side of (6.4) is the correct one. This is due
to the fact that the standard local holographic counterterms one can write down
appear with the same power of eλIR as in (6.4).

At this point we need to relate the supergravity parameters g, λIR, and gs to
quantities in the dual field theory. First we use the relation between g and the
rank of the gauge group N in (3.12). The relation between the effective ’t Hooft
coupling and the ten-dimensional dilaton was written down in [26] (see also [24,25])

eΦ =
1

N
cdλ

7−p
2(5−p)

eff , (6.5)

where cd is a numerical constant which can be found in eq. (2.21) of [26] but
is not important for the scaling argument we are making. The relation (6.5)
implicitly relates the energy scale of the field theory appearing in (6.1) to the
radial coordinate of the supergravity solution through the radial dependence of the
dilaton. Combining this with (4.33), we find a relation between the supergravity
parameter λIR and the effective ’t Hooft coupling19

e
p(7−p)
2(6−p)

λIR ∼ 1

gsN
λ

7−p
2(5−p)

eff . (6.6)

We are now in a position to express the holographic free energy in (6.4) in terms of
field theory quantities and find

Fsugra ∼ N2λ
p−3
5−p

eff . (6.7)

This supergravity result nicely agrees with the field theory calculation done in [23]
where the free energy of large N maximal SYM theory on Sp+1 was obtained by
supersymmetric localization for 2 < p < 5 and analytically continued to general
p 6= 5. Notice that for p = 5 the relation in (6.5) degenerates and thus the result
in (6.7) is not reliable. This was also observed in the context of flat Dp-brane
supergravity solutions in [24, 25] and is perhaps due to the fact that the world-
volume theory for D5/NS5-branes is not an ordinary local QFT in the UV. Note
also that although we have focused on the non-conformal SYM theories for p 6= 3
the result in (6.7) nicely reproduces the well-known scaling with N of the free
energy of the N = 4 SYM theory.

The case of spherical D4-branes is somewhat special since in the far UV region
the maximal five-dimensional SYM theory flows to the superconformal (2, 0) theory

19Some care has to be taken when combining (6.5) with (4.33) since the expression in (4.33)
depends on both the internal and radial coordinates. To arrive at (6.6) we used (4.33) evaluated
in the UV region.
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in six dimensions which is holographically dual to AdS7 × S4. It is well-known
that the free energy of this SCFT scales as N3. We can recover this scaling
by combining (6.7) with p = 4 and (6.1). Notice that as discussed in [53] the
holographic evaluation of the AdS7 on-shell action disagrees, by a constant factor
of order 1, with the large N result for the SYM free energy on S5 computed by
supersymmetric localization. It will be very interesting to resolve this discrepancy
and understand the role played by the asymptotically AdS7 solution discussed in
Section 5.3.

The calculation above is not valid for p = 6 since, as discussed in Section 4.1,
the scalar λ is not part of the p+ 2-dimensional supergravity theory. Fortunately
there is an alternative method that can be used to calculate the holographic
free energy of the spherical D6-brane solution. As discussed in Section 5.1 the
eleven-dimensional (Euclidean) supergravity description of the spherical D6-brane
is given by S7 ×H4/ZN . We can calculate the free energy of this background by
compactifying on S7, treat the resulting background as a solution of supergravity
in four dimensions and evaluate its on-shell action. This brings us into the familiar
territory of holographic renormalization for asymptotically locally AdS4 (or H4 in
Euclidean signature) spaces. The on-shell action for the H4/ZN background of
interest can be evaluated after adding the usual Gibbons-Hawking and curvature
counter terms. To this end we apply the results of [54] to find the holographic free
energy20

F =
L2

4

4πGN

2π2

N
, (6.8)

where the factor of N appears because the ZN action reduces the volume of the
boundary manifold S3/ZN as compared to the volume of S3. As usual, GN is the
four-dimensional Newton constant:

GN =
3π3`9

s

8L7
4

. (6.9)

The free energy can then be expressed in terms of NM2 as well as the number of
D6-branes N and takes the form

F =
πL2

4

2NGN

=

√
2π

3N
N

3/2
M2 . (6.10)

NM2 has a somewhat mysterious interpretation in the seven-dimensional field theory.
Notice that NM2 is a dimensionless quantity built from the radius of the seven-
sphere. It is thus natural to conjecture that it is related to the dimensionless
’t Hooft coupling of the field theory. Indeed if we take R−1 as the energy scale in
the effective ’t Hooft coupling (6.1) we find

23π6λ−2
eff (R−1) = 23π6(g2

YMNR−3)−2 =
23π6R6

(2π)8g2
s`

6
sN

2
=
NM2

N2
. (6.11)

20Here we use 16πGN = 2κ24 to denote Newtons constant of the four-dimensional supergravity
theory.
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To arrive at this expression we have used (5.22) and (5.23). This result is consistent
with the relation in (6.5). Using this we find the final expression for the holographic
free energy of spherical D6-branes

F =
25π10N2

3λ3
eff

. (6.12)

It is quite nice to see that this expression follows from analytically continuing the
one in (6.7) to p = 6 and therefore agrees with the field theory results in [23]. It
should be stressed that the numerical coefficients in (6.12) have been computed
using a “holographic renormalization scheme”, i.e. using the relation in (6.11).
It will be most interesting to compute this numerical coefficient from the field
theory and compare with the holographic result in (6.12). Finally, we would like to
point out that it was observed in [23] that the localization calculation for the path
integral of seven-dimensional maximal SYM on S7 exhibits features reminiscent of a
theory with conformal symmetry. Clearly this QFT is not conformal so this feature
appears puzzling. It is tempting to speculate that this localization observation is
related to the fact that in our supergravity solution the local isometries of H4/ZN
close the Euclidean three-dimensional conformal algebra SO(4, 1).

6.1 Thermal free energy

As we have emphasized numerous times, the finite size of Sp+1 provides an IR
cut-off for the low-energy dynamics of the SYM theory which is compatible with
supersymmetry. A more commonly used IR cut-off is to consider SYM at finite
temperature. This of course breaks supersymmetry but nevertheless offers the
possibility for a qualitative comparison with the holographic results above. The
supergravity dual description of a (p + 1)-dimensional maximal SYM theory at
finite temperature is given by a (p+ 2)-dimensional black brane solution which we
summarize below.

