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Constraints on long-lived, higher-spin particles from galaxy bispectrum
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The presence of massive particles with spin during inflation induces distinct signatures on cor-
relation functions of primordial curvature fluctuations. In particular, the bispectrum of primordial
perturbations obtains an angular dependence determined by the spin of the particle, which can be
used to set constraints on the presence of such particles. If these particles are long-lived on super-
Hubble scales, as is the case for example for partially massless particles, their imprint on correlation
functions of curvature perturbations would be unsuppressed. In this paper, we make a forecast
for how well such angular dependence can be constrained by the upcoming EUCLID spectroscopic

survey via the measurement of galaxy bispectrum.

I. INTRODUCTION

Inflation [I] is a successful theory in solving the prob-
lems of standard big bang theory, namely flatness and
horizon problems. Additionally, it provides a mecha-
nism for generating primordial fluctuations which are
the seed of the observed anisotropies in the cosmic mi-
crowave background (CMB) as well as the large scale
structure (LSS) of the universe. The simplest models
of inflation with a single degree of freedom, i.e., infla-
ton, originating from the Bunch-Davies vacuum, predict
a nearly Gaussian distribution of primordial fluctuations.
High precision constraints on the level of primordial non-
Gaussianity [2], will shed light on the field content and
interactions between quantum fields during inflation, and
hence enable us to distinguish between inflation models.

Even when inflation is driven by a single degree of free-
dom, the excitation of additional particles present during
inflation can leave an imprint on correlation functions of
primordial curvature perturbations (. In particular, it
generates primordial non-Gaussianity which can be used
to constrain the characteristics of such particles. The
signatures of extra scalar fields, have been extensively
studied in the context of curvaton models (see [3] for
a review), in the case of light scalar fields, and in the
context of quasi-single field models [4H9], for the case of
massive scalar fields with masses of the order of Hubble
parameter during inflation. A general treatment of the
impact of massive particles with spin on the correlation
functions of primordial curvature perturbations has been
recently studied in [I0] II]. It was shown that for parti-
cles with m ~ H during inflaton, the primordial bispec-
trum has an angular-dependence (depending on the an-
gles between the three wavevectors) determined by the
spin of the particles and an oscillatory (or power-law)
feature determined by its mass.

The so-called Higuchi bound [12], implies that the
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massive spinning fields in de-Sitter background decay on
super-Hubble scales; hence, they are short-lived and their
imprint on the cosmological correlation functions is sup-
pressed. There are two ways in which one can generate
long-lived massive particles with spin, thus unsuppressed
perturbations on super-Hubble scales. One is by intro-
ducing a suitable coupling between inflaton and the extra
particle with spin [I3] [14], in analogy to the previously
studied case of vector fields coupled to inflaton [I5HIS].
Another possibility is the partially massless particles [19-
22] which, for some discrete values of the mass of the par-
ticle with spin s are characterized by long-lived pertur-
bations on super-Hubble scales for certain helicity states.
In both ways, and in the context of exact de Sitter (which
amounts to assuming the curvature perturbation is gen-
erated not by the inflaton, but by a spectator field and
therefore multi-field models of inflation) it was shown in
Ref. [14] that spinning field obtains a non-zero vacuum
expectation value which introduces preferred direction
leading to the statistical anisotropy of the cosmological
correlators, in particular in the power spectrum, bispec-
trum, and trispectrum®.

In this paper, we investigate detectability of signature
of such long-lived higher spin (HS) fields through their
imprint on galaxy bispectrum. Current best constraints
on various shapes of primordial non-Gaussianity are from
measurements of temperature and polarization bispectra
of the CMB by the Planck satellite [24]. Further improve-
ment of these constraints are expected to be achieved
via analysis of clustering statistics of LSS from upcom-
ing galaxy surveys such as DESI [25], EUCLID [26], and
LSST [27]. Additionally, intensity mapping technique
can also potentially be used as a tracer of large scale
structure and hence provide a mean to constrain primor-

I Partially massless particles were considered also in Ref. [23], but
within the single-field models of inflation and with no vacuum
expectation value for the spinning fields, thus giving rise to a
non-vanishing trispectrum of curvature perturbations while the
bispectrum is vanishing.
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FIG. 1: A schematic representation of various realizations of the first N — N}, e-folds of inflation in which the long-lived IR

) . : IR
(i.e. super-Hubble) higher-spin modes A,}"..,,.

act as non-trivial background. The cosmological perturbations depend on the

particular value the IR modes assume in a single realization of the ensemble of possible universes.

dial non-Gaussianity.

