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UNIVERSAL TWO-PARAMETER EVEN SPIN W∞-ALGEBRA

SHASHANK KANADE AND ANDREW R. LINSHAW

ABSTRACT. We construct the unique two-parameter vertex algebra which is freely gener-
ated of type W(2, 4, 6, . . . ), and generated by the weights 2 and 4 fields. Subject to some
mild constraints, all vertex algebras of type W(2, 4, . . . , 2N) for some N , can be obtained as
quotients of this universal algebra. This includes the B and C type principal W-algebras,
the Z2-orbifolds of the D type principal W-algebras, and many others which arise as cosets
of affine vertex algebras inside larger structures. As an application, we classify all coin-
cidences among the simple quotients of the B and C type principal W-algebras, as well
as the Z2-orbifolds of the D type principal W-algebras. Finally, we use our classification
to give new examples of principal W-algebras of B, C, and D types, which are lisse and
rational.

1. INTRODUCTION

Let g be a simple, finite-dimensional Lie algebra over C, and let f ∈ g be a nilpotent
element. The affine W-algebras Wk(g, f) at level k ∈ C associated to g and f are impor-
tant examples of vertex algebras in both the physics and mathematics literature. The first
example other than the Virasoro algebra is the Zamolodchikov W3-algebra [Zam], which
corresponds to sl3 with its principal nilpotent element fprin. For an arbitrary g, the def-
inition of Wk(g, fprin) via quantum Drinfeld-Sokolov reduction was given by Feigin and
Frenkel in [FF1]. For an arbitrary nilpotent f , the definition of Wk(g, f) is due to Kac,
Roan, and Wakimoto [KRW], and is a generalization of the Drinfeld-Sokolov reduction.

The algebras Wk(g, fprin) are closely related to the classical W-algebras which arose
in the context of integrable hierarchies of soliton equations in works of Adler, Gelfand,
Dickey, Drinfeld, and Sokolov [Ad, GD, Di, DS]. The KdV hierarchy, which corresponds
to the Virasoro algebra, was generalized by Drinfeld and Sokolov to an integrable hier-
archy associated to any simple Lie algebra. The corresponding classical W-algebras are
Poisson vertex algebras, and can be obtained as quasi-classical limits of affine W-algebras
[FBZ]. For a general nilpotent f , Wk(g, f) can also be viewed as a chiralization of the
finite W-algebra Wfin(g, f) [DSKII], since it is related to Wfin(g, f) via the Zhu functor [Z].

Let Wk(g, f) denote the simple quotient of Wk(g, f) by its maximal proper graded ideal.
In the case f = fprin, it was conjectured by Frenkel, Kac and Wakimoto [FKW] and proven
by Arakawa [A4, A5] that for a nondegenerate admissible level k, Wk(g, fprin) is lisse (or
C2-cofinite) and rational. These are known as minimal models, and provide a large family
of new rational vertex algebras that generalize the Virasoro minimal models [GKO]. In
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fact, there are many other known lisse, rational W-algebras for other nilpotents, not all of
which are at admissible levels; see for example [A2, AMI, Kaw, KW, CL4].

W∞-algebras. For n ≥ 3, Wk(sln, fprin) is of type W(2, 3, . . . , n), meaning that it has a
minimal strong generating set consisting of one field in each of these conformal weights.
For different values of n, these structures are distinct and there are no nontrivial homo-
morphisms of one-parameter vertex algebras

Wk(sln, fprin) → Wℓ(slm, fprin), n 6= m.

However, it was conjectured in the physics literature [YW, BK, B-H, BS, GG, Pro1, Pro2,
PR] and recently proven by the second author in [L1], that there exists a unique two-
parameter vertex algebra of type W(2, 3, . . . ), denoted by W∞[µ], which interpolates be-
tween all the algebras Wk(sln, fprin) in the following sense. The structure constants of
W∞[µ] are continuous functions of the central charge c and the parameter µ, and if we set
µ = n, there is a truncation at weight n+ 1 that allows all fields in weights d ≥ n+1 to be
eliminated in the simple quotient of W∞[µ]. This quotient is isomorphic to Wk(sln, fprin)
as a one-parameter vertex algebra. In the quasi-classical limit, the existence of a Poisson
vertex algebra of type W(2, 3, . . . ) which interpolates between the classical W-algebras of
sln for all n, has been known for many years; see [KZ, KM, DSKV].

For convenience, in [L1] we used a different parameter λ which is a rational function of
µ and the central charge c, and we denoted the universal algebra by W(c, λ). It is a simple
vertex algebra defined over the polynomial ring C[c, λ]. However, there are certain prime
ideals I ⊆ C[c, λ] such that the quotient

WI(c, λ) = W(c, λ)/I · W(c, λ),

is not simple as a vertex algebra over the ring C[c, λ]/I . Here I is regarded as a subset
of the weight zero space W(c, λ)[0] ∼= C[c, λ], and I · W(c, λ) denotes the vertex algebra
ideal generated by I . Let I ⊆ WI(c, λ) denote the maximal proper ideal graded by con-
formal weight, so that WI(c, λ)/I is the unique simple graded quotient. It turns out that
all one-parameter vertex algebras of type W(2, 3, . . . , N) for some N satisfying some mild
hypotheses, can be obtained in this way for some choice of I . In [L1], we gave explicit
formulas for the generator of I in the case of Wk(sln, fprin) as well as a few other such
families. As an application, we obtained many nontrivial coincidences between the sim-
ple quotients of such vertex algebras; these correspond to the intersection points of the
varieties V (I) in the parameter space C

2.

Even spin W∞-algebra. The B and C type principal W-algebras Wk(so2n+1, fprin) and
Wℓ(sp2n, fprin) are of type W(2, 4, . . . , 2n), and are in fact isomorphic when k and ℓ are
related by the level shift

(1.1) (k + 2n− 1)(ℓ+ n + 1) =
1

2
,

by Feigin-Frenkel duality [FF2, FF3]. Also, the Z2-orbifold of the D type principal W-
algebra Wk(so2n, fprin)

Z2 is of type W(2, 4, . . . , 4n). A similar conjecture in the physics
literature says that there should exist a unique two-parameter vertex algebra of type
W(2, 4, . . . ) which is strongly generated by a field in each even weight 2, 4, . . . , and gen-
erated by the weights 2 and 4 fields. This algebra is expected to interpolate between
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the B and C type principal W-algebras, as well as the Z2-orbifold of the D type prin-
cipal W-algebras, as above. Considerable experimental evidence for the existence and
uniqueness of this algebra was obtained by Candu, Gaberdiel, Kelm and Vollenweider
in [CGKV]. Also, it is expected that many other one-parameter vertex algebras of type
W(2, 4, . . . , 2N) for some N , can be obtained as quotients of this universal algebra.