The black branes of interest are most easily described as solutions to the (p+ 2)-
dimensional gauged supergravity theory described in Section 4.1. In contrast to the
spherical brane solutions however these nonsupersymmetric backgrounds preserve
the full gauge symmetry. This fits well with the fact that in the dual gauge theory
at finite temperature the R-symmetry is preserved. The metric of the solution
takes a standard black-hole form

ds2
p+2 = dr2 + e2A(r)

(
−h(r)dt2 + dx2

p

)
, (6.13)

where dx2
p is the metric on Rp. In addition to the metric the only field with a

non-trivial profile is the scalar λ(r). The equations of motion reduce to the following
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set of equations21

A =
9− p

(6− p)(p− 3)
λ , (6.14)

log(1− h) =
2p(p− 7)

(6− p)(p− 3)
(λ− λ0) , (6.15)(

e
p−3
6−p

λ
)′

= −g(3− p)2

2p

√
h , (6.16)

where λ0 is an integration constant. When the integration constant is chosen such
that h = 1 we recover the supersymmetric flat domain wall solution in (4.13). The
horizon of the black hole is located where λ→ λ0 and the asymptotic infinity (UV)
is located where h→ 1. Notice that for p < 3 the UV is located for large negative
λ but for p > 3 it is located at large positive λ. In the near-horizon region the
metric takes the form

ds2
p+2 = dr2 − g2(7− p)2

4
e

2(5−p)p
(6−p)(p−3)

λ0(r − r0)2dt2 + e
2(9−p)

(6−p)(p−3)
λ0dx2

p . (6.17)

The temperature of the black hole can be determined using the standard trick
of ensuring that the near-horizon metric does not have conical singularities when
analytically continued to Euclidean time, it. The result is

T =
g(7− p)

4π
e

(5−p)p
(6−p)(p−3)

λ0 . (6.18)

This black brane solution can be uplifted to ten dimensions using the formulae in
Section 4.3 and the metric in string frame reads:

ds2
10 = (gU)

p−7
2

(
h−1dU2 + (gU)7−p (−h dt2 + dx2

p

)
+ U2dΩ2

8−p
)
, (6.19)

where gU = e
2p

(6−p)(p−3)
λ such that

h = 1− U7−p
0

U7−p , gU0 = e
2p

(6−p)(p−3)
λ0 . (6.20)

The dilaton and R-R fields are the same as for the flat supersymmetric brane solution
in (3.10) and (3.11). The effective ’t Hooft coupling can be easily computed using
(6.5) and (3.10) and is given in terms of the temperature

λeff ∼ (gsN)
2(5−p)
7−p

(
T

g

)p−3

∼ gsN (2π`sT )p−3 . (6.21)

An alternative way to arrive at the same relation for λeff is to first identify the
energy scale in the QFT, E, with the temperature of the black hole, T . Using this
and the relation in (6.1) one obtains again (6.21). The entropy of the black branes

21These black brane solutions are clearly well-known and studied in many references, see for
example [55]. For convenience we rederive them here in our conventions and notation.
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was computed in [9] and can be evaluated in terms of the Einstein frame area of
the horizon which is

AEinst = e−2Φ(U0)Astr ∼ g−2
s (gU0)

9−p
2 gp−8Vp , (6.22)

where Vp is the spatial volume of the Dp-branes. The area of the horizon determines
the entropy of the black brane via S = 2AEinst/κ

2
10 which in terms of the field

theory quantities takes the form

S ∼ N2λ
p−3
5−p

eff T pVp . (6.23)

It is then clear that the thermal free energy F ∼ TS has the same scaling in terms
of N and λeff as the supersymmetric free energy in (6.7). This can be viewed as
another consistency check of our field theory interpretation of the spherical brane
backgrounds as holographically dual to the maximal SYM theory on Sp+1.

7 Conclusions

In this paper we constructed explicit supergravity solutions which preserve sixteen
real supercharges and describe the backreaction of spherical Dp-branes with 1 ≤
p ≤ 6. We also argued that these backgrounds are holographically dual to the
planar limit of the maximally supersymmetric Yang-Mills theory on Sp+1. An
immediate consistency check of this claim is provided by the fact that the global
symmetries and supersymmetry of the gauge theory and the supergravity solutions
are the same. As a more refined check of the duality we showed that the on-shell
action of the supergravity solutions agrees with recent results from supersymmetric
localization about the planar limit of the free energy of the SYM theory. There
are several interesting questions for further research that arise from these spherical
brane solutions which we discuss briefly below.

While in Section 6 we described a way to extract holographic information from
the on-shell action of the spherical brane solutions and compared that successfully
with supersymmetric localization results, it is clear that the procedure we employed
is not rigorous. It is certainly desirable to understand better how to apply holo-
graphic renormalization for the spherical brane solutions in order to be able to
systematically extract supergravity results for correlation functions in the dual
SYM theory on Sp+1. The results of [26] can perhaps be adapted and used in this
context. Once the holographic renormalization procedure is under control one can
study other gauge theory observables using the spherical brane solutions. A natural
candidate are supersymmetric Wilson line operators. Depending on the representa-
tion of the gauge group these operators should be described by probe fundamental
strings or D-branes and their expectation value is captured by the on-shell action
of the probe. It would also be interesting to study these line operators in the dual
gauge theory using supersymmetric localization and perhaps establish additional
checks of this non-conformal holographic duality. The holographic calculation of
the expectation value of a BPS Wilson loop in the fundamental representation for
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the non-conformal four-dimensional N = 2∗ theory on S4 was recently performed
in [21] and the result agrees with supersymmetric localization. This gives us reasons
to be optimistic that a similar calculation for the spherical Dp-brane solutions
above should be within reach.

We constructed our ten-dimensional spherical brane solutions by first studying
supersymmetric domain walls of lower-dimensional maximal gauged supergravity
and making use of uplift formulae. There should be a more systematic way to
construct brane solutions with curved world volumes directly in ten- and eleven-
dimensional supergravity. There is of course the standard Maldacena-Núñez
construction of supergravity solutions sourced by branes with curved worldvolumes
which preserve supersymmetry via a partial topological twist [12, 56], see also [57]
for a review. However it is well-established that supersymmetric gauge theories on
curved manifolds can preserve supersymmetry in more general ways [15]. It is thus
natural to ask whether and how the branes of string and M-theory realize these
alternative supersymmetric gauge theories. This question was recently discussed
in [58,59] but it is fair to say that the subject deserves a deeper and more systematic
exploration.