There are several forecasts for constraints on primor-
dial non-Gaussianity of local, equilateral, and orthogo-
nal shapes from upcoming galaxy and intensity mapping
surveys (see for ex. [28H36]). The constraints on the
presence of additional (short-lived) massive particles with
and without spin from LSS were obtained in [37H40]. For
the long-lived particles with spin, their detectability in
CMB and galaxy power spectra, as well as the CMB bis-
pectrum, is studied in [41] 42]. We extend their analysis
to obtain constraints from the galaxy bispectrum.

The analysis of the imprint of the full anisotropic bis-
pectrum on CMB and LSS bispectrum is rather complex,
if not unfeasible. One can instead consider the angle-
average bispectrum as is done in Ref. [42] to search for
the imprint of these long-lived higher-spin particles. It
was shown in [42] that the angle-averaged bispectra due
to massive and partially massless particles with a given
spin, can be expanded in terms of Legendre polynomi-
als with a finite number of terms. We use this result
to constrain the coefficients of this expansion from mea-
surements of galaxy bispectrum from upcoming EUCLID
survey.

The rest of the paper is organized as follows: in section
[[M] we review the features of the bispectrum of curvature
perturbations due to the presence of long-lived higher-
spin fields and the template of primordial bispectrum
that we use in our forecast. In section [ we review
our model of the observed galaxy bispectrum, while in
section [[V] we outline our forecasting methodology. We
present our results in section [V] and conclude in section

V1

II. PRIMORDIAL BISPECTRUM DUE TO
LONG-LIVED SPINNING PARTICLES

The impact of spinning particles on cosmological corre-
lators can be analysed with the aid of the dS/CFTj cor-
respondence [43], which can be used under the assump-
tion that inflation is realized as a phase of (quasi-)de
Sitter spacetime in the early universe. On the bound-
ary of dS spacetime, i.e., in the limit where the con-
formal time 7 tends to zero, the HS field can be writ-
ten as A;,.. (F,7) = (—7)27%A;,..;.(Z) where A =
3/2—+/(s —1/2)2 — m?/H?. One can easily notice that
the value of conformal weight A = 0 is indeed a very spe-
cial case, as it is the only one giving rise to healthy long-
lived perturbations. For values A < 0 one encounters
unphysical divergences of the ultraviolet modes stretch-
ing over the horizon scale during inflation. On the other
hand, for positive values of the conformal weight, the
characteristic amplitude of the HS fluctuation rapidly
decays on super Hubble scales. In particular, the bis-
pectrum contribution from the spinning particles in the
squeezed limit configuration is suppressed by a factor
(Kiong/ Eshort)™ [10]. While the Higuchi bound [12] dic-
tates that the conformal weight A must be higher than
one due to unitarity bounds, there are at least two ways
in which A = 0 can be achieved, namely through an “ad-
hoc” coupling between the inflaton and the HS fields or
by restricting the analysis to partially massless HS fields,
as stated in the introduction.

In order to parametrize the impact of spinning particles



on the bispectrum we adopt the following template

Bc(k‘l, ko, kig) = Z Cn’Pn(kl 'k‘g)Pc(kl)P((k‘g)-‘rQ perms,
n

(1)
where P,, are Legendre polynomials of order n and P (k)
is the power spectrum of primordial fluctuations. As
we will review below, the long-lived particles with spin
s induce s + 1 non-vanishing coefficients with n even:
Co, O, ..., Cas_2, Cos.

Referring to [14, [42] for details, we present only the
main results relevant for the present discussion. In the
case of HS fields coupled to the inflaton it was found that
the statistically anisotropic curvature bispectrum takes
the form [14]:

Be(ki, ko, k3) = gs (A7) (A779) Pe(ky) P (ko)
x TI0t 6 (kg )ITE 5 (ko) + 2 perms, (2)
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where g5 is an undetermined constant proportional to
the spin-dependent coupling between the HS field and
the inflaton, and the projector tensor H] L-de ° (k) is built
as the sum of helicities of the HS polarlzatlon tensors
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It was also assumed that the background generated by
the IR modes breaks the isotropy by identifying a con-
stant unit vector p; (p-p = 1) such that