Main result. In this paper, we prove the existence and uniqueness of this algebra, which
we denote by Wev(c, λ). It is defined over the polynomial ring C[c, λ] and is generated by
the Virasoro field L of central charge c, and a weight 4 primary field W 4. The remaining
strong generators W 2i of weight 2i are defined inductively by

W 2i = W 4
(1)W

2i−2, i ≥ 3.

The procedure is similar to the construction of W(c, λ) in [L1], although there are some
surprising phenomena that appear in low weights which make the computations more
involved. First, we show that all structure constants in the OPEs of L(z)W 2i(w) and
W 2j(z)W 2k(w) for 2i ≤ 12 and 2j+2k ≤ 14, are uniquely determined by imposing appro-
priate Jacobi identities. This computation was carried out using the Mathematica pack-
age of Thielemans [T]. Next, we show inductively that this data uniquely determines
all structure constants in the OPEs L(z)W 2i(w) and W 2j(z)W 2k(w), if a certain subset of
Jacobi identities are imposed. By invoking a result of De Sole and Kac [DSKI] which as-
sociates to a nonlinear conformal algebra satisfying certain conditions, a vertex algebra
known as its universal enveloping vertex algebra, we conclude that Wev(c, λ) exists and is of
type W(2, 4, . . . ). However, it is not immediately clear that it is freely generated of this type.
Finally, by considering a certain family of quotients of Wev(c, λ) whose graded characters
are known, we prove that Wev(c, λ) is indeed freely generated.

Quotients of Wev(c, λ) and the classification of vertex algebras of type W(2, 4, . . . , 2N).
Wev(c, λ) has a conformal weight grading

Wev(c, λ) =
⊕

n≥0

Wev(c, λ)[n],

where each Wev(c, λ)[n] is a free C[c, λ]-module and Wev(c, λ)[0] ∼= C[c, λ]. There is a
symmetric bilinear form on Wev(c, λ)[n] given by

〈, 〉n : Wev(c, λ)[n]⊗C[c,λ] Wev(c, λ)[n] → C[c, λ], 〈ω, ν〉n = ω(2n−1)ν.

The level n Shapovalov determinant detn ∈ C[c, λ] is just the determinant of this form. It
turns out that detn is nonzero for all n; equivalently, Wev(c, λ) is a simple vertex algebra
over C[c, λ].

Let p be an irreducible factor of det2N+2 and let I = (p) ⊆ C[c, λ] ∼= Wev(c, λ)[0] be the
ideal generated by p. Consider the quotient

Wev,I(c, λ) = Wev(c, λ)/I · Wev(c, λ),

where I ·Wev(c, λ) is the vertex algebra ideal generated by I . This is a vertex algebra over
the ring C[c, λ]/I , which is no longer simple. It contains a singular vector ω in weight
2N + 2, that is, a nonzero element of the maximal proper ideal I ⊆ Wev,I(c, λ) graded by
conformal weight. If p does not divide detm for any m < 2N + 2, ω will have minimal
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weight among elements of I. Often, there exists a localization R of C[c, λ]/I such that ω
has the form

(1.2) W 2N+2 − P (L,W 4, . . . ,W 2N),

in the localization
Wev,I

R (c, λ) = R⊗C[c,λ]/I Wev,I(c, λ).

Here P is a normally ordered polynomial in the fields L,W 4, . . . ,W 2N , and their deriva-
tives, with coefficients in R. If this is the case, there will exist relations

W 2m = P2m(L,W
4, . . . ,W 2N)

for all m ≥ N expressing W 2m in terms of L,W 4, . . . ,W 2N and their derivatives. The

simple quotient Wev,I
R (c, λ)/I will then be of type W(2, 4, . . . , 2N). Conversely, we will

show that any simple one-parameter vertex algebra of type W(2, 4, . . . , 2N) satisfying

some mild hypotheses, can be obtained as the simple quotient of Wev,I
R (c, λ) for some

I and R. This reduces the classification of such vertex algebras to the classification of
prime ideals I = (p) ⊆ C[c, λ] such that p divides det2N+2 but does not divide detm for
m < 2N + 2, and Wev,I(c, λ) contains a singular vector of the form (1.2), possibly after
localizing.

There are many interesting one-parameter vertex algebras of type W(2, 4, . . . , 2N) for
some N . Here is a short list of examples.

(1) For n ≥ 2, the B and C type principal W-algebras Wk(so2n+1, fprin) and Wℓ(sp2n, fprin)
and are freely generated of type W(2, 4, . . . , 2n), and are isomorphic after the level
shift (1.1).

(2) For n ≥ 3, the type D principal W-algebra Wk(so2n, fprin) has a Z2-action, and the
orbifold Wk(so2n, fprin)

Z2 is of type W(2, 4, . . . , 4n); see Corollary 6.1.
(3) For a Lie algebra g, let V k(g) denote the universal affine vertex algebra of g at level

k, and Lk(g) its simple graded quotient. For n ≥ 1, the coset of V k(sp2n) inside
V k+1/2(sp2n)⊗ L−1/2(sp2n), is of type W(2, 4 . . . , 2n2 + 4n); see Example 7.1 of [CL3].

(4) For n ≥ 2, the coset of V k+1/2(sp2n−2) inside the minimal W-algebra Wk(sp2n, fmin) is
of type W(2, 4, . . . , 2n2 + 2n− 2); see Theorem 5.2 of [ACKL].

(5) Let Nk(sl2) denote the parafermion algebra of sl2, that is, the coset of the Heisenberg
algebra inside V k(sl2). The Z2-orbifold Nk(sl2)

Z2 is of type W(2, 4, 6, 8, 10).

All the above families of vertex algebras arise as quotients of Wev,I
R (c, λ) for some prime

ideal I = (p) ⊆ C[c, λ] and some localization R of C[c, λ]/I ; see Corollaries 5.4 and 6.2,
and Theorems 7.1 and 10.1. Given a prime ideal I = (p) such that p lies in the Shapovalov
spectrum, let V (I) ⊆ C

2 denote the corresponding variety. We call V (I) the truncation
curve associated to the one-parameter vertex algebra arising as the simple quotient of

Wev,I
R (c, λ). For Examples (1) and (2) above, the explicit generator of I can be found by

combining our main result with the calculations of Hornfeck appearing in [H]. For Ex-
ample (5), we will also give the explicit generator of I , and for Example (4), we will give
a conjectural formula for the generator.