Given that maximal SYM is believed to possess a unique Lagrangian on Sp+1

it is natural to conjecture that our spherical brane solutions are the unique ones
preserving 16 supercharges. This in turn should provide the unique IR cut-off of the
dual SYM theory with this amount of supersymmetry. However it should be possible
to find a generalization of our construction to gauge theories with smaller amounts
of supersymmetry by adding suitable couplings to the SYM Lagrangian. Recently
this was explored in field theory using supersymmetric localization in [23,60]. The
supergravity description of such a construction should bear similarities with the
N = 1∗ and N = 2∗ mass deformations of the four-dimensional N = 4 SYM on S4

which were recently explored in a holographic context in [19–21]. It will also be
interesting to construct similar supersymmetric supergravity solutions dual to the
maximal SYM theory on different curved manifolds. Perhaps a natural example to
consider is given by a squashed Sp+1 when p = 2k is an even integer. In this case
we can view the sphere as a U(1) bundle over CPk and squash the Einstein metric
while preserving SU(k) × U(1) invariance. This construction should preserves 8
supercharges and the partition function of the field theory should be computable
by supersymmetric localization, see for example [61–63]. It will be most interesting
to explore these questions further.

Finally we should stress that the description of spherical branes in this work
is through the supergravity solutions describing their backreaction on space-time.
It will certainly be interesting to have a better understanding of the Euclidean
Dp-branes with spherical worldvolume from the perspective of open string theory.
The proper framework for such a study appears to be the type II∗ string theories
introduce by Hull [39–41]. It is important to understand better the role of these
somewhat exotic variations of string theory and how to microscopically describe
Euclidean Dp-branes with a curved worldvolume.
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A Conventions for type II supergravity

The spherical Dp-brane backgrounds constructed in this paper solve the equations
of motion of ten-dimensional type II supergravity. This theory comes in two flavors,
type IIA and type IIB, depending on whether the chirality of the supersymmetry
generators ε1,2 is opposite or the same. The bosonic field content consists of the
NS-NS sector, common to both type IIA and type IIB, and the R-R sector. The
metric GMN , the dilaton Φ, and the three-form H3 build up the NS-NS sector,
while the R-R sector contains the n-form field strengths Fn, with n = 0, 2, 4 for
type IIA and n = 1, 3, 5 for type IIB. In type IIA F0, i.e. the Romans mass, does
not have any propagating degrees of freedom and is set to zero throughout this
paper. In type IIB F5 has to obey a self-duality condition. The fermionic field
content consists of a doublet of gravitinos, ψM , and a doublet of dilatinos, λ. The
components of these doublets are again of opposite chirality in type IIA and of the
same chirality in type IIB.

In this paper we use the democratic formalism in which the number of R-R
fields is doubled such that n runs over 0, 2, 4, 6, 8, 10 for type IIA and 1, 3, 5, 7, 9
for type IIB [64]. This redundancy is removed by introducing duality conditions
for all R-R fields

Fn = (−1)
(n−1)(n−2)

2 ?10 F10−n . (A.1)

These duality conditions should be imposed by hand after deriving the equations
of motion from the action. The bosonic part of the action written in string frame
is given by22

Sbos =
1

2κ2
10

∫
?10

[
e−2Φ

(
R + 4|dΦ|2 − 1

2
|H3|2

)
− 1

4

∑
n

|Fn|2
]
, (A.2)

where the ten-dimensional Newton constant κ10 is related to the string length
through 4πκ10 = (2πls)

8 and we have defined

?10 |A|2 ≡ ?10
1

n!
Aµ1...µnA

µ1...µn = ?10A ∧ A . (A.3)

This action should be completed by its fermionic counterpart, which we do not
22We mostly follow the conventions of [38].
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write explicitly, and is invariant under the following supersymmetry variations23

δψ1
M =

(
∇M −

1

4
/H3M

)
ε1 +

1

16
eΦ
∑
n

/FnΓMΓ(10)ε
2 ,

δψ2
M =

(
∇M +

1

4
/H3M

)
ε2 − 1

16
eΦ
∑
n

(−1)
(n−1)(n−2)

2 /FnΓMΓ(10)ε
1 ,

δλ1 =
(
/∂Φ− 1

2
/H3

)
ε1 +

1

16
eΦΓM

∑
n

/FnΓMΓ(10)ε
2 ,

δλ2 =
(
/∂Φ +

1

2
/H3

)
ε2 − 1

16
eΦΓM

∑
n

(−1)
(n−1)(n−2)

2 /FnΓMΓ(10)ε
1 ,

(A.4)

where ΓM are the ten-dimensional gamma matrices and Γ(10) is the chirality operator.
The Feynman slash notation for an n-form field is defined as follows

( /An)Mk+1···Mn ≡ ΓM1···Mk(An)M1···MkMk+1···Mn , (A.5)

for k ≤ n and ΓM1···Mk ≡ 1
k!

Γ[M1 · · ·ΓMk] is the totally antisymmetric product of k
gamma matrices.

The Bianchi identities and equations of motion derived from the action (A.2)
are

dH3 = 0 , and d(e−2Φ ?10 H3) +
1

2

∑
n

?10Fn ∧ Fn−2 = 0 , (A.6)

for the NS-NS field H3 and

dFn −H3 ∧ Fn−2 = 0 , (A.7)

for the R-R form fields. The NS-NS and R-R fluxes can be written in terms of
potentials as

Fn = dCn−1 −H3 ∧ Cn−3 , H3 = dB2 . (A.8)

The dilaton and the Einstein equations of motion can be written as

0 = ∇2Φ− |dΦ|2 +
1

4
R− 1

8
|H3|2 ,

0 = RMN + 2∇M∇NΦ− 1

2
|H3|2MN −

1

4
e2Φ
∑
n

|Fn|2MN ,
(A.9)

where we have defined

|An|2MN ≡
1

(n− 1)!
(An)M

M2···Mn(An)NM2···Mn . (A.10)

In the strong coupling limit, gs � 1, type IIA string theory is expected to be
described by M-theory. Therefore it will sometimes be useful to uplift our ten-
dimensional type IIA supergravity solutions to eleven-dimensional supergravity.