(Aiyes) = Ao [pi -,
1

~ 55 =1 WiniaPia -

Hfl ]s *]1 Je(k). (3)

Py, +perms) + -+ |, (4)
where the ellipsis stands for further terms ensuring the
r.h.s.  is transverse and traceless. Then, the angle-
averaged bispectrum (averaging over p), was found to
be

1
Be(ky, ko, ks) = §gSIEP<(k‘1)PC(kZ2)
x {(1 + cosﬂich,;z) + (1 —costy, kQ)ZS}
+2 perms. (5)

where we have defined I? = A2s!/(2s + 1)!! and g; is an
undetermined constant. We expect g to be of order unity
and Ay to be of order of HN1/2 where H is the Hubble
rate and N is the total number of e-folds of inflation. The
observational limits discussed in this paper can therefore
provide useful informations about the number of e-folds
if H is known by some alternative method. Finally, the
coefficients C,, appearing in Eq. are

Atg I

Co = (2s+1)’

¢~ Colnt DE@s + OTQs42) 0 (6)
r( n+2s+ 1) (n+ 2s +2)

c, [n > 2s or n = odd].

It is interesting to note that the same combination of
undetermined constants g; A2 appears in all even C,,.

In an analogous way, the angle-averaged bispectrum
contribution resulting from partially massless spinning
particles takes the form [14]:

Be(ky, ko, k3) = giMI? Pr (k1) Pe (ko) + 2 perms, (7)

where

M= )

A1 A27£0,%1

k)€, i (ko)

(8)
The constants d,|y|, normalised so that dss = 1, account
for the mixing of different helicities of the partially mass-
less field due to the different expectation values of its s—2
components. As such, they should be treated as free and
independent parameters since the expectation values are
not predicted by the underlying theory. For the simplest
case s = 3 the coefficients C), in Eq. (1) are
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Co=0 [n#0,2,4,6].
Analogously, for s = 4, it was found that
256
Co =37 {972d +360da(1 + da3)
+35(1 + 2dys + 18d§3)}g§MI§,
512
C {648d 49(2 +d
2 =603 +49(2 + dy3)
— 24+ dig) folIY,
512
C 245 + 11763d2, — 735d
4 = 5005{ + 12 43 w0
4 990d40(—2 + 3d43)} gEMPO,
512
Co =1 {14 +11664d2, — 119d.3
 198d40(—4 + 17d43)}g§MIS7
128
1+ 144d
Cs =5z 1+ 144da2)
(1 + 144d4s — 16d43)g M 10,
Co =0 [n#0,2,4,6,8].

Note that in this case, in addition to the combination
gs A2, certain comblnatlons of dy|x appear.

Note that the template of the form given in Eq. .
has been initially introduced in Ref. [I7] to character-
ize the angle-averaged bispectrum sourced by the pres-
ence of a U(1) gauge vector field coupled to inflaton field



via the interaction I(¢)F? during inflation [15} [16], mod-
els with primordial magnetic fields [44], and models with
non-trivial symmetry structure of inflaton field as in solid
inflation [45], [46]. These models can generate angular de-
pendence corresponding to the first three terms in the
above expansion. Therefore, this template is used to
forecast the constraints on Cp 12, from the CMB and
LSS (see for ex. [I7, [47H49]). Moreover, observational
bounds for Cp 12 are obtained via the measurements of
the CMB bispectra by the Planck satellite [24]. In Ref.
[14, 42], the higher-order (even) terms in the expansion
are considered. They performed a forecast to obtain con-
straints on Cp 2, 4,6,10 from measurement of CMB temper-
ature bispectrum [42]. We extend their work by making
a forecast for these coefficients using the observed galaxy
bispectrum from upcoming galaxy surveys.

III. THE OBSERVED GALAXY BISPECTRUM

Our model of the galaxy bispectrum is the same as
Ref. [40], so we would not repeat the details here and
refer the reader to that reference. To summarize, we
model the galaxy bispectrum at tree-level in perturbation
theory accounting for redshift-space distortions (RSD)
(linear Kaiser term and Finger-of-God effect) in addition
to Alcock-Paczynski (AP) effect. In relating the galaxy
overdenisty to that of underlying dark matter, we assume
a simple model of the bias, accounting for local-in-matter
terms up to quadratic order as well as the tidal shear bias.

