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Abstract

In the present investigation we consider the possibility of having new massive, higher spin

W-supergravity theories, which do not exist as four-dimensional perturbative models. These

theories are based on a double copy construction of two supersymmetric field theories, where

at least one factor is given by a N = 3 field theory, which is a non-perturbative S-fold of N = 4

super Yang-Mills theory. In this way, we can obtain as S-folds a new N = 7 (corresponding to

28 supercharges) W-supergravity and its N = 7 W-superstring counterpart, which both do not

exist as four-dimensional perturbative models with an (effective) Langrangian description. The

resulting field resp. string theory does not contain any massless states, but instead a massive

higher spin-four supermultiplet of the N = 7 supersymmetry algebra. Furthermore we also

construct a four-dimensional heterotic S-fold with N = 3 supersymmetry. It again does not

exist as perturbative heterotic string model and can be considered as the heterotic counterpart

of the N = 3 superconformal field theories, which were previously constructed in the context of

type I orientfold models.

http://arxiv.org/abs/1805.10022v2
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1 Introduction

For space-dimensions D ≥ 4 supergravity theories [1, 2] have been investigated in great detail (for

overviews see e.g. [3, 4]). Moreover this discussion has been extended in [5], where also a full clas-

sification of all possible number of supercharges has been obtained for the case of D = 3.1 One

of the main results is that a supergravity theory with 28 supercharges, here commonly referred as

N = 7 supergravity using four-dimensional language, is not possible. In fact, when constructing the

corresponding superalgebras and also using CPT symmetry, the local N = 7 supersymmetry is al-

ways automatically extended to the case of maximal supersymmetry, namely to N = 8 supergravity

with 32 supercharges. The absence of a perturbative N = 7 supergravity theory is analogous to

the absence of any perturbative, four-dimensional supersymmetric gauge theories with rigid N = 3

supersymmetry. Again, using same kind of arguments as in supergravity, one can show that the

N = 3 superalgebra of a CPT invariant gauge theory action is always extended to the maximal case

of N = 4 rigid supersymmetry. To summarize, the three main assumptions, which enter the N = 7

supergravity as well as the N = 3 field theory no-go theorems, are as follows:

• The theory is weakly coupled.

• There exist a CPT invariant Langrangian description.

• For the case of supergravity, there exist a massless, N-extended spin-two supergravity multiplet

and no higher spin massless multiplets.

The prime goal of this paper is to provide some good arguments for the existence of a new kind of

N = 7 locally supersymmetric theory in D = 4, which is not based on a conventional, perturbative

supergravity action, but which however is strongly coupled and does not exists as a Langrangian

theory. It will not contain a massless spin-two N = 7 supergravity multiplet, but a massive N = 7

multiplet of higher spin-four, which realizes the N = 7 supersymmetry algebra. In analogy to higher

spin theories in two dimensions we call these theories N = 7 W-supergravity theories.2 In this way

the above assumptions for the no-go theorems are circumvented. This new N = 7 W-supergravity

theory is analogous to the N = 3 supersymmetric gauge theories, which were recently constructed

in [7–9] and which are non-perturbative in the sense that they only exist at strong gauge coupling and

that they also do not allow for a known Lagrangian formulation with a massless gauge supermultiplet.

Furthermore they are conjectured to be superconformal. The N = 3 supersymmetric gauge theories

can be constructed as S-folds starting from N = 4 supersymmetric Yang-Mills gauge theory and

projecting on those operators, which are invariant under a combined action of R-symmetry and

S-duality:

Field theory S− fold : (N = 3SYM) ≡ (N = 4SYM)/(R× S) . (1.1)

A closely related, holographically dual N = 6 supergravity in AdS5 space was already constructed

in [10], with the same kind of S-fold projection being used as in the N = 3 supersymmetric gauge

1Recently, two-dimensional string constructions with exotic supersymmetries were constructed in [6].
2Alternatively W stands for Weyl, as it will be justified later.
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theories of [7–9].

In the first part of the paper we will use the compelling observation that Einstein gravity can be

regarded as the square of two Yang-Mills theries. This is the socalled double copy construction of

(super)gravity theories [11–13], which was utilized for

N = 8 Sugra ≡ (N = 4 YM)2 (1.2)

to compute scattering amplitudes in N = 8 supergravity from N = 4 super Yang-Mills amplitudes.

The double copy construction was also used to obtain all possible standard supergravity theories

with extended local supersymmetry [14–21]. Here we will construct new W-supergravities with N =

3, 4, 5, 6, 7, namely we will generalize the double copy construction by considering tensor products

with one factor being the N = 3 supersymmetric gauge theory described above. In particular the

N = 7 W-supergravity will be constructed as a double copy of a non-perturbative theory with a

N = 4 super Yang-Mills theory:

N = 7 W− Sugra ≡ (N = 4 YM)⊗ (N = 3 YM) . (1.3)

The two factors respectively refer to the spin-two massive supermultiplets of N = 4, 3. They are

also denoted as Weyl multiplets, since they corresponds to the multiplets of the gauge fields of

corresponding local superconformal algebra. As we will discuss, the double copy will contain as

lightest multiplet a massive spin-four supermultiplet of the local N = 7 supersymmetry algebra,

which arises as the tensor product of two spin-two Weyl multiplets [22–27] of the N = 3 and N = 4

theories.

The double copy construction of gravity theories can be also traced back to the KLT-relations [28]

in string theory, as well as from intriguing relations between open and closed string amplitudes [29,30].

In fact, in the second part of the paper we propose a closely related construction of new, non-

perturbative S-folds in string theory, which we will call W-superstrings. In fact, as it is well-known

from the ”old days” of perturbative string constructions, space-time supersymmetry and world-sheet

supersymmetry are closely linked together in string theory. On the heterotic side, four-dimensional

perturbative heterotic string constructions lead to N -extended supergravity theories with following

number of supercharges:

NH = 1 , NH = 2 , and NH = 4 , (1.4)

Here the space-time supercharges originate from the superconformal, right-moving fermionic string

sector of the heterotic string. The bosonic, left-moving sector of the heterotic string however does

not provide any further space-time supercharges.

In type II constructions, the possible space-time supercharges are obtained by building the ten-

sor product of superconformal left- and right-moving fermionic strings. This leads to several four-

dimensional N -extended supergravity theories from perturbative type II string constructions, which
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are classified as follows:

NII = 1 = 0L + 1R , NII = 2 = 0L + 2R , NII = 2′ = 1L + 1R ,

NII = 3 = 1L + 2R , NII = 4 = 0L + 4R , NII = 4′ = 2L + 2R ,

NII = 5 = 1L + 4R , NII = 6 = 2L + 4R , NII = 8 = 4L + 4R . (1.5)

Explicit constructions of the vertex operators for the type II space-time supercharges as products

of left- and right-moving pieces and the associated action of the R-symmetries for all these theories

were provided in [31, 32].

It is clear from eq.(1.4) that on the heterotic side it is perturbatively not possible to construct a

NH = 3 supergravity theory. This is a reflection of the fact that there is also no perturbative N = 3

supersymmetric gauge theory. However among the possible type II cases in eq.(1.5), there exists a

four-dimensional, perturbative NII = 3 supergravity theory. Explicit left-right asymmetric type II

constructions in particular with NII = 3, 5, 6 were provided in [33]. But we also recognize in eq.(1.5)

that there is no possible NII = 7 supergravity theory (i.e. with 28 supercharges) from a perturbative

type II constructions. Therefore there does not exist a standard N = 7 superstring theory with a

massless spin-two supermultiplet.

In second part of the paper, we will construct particular string theory quotients, called string

theory S-folds, of four-dimensional heterotic and type II strings by dividing with particular elements

of the T- and the S-duality groups. Namely, when constructing the string theory S-fold, we will

realize that the R-symmetry in field theory is given in terms of certain T-duality transformations.

They act as asymmetric rotations on the internal world-sheet coordinates. It follows that the internal

six-dimensional space of the four-dimensional string theory S-folds is a non-geometric space, basically

given in terms of a particular asymmetric orbifold (see e.g. [34, 35]). Related type string models in

two dimensions with 28 chiral supercharges were recently constructed in [6]. In addition we propose

a method how the field theory S-duality is implemented into the string construction. The existence of

S-duality in four dimensional heterotic string compactifications was first proposed in [36] and further

evidence for this conjecture was subsequently given in [37]. As we will discuss, also S-duality will act

as asymmetric rotation on the uncompactified coordinates in a particular way.