23In these formulae we have implicitly chosen positive chirality spinors in type IIB supergravity.
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When compactified on a circle the eleven-dimensional theory has two parameters,
the eleven-dimensional Newton constant κ11 and the radius of the circle R11. These
are related to the ten-dimensional parameters as follows

R11 = `s and κ2
11 = 2πR11κ

2
10 . (A.11)

The bosonic fields of eleven-dimensional supergravity are the metric and a three-
form potential A3. Their dynamics is governed by the following action

S =
1

2κ2
11

∫
?11

[
R− 1

2
|dA3|2

]
− 1

12κ2
11

∫
A3 ∧ dA3 ∧ dA3 . (A.12)

To reduce to ten dimensions we make the following Kaluza-Klein ansatz

ds2
11 = e−

2
3

ΦGMNdxMdxN + e
4
3

Φ
(
dx11 + C1

)2
,

A3 = C3 +B2 ∧ dx11 .
(A.13)

All fields appearing on the right hand side of (A.13) are the ten-dimensional type
IIA fields in string frame.

B Flat Euclidean D-branes

In this appendix we explicitly show that flat Euclidean Dp-branes are indeed
supersymmetric solutions of type II∗ supergravity. For more details on these
theories, including the type II∗ actions, see for example [65].

The supersymmetry variations are exactly the same as those of regular type II
supergravity, see (A.4), with the only difference that the R-R fields now have to be
treated as purely imaginary and the spinor obeys an unusual reality condition. For
type IIA∗ the spinors satisfy a MW∗ condition

ε∗ = −CAΓ(10)ε , (B.1)

and similarly for type IIB∗
ε∗ = CAσ3ε , (B.2)

where ε = (ε1, ε2)T and A and C define respectively Dirac conjugation, χ̄D ≡ χ†A,
and Majorana conjugation, χ̄ ≡ χTC. The reality conditions for the spinors are
thus equivalent to

ε̄ = −ε̄DΓ(10) , (B.3)

for type IIA∗ while for type IIB∗ we find

ε̄ = ε̄Dσ3 . (B.4)

We can now check explicitly that the flat Euclidean branes of Hull are indeed
1
2
-BPS solutions of type II∗ supergravity, i.e. they preserve 16 real supercharges.

The solutions are given by

ds2
10 = H−1/2ds2

p+1 +H1/2ds2
1,8−p , (B.5)

eφ = gsH
(3−p)/4 , (B.6)

Cp+1 = i(gsH)−1volp+1 (B.7)
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In these solutions ds2
p+1 is the metric of flat (p+ 1)-dimensional Euclidean space,

ds2
1,8−p is the Minkowski metric on R1,8−p, and H is a harmonic function on this

Minkowski space.
Inserting these solutions into the supersymmetry variations we see that they

can indeed be solved by imposing the usual Dp-brane projector with an extra i
inserted (

1 + iΓ0...pΓ(10)P
)
ε = 0 . (B.8)

Here P = σ1 when p(p+1)
2

is even and P = iσ2 when p(p+1)
2

is odd. It is important
to note that the projector above is consistent with the reality condition obeyed
by the spinors in the type II∗ supergravity theory. We would like to stress that
this subtle interplay of imaginary R-R fluxes and unusual reality conditions on the
spinors is the reason why Euclidean branes preserve supersymmetry in type II∗
string theory and supergravity.

C Gauged supergravity for spherical branes

In this appendix we introduce, case by case, the (p + 2)-dimensional gauged
supergravity theories used to construct the spherical Dp-brane solutions discussed
in the main text. The supergravity theories available in the literature are Lorentzian
and we need to analytically continue them to Euclidean signature. After presenting
in some detail the construction of the gauged supergravity solutions we perform
their uplifts to ten-dimensional type II and/or eleven-dimensional supergravity.

As emphasized in the main text, we start with a maximally supersymmetric
gauged supergravity theory in p+2 dimensions and perform a consistent truncation,
following the method of [66], to preserve an SO(3) × SO(6 − p) subgroup of the
SO(9− p) gauge group, corresponding to the R-symmetry in the dual SYM theory.
By analytically continuing the supergravity theory to Euclidean signature we end
up with a non-compact SO(1, 2)× SO(6− p) ' SU(1, 1)× SO(6− p) gauge group,
in harmony with (2.5). We start with the case p = 6 and work our way down to
p = 2.

C.1 Spherical D6-branes

The supergravity theory appropriate for our construction is the maximal SO(3)
gauged supergravity in eight dimensions, originally constructed in [67], analytically
continued to Euclidean signature and non-compact gauge group. The uplift of this
theory to eleven-dimensional supergravity as well as more general gaugings are
discussed in [43].

C.1.1 Maximal eight-dimensional SO(3) gauged supergravity

The maximal N = 2 ungauged supergravity theory in eight dimensions has
E3(3) ' SL(3,R)× SL(2,R) global symmetry under which the bosonic fields of the
theory transform. In particular, the 7 scalars parametrize the five-dimensional and
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two-dimensional coset spaces SL(3,R)/SO(3) and SL(2,R)/SO(2) and are most
conveniently expressed in terms of two matrices Z and A transforming according to

Z→ GZH , where G ∈ SL(3,R) and H ∈ SO(3) ,

A→ KAL , where K ∈ SL(2,R) and L ∈ SO(2) .
(C.1)

The fermionic fields transform under SO(3)× SO(2) ' SU(2)× U(1) which acts
as the R-symmetry of the supergravity theory.24 In total, the field content of
the ungauged theory consists of the metric gµν , two sixteen-component gravitini
ψaµ, six gaugini λai , seven scalars ZM

i and AIJ , one three-form tensor field Aµνρ,
three two-form tensor fields AMµν , and six one-form vector fields AMN

µ . We use
the following index conventions: µ, ν, ρ = 0, . . . 7 are eight-dimensional spacetime
indices; M,N = 1, 2, 3 are SL(3,R) indices in the fundamental; I, J = 1, 2 are
SL(2,R) indices in the fundamental; i, j = 1, 2, 3 are in the 3 and a, b = 1, 2 are in
the 2 of SU(2) ' SO(3), respectively.