Neglecting the AP effect, let us briefly review the
model of galaxy bispectrum we use in our forecast. In ad-
dition to the contribution from the non-vanishing primor-
dial bispectrum, non-linear gravitational evolution gen-
erates non-zero bispectrum of matter density field and
biased tracers. At leading-order in perturbation theory,
the total bispectrum at redshift z is the sum of the two
contributions

By (k1 ko, k3; 2)
= BE"™ (ki,ka, ks) + By N9 (ki ko, ks), (1)
where the contribution from gravitational evolution is
B2™(ky ko, k3) = Di (k1. ko, ks) [271 (k1) Z1 (ko)
X Zg(kl, kg)Po(k‘l)Po(kg) + perms] y (12)

while the contribution from primordial bispectrum By is
given by

BENG(kl,k% k3) = DE (k1. ko, ks)

3
x [ 121 (k)M
i=1

The kernels Z; are the perturbation theory kernels in
redshift space and D  is the finger-of-God suppression
factor. P, denotes the matter power spectrum linearly

(ki)] Be (b, ko, k3) . (13)
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extrapolated to redshift z, and M(k) is the transfer func-
tion that relates the primordial fluctuations ¢ to the lin-
early extrapolated matter overdensity during the matter-
domination era. The explicit expressions of these func-
tions are given in Ref. [40]. Note that for brevity, we have
dropped the explicit redshift dependence in the above ex-
pressions. Momentum conservation k; + ks + k3 = 0 re-
moves the dependence on one of the wave-vectors. Even
if the primordial bispectrum is isotropic, RSD and AP ef-
fects, render the observed bispectrum anisotropic. There-
fore to characterize galaxy bispectrum in addition to the
shape of the triangle, one needs to define the orientation
of the triangle with respect to the line of sight. Hence,
the bispectrum depends on five independent parameters
which can be chosen to be the three sides of the triangle
k1, ks, k3, the angle 6 between one of the wavevectors and
the line-of-sight, and the azimuthal angle ¢ between two
wavevectors.

IV. FORECASTING METHODOLOGY

We use the Fisher matrix formalism to study the po-
tential of the upcoming EUCLID spectroscopic survey, in
setting constraints on the presence of long-lived particles
with spin. Our forecasting methodology and the survey
specifications are the same as Ref.[40], so here we only
briefly review our assumptions and refer the reader to
this reference for details.

We use the survey specifications of EUCLID spectro-
scopic survey as outlined in [26] 50]. We assume a sky
coverage of 15000 deg?, i.e. fsky = 0.36, and redshift
uncertainty of 0,(z) = 0.001(1 + z). The redshift distri-
bution dN/dz is obtained from empirical data of lumi-
nosity function of Ha emitters, and we take the limiting
flux of 4 x 10~ '%ergs~'em =2 and efficiency of 35%. We
consider 12 equally populated redshift bins in the range
of 0.4 < z < 2.1, similar to what is done in Ref. [28§].

The Fisher matrix of the galaxy bispectrum at a given
redshift bin with mean z; is given by

27
/ de k‘lkgk‘g/ dCOSH/ d(b

( BObS/a)\ )( Bobs/a/\B
% VarB, ’

where we defined dV}, = dkidkodks, Vg is the tetrahedral
domain allowed by triangle condition for the wavenum-
bers kmin < ki < kmax, and V; is the volume of the
redshift bin z;. For each redshift bin, we take ki, =
21 (3V; /4m)~1/3 and set kpax such that the variance of the
matter density field at that redshift is equal to the vari-
ance at z = 0 for ko = 0.15 A Mpcfl. We also impose
a conservative upper bound that kmax < 0.3 h Mpc ™'
The total Fisher matrix is the sum of the Fisher matrices
in all redshift bins covered by the survey

Fop = ZFaﬁ(zi) ) (15)

Faﬁ Zz =

(14)



For the variance of the bispectrum, in our main analysis,
we only consider the Gaussian contribution which is given
by

Var By(k1, k2, k3,0, ¢, 2)

3

_ obs (7. . o i
— 8123]1;[1 |:Pg (k]7/1/]7 ZZ) + T ) (16)
where P;bs is the observed power spectrum, with p; be-
ing the angle of each wavevector with the line of sight.
n; is the mean number density of galaxies in redshift bin
z; and s123 = 6, 2,1 for equilateral, isosceles, and scalene
triangles. The constraints we report in section [V] are ob-
tained imposing Planck priors, as discussed in Ref. [40],
using synthetic temperature data, therefore

Fi% = Fog + FL. (17)