Then, following the same strategy as in field theory, we show that S-folds of heterotic string

compactifications lead to heterotic string theories with NH = 3 supersymmetry:

String theory S− fold : (N = 3H) ≡ (N = 4H)/(T × S) . (1.6)

Moreover, by building the tensor product of a left-moving fermionic string with NL = 4 together

with an right moving fermionic S-fold with NR = 3 we will obtain a type II S-fold with NII = 7

supersymmetry:

String theory S− fold : (N = 7II) ≡ (N = 4)L ⊗ (N = 3)R . (1.7)

This N = 7 W-superstring theory is an entirely higher spin theory without a standard massless

spin-2 supermultiplet, and hence it does not possess a standard Langrangian description in terms of
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a conventional Einstein action coupled to massless spin=3/2 gravitinos. It is natural to conjecture

thats its effective description of the lowest massive states is just N = 7 W-supergravity, described

above.

2 Double copy construction of massive W-supergravities

2.1 Double copy constructions

In the following we will outline the double copy construction by taking the product of two four-

dimensional supersymmetric field theories QFT(NL) and QFT(NR) with NL resp. with NL rigid

supersymmetry. This leads to four-dimensional supergravity theories with NL +NR extended, local

supersymmetry:

QFT(NL)⊗QFT(NR) = Sugra(NL +NR) . (2.1)

In order to obtain the spectrum of the double copy, one first has to determine the operators ΦL

and ΦR with lowest scaling dimension hL and hR in each of the two products. Depending on their

scaling dimensions, they correspond either to certain massless or massive superfields with masses mL

and mR. In order to get the lowest fields in the double copy, we build the tensor product field

ΦL+R = ΦL ⊗ ΦR, (2.2)

where one has to demand that hL = hR, i.e. mL = mR. This condition corresponds to the level

matching constraint in string theory.

2.1.1 Standard massless supergravities as double copy constructions:

First, we can list the nine familiar examples of double copy constructions providing standard extended

supergravity theories with massless spin-two supermultiplets [38,39].3 In all these examples the lowest

operators of QFT(NL) and QFT(NR) are the spin-one vector multiplets V , which correspond to the

massless U(1) super multiplets in each of the two field theories. The double copy is provided by the

tensor product of two massless vector multiplets:

Supergravity : Massless Spin(2) = VL,NL
⊗ VR,NR

. (2.3)

The massless spin-two supergravity multiplet is always present in the tensor product.

(i) NL = NR = 4. This leads to the well-known extendend N = 8 supergravity in the double copy.

The lowest operators in each factor are the massless spin-1 vector multiplets (singleton of N = 4)

with 8 bosonic (B) + 8 fermionic (F) massless states. Their tensor product is the massless spin-2

gravity multiplet of N = 8 with nB = nF = 128 massless states.

3The N ≥ 4 and N < 4 cases of these nine double copy constructions where first systematically obtained at the

quantum level in [40, 41].
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(ii) NL = 2, NR = 4. This leads to standard massless pure N = 6 supergravity.

(iii) NL = 1, NR = 4. This leads to standard massless pure N = 5 supergravity.

(iv) NL = 0, NR = 4. This leads to standard massless pure N = 4 supergravity.

(v) NL = NR = 2. This leads to massless N = 4 supergravity with two additional massless N = 4

vector multiplets.

(vi) NL = 1, NR = 2. This leads to massless N = 3 supergravity with one additional massless N = 3

vector multiplet.

(vii) NL = 0, NR = 2. This leads to massless N = 2 supergravity with one additional massless

N = 2 vector multiplet.

(viii) NL = NR = 1. This leads to massless N = 2 supergravity with one additional massless N = 2

hyper multiplet.

(ix) NL = 0, NR = 1. This leads to massless N = 1 supergravity with one additional massless N = 1

chiral multiplet.

Note that comparing with the corresponding string constructions, heterotic models can only be

obtained if NL = 0. Furthermore the only way to obtain massless N = 3 supergravity with the

double copy method is as in (vi), namely NL = 1, NR = 2. This model was obtained as a type

II string construction in [33] when it was observed that the three complex scalars parametrize the

CP3 manifold SU(1, 3)/(U(1) × SU(3)) in contrast to the N = 4 case where the six real scalars

would parametrize O(1, 6)/SO(6). Since the vector ⊗ vector tensor product always produces two

scalars, it is more difficult to construct pure N = 1, 2, 3 supergravities as double copies.4 Viceversa

pure supergravities exist for N ≥ 4 with NL = k, NR = 4, k = 0, 1, 2, 4. The numbers of states of

N = k+ 4 supergravity is 16× 2k+1 for CPT not self conjugate theories (k = 0, 1, 2) and 16× 16 for

the N = 8 (k = 4) CPT self conjugate one.

2.2 4D massive supermultiplets of N -extended supersymmetry:

Before we proceed to consider and to construct explicit examples of W-supergravity theories, let

us provide a general overview about the structure of massive supermultiplets and tensor products

between them.5 General massive multiplets of N -extended 4D supersymmetry [44] with top spin

jmax = j + N
2

are obtained by tensoring the smallest multiplet with top spin N /2 with a spin-j

representation of SU(2). The number of states is then

nB + nF = 22N (2j + 1) , (nB = nF ) . (2.4)

For j = 0 the state of spin(N
2
− k

2
) is the k-fold antisymmetric (traceless) irreducible representation

of USp(2N ).

4A way to construct these theories was demonstrated in [42, 43].
5For massive representations we mean long multiplets without central charges.
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If we tensor two massive states of N1 and N2 extended supersymmetry, we get a massive multiplet

of N1 +N2 extended supersymmetry with total multiplicity

S = nB + nF = 22(N1+N2)(2j1 + 1)(2j2 + 1) , (nB = nF ) . (2.5)

This representation is reducible into

S =

j1+j2
∑

j=|j1−j2|

(2j + 1)22(N1+N2) (2.6)

representations. So the representation is irreducible only if j2 = 0 (or j1 = 0) for which S =

22(N1+N2)(2j + 1).

In our context the four-dimensional N -extended Weyl multiplets [22] will be of particular impor-

tance. They correspond to 4D massive spin-two fields of the of N -extended supersymmetry. The

generic spin-two massive multiplet (Weyl multiplet) is obtained by tensoring the smallest massive

representation of N -extended supersymmetry (with jmax = N
2
) with spin j = 2− N

2
. The number of

states of such spin-two multiplet are therefore nB + nF = (5−N )22N . In particular for N = 4 it is

the smallest long massive multiplet.

So let us list all the possible Weyl supermultiplets, denoted byWN=k (k = 1, 2, 3, 4), of supersym-

metric field theories. The spin-two massive multiplet of N = 4 is irreducible with nB+nF = 28 = 256

with states in USp(8) representations [23]:

WN=4 : Spin(2) + 8× Spin(3/2) + 27× Spin(1) + 48× Spin(1/2) + 42× Spin(0) . (2.7)

The spin-two massive Weyl multiplet of N = 3 is obtained by tensoring the smallest jmax = N
2
= 3

2

massive multiplet with j = 1
2
, and it is irreducible with states in USp(6) representations where

nB + nF = 2× 26 = 128 [24]:

WN=3 : Spin(2) + 6× Spin(3/2) + (14 + 1)× Spin(1) + (14′ + 6)× Spin(1/2) + 14× Spin(0) . (2.8)

Finally for N = 2, 1 one obtains [25, 26]

WN=2 : Spin(2) + 4× Spin(3/2) + (5 + 1)× Spin(1) + 4× Spin(1/2) + Spin(0) , (2.9)

where nB + nF = 48.

WN=1 : Spin(2) + 2× Spin(3/2) + Spin(1) . (2.10)

with nB + nF = 16 states.

The field theory realization of Weyl multiplets allows one to write a unique Lagrangian for all

conformal supergravities (N ≤ 4) [45–48]. In view of the fact that massive spin-two can also be seen

as Weyl multiplets, it is instructive to indicate their U(N ) R-symmetry quantum numbers. This

identification is achieved by decomposing USp(2N ) into U(N ) representations. The states, which

are not gauge fields, are auxiliary fields of extended superconformal supergravity. For example in
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the N = 1 spin-two multiplet (2,2(3/2),1) there are the Weyl graviton, the R-symmetry U(1) gauge

bosons and two spin-3/2 gauge fields of Q and S supersymmetry. There are no auxiliary fields in

this case. For the higher cases there are always 2N gravitini for Q and S supersymmetry. The U(N )

gauge fields must be in the spin-one sector of the massive multiplet. For N = 2, 3, 4 the spin-one

representations are easily seen to always contain the adjoint representation of U(N ). For example

in N = 3 the spin-one decomposes into (14+ 1) → 8+ 3+ 3̄ + 1 under the U(3), where the 8+ 1 are

the gauge bosons the U(3) R-symmetry. In N = 4 the 27 of USp(8) decomposes into 15 + 6 + 6̄ of

SU(4). Here the 15 correspond to the gauge bosons of the SU(4) R-symmetry, since there is no U(1)

factor in the gauge symmetry. The other states correspond to auxiliary fields, whose presence have

the double role of completing the spin-two massive multiplet or, in the field theory side, to ensure

the same number of bosonic and fermionic off-shell degrees of freedom in the Weyl multiplet.