To obtain a gauged supergravity theory with a non-trivial potential for the
scalars a subgroup of the global symmetry group should be promoted to a local
symmetry. This can be done in several inequivalent ways by gauging a subgroup
of the global symmetry group. By gauging the maximal compact subgroup SO(3)
in SL(3,R) one obtains the theory studied by Salam and Sezgin in [67]. This
theory can be obtained by reducing the eleven-dimensional supergravity to eight
dimensions on an SU(2) group manifold. As described in [43] one can also obtain
more general gaugings by reducing the eleven-dimensional supergravity on different
group manifolds. One example is a reduction on an SU(1, 1) group manifold resulting
in the Lorentzian eight-dimensional SO(1, 2) ' SU(1, 1) gauged supergravity. This
case can be understood as an analytic continuation of the Salam-Sezgin theory
or as a “non-compactification” of eleven-dimensional supergravity. However, this
SU(1, 1) gauged supergravity theory is still Lorentzian. To obtain the Euclidean
action appropriate for constructing the spherical brane solutions of interest we
need to combine this analytic continuation of the gauge group with an analytic
continuation of the time direction in space-time.

C.1.2 SO(3) invariant truncation

We begin with the SO(3) gauged supergravity of [67] and are interested in con-
structing solutions which preserve the SO(3) gauge symmetry and have a maximally
symmetric seven-dimensional factor in the metric. These requirements eliminate
all tensor fields in the supergravity theory except the metric itself. There are two
scalars, a “dilaton” β and an “axion” χ, parametrizing an SL(2,R)/SO(2) coset,
which are not charged under the SO(3) gauge symmetry.

The Lagrangian for the bosonic fields in this SO(3) invariant truncation reads25

S =
1

2κ2
8

∫
?8

{
R− 1

2

(
|dβ|2 + e2β|dχ|2

)
− V

}
. (C.2)

24We are cavalier about the global difference between SO(3) and SU(2).
25Our notation is different from the one in [67]. We have defined β ≡ −2φSS, χ ≡ −2BSS,

g ≡ gSS

2 , where quantities with an SS subscript are the ones used in [67].
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The potential is proportional to the gauge coupling constant, g, of the supergravity
theory and is given by

V = −3

2
g2eβ . (C.3)

It proves convenient to introduce the complex scalar τ = χ+ ie−β as in (4.5), the
Kähler potential as in (4.6), and superpotential as in (4.12) The potential in (C.3)
can then be written in terms of the superpotential (4.12) using the expression
(4.11).

The supersymmetry variations of this truncation of the supergravity theory can
be read off from [43,67]. They can be explicitly written as

δψµ = ∇µε+
1

8
eK∂µ(τ + τ̄)ε+

1

24
eKWγ9γµε , (C.4)

δλi =

(
τ − τ̄

2
∂µτ̄ γ9γ

µ +
1

6
eKDτW

)
σiε , (C.5)

where γ9 = iγ01...7, the spinor εa is in the 2 of SO(3), (σi)
a
b are SO(3) Pauli matrices,

and Dτ is the Kähler covariant derivative defined below (4.9).
As described in the main text, we are interested in an analytic continuation of

this gravitational theory and its supersymmetry variations into Euclidean signature.
This is achieved by changing the signature of the metric as well as replacing the
pseudoscalar as follows, χ→ iχ. In addition we should treat the complex conjugate
of the scalar τ as an independent scalar. We emphasize this by using the notation
W → W̃ and τ̄ → τ̃ .

To find the solution of interest we impose the usual spherically symmetry
domain wall ansatz for the metric as in Equation (4.19)

ds2
8 = dr2 +R2e2AdΩ2

7 , (C.6)

and assume that the the scalar fields only depend on the radial coordinate r.
To solve the supersymmetry variations in (C.4) we use a conformal killing spinor

on S7 obeying

∇S7

µ ε =
i

2
γµε . (C.7)

Here ∇S7 is the covariant derivative on the unit radius S7. Note that this is in
harmony with the expected supersymmetry generator for the seven-dimensional
SYM theory on S7, see (2.3).

The vanishing of the gaugino and gravitino variations then leads to the following
differential equations

Kτ̃ τ (τ̃ ′)(τ ′) =
1

16
eKWW̃ , (C.8)

(A′)2 −R−2e2A =
1

144
e2KWW̃ , (C.9)

where a prime denotes differentiation with respect to r. Notice that the equations
in (C.8) correspond to a degenerate limit of (4.20)-(4.24) in which we remove the
scalar λ and set p = 6.
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There is a subtlety when analyzing the BPS equations in this truncation of the
eight-dimensional supergravity. There are only two independent equations in (C.8)
and thus one of the two scalars in the model appears to not be constrained by a
differential equation. This problem is fixed by the equations of motion which lead
to the following first order differential equation for the scalar χ

χ′ =
6

R
e−2Ke−7A . (C.10)

We have a first order equation in (C.10) because the scalar χ does not appear in
the potential V in (C.3) and the usual second order differential equation has an
integral of motion which reduces the order of the equation. The constant coefficient
on the right hand side of (C.10) is the unique value of this integral of motion which
makes the BPS equations in (C.8) together with (C.10) compatible with all other
equations of motion and with the integrability of the supersymmetry variations in
(C.4).

The gauged supergravity solution discussed above can be uplifted to type IIA
and eleven-dimensional supergravity and the explicit result is presented in Section
5.1.

C.2 Spherical D5/NS5-branes

To construct a supergravity solution describing spherical D5- or NS5-branes we
consider the maximal seven-dimensional SO(4) gauged supergravity constructed
in [44]. We then use the results of [68] to uplift this seven-dimensional solution to
ten-dimensional type IIB supergravity.

C.2.1 Maximal seven-dimensional SO(4) gauged supergravity

The maximal N = 4 ungauged supergravity theory in seven dimensions has
E4(4) = SL(5) global symmetry under which the bosonic fields transform. In
particular the fourteen scalars span the coset space SL(5)/SO(5) and can be
parametrized by a matrix Z that transforms according to

Z→ GZH , where G ∈ SL(5) and H ∈ SO(5) . (C.11)

In addition to the bosonic fields, the fermions transform under SO(5) ' USp(4)
which acts as the R-symmetry group of the supergravity theory. In total the field
content of the ungauged theory consists of the metric gµν , four gravitini ψaµ, five
two-forms BM

µν , ten vector fields AMN
µ , sixteen gaugini χabc, and fourteen scalar

fields Z ab
M . We use the following index conventions: a, b = 1, . . . , 4 denote USp(4)

indices;M,N = 1, . . . , 5 are SL(5) indices, and µ, ν = 0, . . . , 6 are seven-dimensional
spacetime indices.