In our forecast we consider three cases: only one of
the coefficients C,, is non-zero, all even C,, coefficients
up to n < 10 are non-zero and the coefficients are all
a function of Cy. In addition to the coefficients C,,, we
vary five cosmological parameters; amplitude In(10'°A,),
and spectral index n, of primordial scalar fluctuations,
Hubble parameter h, and the energy density of cold
dark matter Q¢qm, and that of baryons €2,. We also
vary three biases, linear and quadratic local biases by, by
and tidal shear bias bg2. For the biases, we assume
that the redshift evolution is known (as discussed be-
low), and we vary a single parameter characterizingThe
suppression factor of FoG effect is determined by dis-
persion velocity of galaxies, for which we assume that
the redshift evolution is known and vary a single pa-
rameter orog,0. In obtaining the constraint on each
coefficient C,,, our parameter array is therefore A(*) =
[ln(loloAS)a ns, h7 chma Qb7 Cn7 UFOG707 b17 b2) bK2} .

We choose the fiducial values of the cosmological pa-
rameters to be In(101%A;) = 3.067,ns = 0.967,h =
0.677, Qcam = 0.258, 2, = 0.048, setting the pivot scale
of k, = 0.05 Mpc™!, consistent with the Planck 2015
data [5I]. For the C,, coefficients we set the fiducial val-
ues of C,, = 1, and for the velocity dispersion we set the
fiducial value to be orog,0 = 250 km s7! (similar to Ref.
[28]). We model the redshift evolution of the linear bias
as b1(2) = b1v/1 + z and set the fiducial value of b, = 1.46
such that at z = 0 the value of the linear bias is consis-
tent with the results of Ref. [52] for halos of mass M =
3 x 10¥¥h~1 M. For quadratic biases we assume scaling
relations of by = by(0.412 — 2.143b; + 0.929b7 + 0.008b3)
and bgz = bg2(0.64 — 0.3b; + 0.05b? — 0.06b3), which
are fits to N-body simulations provided in Refs. [52] [53].
Based on these results, we assume that the above rela-
tions between by and b2 with by, are preserved in the
redshift range we consider and use it to set the fiducial
values of the the biases in each redshift bin. We vary two
parameters for the overall amplitudes by and by-=.

Additionally we will also consider how the forecasted
constraints on the coefficients C), degrade, once the un-

certainty in the theoretical model of the galaxy bispec-
trum [3I), B2] and leading non-Gaussian corrections to
the variance [32, 54] are accounted for. We will follow
the same prescriptions as reviewed in [40], therefore we
refer the reader to Ref. [40] and references therein for
the details.

V. RESULTS

As discussed in section [T} both in the case of a HS field
coupled to inflaton and that of the partially massless HS
field, different C,, coefficients are related to one another.
In our analysis, being agnostic to the theoretical model,
we first consider the case where the coefficients C,, are
independent of one another. We obtain constraints on
Cho 10, assuming only one is non-zero (shown in Ta-
ble , or all are non-zero (shown in table . Next we
consider the case of the field with spin s coupled to infla-
ton, where all the even C), <25 coeflicients can be written
in terms of Cy, and obtain constraints on Cj for a given
spin (shown in table. In all the tables below, the three
columns correspond to using the Gaussian expression for
the variance (“Base”), accounting for the leading non-
Gaussian correction to the variance (“NG Var.”), and
accounting for the theoretical error (“TH Err.”). The
constraints are obtained marginalizing over cosmologi-
cal parameters, biases and the dispersion velocity as de-
scribed in section [Vl

In Table |I|, we show the 1-0 constraints on Cy s, ... 10,
varying one at the time and assuming all the others are
zero. As a consistency check of our forecasting pipeline,
note that for n = 0, the template in Eq. reduces
to the local shape with Cy = 6/5f1%¢. Therefore the
constraint for Cp is in agreement with that of Ref. [40]
for the local shape. The constraints get weaker as n
increases. Accounting for the leading NG correction to
the variance degrades the constraints by about a factor
of (30 — 40)%, while taking into account the theoretical
error weakens the constraints by less than 10%.