2.3 The N = 3 S-fold

Let us recall how, starting from the N = 4 supersymmetric SYM theories, how the strongly coupled

N = 3 supersymmetric field theory is obtained by a projection, which is a combination of a group

element of the R-symmetry and the SL(2,Z) S-duality automorphism group [7]. The 16 supercharges

of four-dimensional N = 4 supersymmetry are denoted as Qα,A and Qα̇,Ȧ. Here α = 1, 2 and α̇ = 1, 2

are the spinor indices of the (2, 1) + (1, 2) = 2s + 2c dimensional spinor representations of the four-

dimensional Lorentz group SO(1, 3) ≡ SL(2) × SL(2). Furthermore the indices A = 1, . . . , 4 and

Ȧ = 1, . . . , 4 denote the spinor and anti-spinor indices of the two inequivalent spinor representations

4s and 4c of the four-dimensional R-symmetry group SO(6). More details on the transformation

rules of the supercharges are given in the appendix.

Now following [7], in order to break N = 4 supersymmetry down to N = 3 supersymmetry, we

will choose a particular Z4 rotation, which is embedded in the SO(6)R R-symmetry group and which

acts on the N = 4 supercharges as follows:

R− symmetry : Qα,A → e−
iπ(wA

1 +wA
2 +wA

3 )

2 Qα,A ,

Qα̇,Ȧ → e−
iπ(wȦ

1 +wȦ
2 +wȦ

3 )

2 Qα̇,Ȧ , (2.11)

where the (wA
1 , w

A
2 , w

A
3 ) = (±1

2
,±1

2
,±1

2
) (even number of - signs) are spinor weights of 4s of the

SO(6)R group, whereas the (wȦ
1 , w

Ȧ
2 , w

Ȧ
3 ) = (±1

2
,±1

2
,±1

2
) (odd number of - signs) are spinor weights

of 4c representation. The supercharges specifically transform under under the Z4 R-symmetry rota-
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tion as:

Qα,A : (
1

2
,
1

2
,
1

2
) → e−

3iπ
4 (

1

2
,
1

2
,
1

2
) ,

(−1

2
,−1

2
,
1

2
) → e

iπ
4 (−1

2
,−1

2
,
1

2
) ,

(−1

2
,
1

2
,−1

2
) → e

iπ
4 (−1

2
,
1

2
,−1

2
) ,

(
1

2
,−1

2
,−1

2
) → e

iπ
4 (

1

2
,−1

2
,−1

2
) ,

Qα̇,Ȧ : (−1

2
,−1

2
,−1

2
) → e

3iπ
4 (−1

2
,−1

2
,−1

2
) ,

(−1

2
,
1

2
,
1

2
) → e−

iπ
4 (−1

2
,
1

2
,
1

2
) ,

(
1

2
,−1

2
,
1

2
) → e−

iπ
4 (

1

2
,−1

2
,
1

2
) ,

(
1

2
,
1

2
,−1

2
) → e

−iπ
4 (

1

2
,
1

2
,−1

2
) . (2.12)

Next we will consider the S-duality transformations. The S-duality is a non-perturbative symme-

try of N = 4 supersymmetric SYM theories. As in [7] we will choose a particular order four element

of the SL(2,Z) S-duality group, which acts on all eight supercharges QαA in the same way:

S− duality : Qα,A → e−
iπ
4 Qα,A . (2.13)

On the remaining eight supercharges Qα̇,Ȧ S-duality acts in the opposite way:

S− duality : Qα̇Ȧ → e
iπ
4 Qα̇,Ȧ . (2.14)

Combining these transformation rules with the R-symmetry transformations in eq.(2.12), it immedi-

ately follows that by projection on the invariant charges the combined action of R · S, called S-fold

projection, leaves twelve supercharges invariant, i.e. leads to N = 3 supersymmetry. As we will dis-

cuss later, the implementation of the S-duality transformations in the heterotic string will be quite

subtle.

Now let us determine the additional operators, which are invariant under the S-fold projection, of

the non-perturbative N = 3 field theory. This theory is strongly coupled and there is no Langragian

description of this theory6. The crucial point is that in super Yang-Mills, the S-fold projection

eliminates the massless fields altogether. According to [10], the singleton of the N = 3 field theory

is described by a superfield strength and an SU(3) triplet Vi(x, θ), which decomposes under N = 1

into a vector multiplet and three chiral multiplets. However the singleton of scaling dimension h = 1

is itself not invariant under the S-fold projection. The invariant N = 3 operators possess scaling

dimension h = 2p and have the following form:

Φ2p = Tr(Vi 1V̄i 2 . . . Vi 2p−1V̄i 2p) . (2.15)

6If SU(2, 2/3) is the boundary superconformal algebra, then the dual bulk theory should be N = 6 AdS5 super-

gravity which is not the same as N = 8 AdS5 supergravity [10]. The same projection, which involves an S-duality

transformation leading from N = 4 to N = 3 supersymmetry on the boundary, reduces in the bulk N = 8 to N = 6

supergravity.
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The lowest operator, denoted as WN=3 ≡ Φ2, has scaling dimension h = 2 and specifically is given

by

WN=3 = Tr(ViV̄
j − 1

3
δjiVkV̄

k) . (2.16)

This operator is nothing else than the energy momentum tensor (i.e. supercurrent) of the N = 3

field theory. It corresponds to the massive N = 3 spin-two super-Weyl multiplet with, as already

shown before, the following decomposition of massive component fields:

WN=3 : Spin(2)+6×Spin(3/2)+(14+1)×Spin(1)+(14′+6)×Spin(1/2)+14×Spin(0) . (2.17)

It contains nB = nF = 64 degrees of freedom. These massive states were also anticipated before

in [27]. The multiplicities in front of the different fields denote the representations with respect to

the group USp(6), which is the relevant automorphism group of the massive N = 3 super algebra.

Note that the N = 3 massive spin-two multiplet is not the same as the N = 4 massive spin-two

multiplet.

In addition, one can also consider the h = 2 operator

wN=3 = TrViVj . (2.18)

This operator correspond to a massive spin=3/2 supermultiplet of N = 3 with the following field

content:

wN=3 : Spin(3/2) + 6× Spin(1) + 14× Spin(1/2) + 14′ × Spin(0) . (2.19)

However this operator, which contains nB = nF = 32 fields, is not invariant under the R·S projection.

The operators WN=3 and wN=3 immediately follow from the decomposition of the N = 4 super-

current WN=4. As already shown, this current contains nB = nF = 128 component fields:

WN=4 : Spin(2) + 8× Spin(3/2) + 27× Spin(1) + 48× Spin(1/2) + 42× Spin(0) , (2.20)

with multiplicities with respect to the massive N = 4 automorphism group USp(8). WN=4 decom-

poses under the N = 3 currents as7:

WN=4 = WN=3 + 2× wN=3 . (2.21)

As said before, only WN=3 survives the S-fold projection.

2.4 Non-standard massive W-supergravities as double copy constructions:

So far we did not consider N = 3 rigid field theory in one of the factors, say in QFT(NR), of the

double copy construction. The W-supergravities always have at least one QFT(N = 3) field theory

in one of the factors of the double construction:

W − supergravity = QFT(NL)⊗QFT(NR = 3) (2.22)

7All these multiplets can be regarded as massless multiplets in the five-dimensional, holographically dual N = 8

and N = 6 supergravity theories.
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As we discussed in the last section, in QFT(N = 3) the lowest operator (which is invariant under

the S-fold twist) is the supercurrent (energy momentum tensor) of the N = 3 field theory. Strictly

speaking the supercurrent (being the system superconformal) has the same structure as the super-

Weyl multiplet, which contains the spin-two and the other gauge fields of the superconformal algebra.

Therefore, in the tensor product, the lowest field appearing is the N = 3 massive spin-two Weyl

multiplet with nB = nF = 64 massive states. Due to the constraint hL = hR, the Weyl multiplet

of QFT(NR = 3) must be tensored also with massive fields of the same mass, namely also with

the spin-two massive Weyl supermultiplet from QFT(NL). This leads to a massive spin-four field

Φ4
L+R,NL+3 as lowest possible operator in massive W-supergravity:

W − supergravity : Φ4
L+R,NL+3 = WL,NL

⊗WR,NR=3 . (2.23)

Knowing this we can now proceed and give an overview over the following five non-standard,

massive W-supergravity theories:

(i) NL = 4, NR = 3. This leads to massive N = 7 W-supergravity. Due to the level matching

constraint, we have to take the massive spin-2 multiplet of N = 4 in the tensor product, which

contains nB = nF = 128 massive states. So the relevant tensor product leads to a massive spin-4 of

N = 7. It contains nB = nF = 16384 massive states. This theory and its spectrum will be discussed

in more detail in section §2.5.

(ii) NL = NR = 3. This leads to massive N = 6 W-supergravity.

(iii) NL = 2, NR = 3. This leads to massive N = 5 W-supergravity.