It is also important to consider Wev,I(c, λ) when I ⊆ C[c, λ] is a maximal ideal, which
has the form I = (c − c0, λ − λ0) for some c0, λ0 ∈ C. Then Wev,I(c, λ) and its quotients
are vertex algebras over C. Given two maximal ideals I0 = (c − c0, λ − λ0) and I1 =
(c − c1, λ − λ1), let W0 and W1 be the simple quotients of Wev,I0(c, λ) and Wev,I1(c, λ).
There is a very simple criterion for W0 and W1 to be isomorphic; see Theorem 8.1. We
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must have c0 = c1, and if this central charge is 0, 1,−24, 1
2
,−22

5
, there is no restriction on

λ0, λ1. If c0 = c = c1 is arbitrary with c 6= 1, 25, and λ0 = ± 1

7
√

(c− 25)(c− 1)
= ±λ1

or λ0 = ±
√
196− 172c+ c2

21(c− 1)(22 + 5c)
= ±λ1, we also have W0

∼= W1. In all other cases, we must

have λ0 = λ1. Our criterion for W0 and W1 to be isomorphic implies that aside from the
above coincidences, all other pointwise coincidences among the simple quotients of one-
parameter vertex algebras Wev,I(c, λ) and Wev,J(c, λ), correspond to intersection points
of their truncation curves V (I) and V (J). As an application, we classify all nontrivial
coincidences among the simple algebras Wℓ(so2n, fprin)

Z2 , Wℓ′(so2m, fprin)
Z2 , Wk(sp2r, fprin)

and Wk′(sp2s, fprin), as well as the simple parafermion orbifold Nt(sl2)
Z2 . The coincidences

between Wℓ(so2n, fprin)
Z2 and Wℓ′(so2m, fprin)

Z2 were previously observed in the physics
literature [CGKV], and our approach provides a rigorous proof. Finally, as a corollary of
our classification, we give new examples of principal W-algebras of B, C, and D types at
nonadmissible levels, which are lisse and rational.

2. VERTEX ALGEBRAS

Here we define vertex algebras, which have been discussed from various different
points of view in the literature [Bor, FLM, FHL, K, FBZ, LeLi]. We will follow the for-
malism developed in [LZ] and partly in [Li2], and our presentation closely follows [L1].
Let V = V0⊕V1 be a super vector space over C, let z, w be formal variables, and let QO(V )
denote the space of linear maps

V → V ((z)) =

{

∑

n∈Z
v(n)z−n−1|v(n) ∈ V, v(n) = 0 for n >> 0

}

.

Each element a ∈ QO(V ) can be represented as a power series

a = a(z) =
∑

n∈Z
a(n)z−n−1 ∈ End(V )[[z, z−1]].

We assume that a = a0+a1 where ai : Vj → Vi+j((z)) for i, j ∈ Z/2Z, and we write |ai| = i.

For each n ∈ Z, QO(V ) has a bilinear operation defined on homogeneous elements a
and b by

a(w)(n)b(w) = Resza(z)b(w) ι|z|>|w|(z − w)n − (−1)|a||b|Reszb(w)a(z) ι|w|>|z|(z − w)n.

Here ι|z|>|w|f(z, w) ∈ C[[z, z−1, w, w−1]] denotes the power series expansion of a rational
function f in the region |z| > |w|. For a, b ∈ QO(V ), we have the following identity known
as the operator product expansion (OPE).

(2.1) a(z)b(w) =
∑

n≥0

a(w)(n)b(w) (z − w)−n−1+ : a(z)b(w) : .

Here : a(z)b(w) : = a(z)−b(w) + (−1)|a||b|b(w)a(z)+, where a(z)− =
∑

n<0 a(n)z
−n−1 and

a(z)+ =
∑

n≥0 a(n)z
−n−1. Often, (2.1) is written as

a(z)b(w) ∼
∑

n≥0

a(w)(n)b(w) (z − w)−n−1,

where ∼ means equal modulo the term : a(z)b(w) :, which is regular at z = w.
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Note that : a(w)b(w) : is a well-defined element of QO(V ). It is called the Wick product
or normally ordered product of a and b, and it coincides with a(−1)b. For n ≥ 1 we have

n! a(z)(−n−1)b(z) = : (∂na(z))b(z) :, ∂ =
d

dz
.

For a1(z), . . . , ak(z) ∈ QO(V ), the iterated Wick product is defined inductively by

(2.2) : a1(z)a2(z) · · · ak(z) : = : a1(z)b(z) :, b(z) = : a2(z) · · · ak(z) : .

We usually omit the formal variable z when no confusion can arise.

We denote the constant power series idV ∈ QO(V ) by 1. A subspace A ⊆ QO(V )
containing 1 which is closed under all the above products is called a quantum operator
algebra (QOA). We say that a, b ∈ QO(V ) are local if

(z − w)N [a(z), b(w)] = 0

for some N ≥ 0. A vertex algebra will be a QOA whose elements are pairwise local. This
notion is equivalent to the notion of a vertex algebra in the sense of [FLM].

A vertex algebra A is generated by a subset S = {αi| i ∈ I} if A is spanned by words
in the letters αi, and all products, for i ∈ I and n ∈ Z. We say that S strongly generates A
if A is spanned by words in the letters αi, and all products for n < 0. Equivalently, A is
spanned by

{: ∂k1αi1 · · ·∂kmαim : | i1, . . . , im ∈ I, k1, . . . , km ≥ 0}.
Suppose that S is an ordered strong generating set {α1, α2, . . . } for A which is at most
countable. We say that S freely generates A, if A has a basis consisting of all monomials

: ∂k1
1αi1 · · ·∂k1

r1αi1∂k2
1αi2 · · ·∂k2

r2αi2 · · ·∂kn
1αin · · ·∂knrnαin :, 1 ≤ i1 < · · · < in,

k1
1 ≥ k1

2 ≥ · · · ≥ k1
r1
, k2

1 ≥ k2
2 ≥ · · · ≥ k2

r2
, · · · , kn

1 ≥ kn
2 ≥ · · · ≥ kn

rn,

kt
1 > kt

2 > · · · > kt
rt whenever αit is odd.

(2.3)

A conformal structure with central charge c on A is a Virasoro vector

L(z) =
∑

n∈Z
Lnz

−n−2

in A satisfying

(2.4) L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1,

such that L−1α = ∂α for all α ∈ A, and L0 acts diagonalizably on A. We say that α has
conformal weight d if L0(α) = dα, and we denote the conformal weight d subspace by
A[d]. In this paper, all our vertex algebras will have conformal structures, and will be
N-graded by conformal weight:

A =
⊕

d≥0

A[d].