The current best constraint on the lowest order coeffi-
cients are obtained from measurement of CMB tempera-
ture and polarization bispectra by Planck satellite which
provided o(Cp) = 6 and o(C3) = 26 [24]. For higher-
order terms, comparing our forecasted constraints with
those for CMB temperature bispectrum in [42], our re-
sult indicate that the measurement of galaxy bispectrum
would provide significantly tighter constraints, which can
be attributed to having access to more modes since LSS
is a 3-dimensional map of the universe in contrast with
CMB which is a 2-dimensional map. Moreover, unlike
the constraints from CMB [42], in which the constraints
on higher-order coefficients are significantly weaker than
lowest order ones, the LSS constraints on coefficients with
n = 0,...,10 are comparable. We believe this can be
understood in the following way: the CMB bispectrum
probes the projected primordial bispectrum in two di-
mension, hence, the oscillatory features of the bispec-



Base | NG Var. | TH Err.
a(Co) 0.451 0.610 0.490
o(Cy) | 0.895 1.22 0.981
o(Cs) | 1.03 1.40 1.13
o(Cs) 1.24 1.61 1.29
o(Cs) | 1.43 1.96 1.55
o(Cro) | 1.58 2.17 1.71

TABLE I: 1-0 constraints on the coefficients C,,, varying one
at the time and setting the rest to zero. The constraints
are obtained marginalizing over cosmological parameters and
biases. We chose C,, = 1 as our fiducial values. The fiducial
values of biases and cosmological parameters are given in the
text.

trum is washed away. The impact is more important fo
higher order Legendre polynomials since they are highls
oscillatory.

Base NG Var. | TH Err.
o(Co) |1.23 (0.275)| 1.72 1.45
o(C2) |4.28 (0.688)| 6.22 5.08
o(Cy) 6.22 (0.930)| 9.12 7.25
o(Cs) | 7.05 (1.12) | 103 8.21
o(Cs) |6.51 (1.35) 9.35 7.59
o(Cho) |4.20 (1.50) 5.88 4.85

TABLE II: 1-0 constraints on each C, when all varied
marginalizing over the other coefficients as well as cosmolog
ical parameters and biases. The fiducial values of biases anc
cosmological parameters are given in the text. The number
in the parentheses are the un-marginalized constraints.

Since the theoretical models considered here, predict a
subset of the C), coefficients to be non-zero for a given
spin, to study the degeneracy between various C), coeffi-
cients, next we assume that Cp o .10 are non-zero simul-
taneously. We obtain the 1-0 constraints on each of the
C,,, marginalizing over the others, as well as cosmological
parameters, biases and dispersion velocity. The results
are shown in Table [[Il Overall, the constraints on each
coefficient are weaker than in the case of varying only
one at a time, due to degeneracy between them. Among
all, the constraints on the coefficient Cy are the weakest
and improves for n > 6. We note that if considering the
un-marginalized constraints (the numbers in the paren-
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FIG. 2: 1-0 confidence ellipses for the coefficients C,, from
EUCLID survey as a function of kmax(z = 0). The fiducial
values of biases and cosmological parameters are given in the
text.
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FIG. 3: 1- and 2-0 confidence ellipses for the coefficients C,,
from EUCLID survey, marginalizing over all the other param-
eters. We chose C,, = 1 as our fiducial values. The fiducial
values of biases and cosmological parameters are given in the
text.

theses), the constraints degrade for increasing n. There-
fore the improvement in the marginalized constraints for
n > 6 is due to parameter degeneracies. Accounting for
the leading non-Gaussian correction to the variance and
the theoretical error, degrade the constraints by about
a factor of (40 — 50)% and (15 — 20)%, respectively. To
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FIG. 4: 1- and 2-0 confidence ellipses for the biases and the
coefficients (', from EUCLID survey, marginalizing over all
the other parameters. The fiducial values of biases and cos-
mological parameters are given in the text.

show the dependence of the constraints on the choice of
Emax, in Fig. 2| we show the 1 — o constraints on C,, as
a function of k. at redshift z = 0. Note that plateau-
ing of the constraint is partially due to the fact that we
always impose the upper bound of kmax < 0.3 h Mpc ™.
Figures [3] and [] show the 1- and 2-0 confidence ellipses
between C,, coefficients and between C,, coefficients and
the three biases, respectively, marginalizing over all the
other parameters. There is a significant degeneracy be-
tween various C,, coefficients and a non-negligible degen-
eracy between Cy and Cy with the biases as shown in
Fig. @} The degeneracy between the coefficients C,, and
cosmological parameters is rather week, and hence, we
do not show it here. To compare with the prediction of
the theoretical models described in section EL in Fig. (3]
as an example we also show the values of C), for n # 0
in terms of Cy for the case of a particle with spin s = 5
coupled to inflaton as given in Eq. (@