(iv) NL = 1, NR = 3. This leads to massive N = 4 W-supergravity.

(v) NL = 0, NR = 3. This leads to massive N = 3 W-supergravity. It is the only case which can

be constructed as a heterotic W-string. Its heterotic spectrum will be discussed in more detail in

section §4.4.

All double copy constructions, standard massless supergravity theories as well as massive W-supergra-

vity theories, have in fact the same interpretation, we are always tensoring superconformal field

theories, for the spin-one case they are Yang-Mills, for the spin-two case they are conformal (Weyl)

gravity. They are in any case local field theories. The result is that for spin-one tensoring we have

massless spin-two gravity, while for the spin-two tensoring we have massive spin-four W-supergravity,

which therefore exists for N = 7.

Finally note that the cases NL + NR = 3, 4, 5, 6 can be also realized as standard supergravities

with massless spin-two. So for these cases there exist two inequivalent double copies: standard spin-

two supergravity and massive spin-four W-supergravity. Only for N = 7 there exist only the massive

spin-four double copy W-supergravity construction.
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2.5 Massive N = 7 W-supergravity

In this section we focus on the the construction of the N = 7W-supergravity theory. It is constructed

as a tensor product of (N = 4 ) × (N = 3) field theories. Hence the first, massive higher spin field

in the N = 7 W-supergravity theory is obtained from the product WL,NL=4 ⊗WR,NR=3 ≃ (Spin =

2)N=4 ⊗ (Spin = 2)N=3. This tensor product starts with one spin-four field and has the following

decomposition:

(

Spin(2) + 8× Spin(
3

2
) + 27× Spin(1) + 48× Spin(

1

2
) + 42× Spin(0)

)

N=4

⊗
(

Spin(2) + 6× Spin(3/2) + 15× Spin(1) + 20× Spin(1/2) + 14× Spin(0)
)

N=3

=
(

Spin(4) + 141 × Spin(
7

2
) + (902 + 1)× Spin(3) + (3503 + 141)× Spin(

5

2
)

+ (902 + 9104)× Spin(2) + (3503 + 16385)× Spin(
3

2
) + (20026 + 9104)× Spin(1)

+ (14305 + 16385)× Spin(
1

2
) + 20026 × Spin(0)

)

N=7
, (2.24)

where the two factors contain 28 and 27 states, respectively. The multiplicities of these massive

states fall into representations of the group USp(14), which is the automorphism group of N = 7

supersymmetry for massive states, where the label means an irreducible, traceless, n-fold USp(14)

antisymmetric representation. It contains nB +nF = 215 = 32768 degrees of freedom. Note that this

massive multiplet does not constitute a proper N = 8 supermultiplet, but it only transforms under

N = 7 supersymmetry transformations. It contains 1000 massive graviton-like, spin-two fields. Since

it arises from the tensor product of a strongly coupled N = 3 SYM theory, it is conceivable that this

spin-four multiplet also only exists in a strongly coupled theory without a Langrangian description.

As we will show in the next section, the N = 7 spin-four multiplet arises at the first mass level in the

corresponding superstring S-fold construction. Furthermore note that the N = 7 W-supergravity

theory can be also obtained as S-fold from N = 8 supergravity after including an N = 8 spin-four

multiplet in a suitable way.

3 String S-fold construction - Implementation of R-symmetry and S-

duality transformations in heterotic and type II string theory

Now we want to construct analogous S-folds in type II and heterotic string theories. We call these

theories W-strings, since they do not contain any massless excitations, but only massive string

excitations of higher spin. Their effective description is then supposedly given in terms of the massive

W-supergravity theories, discussed before.

Recall that the S-fold projection in field theory include a discrete R-symmetry transformations

times a discrete S-duality transformations. As we will now see, the field theory R-symmetry trans-

formations will be realized as special kind of T-duality transformations in string theory. In fact,

discrete elements of the T-duality group act like discrete R-symmetry transformations, which are
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subgroups of the SO(6)R automorphism group of the N = 4 supersymmetry algebra, as it was dis-

cussed in [50, 51]. Hence the R-charges of the space-time fields are closely related to the internal

modular T-duality transformation.

In the following we will first consider the right-moving world-sheet degrees of freedom of the

heterotic or type II string on T 6. The internal coordinates of the six-torus are denoted by Y I , with

I = 1, . . . , 6. In the four-dimensional uncompactified space-time we go to the light-cone gauge, and

the relevant transversal spatial coordinates, corresponding to the transversal little group SO(2)T , are

denoted by X i with i = 1, 2. In the 10-dimensional, right-moving sector of the heterotic string we

have a world-sheet theory with local n = 1 world-sheet supersymmetry. The right-moving word-sheet

fields of the R-NS fermionic string are then given as:

X i(z) , Y I(z) , ψi(z) , λI(z) , φ(z) . (3.1)

The ψi(z) and the λI(z) are world-fermions and φ(z) is the bosonized superconformal ghost field.

We can introduce complex coordinates on the torus,

ZK(z) = Y 2K−1(z) + iY 2K(z) , K = 1, . . . , 3 . (3.2)

Furthermore it will be convenient to introduce complex fermions as

Ψ0(z) = ψ1(z) + iψ2(z) , ΨK(z) = λ2K−1(z) + iλ2K(z) . (3.3)

Bosonization of these complex world-sheet fermions is then performed in the standard way:

Ψ0(z) = eiH
0(z) , ΨK(z) = eiH

K(z) (3.4)

The H0(z), HK(z) are four chiral (right-moving) bosons on the world-sheet.

In the left-moving sector of the heterotic string there are the following world-sheet fields:

X̄ i(z̄) , Ȳ I(z̄) , Ȳ I′(z̄) . (3.5)

Here the X̄ i(z̄) the left-moving uncompactified coordinates, the Ȳ I(z̄) are the left-moving coordinates

on T 6 and the Ȳ I′(z̄) (I ′ = 1, . . . , 16) are the additional bosonic coordinates that are associated to

the U(1)16 Cartan sub-algebra of the additional heterotic gauge group GL of rank 16. In case of

the type II sring, the Ȳ I′(z̄) are absent and instead there are also the left-moving fermions on the

world-sheet.

The relevant massless bosonic spectrum and their associated vertex operators (in the canonical

ghost picture) are given as follows:

graviton : G(ij) = ∂̄X̄(i(z̄)ψj)(z)e−φ(z) ,

anti− sym. tensor : B[ij] = ∂̄X̄ [i(z̄)ψj](z)e−φ(z) ,

dilaton : Φ = ∂̄X̄ i(z̄)ψi(z)e−φ(z) ,

3 complex structure moduli of T6 : τK = ∂̄ZK(z̄)ΨK(z)e−φ(z) ,

3 Kaehler moduli of T6 : ρK = ∂̄Z̄K(z̄)ΨK(z)e−φ(z) . (3.6)
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The superpartners of all these states are obtained by performing the operator product of the as-

sociated vertex operators with the vertex operators of the four supercharges of the N = 4 space-time

supersymmetry, where the four space-time supercharges Qα,A are coming from the superconformal,

right-moving sector of the heterotic string. The spinors are realized on the world-sheet by the space-

time SO(2)T spin fields Sa(z) together with the internal spin fields SA(z) of the SO(6)R R-symmetry

group. In the canonical −1/2 ghost picture the four supercharges of positive helicity take the follow-

ing specific form:

Qα= 1
2
,A =

∮

dz

2iπ
Sa= 1

2 (z)SA(z)e−
φ(z)+iH⋆(z)

2

=

∮

dz

2iπ
e

1
2
iH0(z)eiw

A
KHK(z)e−

φ(z)+iH⋆(z)
2 ,

(3.7)

whereas the four negative helicity supercharges are given as

Qα=− 1
2
,A =

∮

dz

2iπ
Sa=− 1

2 (z)SA(z)e−
φ(z)−iH⋆(z)

2

=

∮

dz

2iπ
e−

1
2
iH0(z)eiw

A
KHK(z)e−

φ(z)−iH⋆(z)
2 .

(3.8)

Here the four vectors wA
K = ~wA = (±1

2
,±1

2
,±1

2
) (even number of - signs) are the spinorial weight

vectors of the 4s representation of the internal R-symmetry group SO(6)R. Furthermore, φ(z) is the

bosonised superghost field and H⋆(z) is the bosonisation of the longitudinal (lightcone) spacetime

directions. Here the index a = 1
2
(−1

2
) corresponds to (anti)-spinor indices of the transversal little

group SO(2)T . Note that the index a is not identical to the spinor index α (or α̇) of the four-

dimensional Lorentz group SO(1, 3), which was introduced in the previous section.8 Also note that

we have have adopted in eqs.(3.7) and eqs.(3.8) the convention for the supercharges Qα,A to picking

an even number of minus signs in ~wA. This implies the transversal spinor index a is correlated

with the longitudinal spinor index b, as it is indicated in eq.(3.9). For completeness we also list the

expressions for the eight conjugate supercharges Qα̇,Ȧ:

Qα̇= 1
2
,Ȧ =

∮

dz

2iπ
Sa= 1

2 (z)SȦ(z)e−
φ(z)−iH⋆(z)

2

=

∮

dz

2iπ
e

1
2
iH0(z)eiw

Ȧ
KHK(z)e−

φ(z)−iH⋆(z)
2 ,

(3.11)

Qα̇=− 1
2
,Ȧ =

∮

dz

2iπ
Sa=− 1

2 (z)SȦ(z)e−
φ(z)+iH⋆(z)

2

=

∮

dz

2iπ
e−

1
2
iH0(z)eiw

Ȧ
K
HK(z)e−

φ(z)+iH⋆(z)
2 .