We say that a vertex algebra A is of type

W(d1, d2, . . . )

6



if it has a minimal strong generating set consisting of one even field in each conformal
weight d1, d2, . . . . If A is freely generated of type W(d1, d2, . . . ), it has graded character

(2.5) χ(A, q) =
∑

n≥0

dim(A[n])qn =
∏

i≥1

∏

k≥0

1

1− qdi+k
.

Given fields a, b, c in a vertex algebra A, the following identities hold.

(2.6) (∂a)(n)b = −na(n−1)b ∀n ∈ Z,

(2.7) a(n)b = (−1)|a||b|
∑

p∈Z
(−1)p+1(b(p)a)(n−p−1)1, ∀n ∈ Z,

(2.8) : (: ab :)c : − : abc : =
∑

n≥0

1

(n+ 1)!

(

: (∂n+1a)(b(n)c) : +(−1)|a||b|(∂n+1b)(a(n)c) :
)

.

(2.9) a(n)(: bc :)− : (a(n)b)c : −(−1)|a||b| : b(a(n)c) : =
n
∑

i=1

(

n

i

)

(a(n−i)b)(i−1)c, ∀n ≥ 0.

Given fields a, b, c and integers m,n ≥ 0, the following identities are known as Jacobi
identities of type (a, b, c).

(2.10) a(r)(b(s)c) = (−1)|a||b|b(s)(a(r)c) +

r
∑

i=0

(

r

i

)

(a(i)b)(r+s−i)c.

Vertex algebras over commutative rings. Let R be a finitely generated, unital, commu-
tative C-algebra. A vertex algebra over R is an R-module A with a vertex algebra structure
which is defined as above. The theory of vertex algebras over general commutative rings
was developed by Mason [Ma], but the main difficulties are not present when R is a C-
algebra.

Given an R-module M , we define QOR(M) to be the set of R-module homomorphisms
a : M → M((z)), which can be represented by power series

a(z) =
∑

n∈Z
a(n)z−n−1 ∈ EndR(M)[[z, z−1]].

Here a(n) ∈ EndR(M) is an R-module endomorphism, and for each v ∈ M , a(n)v = 0 for
n >> 0. Then QOR(M) is an R-module, and we define a(n)b as before. These operations
are R-module homomorphisms from QOR(M) ⊗R QOR(M) → QOR(M). A QOA will
be an R-module A ⊆ QOR(M) containing 1 and closed under all products. Locality is
defined as before, and a vertex algebra over R is a QOA A ⊆ QOR(M) whose elements
are pairwise local.

We say that a set S = {αi| i ∈ I} generates A if A is spanned as an R-module by all
words in αi and the above products. We say that S strongly generates A if A is spanned
as an R-module by all iterated Wick products of these generators and their derivatives.
If S = {α1, α2, . . . } is an ordered strong generating set for A which is at most countable,
we say that S freely generates A, if A has an R-basis consisting of all normally ordered
monomials of the form (2.3). In general, A need not be a free R-module, but if A is freely
generated by some S, it is a free R-module.

7



Suppose that V is a vertex algebra over R containing a field L satisfying (2.4), for some
c ∈ R. We call L a conformal structure on V if L−1 acts on V by ∂ and L0 acts diagonaliz-
ably, and we have an R-module decomposition

V =
⊕

d∈R
V[d],

where V[d] is the L0-eigenspace with eigenvalue d. If each V[d] is in addition a free R-
module of finite rank, we have the graded character

χ(V, q) =
∑

d∈R
rankR(V[d])qd.

In all our examples, the grading will be by N, regarded as a subsemigroup of R, and
V[0] ∼= R.

Let V be a vertex algebra over R with weight grading

V =
⊕

n≥0

V[n], V[0] ∼= R.

A vertex algebra ideal I ⊆ V is called graded if

I =
⊕

n≥0

I[n], I[n] = I ∩ V[n].

We say that V is simple if there are no graded ideals I such that I[0] 6= {0}. If I ⊆ R
is an ideal, we may regard I as a subset of V[0] ∼= R. Let I · V denote the set of I-linear
combinations of elements of V , which is just the vertex algebra ideal generated by I . Then

VI = V/(I · V)
is a vertex algebra over the ring R/I . Even if V is simple as a vertex algebra over R, VI

need not be simple as a vertex algebra over R/I .

Shapovalov form. Let V =
⊕

n≥0 V[n] be a vertex algebra over R which is N-graded by
conformal weight. Then each V[n] has a symmetric bilinear form

(2.11) 〈, 〉n : V[n]⊗R V[n] → R, 〈u, v〉n = u(2n−1)v.

We stipulate that 〈V[n],V[m]〉 = 0 if n 6= m and extend 〈, 〉 linearly to all V .

A vector v in the radical of the Shapovalov form 〈, 〉 is called a singular vector. Suppose
now that each weight space V[n] is a free R-module of finite rank. We then define the level
n Shapovalov determinant detn ∈ R to be the determinant of the matrix of 〈, 〉n. Now we
provide more details on the Shapovalov form.

Lemma 2.1. Let V be an N-graded vertex algebra over R. Let v be a singular vector of weight
n > 0. Then, for any homogeneous w of weight n− t with 0 ≤ t ≤ n, w(2n−t−1)v = 0.

Proof. We induct on t. Since v is a singular vector, t = 0 case follows by definition. From
(2.6), −(2n − t)w(2n−t−1)v = (∂w)(2n−(t−1)−1)v. The right-hand side here is 0 by inductive
assumption and also (2n− t) 6= 0. �

Proposition 2.2. Let V be an N-graded vertex algebra over R where V[0] ∼= R and each V[n] is
a free R-module of finite rank. We also assume that L1V[1] = 0. Then a homogeneous vector of
weight n > 0 is in the radical of the Shapovalov form (that is, it is a singular vector) if and only if
it is contained in a proper ideal of V .
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Proof. Due to our assumptions on V , Theorem 3.1 of [Li1] applies and there exists a unique
up to scaling non-trivial invariant bilinear form (−,−) on V . This form is automatically
symmetric [FHL] and determined by (1, 1) = 1. We have (V[i],V[j]) = 0, if i 6= j [Li1].
Due to invariance, the radical of (−,−) is a proper ideal of V which we denote by R.

We first prove that if v is a singular vector of weight n then v ∈ R. It is enough to show
that (u, v) = 0 for all u homogeneous of weight n. By Equation 3.1 of [Li1],

(u, v) = Coeffz0 (−1)nz−2n
(

1, (ezL1u)(z−1)v
)

(2.12)

= (−1)n · Coeffz2n

(

1,
∑

t≥0

zt

t!