The global symmetries can be promoted to a local symmetry in several in-
equivalent ways. Gauging the maximal compact subgroup SO(5) ⊂ SL(5) one
obtains the well known gauged supergravity theory [45]. This theory has a max-
imally supersymmetric AdS7 vacuum and can also be obtained by performing a
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consistent truncation of eleven-dimensional supergravity on S4. Further gaugings
were discovered in [69] and a complete classification was obtained in [44] using the
embedding tensor formalism. We are interested in a maximal supergravity with
an SO(4) gauge group which should capture domain wall solutions describing the
backreaction of NS5/D5-branes. It was anticipated in [25] that such a supergravity
theory should exist and indeed it was explicitly constructed in [44].26

In the maximal SO(4) gauged theory the SL(5) representations of the bosonic
fields are decomposed into representations of the gauge group. The ten vector
fields that transform in the 10 of SL(5) transform in 6 + 4 of SO(4) where the 6
plays the role of the SO(4) gauge field. Four of the two-forms BM

µν become massive
by combining with the 4 other vector fields. The fifth two-form is uncharged and
is present also in the N = 2 theory [70]. Finally, the scalars transform in the
symmetric traceless of SL(5), i.e. the 14, which decomposes into the 9 + 4 + 1
representation of SO(4).

C.2.2 SO(3) invariant truncation

The R-symmetry of the six-dimensional SYM theory on S6 is SO(1, 2) and thus we
should find an SO(3) invariant truncation of the SO(4) gauged supergravity which
we can then analytically continue. Imposing this symmetry on the theory and
keeping only fields compatible with a solution preserving the isometries of S6 leads
to a consistent truncation of the SO(4) gauged supergravity consisting of the metric
and three real scalar fields. This is in agreement with the field theory discussion
in Section 2. More precisely, the three supergravity scalars should be dual to
the Yang-Mills coupling and the two independent operators in the deformation
Lagrangian (2.4).

The three scalars invariant under the SO(3) symmetry of interest here are the
singlets in the branching rules of the breaking of SO(4) to SO(3)

9→ 5⊕ 3⊕ 1 , 4→ 3⊕ 1 , 1→ 1 . (C.12)

In the notation of [44] the parametrization of the scalar coset element for these
three scalars is

Z =


e−φ−x 0 0 0 0

0 e−φ−x 0 0 0
0 0 e−φ−x 0 0
0 0 0 e−φ+3x e4φχ
0 0 0 0 e4φ

 . (C.13)

Notice that χ is a pseudoscalar. These three scalars parametrize the following
submanifold of the SL(5)/SO(5) scalar coset

R+ ×
SL(2,R)

SO(2)
, (C.14)

26A half-maximal version of the supergravity theory which can be viewed as a consistent
truncation of the maximal theory was studied in [70].
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where R+ is parametrized by the combination λ ≡ −φ − x and SL(2,R)/SO(2)
is parametrized by β ≡ 5φ − 3x and χ. The bosonic action for this consistent
truncation takes the familiar form (4.4) with p = 5

S =
1

2κ2
7

∫
?7

{
R− 15

2
|dλ|2 − 1

2

(
|dβ|2 + e2β|dχ|2

)
− V

}
. (C.15)

The potential is proportional to the gauge coupling constant g and takes the form

V =
g2

2
eβ(−3eλ − 6e−4λ−β + e−9λ−2β + e−9λχ2) . (C.16)

After introducing the scalar τ = χ+ie−β one can use the superpotential in (4.8) and
the Kähler potential in (4.6) to write the potential in terms of the superpotential
as in (4.9).

The supersymmetry variations for this consistent truncation can be obtained
from the results in [44]. The vanishing of the spin-1

2
variations leads to the equations

∂µ(λ)γµε1 = − 1

15
eK/2∂λWε4 , ∂µ(λ)γµε4 = − 1

15
eK/2∂λWε1 , (C.17)

∂µτ̄ γ
µε1 =

(
e−KKτ̄ τ

)1/2
DτWε4 , ∂µτγ

µε4 =
(
e−KKτ τ̄

)1/2
Dτ̄Wε1 . (C.18)

From the spin-3
2
variations we find

∇µε
1 +

i

8
eK∂µ(τ + τ̄) ε1 = − 1

20
eK/2Wγµε

4 , (C.19)

∇µε
4 − i

8
eK∂µ(τ + τ̄) ε4 = − 1

20
eK/2Wγµε

1 . (C.20)

There are four supersymmetry generators, εa, in the maximal supergravity theory.
However the equations for the pair (ε2, ε3) are identical to the ones presented above
for (ε1, ε4).

As described in the main text, the analytic continuation to Euclidean signature
corresponds, at this level, to the replacement χ→ iχ accompanied by the substi-
tutions W → W̃ and τ̄ → τ̃ . After this analytic continuation we can look for the
spherical brane solution by imposing the domain wall metric ansatz as in (4.19)

ds2
7 = dr2 +R2e2A(r)dΩ2

6 , (C.21)

and assume that all scalars depend only on the radial coordinate r. Furthermore
we can assume that ε1,4 are conformal Killing spinors on S6

∇S6

α

(
ε1
ε4

)
=

1

2
γ∗γα

(
ε1
−ε4

)
, (C.22)

where γ∗ ≡ iγ123456. With this at hand we can derive the system of BPS equations in
(4.20)-(4.24) with p = 5. Furthermore, combining the spin-1

2
and spin-3

2
equations

we can find an algebraic equation for A as in (4.25) with p = 5.
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C.2.3 Uplift to type IIB supergravity

Any solution of the seven-dimensional SO(4) gauged supergravity can be uplifted to
the ten-dimensional type IIB supergravity using the uplift formulae of [68]. When
we apply these uplift formulae to the solutions of the BPS equations in (4.20)-(4.24)
with p = 5 we obtain the spherical NS5-brane solution with the following string
frame metric

ds2 =
1√
X

(
e−4λdr2+

X((1− 3X)2 − 9Y 2)

g2Y 2
dΩ2

6+
1

g2
dθ2+

sin2 θX

g2(sin2 θ +X cos2 θ)
dΩ̃2

2

)
.