(3.12)

8The precise relation between a and α or α̇ is as follows: decomposing SO(1, 3) as SO(1, 3) ⊃ SO(2)T ×SO(2)L, the

two dimensional Lorentz spinors with spinor indices α = 1

2
,− 1

2
have the following charges (a, b) under SO(2)T×SO(2)L:

α = 1/2 : (a, b) = (
1

2
,
1

2
) , α = −1/2 : (a, b) = (−1

2
,−1

2
) , (3.9)

For the two spinors with spinor indices α̇ we get likewise:

α̇ = 1/2 : (a, b) = (
1

2
,−1

2
) , α̇ = −1/2 : (a, b) = (−1

2
,
1

2
) , (3.10)

14



Finally, the type II supercharges from the left-moving sector are constructed in the same way as their

right-moving counterparts.

Now we want to implement the R-symmetry transformations as well as the S-duality transforma-

tions of N = 4 field theory, which we have described in the last section, in the heterotic and type II

string. To recall, in field theory the S-fold projection was defined by looking at the discrete R- and

S-duality charges of the various fields, where the R-charges originate from the internal symmetries,

and the S-duality charges are determined by the helicity degrees of freedom of the fields. Then a

proper linear combination of the R- and S-charges defines the S-fold projection, where one keeps only

the states invariant under the combined, discrete transformation. In string theory, the same proce-

dure can be performed: all massless and massive states are classified by the same R- and S-charges as

in field theory. Therefore one can perform the same truncation of the massless and massive spectrum

as in field theory. Here we want to propose an interpretation how this truncation can be regarded as

certain rotations on the left- and right-moving world-sheet degrees of freedom of the heterotic and

the type II string theories. There will be two essential requirements:

(i): The action on the four right-moving supercharges of the heterotic/type II string is like in field

theory.

(ii): There is no action on the four left-moving supercharges of the type II string.

Therefore, from the word-sheet point of view, the string construction has to be completely left-right

asymmetric, where the Z4 S-fold projection must only act on the right-moving string degrees of

freedom, but not at all on the left-moving degrees of freedom. As we will now discuss we will satisfy

these two requirements in the following way:

• R-symmetry: Here we can follow the construction in [6] and also in [35]. The Z4 rotation

acts on the internal right-moving six coordinates plus the corresponding world-sheet fermions,

but is leaving the left-moving internal coordinates and the left-moving internal world-sheet

fermions invariant. This asymmetric transformation just corresponds to a twist by a T-duality

transformations, which means that the internal background can be view as a special kind of non-

geometric T-fold space. All massless geometric moduli are projected out by this transformation.

• S-duality: Here we will propose that the asymmetric Z4 projection will be realized as a left-

right asymmetric Z4 rotation on the two transversal right-moving space-time coordinates plus

the corresponding world-sheet fermions. The left-moving space-time coordinates and world-

sheet fermions are not rotated. Therefore, although not being compactified, the transversal

space coordinates of the closed string are treated in a left- and right-asymmetric way. This

is a new and non-standard feature of the string theory S-fold construction, which means that

the closed string boundary conditions with respect to σ- and τ -translations are chosen with a

different Z4-phase factor for the left- and right-moving coordinates (see [49] for a discussion

on this issue). The different treatment of the left- and right-moving uncompactified string

coordinates can be also motivated in the framework of double field theory. Performing the
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left-right asymmetric projection basically means that also the uncompactified space is a non-

geometric background. As we will see, the projection does not allow anymore for massless states,

and in particular there is non massless graviton anymore after the S-fold projection. Therefore

the background is completely rigid. Nevertheless all states can be still classified according their

helicity quantum numbers and the transversal Lorentz group still acts in the correct way on all

states. In this sense, Lorentz invariance will be still preserved. In other words, the charges of

all states under the left-right asymmetric rotations agree with the S-duality (helicity) charges

of the corresponding fields in field theory, and the projection on the invariant states will be the

same as in field theory.

More specifically, in the light-cone gauge the asymmetric Z4 projection includes three simulta-

neous actions on the physical fields: first it will act on the axion-dilaton S-field in a non-trivial

way and, as an effect of it, the S-field is projected out and the theory is non-perturbative and

strongly coupled. Second, the asymmetric Z4 will also act on the transversal graviton G-field; we

will call this transformation G-transformation, which is very similar to Ehlers transformations

in General Relativity. Since the massless graviton is not-invariant under the G-transformation,

it will be projected out as well, and the theory does not contain any physical graviton state

anymore. Hence we call this theory a topological string theory. Note that the combined ac-

tion on the S-field and on the G-field becomes an element of the Geroch group. It is nothing

else than a T-duality transformation, when further going down from four to two dimensions,

as it was discussed in [6]. However unlike in [6], we have to augment in 4D string theory

the dilaton and metric transformations by a third type of projection, that we denote it by H-

transformation, and which acts on the helicity degrees of freedom and ensures four-dimensional

Lorentz-invariance. This H-transformation was not performed in [6], with the result that the

two-dimensional theories in [6] in general posses chiral (P,Q) supersymmetry and are not up-

liftable to a four-dimensionional Lorentz-invariant theory. We will comment on this interplay

between four and two dimensions more below. So upshot of this discussion will be that the

combined action of S- and G- and H-transformations will correspond to the S-duality transfor-

mations of supersymmetric field theory, which act on the supercharges in the way as described

in section §2.3

Before we start the explicit discussion, let us also mention that in contrast to the two-dimensional

models, for which a full modular invariant partition functions can be constructed [6], the non-

perturbative, four-dimensional string models do not allow for an immediate construction of a one-loop

partition function. Furthermore we will also not consider twisted sectors, where in two dimensions

additional supercharges have emerged in the completely left-right asymmetric orbifold constructions.

Here will will only discuss the Z4 invariant, but untwisted sector of the theory. At the same time

we will assume here that possible twisted sectors do not provide any further supercharges in four

dimensions.
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3.1 R-symmetry and T-duality twist

The implementation of the Z4 R-symmetry rotation is relatively straightforward and we will follow the

construction in [6]. Here we will give a few more details in terms of the non-geometric interpretation

as T-fold. The full T-duality group for the heterotic string on T 6 is given by the discrete group

SO(6, 22;Z). For our purpose it is enough to work out the action of the various target space duality

transformations on the internal string coordinates of T 6 =
∏3

K=1 T
2
i . The relevant T-duality subgroup

of SO(6, 22;Z) is given by the following modular group:

G = O(2, 2;Z)3 =
3
∏

K=1

[

SL(2)τK × SL(2)ρK × Z
τK↔ρK
2 × Z

τK↔−ρ̄K
2

]

. (3.13)

Here the ρK and τK are the three Kähler respectively complex structure moduli of the three subtori

T 2
K .

Let us first restrict the discussion to one particular subtorus. Particular O(2, 2) transforma-

tions act as in general left-right asymmetric transformations on the internal left- and right-moving

coordinates Y i
L(z̄) and Y

i
R(z) (i = 1, 2) of T 2:

~YL → ML
~YL , ~YR → MR

~YR . (3.14)

In the following we are interested in those MSO(2,2) transformations, for which the group elements

(ML,MR) correspond to discrete rotations Z
L
N × Z

R
M on the torus coordinates. This is possible,

provided that a faithful embedding of ZL
N ×Z

R
M into O(2, 2) can be found (see [35] for more details).