∑

j∈Z
(Lt

1u)(j)v z
j+1

)

= (−1)n

(

1,
∑

t≥0

1

t!
(Lt

1u)(2n−t−1)v

)

= (−1)n

(

1,
∑

0≤t≤n

1

t!
(Lt

1u)(2n−t−1)v

)

.

Since Lt
1u has weight n− t we conclude that right-hand side is 0 by Lemma 2.1.

Conversely, if v is contained in a proper ideal, then v clearly has to be a singular vector,
otherwise the vacuum vector is obtainable by acting appropriately on v. In fact, we have
now proved that R is precisely the radical of the Shapovalov form. �

Under the above hypotheses, if R is in addition a unique factorization ring, each irre-
ducible factor a of detn give rise to a prime ideal (a) ⊆ R. Clearly if a|detn, then a|detm
for all m > n. We define the Shapovalov spectrum Shap(V) to be the set of distinct prime
ideals of the form (a) ⊆ R such that a is a divisor of detn for some n. Note that the ideals
I = (a) ∈ Shap(V) are precisely the prime ideals I for which VI is not simple as a vertex
algebra over R/I . We say that (a) ∈ Shap(V) has level n if a divides detn but does not
divide detm for m < n.

3. MAIN CONSTRUCTION

In this section, we will construct the universal two-parameter vertex algebra Wev(c, λ).
It is defined over the polynomial ring C[c, λ] and is freely generated by a Virasoro field
L of central charge c, and a field W 2i of conformal weight 2i for each i ≥ 2. As in the
case of W(c, λ), Wev(c, λ) will be the universal enveloping vertex algebra of a nonlinear
Lie conformal algebra Lev(c, λ) over C[c, λ] with generators {L,W 2i| i ≥ 2} and grading
∆(L) = 2, ∆(W 2i) = 2i, in the sense of [DSKI].

We shall work with the OPE rather than lambda-bracket formalism, so the sesquilin-
earity, skew-symmetry, and Jacobi identities from [DSKI] are replaced with (2.6)-(2.10).
As explained in [L1], specifying a nonlinear Lie conformal algebra in the language of
OPEs means specifying fields {α1, α2, . . . } where αi has weight di > 0, and pairwise OPEs

αi(z)αj(w) =
∑

n≥0

(αi
(n)α

j)(w)(z−w)−n−1 where each term αi
(n)α

j has weight di+ dj −n−1,

and is a normally ordered polynomial in the generators and their derivatives. Addition-
ally, for all a, b, c ∈ {α1, α2, . . . }, (2.6)-(2.9) hold, and all Jacobi identities (2.10) hold as
consequences of (2.6)-(2.9) alone. This data uniquely determines the universal envelop-
ing vertex algebra which is freely generated by {α1, α2, . . . }.
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In this notation, our goal will be to construct the OPE algebra of the generating fields
{L,W 2i| i ≥ 2} of Wev(c, λ), such that (2.6)-(2.9) are imposed, and the Jacobi identities
(2.10) hold as a consequence of these identities alone.

We postulate that Wev(c, λ) has the following features.

(1) Wev(c, λ) possesses a Virasoro field L of central charge c and an even weight 4 pri-
mary field W 4, so that

L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1,

L(z)W 4(w) ∼ 4W 4(w)(z − w)−2 + ∂W 4(w)(z − w)−1.
(3.1)

(2) The fields W 2i are defined inductively by

W 2i = W 4
(1)W

2i−2, i ≥ 3.

We have

L(z)W 2i(w) ∼ · · ·+ 2iW 2i(w)(z − w)−2 + ∂W 2i(w)(z − w)−1,

and the fields {L,W 2i| i ≥ 2} close under OPE. Since W 2i is not assumed primary for
i > 2, (· · · ) denotes the higher order poles. In particular, Wev(c, λ) is generated as a
vertex algebra by {L,W 4}, and is strongly generated by {L,W 2i| i ≥ 2}.

(3) W 4 is nondegenerate in the sense that W 4
(7)W

4 6= 0.

For notational convenience, we sometimes denote L by W 2. The assumption that W 2i

has conformal weight 2i has the following consequence. For k = 0, 1, and 2 ≤ 2i ≤ 2j,
W 2i

(k)W
2j depends only on L,W 4, . . . ,W 2i+2j−2 and their derivatives. In particular, we can

write

(3.2) W 2i
(1)W

2j = a2i,2jW
2i+2j−2 + C2i,2j,

where a2i,2j denotes the coefficient of W 2i+2j−2 and C2i,2j is a normally ordered polynomial
in L,W 4, . . . ,W 2i+2j−4 and their derivatives. By assumption, a2,2j = 2j, a4,2j = 1, C2,2j = 0,
and C4,2j = 0 for all j ≥ 2. Similarly,

(3.3) W 2i
(0)W

2j = b2i,2j∂W
2i+2j−2 +D2i,2j,

where b2i,2j denotes the coefficient of ∂W 2i+2j−2 and D2i,2j is a normally ordered polyno-
mial in L,W 4, . . . ,W 2i+2j−4 and their derivatives. By assumption, b2,2j = 1 and D2,2j = 0
for all j ≥ 2.

Let S2n,k denote the set of products

(3.4) {W 2i
(k)W

2j| 2i+ 2j = 2n, k ≥ 0};
note that they vanish for k > 2n − 1. First, imposing the identities (2.6)-(2.7), together
with all Jacobi relations of type (W 2i,W 2j,W 2k) for 2i+2j+2k ≤ 16, uniquely determines
S2n,k for all 2n ≤ 14 and k ≥ 0. If we then assume S2m,k to be known for 2m ≤ 2n and
k ≥ 0, we show that by imposing a subset of Jacobi relations of type (W 2i,W 2j,W 2k) with
2i+ 2j + 2k = 2n+ 4, this uniquely determines S2n+2,k.

It is important to note that we are not imposing all Jacobi relations of type (W 2i,W 2j,W 2k)
for 2i + 2j + 2k = 2n + 4 at this stage. We leave open the possibility that some of them
might not vanish, that is, they give rise to nontrivial null fields; see [DSKI] as well as the
expository account in [L1] in the OPE formalism. This has the effect that as we proceed
through the induction, the OPEs W 2i(z)W 2j(w) are only determined up to null fields. For
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convenience, we suppress this from our notation. At the end of the induction, we obtain
the existence of a (possibly degenerate) nonlinear conformal algebra Lev(c, λ) over R with
generators {L,W 2i| i ≥ 2}, satisfying skew-symmetry. By the De Sole-Kac correspon-
dence [DSKI], the universal enveloping vertex algebra Wev(c, λ) exists and is unique, but
may not be freely generated. Finally, by considering a family of quotients of Wev(c, λ)
whose graded characters are known, we will show that Wev(c, λ) is in fact freely gener-
ated; equivalently, Lev(c, λ) is a nonlinear Lie conformal algebra.