(C.23)
The remaining ten-dimensional fields are given by

e2Φ =
e−10λ

X(sin2 θ +X cos2 θ)
,

C0 = iY e5λ cos θ ,

B2 = − 1

g2

(
θ − sin 2θX

2(sin2 θ +X cos2 θ)

)
vol2 ,

C2 = −i Y e5λ sin3 θ

g2(sin2 θ +X cos2 θ)
vol2 ,

(C.24)

where vol2 is the volume element of the dΩ̃2
2 metric in (4.3). Integrating the H and

F3 flux derived from (C.24) over the three-dimensional space spanned by θ and
dΩ̃2

2 we find that the D5-brane charge is vanishing while the NS5-brane charge is
not. This fits nicely with the interpretation of this background as corresponding to
spherical NS5-branes.

The spherical D5-brane solution can be obtained from the spherical NS5-brane
solution above by acting with the SL(2,R) global symmetry of the type IIB
supergravity. This transformation acts on the supergravity background fields as
follows

τIIB 7→
aτIIB + b

cτIIB + d
,

[
C2

B2

]
7→
[
a b
c d

] [
C2

B2

]
, where

[
a b
c d

]
∈ SL(2,R) .

(C.25)
Here τIIB ≡ C0 + ie−Φ is the axion-dilaton field and the Einstein frame metric
remains unchanged. Applying this transformation to the background in (C.24)
with a = d = 0 and b = −c = 1, yields the spherical D5-brane solution in type IIB
supergravity. The fluxes of this D5-brane solution are the same as the ones in (4.34)
with p = 5. In particular the H flux integral over dθ and dΩ̃2

2 vanishes while the R-R
flux integral over this space does not. For other values of the SL(2,R) parameters
in (C.25) we obtain more general solutions which should describe (p, q)-fivebranes
wrapped on S6.

C.3 Spherical D4-branes

If we are to follow the pattern of gauged supergravity theories used to construct
spherical Dp-brane solutions we should use a maximal six-dimensional SO(5) gauged
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supergravity. This theory is not so well studied in the literature and the only analysis
we are aware of is the one in [71] where the author constructed the six-dimensional
theory through a dimensional reduction of the maximal seven-dimensional SO(5)
gauged supergravity on a circle. We will thus describe the spherical D4-brane
background as a solution of this maximal seven-dimensional supergravity theory.
The SO(5) gauged supergravity has a maximally supersymmetric AdS7 solution
dual to the conformal vacuum of the (2, 0) six-dimensional SCFT which fits well
with the field theory expectation, discussed in Section 2, that the five-dimensional
maximal SYM theory on S5 flows in the UV to the six-dimensional (2, 0) theory
on S5 × S1.

The maximal SO(5) gauged supergravity in seven dimensions was constructed
in [45] and can be obtained as a consistent truncation of eleven-dimensional
supergravity on S4. Any solution of the seven-dimensional theory can be uplifted to
eleven dimensions using the uplift formulae of [72]. The field content of the theory
is the same as for the SO(4) gauged supergravity discussed in Appendix C.2.1.
The difference comes from the gauging which in this case is SO(5). This gauging
of course fits in the general classification of [44], whose conventions we use, and
affects the details of the Lagrangian of the theory and thus the space of solutions.

C.3.1 SO(3) invariant truncation

The R-symmetry breaking pattern discussed around (2.5) dictates that we should
look for the spherical D4-brane solutions in an SO(3)× SO(2) invariant truncation
of the SO(5) gauged supergravity. This, combined with the requirement that the
solution should have the isometries of S5 × S1, leads to a consistent truncation
which consists of the metric, a single real scalar field, x, and a single SO(2) gauged
field, A.27 The scalar coset matrix (C.11) for this truncation is diagonal and reads

Z = diag(e−x, e−x, e−x, e3x/2, e3x/2) . (C.26)

The bosonic action can be obtained from [44] and reads

S =
1

2κ2
7

∫
?7

{
R7 −

15

2
|dx|2 − 1

2
e6xFµνF

µν − V7

}
, (C.27)

where F = dA is the gauge field strength of A and the potential is proportional to
the gauge coupling constant g,

V7 = −3

2
g2e−x(4 + e5x) . (C.28)

We can now dimensionally reduce this theory on S1 to a six-dimensional
gravitational theory.28 To this end we use the following metric and gauge field
ansatz

ds2
7 = e−φds2

6 + e4φdω2 , A = χdω . (C.29)
27The SO(2) gauge field generator can be thought of as the 45 component of the 5× 5 matrix

generator of the SO(5) gauge field.
28It should also be possible to construct this six-dimensional theory as a consistent truncation

of the six-dimensional maximal gauged supergravity studied in [71].
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The scalar fields φ and χ depend only on coordinates of the six-dimensional space
with metric ds2

6. To conform with the notation used throughout this work it is
convenient to define the following combination of these two scalars

β ≡ 3x− 2φ , and λ ≡ x+ φ . (C.30)

The six-dimensional Lagrangian of the dimensionally reduced theory then reads

S =
1

2κ2
6

∫
?6

{
R− 3|dλ|2 − 1

2

(
|dβ|2 + e2β|dχ|2

)
− V

}
, (C.31)

where R is the Ricci scalar for the metric ds2
6 and the six-dimensional potential is

V = −3

2
g2e−λ(4 + eβ+2λ) . (C.32)

The derivation of the BPS equations now follows a familiar pattern. We work
with the supersymmetry variations of the seven-dimensional maximal supergravity
theory as given in [44]. To present them succinctly we define the scalar τ = χ+ ie−β

and the superpotential as in (4.8) with p = 4. Using the Kähler potential in (4.6)
one can then show that the six-dimensional potential in (C.32) can be written in
the general form (4.9) with p = 4. Combining the gaugino and gravitino variations
of [44] we find

∂µλγ
µε =

1

6
eK/2∂λWε , (C.33)

∂µτγ
µ = (e−KKτ̄ τ

)1/2
DτWε , (C.34)

∇µε+
i

8
eK∂µ(τ + τ̄) ε = − 1

16
eK/2Wγµε . (C.35)

Now we can perform the familiar analytic continuation to Euclidean signature
by treating τ and τ̄ → τ̃ as independent scalars and performing the substitution
χ→ iχ. For the metric we use the usual spherical domain wall ansatz

ds2
6 = dr2 +R2e2AdΩ2

5 , (C.36)

and assume that all scalar fields depend only on r. The supersymmetry parameter
ε is a conformal Killing spinor on S5 obeying

∇S5

µ ε =
i

2
γµε . (C.37)

We can plug this in the supersymmetry variations (C.33) and derive the system of
BPS equations in (4.20)-(4.24) and the algebraic equation in (4.25) with p = 4.