Next, we consider the case of the HS field coupled to
inflaton, in which the coefficients C,, are all related to
Cy as give in Eq. @ For a given spin s, only even
coefficients up to n < 2s are non-zero. We consider par-
ticles with spins 1,2,3,4,5 and obtain the constraint on
Cy in each case, marginalizing over all the other param-
eters. The results are given in Table [[TI] In this case,
as one would expect, we obtain better constraints on Cy
than previously, since there are additional contributions
from higher order Legendre polynomials to Cy. The con-
straints are degraded by about a factor of (20 — 40)%,
when we account for the leading NG correction to the
variance and by less than 10% when theoretical error is
accounted for. Note that if we were to measure C,, of
various orders, a non-zero value of Cy and zero value for
all higher-order terms would correspond to detecting the
local shape non-Gaussianity. However if we only measure
Cy, we can not infer that, the signal is due to the local
shape unless we measure other coefficients to be zero.

To demonstrate the degeneracy between Cy and other
parameters, for the case of a HS field with s = 5, we

Base | NG Var. | TH Err.
s=1 0.301 0.439 0.328
s=2 0.189 0.246 0.199
s=3 0.138 0.176 0.143
s=4 0.110 0.138 0.114
s=5 | 0.093 0.114 0.095

TABLE III: 1-0 constraints on Cp from massive particles with
spins s = 1,2,3,4,5 coupled to inflaton. Constraints are ob-
tained marginalizing over cosmological parameters and biases.

show the 1- and 2-0 confidence ellipses between C(y and
the cosmological parameters, as well as with the biases in
Fig. [f] The constraints are obtained marginalizing over
all the other parameters.
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FIG. 5: 1- and 2-0 confidence ellipses for Cy from HS massive
particles with s = 5, and cosmological parameters and the
biases from EUCLID survey, marginalizing over all the other
parameters. The fiducial values of biases and cosmological
parameters are given in the text.

VI. CONCLUSIONS

Particles with non-zero spin, if present during inflation,
leave a distinct angular dependance on correlation func-



tions of primordial curvature fluctuations. For massive
particles, the amplitude of the signal, in particular the
bispectrum, of primordial scalar fluctuations, however,
is in general suppressed with suppression factor deter-
mined by the mass of the particles. Recently it has been
shown that by introducing a suitable coupling between
the particles with spin and inflaton, or by considering
the partially massless particles, one can generate long-
lived particles that lead to un-suppressed primordial bis-
pectrum. The resulting bispectrum in these models are
shown to be anisotropic as the non-zero vacuum expecta-
tion value of the particle with spin, introduces a preferred
direction. After angular averaging this bispectrum, one
can express the results as a finite expansion in terms of
Legendre polynomials. The contributing terms and the
relation between the coeflicients of the expansion are fully
determined in each model.

In this paper we investigated the potential of the up-
coming EUCLID spectroscopic survey in constraining the
coeflicients of this expansion, and hence in setting con-
straints on the presence of long-lived extra particles with
spin, described by these models. Assuming that the co-
efficients of this expansion are independent of one an-
other, we considered terms up to 10-th order and showed
that measurement of the galaxy bispectrum from the EU-
CLID survey can potentially constrain them with an un-
certainty of order unity. We additionally considered the
case where the relation between the coeflicients is deter-
mined by the theoretical model (the HS field coupled to

inflaton). In this case the primordial bispectrum receives
contribution from all the even terms in the expansion
with n < 2s and the amplitude of all is proportional to
the zeroth-order term Cj,. Therefore, in this case the
constraints on Cy improve by about an order of magni-
tude. Furthermore, within the assumptions of our pre-
scriptions, we showed that the non-Gaussian contribution
to the variance has a more significant impact on the con-
straints than the uncertainty in theoretical modeling of
the observed galaxy bispectrum (neglecting the higher-
order loops).

As a last comment, let us reiterate that, if in the fu-
ture a local non-Gaussian linear parameter (correspond-
ing to Cy) will be measured to be significantly different
from zero, one should make an effort to detect the higher-
multipoles of the bispectrum in order to be sure that one
is not dealing with a higher-spin field. Conversely, de-
tecting the higher-multipoles will be an indication that
higher-spin fields play a role during inflation.
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