Step 1: S2n,k for 2n ≤ 14. The most general OPE of L and W 6 is

L(z)W 6(w) ∼ a0(z − w)−8 + a1L(w)(z − w)−6 + a2∂L(w)(z − w)−5

+

(

a3W
4 + a4 : L

2 : +a5∂
2L

)

(w)(z − w)−4

+

(

a6∂W
4 + a7 : (∂L)L : +a8∂

3L

)

(w)(z − w)−3

+ 6W 6(w)(z − w)−2 + ∂W 6(w)(z − w)−1.

Similarly, since W 6 = W 4
(1)W

4, the most general OPE of W 4 with itself is

W 4(z)W 4(w) ∼ b0(z − w)−8 + b1L(w)(z − w)−6 + b2∂L(w)(z − w)−5

+

(

b3W
4 + b4 : L

2 : +b5∂L

)

(w)(z − w)−4

+
(

b6∂W
4 + b7 : (∂L)L : +b8∂

3L
)

(w)(z − w)−3

+W 6(w)(z − w)−2

+

(

b9∂W
6 + b10 : (∂L)L

2 : +b11 : (∂L)W
4 : +b12 : L∂W

4 : +b13 : (∂
3L)L :

+ b14 : (∂
2L)∂L : +b15∂

3W 4 + b16∂
5L

)

(w)(z − w)−1.

Imposing the Jacobi relations of type (L,W 4,W 4) and (L, L,W 6) constrains the param-
eters a0, . . . , a8 and b0, . . . , b16. It is not difficult to check that in addition to the central
charge c, there are two free parameters that are consistent with these identities. We may
take these parameters to be a3 and a7, and express the remaining variables in terms of
c, a3, a7 as follows:

L(z)W 6(w) ∼ a7c(22 + 5c)

42
(z − w)−8 +

2a7(22 + 5c)

15
L(w)(z − w)−6 +

11a7(22 + 5c)

210
∂L(w)(z − w)−5

+

(

a3W
4 +

8a7
5

: L2 : +
2a7(c− 4)

35
∂2L

)

(w)(z − w)−4

+

(

5a3
16

∂W 4 + a7 : (∂L)L : +
a7(c− 4)

126
∂3L

)

(w)(z − w)−3

+ 6W 6(w)(z − w)−2 + ∂W 6(w)(z − w)−1.

(3.5)
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W 4(z)W 4(w) ∼ a7c(22 + 5c)

840
(z − w)−8 +

a7(22 + 5c)

105
L(w)(z − w)−6 +

a7(22 + 5c)

210
∂L(w)(z − w)−5

+

(

a3
8
W 4 +

a7
5

: L2 : +
a7(c− 4)

140
∂2L

)

(w)(z − w)−4

+

(

a3
16

∂W 4 +
a7
5

: (∂L)L : +
a7(c− 4)

630
∂3L

)

(w)(z − w)−3

+W 6(w)(z − w)−2

+

(

1

2
∂W 6 − a7

60
: (∂3L)L : −a7

20
: (∂2L)∂L : − a3

192
∂3W 4 − a7(c− 4)

10080
∂5L

)

(w)(z − w)−1.

(3.6)

Note that if we fix a normalization of W 4, the parameter a7 will be determined, so up
to isomorphism there are really only two parameters at this stage, namely c and a3. It is
convenient to leave a7 undetermined for the moment.

Next, the most general OPE of L and W 8 is

L(z)W 8(w) ∼ c0(z − w)−10 + c1L(w)(z − w)−8 + c2∂L(w)(z − w)−7

+

(

c3W
4 + c4 : L

2 : +c5∂
2L

)

(w)(z − w)−6

+

(

c6∂W
4 + c7 : (∂L)L : +c8∂

3L

)

(w)(z − w)−5

+

(

c9W
6 + c10∂

2W 4 + c11 : LW
4 : +c12 : L

3 :

+ c13 : (∂
2L)L : +c14 : (∂L)

2 : +c15∂
4L

)

(w)(z − w)−4

+

(

c16∂W
6 + c17∂

3W 4 + c18 : (∂L)W
4 : +c19L∂W

4 :

+ c20 : (∂L)L
2 : +c21 : (∂

3L)L : +c22 : (∂
2L)∂L : +c23∂

5L

)

(w)(z − w)−3

+ 8W 8(w)(z − w)−2 + ∂W 8(w)(z − w)−1.

The most general OPE of W 4 and W 6 is
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W 4(z)W 6(w) ∼ d0(z − w)−10 + d1L(w)(z − w)−8 + d2∂L(w)(z − w)−7

+

(

d3W
4 + d4 : L

2 : +d5∂
2L

)

(w)(z − w)−6

+

(

d6∂W
4 + d7 : (∂L)L : +d8∂

3L

)

(w)(z − w)−5

+

(

d9W
6 + d10∂

2W 4 + d11 : LW
4 : +d12 : L

3 : +d13 : (∂
2L)L :

+ d14 : (∂L)
2 : +d15∂

4L

)

(w)(z − w)−4

+

(

d16∂W
6 + d17∂

3W 4 + d18 : (∂L)W
4 : +d19L∂W

4 : +d20 : (∂L)L
2 :

+ d21 : (∂
3L)L : +d22 : (∂

2L)∂L : +d23∂
5L

)

(w)(z − w)−3 +W 8(w)(z − w)−2

+

(

d24∂W
8 + d25∂

3W 6 + d26∂
5W 4 + d27 : (∂L)W

6 : +d28 : L∂W
6 : +d29 : (∂W

4)W 4 :

+ d30 : (∂L)LW
4 : +d31 : L

2∂W 4 : +d32 : (∂
3L)W 4 : +d33 : (∂

2L)∂W 4 : +d34 : (∂L)∂
2W 4 :

+ d35 : L∂
3W 4 : +d36 : (∂L)L

3 : +d37 : (∂
3L)L2 : +d38 : (∂

2L)(∂L)L :

+ d39 : (∂L)
3 : +d40 : (∂

5L)L : +d41 : (∂
4L)∂L : +d42 : (∂

3L)∂2L : +d43∂
7L

)

(w)(z − w)−1.