C.3.2 Uplift to eleven-dimensional and type IIA supergravity

The solution of the maximal seven-dimensional SO(5) gauged supergravity described
above can be uplifted to eleven dimensional M∗ theory using the uplift formulae
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presented in [73,74]. Using the functions P and Q defined in (4.31) we can write
the eleven-dimensional metric as

ds2
11 =g−2/3

s e−λP−1/3 ds2
6 + g4/3

s e4λQ−1 P 2/3

(
dx11 +

iY Q sin2 θ

gsge2λX
dζ

)2

+
g
−2/3
s P−1/3

g2

(
dθ2 + P cos2 θ dΩ̃2

2 +Q sin2 θ dζ2
)
,

(C.38)

where x11 should be taken as pure imaginary and therefore spans a timelike U(1)
whereas ζ spans a spacelike U(1). The three-form gauge field is

A(3) =
P cos3 θ

g2X

(
− i

gsg
dζ + e2λY dx11

)
∧ vol2 , (C.39)

where vol2 is the volume form of the two dimensional de Sitter space in (4.3).
This eleven-dimensional solution can be dimensionally reduced to ten-dimensional

type IIA∗ supergravity along the timelike U(1) spanned by x11 using the formulae
in (A.13). The result is a type IIA background of the form described in Section 4.3
with p = 4. Notice that we introduced gs by hand in the above to conform with
the notation in Section 4.3 and the rest of the paper.

C.4 Spherical D2-branes

To construct spherical D2-branes we employ the four-dimensional maximal ISO(7)
gauged supergravity as presented in [75]. We construct spherical brane solutions to
this theory which can then be uplifted to both type IIA and eleven-dimensional
supergravity.

C.4.1 ISO(7) gauged supergravity in four dimensions

The maximal ungauged supergravity in four dimensions has E7(7) global symmetry
under which the bosonic fields transform. In particular, the scalars parametrize
the 70-dimensional coset space E7(7)/SU(8) with coset element Z that transforms
according to

Z→ GZH , where G ∈ E7(7) and H ∈ SU(8) . (C.40)

In addition to the bosonic fields, the fermions transform under SU(8) which acts
as the R-symmetry of the supergravity theory. In total, the field content of the
ungauged theory consists of the metric gµν , eight gravitini ψiµ, 56 gaugini χijk, 28

gauge fields AMµ and 70 scalars ZijM . Here we use the following index conventions:
µ, ν = 0, . . . , 3 are four-dimensional spacetime indices, M = 1, . . . , 56 are E7(7)

indices and i, j = 1, . . . , 8 are SU(8) indices.
A subgroup of the global symmetry group of the supergravity theory can

be promoted to a gauge group in several inequivalent ways. The well-known
SO(8) gauged supergravity theory described in [76] is obtained in this way and is
relevant for the low-energy dynamics of a system of coincident M2-branes since
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it arises as a consistent truncation of the eleven-dimensional supergravity on
S7. Here we are however interested in D2-branes and thus should use an ISO(7)
gauged four-dimensional supergravity. There are two inequivalent ways to find a
four-dimensional maximal supergravity theory with an ISO(7) gauge group. The
“electrically gauged” theory was constructed in [51] (see also [52]) and is the one
that admits an uplift to type IIA supergravity with vanishing Romans mass. This
will be the theory we focus on for our analysis. The other inequivalent gauging is
described in detail in [75] and is relevant for compactifications of the massive type
IIA supergravity on S6 [77].

C.4.2 SO(3) invariant truncation

We use the results of [75] and focus on the electric gauging with m = 0 relevant for
type IIA supergravity with vanishing Romans mass. We want to study a solution
that preserves SO(4) × SO(3) gauge symmetry and has maximally symmetric
three-dimensional factor in the metric. This truncation eliminates most scalars
and all tensor fields except the metric. A larger truncation of this four-dimensional
supergravity which imposes only SO(4) symmetry was studied in Section 5 of [75].
The SO(4)× SO(3) truncation of interest here can be obtained from that larger
truncation by setting one of the pseudoscalars in [75] to zero. To comply with
the notation used in the main text we make the following change of notation with
respect to [75]

λ ≡ 2ϕGV , β ≡ φGV , χ ≡ ρGV , χGV = 0 , (C.41)

where the subscript GV refers to the quantities used in Section 5 of [75].
The bosonic Lagrangian of this supergravity truncation can be read off from [75]

L = ?4

{
R− 3

4
|dλ|2 − 1

2

(
|dβ|2 + e2β|dχ|2

)
− V

}
, (C.42)

where the potential V is given by

V = −1

2
g2e−β

[
24eλ/2+β + 8e2β + 3eλ(1 + χ2e2β)

]
. (C.43)

and as usual g is the gauge coupling. Notice that this Lagrangian is of the general
form in (4.4) with p = 2.

We are not aware of a reference in the literature where the explicit fermionic
supersymmetry variations for this ISO(7) gauged supergravity were presented.
However the authors of [75] write down an explicit superpotential for our truncation
and, after defining τ = χ+ ie−β, it can be readily checked that it coincides with
the one in in (4.8) with p = 2. Using the Kähler potential in (4.6) one can then
show that the potential in (C.43) can be written in the general form (4.9) with
p = 2. In addition one can show explicitly that the system of BPS equations in
(4.20)-(4.24) and the algebraic equation (4.25) (with p = 2) imply the equations
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of motion derived from the Lagrangian in (C.42).29 We consider these results as
sufficient evidence that any solution to the system of equations in (4.20)-(4.24)
describes a supersymmetric solution of the four-dimensional ISO(7) electrically
gauged supergravity theory.

Finally we point out that one can use the uplift formulae provided in [77]
to uplift any solution of the four-dimensional ISO(7) gauged supergravity to a
solution of type IIA supergravity. For the SO(4) × SO(3) truncation described
above this uplifted ten-dimensional background has the form presented in Section
4.3. The ten-dimensional solution has vanishing Romans mass and thus can be
further uplifted to a solution of eleven-dimensional supergravity using the formulae
in (A.13).
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