Introducing a complex coordinate on the torus,

Z(z, z̄) = Y 1(z, z̄) + iY 2(z, z̄) = ZL(z̄) + ZR(z) , (3.15)

the O(2, 2) transformations then act as particular discrete rotations on the complexified left- and

right-moving coordinates:

ZL(z̄) → e2iπ/NLZL(z̄) , ZR(z) → e2iπ/NRZR(z) . (3.16)

Next consider the corresponding right-moving, complex world sheet fermions ΨK . Their transfor-

mation behavior can be deduced from the requirement that the right-moving world sheet supersym-

metry commutes with the target space modular transformations. This requirement follows from the

fact that the action of the right-moving supercurrent connects equivalent (picture-changed) physical

string states. The right-moving (internal) world sheet supercurrent has the form

TF (z) =
3

∑

K=1

(ΨK
R∂Z̄

K
R + Ψ̄K

R∂Z
K
R )(z). (3.17)

Demanding the supercurrent to be invariant under modular transformations, one derives that the

complex fermions Ψ(z) of each subtorus transform only under the rotations of the right-movers as

Ψ(z) → e2iπ/NRΨ(z). (3.18)
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It follows that these transformations act on the three two-dimensional bosons H as

H(z) → H(z) + 2π/NR (3.19)

One can consider three particular cases: (i) NL = NR 6= 1, (ii) NL = −NR 6= 1 and (iii) NL =

1, NR 6= 1. Case (i), the symmetric rotation, corresponds to a transformation, which only acts on

the complex structure modulus τ but not on the Kähler modulus ρ. Conversely the asymmetric

case (ii) can be realized by T-duality transformations that act only on ρ but not on τ . Finally, the

completely asymmetric case (iii), for which the left-moving degrees of freedom are inert, corresponds

to transformations which simultaneously act on ρ and on τ . For the reasons explained above, this

is the case of interest for us, and to be specific we choose −NL = NR = 4. In order to realize this

asymmetric projection one has to freeze the moduli to their self-dual values, i.e. τ = ρ = i. It follows

that the corresponding moduli fields are projected out of the physical spectrum of the string.

Now we are ready to examine the modular transformation properties of the space-time super-

charges Qα,A in eqs.(3.7) and (3.8). Namely they transform with a particular common phase under

these T-duality transformations. Specifically we obtain that the supercharges in the right-moving

sector of the heterotic string transform in the same way as:

T − duality : Qα,A → e−
iπ(wA

1 +wA
2 +wA

3 )

2 Qα,A . (3.20)

These transformations agree with the R-transformations in field theory, described above (see

eq.(2.12)). In fact, the discrete Z4 elements of the T-duality group act like discrete R-symmetry

transformations, which are subgroups of the SO(6) automorphism group of theN = 4 supersymmetry

algebra. Hence the charges of the space-time fields under the target space modular transformation

are closely related to their corresponding R-charges, as it was already discussed in [50, 51]

3.2 S-duality twist

S-duality:

S-duality [36] exists in the four-dimensional heterotic string and also in the NS sector of the type II

strings as non-perturbative symmetry that acts on the four-dimensional dilaton-axion field, denoted

by S = a + ie−2Φ, as SL(2,Z)S transformations (Φ is the dilaton field and a is the dualized four-

dimensional Bµν field):

S → a S + b

c S + d
, ad− bc = 1 . (3.21)

In the four-dimensional effective field theory, the non-perturbative S-duality transformations map the

perturbative heterotic states with electric charges onto the non-perturbative states with magnetic

charges and vice versa. S-duality also maps the electromagnetic field strengths and the dual field

strength into each other. From a ten-dimensional string point of view, S-duality exchanges the

elementary strings with the solitonic five-branes. During the compactification process on T 6 one is
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wrapping the five-branes around the internal 5-cycles, and then the electric-magnetic S-duality in

four dimensions becomes manifest.

World-sheet action of S-duality:

In addition to its non-perturbative action, S-duality also acts on the world-sheet fields in a

particular, non-trivial way, which will be important for the construction of the S-folds. For that

purpose let us introduce also a complex coordinate for the uncompactified, transversal coordinates

X1 and X2:

Z0
L(z̄) = X1(z̄)L + iX2(z̄)L , Z0

R(z) = X1(z)R + iX2(z)R . (3.22)

Then the complex S-field is associated to the following vertex operator:

S− field : S = ∂̄Z̄0
L(z̄)Ψ

0(z)e−φ(z) . (3.23)

As already observed in [36], this operator is in complete analogy to the marginal operator of the

internal Kähler modulus ρ of an internal 2-torus. Indeed, from the world-sheet conformal field

theory point of view, the modes ρ and S are very similar, both corresponding to ∂̄ZL∂ZR marginal

deformations with respect to the compactified or uncompactified spatial coordinates (with periodic

boundary conditions in the internal directions). The action of the S-duality transformations have

the same left-right asymmetric effect on the uncompactified transversal coordinates Z0
L and Z0

R and

world-sheet fermions as the modular T-duality transformations on the Kähler modulus ρ have on

the internal world-sheet fields. In fact if we further compactified the two transverse coordinates Z0

and Z̄0 on a torus, the parallelism between ρ and S would be strict, but of course, that is now not

the case.9 The fact, that S-duality is reduced to T-duality when putting the theory on a 2-torus was

also discussed in the context of four-dimensional N = 4 super Yang-Mills theory [52].

World-sheet action of G-duality:

As already advertised, in addition to S-duality we introduce a another kind of duality transformation,

which we call G-duality. It acts on the two light-cone degrees of freedom of the graviton field in

uncompactified four-dimensional Minkowski space. G-duality transformations act on the world-sheet

fields Z0
L and Z0

R in a left-right-symmetry way, in complete analogy to the action of SL(2)τ duality

transformations on the internal world-sheet fields of a 2-torus. Therefore, in analogy to the complex

structure modulus τ on the compact two-torus, let us combine the two transversal degrees of freedom

of the four-dimensional graviton field into one complex graviton field G as follows:

G =
g12
g11

+ i

√
det g

g11
. (3.24)

9So compared to F-theory, where S-duality originates from the modular transformations on the complex structure

of the auxiliary type IIB torus, the heterotic S-duality can be seen to have its origin from the ”torus” that describe

the transversal spatial coordinates in four dimensions.
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Now SL(2)g acts on this field in the standard way:

G→ aG+ b

cG+ d
, ad− bc = 1 . (3.25)

Seen from the point of general relativity, the G-duality transformations are just a certain kind of

large diffeomorphisms. Namely they act like finite, four-dimensional coordinate transformations.

From the world-sheet point of view they have the same left-right symmetric action on the uncom-

pactified transversal coordinates and world-sheet fermions as the corresponding modular T-duality

transformations on the complex modulus τ have on the internal world-sheet fields of a compact

two-torus.

Combined world-sheet action of S-duality and G-duality:

Like on the two-torus, it also becomes evident that SL(2)S and SL(2)G combine into the group

O(2, 2)S,G ≃ SL(2)S × SL(2)G. This group is a symmetry of the general relativity and also of

the two-dimensional string σ-model, in case the four-dimensional background possesses two Killing

symmetries. The group O(2, 2)S,G is the socalled Geroch group [53] and the string Geroch group was

already discussed in [54,55] some time ago. Moreover, it follows that group elements of the rank seven

group O(6, 6) × SL(2)S are promoted by the inclusion of SL(2)G to certain group elements of the

rank eight group O(8, 8). This group is identical to the T-duality group of T 8, when we compactify

to two dimensions. In general S- and G-duality transformations act the uncompactified, transversal

world-sheet fields as

Z0
L(z̄) → e2iπ/MLZ0

L(z̄) , Z0
R(z) → e2iπ/MRZ0

R(z) , (3.26)

and

Ψ0(z) → e2iπ/MRΨ0(z). (3.27)

We can now consider again the three different cases, depending how S-duality and G-duality trans-

formations act on the left- and right-moving complex coordinate Z0
L and Z0

R. (i) ML = MR 6= 1,

(ii) ML = −MR 6= 1 and (iii) ML = 1,MR 6= 1. Case (i), the symmetric rotation, corresponds to a

transformation, which only acts on the metric G but not on the S-field. Conversely the asymmetric

case (ii) can be realized by S-duality transformations that act only on S but not on G. Finally, the

completely asymmetric case (iii), for which the left-moving degrees of freedom are inert, corresponds

to transformations which simultaneously act on S and on G. Therefore we call it Geroch twist.

Again like for the T-duality transformations, this is the case of interest for us, and to be specific we

choose −ML = MR = 4. In order to realize this asymmetric projection one has to freeze the fields

to their self-dual values, i.e. S = G = i. It follows that the massless graviton as well as the S-field

is projected out of the physical spectrum

It now follows that the eight heterotic space-time supercharges in eq.(3.7) and in eq.(3.8) trans-

form, depending on their helicity, with an opposite phase factor under S-G-duality transformations,

namely

Geroch twist ≡ (S ⊗G)− duality : Qα= 1
2
,A → e

iπ
4 Qα= 1

2
,A . (3.28)
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and

Geroch twist ≡ (S ⊗G)− duality : Qα=− 1
2
,A → e−

iπ
4 Qα=− 1

2
,A . (3.29)

This is almost agrees with the action of S-duality in field theory. However we realize that this

transformation acts on the supercharges in a non Lorentz-invariant way. Namely comparing this

transformation with the transformation of the supercharges in field theory, as given in eq.(2.13), we

see that they do not agree with each other: whereas in field theory, the S-duality phase factor does

not depend on the spinor α, the string construction so far leads to opposite phases for the two spinor

weights α = ±1
2
. Combining it with T-duality the number of conserved supercharges is only six

instead of twelve, as required by four-dimensional Lorentz invariance.