By imposing the Jacobi relations of type (L, L,W 8) and (L,W 4,W 6) and (W 4,W 4,W 4),
it turns out that in addition to the parameters, c, a3, a7, there is one additional free parame-
ter which can be chosen to be d28. There is a unique solution for the remaining parameters
c0, . . . , c23 and d0, . . . , d27, d29, . . . , d43 in terms of c, a3, a7, d28 so that all these Jacobi iden-
tities hold. Since these solutions can easily be found by computer, we do not reproduce
them here.

Remark 3.1. This behavior is more complicated than the corresponding construction of W(c, λ) in
[L1]. For W(c, λ), once two free parameters appear in the OPE algebra, no new parameters appear
at any stage in the calculation when all Jacobi identities of the appropriate weight are imposed.

Next, we write the most general OPE relations for

L(z)W 10(w), W 4(z)W 8(w), W 6(z)W 6(w),

with undetermined coefficients, and then impose all Jacobi identities of type (W 2i,W 2j,W 2k)
for 2i+ 2j + 2k = 14. Rather surprisingly, it turns out that d28 is no longer a free parameter
if we want all these Jacobi identities to hold. Instead, it satisfies the following equation:

(3.7) 7a23 + 960a7(1− 2c) + 784d28a3(c− 1) + 10752d228(c− 1)(24 + c) = 0.

This is a quadratic equation in d28 which has two solutions as long as the discriminant

8960(c− 1)(35a23(c− 25) + 4608a7(24 + c)(2c− 1))
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does not vanish. If we set this discriminant to zero and solve for a7 and d28, obtaining

a7 = − 35a23(c− 25)

4608(24 + c)(2c− 1)
, d28 = − 7a3

192(24 + c)
,

our inductive procedure will lead to a freely generated vertex algebra of type W(2, 4, . . . )
depending on c and a3, but the parameter a3 is determined by the scaling of the weight 4
field. Therefore up to isomorphism, this algebra will only depend on one free parameter
c. So instead, we should choose the discriminant to be a nonzero perfect square. Up to
isomorphism, the algebra Wev(c, λ) will depend on two free parameters and will be inde-
pendent of our choice for this discriminant. It is convenient to introduce a new parameter
λ, and express a3, a7, d28 in terms of c and λ as follows.

a3 = 256(c− 1)(24 + c)(2c− 1)λ,

a7 = −640

63
(c− 1)(24 + c)(2c− 1)(−1 + 49λ2(c− 25)(c− 1)),

d28 =
4

21
(2c− 1)(5− 49λ(c− 1)).

(3.8)

The reason for this choice is that the algebra Wev(c, λ) will then be defined over the poly-
nomial ring C[c, λ].

Remark 3.2. Given the choice of a3 and a7 in (3.8), there are two solutions for d28 that satisfy
(3.7), namely, the one given above as well as d′28 =

4
21
(2c− 1)(−5 − 49λ(c− 1)). Replacing W 4

with −W 4 must replace a3 with −a3, which corresponds to replacing λ with −λ. However, the
replacement λ 7→ −λ has the effect of sending d28 7→ −d′28, instead of d28 7→ −d28, and hence does
not give the same OPE algebra. So without loss of generality, we may fix the choice (3.8) for d28,
but having made this choice, λ 7→ −λ does not give the same algebra up to isomorphism.

Note also that rescaling λ by any constant ǫ 6= 1 does not correspond to changing the choice of
weight 4 field W 4. Indeed, W 4 is the unique Virasoro primary field in weight 4 up to scaling, and
rescaling W 4 also rescales both a3 and a7.

Even though the parameter d28 which was free at the previous stage is no longer free,
it turns out that there is one additional free parameter in the OPE relations, which can be
taken to be the coefficient e of : L∂W 8 : appearing in the first-order pole of W 6(z)W 6(w).
In other words, if we write down the most general OPEs among L(z)W 10(w), W 4(z)W 8(w)
and W 6(z)W 6(w) and impose all Jacobi identities of type (W 2i,W 2j,W 2k) for 2i+2j+2k =
14, all structure constants can be written uniquely in terms of c, λ, and e.

Finally, we carry out this procedure at one more stage; that is, we write down the most
general OPEs among

L(z)W 12(w), W 4(z)W 10(w), W 6(z)W 8(w),

and impose all Jacobi identities (W 2i,W 2j ,W 2k) for 2i+2j+2k = 16. By a long computer
computation, one can verify that there is a unique solution for the parameter e, namely,

e =
4

21
(2c− 1)(5− 49λ(c− 1)),

and all other structure constants have a unique solution in terms of c and λ. This shows
that all terms in the OPE of W 2i(z)W 2j(w) for 2 ≤ 2i ≤ 2j and 2i+2j ≤ 14 are uniquely de-
termined as C[c, λ]-linear combinations of normally ordered monomials in the generators
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W 2i for 2i ≤ 12. By imposing the identities (2.6) and (2.7), this determines the OPEs

∂aW 2i(z)∂bW 2j(w), a, b ≥ 0, 2i > 2j ≥ 2, 2i+ 2j ≤ 14.

Step 2: Induction. We make the following inductive hypothesis.

(1) For 2 ≤ 2i ≤ 2j and 2i + 2j ≤ 2n, all terms in the OPE of W 2i(z)W 2j(w) have been
expressed as C[c, λ]-linear combinations of normally monomials in L,W 4, . . . ,W 2n−2

and their derivatives. The OPEs are weight homogeneous, i.e., all terms appearing
in W 2i

(k)W
2j have weight 2i+ 2j − k − 1 .

(2) We impose (2.6) and (2.7), which then determines all OPEs

∂aW 2i(z)∂bW 2j(w), a, b ≥ 0, 2i+ 2j ≤ 2n.

(3) a2i,2j and b2i,2j are independent of c, λ for 2i+ 2j ≤ 2n. Here a2i,2j and b2i,2j are given
by (3.2) and (3.3), respectively.

By inductive data, we mean the set of all OPE relations

(3.9) ∂aW 2i(z)∂bW 2j(w), a, b ≥ 0, 2i+ 2j ≤ 2n.

If we impose (2.8) and (2.9), it follows from our inductive hypothesis that if α is a normally
ordered polynomial in L,W 4, . . . ,W 2n−2i and their derivatives of weight w ≤ 2n+ 2− 2i,
the OPE W 2i(z)α(w) is determined by the inductive data.

Lemma 3.3. If we impose the Jacobi identity

L(2)(W
4
(0)W

2n−2) = (L(2)W
4)(0)W

2n−2 +W 4
(0)(L(2)W

2n−2)

+ 2(L(1)W
4)(1)W

2n−2 + (L(0)W
4)(2)W

2n−2,
(3.10)

we must have

b4,2n−2 =
3

2n
.

In particular, b4,2n−2 is independent of c and λ.