The H-twist:

As already announced, in order to ensure Lorentz-invariance of the S-duality transformations, we

will have to augment the S-G-duality transformations, by a further twist operation, denoted by H ,

which acts differently on two two components of the fermionic spinor degrees of freedom and reverses

the phase factor of the positive helicity spinors:

H − twist : Qα= 1
2
,A → e−

iπ
2 Qα= 1

2
,A , Qα=− 1

2
,A → Qα=− 1

2
,A . (3.30)

The S-G-H twist is an automorphism in string theory and hence it is an allowed projection. It

acts as left-right-asymmetric rotation on the transversal coordinate. The charges of all fields under

the S-G-H twist are same same as the charges under the discrete S-duality transformation in field

theory. Therefore the upshot of this discussion is that what we have considered as S-duality in

N = 4 supersymmetric field theories is represented in string theory as the product of S and H

transformations. If one in addition requires to act only the right-moving world-sheet fields, one also

has to include the G-transformations:

S− duality in N = 4 field theory ≡ S ⊗G⊗H in string theory (3.31)

Note that the H-twist was not performed in [6]. There only the S-G rotations on the left- and right

moving coordinates were performed, which become identical to T-duality transformations when going

to two dimensions. Without only the S-G rotations being performed, the S-fold breaks 4D-Lorentz

invariance. However in two-dimensions this is not a problem, and it results in a chiral 2D theories

with (P,Q) supersymmetry.

4 Massive spectrum of W-superstrings

Now we finally proceed to examine the spectrum of some string theory S-folds. Their spectra

are given by those states which are invariant under the combined discrete T-S-G-H rotations. The

graviton G(ij), the antisymmetric tensor B[ij] and the dilaton Φ are invariant under the T-duality

transformations. Other fields may transform with a particular phase, since the contain either internal
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world-sheet bosons or internal world sheet fermions in the vertex operators. On the other hand the

vertex operators of the graviton G(ij), the antisymmetric tensor B[ij] and the dilaton Φ are not

invariant under the S-G-H-transformations. Only fields with only internal degrees of freedom are

invariant under S-duality transformations. Hence when building the heterotic or type II S-folds

with N = 3 or N = 7 supersymmetry, the entire massless perturbative spin-two supermultiplet

is projected out of the string spectrum. Only massive string excitations can survive the S-fold

projection. Therefore it is very plausible that the non-perturbative N = 7 supergravity, which arises

as effective theory from the string theory, is the massive, higher spin W-supergravity theory, which

we have discussed before.

In the four-dimensional effective field theory, non-perturbative S-duality transformations map the

perturbative heterotic states with electric charges onto the non-perturbative states with magnetic

charges and vice versa. After the Z4 projection, the S-field is frozen to its self-dual value S = i

and hence the string coupling constant is fixed at strong coupling. It follows that in the S-fold,

the non-perturbative electric and magnetic states have equal masses, which are comparable with the

masses of the perturbative massive string states. In the following we will nevertheless neglect the

non-perturbative states in the discussion of the spectrum of the S-folds, but we will only derive the

spectrum of the massive excited, perturbative string states of the four-dimensional heterotic and

type II S-folds that survive the Z4 projection. We will restrict the discussion on the states at the

first massive string level. In particular we will construct the massive spectrum of N = 3 and N = 7

type II W-strings.

4.1 Massive states of the unprojected four-dimensional fermionic string with N = 4

supersymmetry

We will start by recalling the massive spectrum of the (left or right-moving) fermionic string after

the GSO projection, but before projecting on the Z4 invariant states. These states will be needed

later on, when discussing the N = 3, 7 S-folds.

Bosons:

Splitting the indices into uncompactified and internal indices, one obtains at the first massive

level the following massive states (see for example [56]):

bi−1/2b
j
−1/2b

I
−1/2|0〉 , bi−1/2b

I
−1/2b

J
−1/2|0〉 , bI−1/2b

J
−1/2b

K
−1/2|0〉 ,

bi−3/2|0〉 , bI−3/2|0〉
αi
−1b

j
−1/2|0〉 , αi

−1b
I
−1/2|0〉 , αI

−1b
i
−1/2|0〉 , αI

−1b
J
−1/2|0〉 . (4.1)

(Here the b’s and the α’s are the oscillators of the world-sheet fermions and bosons.) Collecting

all states and putting them into proper massive representations of the four-dimensional little group

SO(3) as well as in proper representations of the N = 4 SU(4) R-symmetry, one obtains the following

massive spectrum:

1× Spin(2) + (6 + 6 + 15)× Spin(1) + (2× 1 + 10 + 1̄0 + 20′)× Spin(0) . (4.2)
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As discussed before, for massive states in N = 4 supersymmetry the R-symmetry group is enhanced

from U(4) to USp(8) ⊃ U(4) with the following branching rules:

8 = 4 + 4̄ ,

27 = 6 + 6 + 15 ,

36 = 1 + 10 + 1̄0 + 15 ,

42 = 2× 1 + 10 + 1̄0 + 20′ ,

48 = 4 + 4̄ + 20 + 2̄0 (4.3)

Then the massive bosons transform under USp(8) as

1× Spin(2) + (27)× Spin(1) + (42)× Spin(0) . (4.4)

Fermions:

In ten dimensions, the 128 massive fermions are given by the following string states:

(8)c + (56)c : bA−1|a〉 , (8)s + (56)s : αA
−1|ȧ〉 . (4.5)

In terms of four-dimensional massive spinors this leads to:

(4 + 4̄)× Spin(3/2) + (4 + 4̄ + 20 + 2̄0)× Spin(1/2) , (4.6)

where in this decomposition each spin 3/2 Rarita Schwinger field in four dimensions contains 4

degrees of freedom and each spin 1/2 Dirac fermion possess 2 degrees of freedom. Under USp(8) the

massive fermions transform as

(8)× Spin(3/2) + (48)× Spin(1/2) , (4.7)

The bosons in eq.(4.2) together with the fermions in eq.(4.7) build one long, massive N = 4

spin 2 supermultiplet. It precisely agrees with the super Weyl multiplet W 2
N=4, which is displayed in

eq.(2.20).

4.2 Massive states of the Z4-projected four-dimensional fermionic string with N = 3

supersymmetry

Now we perform the Z4 S-fold projection on the above massive spectrum of the right-moving sector

of the fermionic string. Then supersymmetry is broken from N = 4 to N = 3, the R-symmetry

is broken from SU(4) to U(3) and the supercharge transforms as 3 under the R-symmetry. We

emphasize again that the H-projection must be taken into account in order to get the correct Lorenz-

invariant spectrum.

Bosons:
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The 64 invariant states can be grouped into the massive representations of the four-dimensional

little group SO(3) and of the SU(3) R-symmetry. But for the massive states in N = 3 supersymme-

try, the R-symmetry group is enhanced from U(3) to USp(6) ⊃ U(3) with the following branching

rules:

6 = 3 + 3̄ ,

14 = 3 + 3̄ + 8 . (4.8)

Then the massive bosons transform under USp(6) as

Spin(2) + (14 + 1)× Spin(1) + 14× Spin(0) . (4.9)

Fermions:

Acting with the Z4 transformation on the spinor fields, the invariant states build the following

64 massive fermions in four dimensions

6× Spin(3/2) + (14′ + 6)× Spin(1/2) . (4.10)

Note that the bosons in eq.(4.9) together with the fermions in eq.(4.10) build one massive N = 3

spin-two supermultiplet, which perfectly agrees with the spin-two super Weyl multiplet WN=3, as

given in eq.(2.17).

4.3 Massive states of the bosonic string

For completeness we also need the massive states of the left-moving bosonic string, when we build

the heterotic string. Leaving out the internal gauge coordinates, we get the following 44 massive

states in ten dimensions:

(8)v : αA
−2|0〉 , (35)0 + 10 : αA

−1α
B
−1|0〉 . (4.11)

They correspond to the following massive bosonic states in four dimensions:

Spin(2) + 6× Spin(1) + 21× Spin(0) . (4.12)

The massive spin-two field is universal and will be present in any background. The 6 massive vectors

and the 21 massive scalars can be regarded as additional matter fields, which appear in case the

internal left-moving is sector is given by a six-dimensional torus.

4.4 N = 3 heterotic W-superstring

This non-perturbative heterotic theory is given by the tensor product of the right-moving massive

spectrum of section §4.2 times the left-moving spectrum of section §4.3. Seen as field theory double

construction, it corresponds to the N = 3, W-supergravity, which is a tensor product QFT(N =
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3) ⊗ QFT(N = 0). The universal sector of the N = 3 W-supergravity is obtained by building the

tensor product of the left-moving massive spin-two field in eq.(4.12) with the right-moving N = 3

Weyl multiplet: The massive spectrum has the following form:

B : [Spin(2) + 15× Spin(1) + 14× Spin(0)]R × [Spin(2)]L ,

F : [6× Spin(3/2) + 20× Spin(1/2)]R × [Spin(2)]L . (4.13)

Explicitly performing the tensor product this leads to the following spectrum of massive fermions

and bosons:

B : [Spin(4) + 16× Spin(3) + 30× Spin(2) + 16× Spin(1) + Spin(0)]

F : [6× Spin(7/2) + 26× Spin(5/2) + 26× Spin(3/2) + 6× Spin(1/2)] . (4.14)

These states build two long, massive N = 3 supermultiplets, namely one (j = 5/2) with top spin-four

(nB + nF = 6× 64 = 384) plus another one (j = 3/2) with top spin-three (nB + nF = 4× 64 = 256),

where the multiplicities of these states fall into representations of the group USp(6) ⊃ U(3). It

contains in total nB + nF = 640 degrees of freedom.

If one also includes the additional six spin-one and 21 spin-zero fields of the left-moving bosonic

string in eq.(4.12) into account, the massive spectrum has the following form:

B : [Spin(2) + 15× Spin(1) + 14× Spin(0)]R × [Spin(2) + 6× Spin(1) + 21× Spin(0)]L ,

F : [6× Spin(3/2) + 20× Spin(1/2)]R × [Spin(2) + 6× Spin(1) + 21× Spin(0)]L . (4.15)

Then the tensor product takes following form:

B : [Spin(4) + 22× Spin(3) + 147× Spin(2) + 511× Spin(1) + 385× Spin(0)]

F : [6× Spin(7/2) + 62× Spin(5/2) + 308× Spin(3/2) + 582× Spin(1/2)] . (4.16)

These states build a reducible massive N = 3 spin-four supermultiplet, and it contains in total

nB = nF = 2816 degrees of freedom.

4.5 N = 7 type II W-superstring

The N = 7 = 4L + 3R non-perturbative type II W-superstring is given as the product of a left-

moving times a right-moving fermionic string with four respectively three space-time supercharges.

It is strongly coupled and it does not contain any massless fields. The massive sector is given by the

tensor product of the right-moving massive spectrum of section §4.2 times the left-moving spectrum

of section §4.1 in the following way:

B : [Spin(2) + 15× Spin(1) + 14× Spin(0)]R × [Spin(2) + 27× Spin(1) + 42× Spin(0)]L ,

[6× Spin(3/2) + 20× Spin(1/2)]R × [8× Spin(3/2) + 48× Spin(1/2)]L

F : [6× Spin(3/2) + 20× Spin(1/2)]R × [Spin(2) + 27× Spin(1) + 42× Spin(0)]L ,

[Spin(2) + 15× Spin(1) + 14× Spin(0)]R × [8× Spin(3/2) + 48× Spin(1/2)]L . (4.17)
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Altogether we explicitly derive in this way the following N = 7 spectrum of massive fermions and

bosons:

B : [Spin(4) + 91× Spin(3) + 1000× Spin(2) + 2912× Spin(1) + 2002× Spin(0)] ,

F : [14× Spin(
7

2
) + 364× Spin(

5

2
) + 1988× Spin(

3

2
) + 3068× Spin(

1

2
)] . (4.18)

These states build exactly one long, massive N = 7 spin-four supermultiplet. It perfectly agrees with

the massive, spin-four multiplet in eq.(2.24), which we have obtained via the double copy construction

of N = 7 W-supergravity and where the multiplicities of these states fall into representations of the

group USp(14) ⊃ U(7). The agreement of the string theory construction and the field theory double

copy construction provides some convincing evidence that N = 7 W-supergravity indeed exists as

physical theory. Since the theory does not contain any massless fields, and hence in particular also no

massless gravitons and also no massless dilaton, it should be strongly coupled and also be a kind of

topological theory, since there are no possible fluctuations around a given gravitational background.

5 Conclusions and Outlook

In this paper we have provided evidence for the existence of new W-supergravity and W-superstring

theories. They are built as double copy constructions involving the non-perturbative N = 3 super-

symmetric Yang-Mills theories, or in the string context, containing a right-moving fermionic string

with N = 3 space-time supersymmetry. In particular we have obtained in this way a massive, spin-

four W-supergravity/superstring with N = 7 (28 supercharges) supersymmetry in four space-time

dimensions. This theory can be regarded as a non-perturbative S-fold of N = 8 supergravity or,

respectively, of the N = 8 type II superstring theory.

The proposed N = 7 string construction possesses the following three distinct features:

• The internal space is a non-geometric background, obtained by modding out with the T-duality

group. This eliminates all internal massless moduli.

• The discrete S-duality transformation corresponds to left-right asymmetric rotation of the un-

compactified transversal coordinates. Therefore also the uncompactified space can be regarded

as non-geometric background. Then, along the uncompactified directions, the S-duality is mod-

ded out. Therefore the theory is strongly coupled without a massless dilaton.

• In four dimensions there is an additional twist by large diffeomorphisms. Therefore there is

no massless graviton multiplet, and the theory is a massive, topological theory. Together with

the S-duality, this twist corresponds to a discrete element of the Geroch group. Note that

the Geroch group also contains a kind of mirror symmetry in the uncompactified transversal

directions, namely the exchange of the S-field with the (transversal) graviton field.

As a caveat we like to mention that we have discarded possible twisted sectors in our string con-

struction, we have just performed a truncation of the entire string spectrum on the states, which are
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invariant under the discrete asymmetric rotations. Due to their non-perturbative character, we also

could not construct a modular invariant partition function for the W-superstrings. Therefore there

is at the moment no proof that the W-superstrings are fully consistent, full fledged string theories.

We also like to emphasize that, although being massive theories, W-supergravities are locally

supersymmetric theories. It would be very interesting to learn more about the structure of these the-

ories. Their (effective) description is not in terms of a Lagrangian but only in terms of their operator

content, their massive fields and their on-shell scattering amplitudes. Hence relevant information

might be obtained by computing string scattering amplitudes with massive external fields, as it was

done e.g. in [57, 58].

Finally we like to comment about a possible relation between the holographic picture and the

double copy picture of supergravity theories. This follows from the intriguing correspondence between

the 4D N -extended Weyl multiplets and the 5D standard 2N -extended supergravity multiplets.

This is because they both deal with 4D massive spin-2 respresentations of the same superconformal

algebra. In this way, the 4D superconformal algebra of N -extended quantum field theories (N ≤ 4)

at the four-dimensional boundary is holographically equivalent to the supersymmetry algebra of 2N -

extended AdS5 supergravity theories. However the difference between this two cases is that for the

double copy construction the spin-two field lives on the 4D boundary, whereas in the holographic

duality the spin-two fields lives in the 5D bulk space. Following this observation, if we identify Weyl

supergravity with the superconformal N = 4 boundary theory, then its holographic dual should be

an N = 8 a spin-four W-supergravity theory (for comprehensive reviews and some papers on higher

spin theories see [59–62]). Note that four-dimensional Weyl supergravity violates unitarity do to the

quartic derivative action which leads to a dipole ghost [63,64]. It is therefore an interesting question

if this also implies a lack of unitarity in the spin-four W supergravity.
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Appendix: Supercharges

Starting from ten dimensions, the 16 supercharges Qα,A and Qα̇,Ȧ belong to the 16-dimensional spinor

representation 16s of the group SO(10). Decomposing this group into the four-dimensional Lorentz-

group times the R-symmetry group, i.e. SO(10) ⊃ SO(1, 3)× SO(6)R, the spinor 16s decomposes

as

Qα,A , Qα̇,Ȧ : 16s = (2s, 4s) + (2c, 4c) . (5.1)
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Further we also need the 10-dimensional transversal Lorentz-group SO(8)T , which is the little group

for massless states, and under which the spinor of SO(10) ⊃ SO(8)T × SO(2)L decomposes as

16s = (8s,
1

2
) + (8c,−

1

2
) . (5.2)

Here SO(2)L is the rotation group, which acts on the longitudinal degrees of freedom of the massless

states.

Finally we need also the branching of SO(8)T into the four-dimensional, transversal little group

SO(2)T times the R-symmetry group SO(6)R, i.e. SO(8)T ⊃ SO(2)T × SO(6)R:

8s = (
1

2
, 4s) + (−1

2
, 4c) , 8c = (−1

2
, 4s) + (

1

2
, 4c) . (5.3)

Comparing the different decompositions, one sees that the eight supercharges Qα,A belong to the two

first representations in 8s and 8c, namely

Qα,A : (
1

2
, 4s) + (−1

2
, 4s) , (5.4)

whereas the other eight supercharges Qα̇,Ȧ belong to the two second representations in 8s and 8c,

namely

Qα̇,Ȧ : (
1

2
, 4c) + (−1

2
, 4c) , (5.5)
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