Proof. Recall that
W 4

(0)W
2n−2 = b4,2n−2∂W

2n +D4,2n−2

where D4,2n−2 is a normally ordered polynomial in L,W 4, . . . ,W 2n−2 and their derivatives.
Then

L(2)(W
4
(0)W

2n−2) = b4,2n−2L(2)∂W
2n + L(2)D4,2n−2.

Also, L(2)D4,2n−2 has no terms depending on W 2n by inductive assumption, so it does not
contribute to the coefficient of ∂W 2n. We have

L(2)∂W
2n = −(∂L)(2)W

2n + ∂(L(2)W
2n).

Note that L(2)W
2n ∈ S2n+2,2 and is therefore not yet known, but by weight considerations

it only depends on L,W 4, . . . ,W 2n−2, and their derivatives. Modulo terms which depend
on L,W 4, . . . ,W 2n−2 and their derivatives, we have

L(2)∂W
2n ≡ −(∂L)(2)W

2n = 2L(1)W
2n = 2(2n)W 2n.

So the left hand side of (3.10) is 4nb4,2n−2W
2n, up to terms which do not depend on W 2n.

Next, the term (L(2)W
4)(0)W

2n−2 from (3.10) vanishes because W 4 is assumed primary.
The term

W 4
(0)(L(2)W

2n−2)
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from (3.10) does not contribute to the coefficient of W 2n, since L(2)W
2n−2 only depends on

L,W 4, . . . ,W 2n−4 and their derivatives. The term

2(L(1)W
4)(1)W

2n−2

from (3.10) contributes 8W 4
(1)W

2n−2 = 8W 2n. The term

(L(0)W
4)(2)W

2n−2

from (3.10) contributes ∂W 4
(2)W

2n−2 = −2W 4
(1)W

2n−2 = −2W 2n. Equating the coefficients

of W 2n, we obtain 4nb4,2n−2 = 6, which completes the proof. �

Lemma 3.4. All coefficients b2i,2n+2−2i for 4 ≤ 2i ≤ n + 1 are independent of c, λ and are
determined by imposing Jacobi relations of type (W 2i,W 2j,W 2k) for 2i+ 2j + 2k = 2n+ 4.

Proof. We first impose the Jacobi relation

(3.11) W 4
(1)(W

4
(0)W

2n−4) = (W 4
(1)W

4)(0)W
2n−4 +W 4

(0)(W
4
(1)W

2n−4) + (W 4
(0)W

4)(1)W
2n−4.

Since W 4
(0)W

2n−4 =
3

2n− 2
∂W 2n−2 +D4,2n−4, the left hand side of (3.11) is

W 4
(1)

(

3

2n− 2
∂W 2n−2 +D4,2n−4

)

= − 3

2n− 2
(∂W 4)(1)W

2n−2 +
3

2n− 2
∂

(

W 4
(1)W

2n−2

)

+W 4
(1)D4,2n−4

=
3

2n− 2

(

3

2n
∂W 2n +D4,2n−2

)

+
3

2n− 2
∂W 2n +W 4

(1)D4,2n−4

=
3(3 + 2n)

2n(2n− 2)
∂W 2n +

3

2n− 2
D4,2n−2 +W 4

(1)D4,2n−4.

(3.12)

Next,

(W 4
(1)W

4)(0)W
2n−4 = W 6

(0)W
2n−4 = b6,2n−4∂W

2n +D6,2n−4,

W 4
(0)(W

4
(1)W

2n−4) = W 4
(0)W

2n−2 =
3

2n
∂W 2n +D4,2n−2,

(W 4
(0)W

4)(1)W
2n−4 =

(

1

2
∂W 6 + α

)

(1)

W 2n−4

= −1

2
W 6

(0)W
2n−4 + α(1)W

2n−4

= −1

2

(

b6,2n−4∂W
2n +D6,2n−4

)

+ α(1)W
2n−4.

(3.13)

Here α does not depend on W 6, so that α(1)W
2n−4 does not contribute to the coefficient of

∂W 2n. Collecting terms, we obtain

b6,2n−4 =
30

2n(2n− 2)
.

Inductively, we impose the Jacobi relation
(3.14)
W 4

(1)(W
2i−2
(0) W 2n+2−2i) = (W 4

(1)W
2i−2)(0)W

2n+2−2i+W 2i−2
(0) (W 4

(1)W
2n+2−2i)+(W 4

(0)W
2i−2)(1)W

2n+2−2i.

The left side of (3.14) is

16



W 4
(1)

(

b2i−2,2n+2−2i∂W
2n−2 +D2i−2,2n+2−2i

)

= b2i−2,2n+2−2iW
4
(1)∂W

2n−2 +W 4
(1)D2i−2,2n+2−2i

= b2i−2,2n+2−2i

(

3

2n
∂W 2n +D4,2n−2 + ∂W 2n

)

+W 4
(1)D2i−2,2n+2−2i.

(3.15)

The right side of (3.14) is
(3.16)

b2i,2n+2−2i∂W
2n+D2i,2n+2−2i+b2i−2,2n+4−2i∂W

2n+D2i−2,2n+4−2i−
3

2i

(

b2i,2n+2−2i∂W
2n+D2i,2n+2−2i

)

.

Recall that b2i−2,2n+2−2i and D2i−2,2n+2−2i are part of our inductive data, and we are as-
suming inductively that b2i−2,2n+2−2i is independent of c, λ. Since D2i−2,2n+2−2i is a nor-
mally ordered polynomial of weight 2n − 1 in L,W 4, . . . ,W 2n−4 and their derivatives,
W 4

(1)D2n−2,2n+2−2i is determined by inductive data. This shows that b2i,2n+2−2i is deter-

mined from inductive data together with b2i−2,2n+4−2i for 6 ≤ 2i ≤ n + 1. Finally, since
b4,2n−2 is independent of c, λ, each b2i,2n+2−2i is independent of c, λ as well. �

Similarly, we will show that a6,2n−4 =
6

2n− 2
and that a2i,2n+2−2i is determined from the

Jacobi identities for all i; see Lemma 3.6 below. Combining these observations, we obtain

Lemma 3.5. The products W 2i
(0)W

2n+2−2i for 4 ≤ 2i ≤ n+1, are determined from inductive data,

Jacobi relations of type (W 2i,W 2j,W 2k) for 2i+ 2j + 2k = 2n+ 4, and elements of S2n+2,1.

Proof. Since b2i,2n+2−2i is determined from this data, it suffices to show that D2i,2n+2−2i is
also determined for 4 ≤ 2i ≤ n + 1. It follows from (3.12) and (3.13) that modulo terms
which are determined from inductive data,

(3.17) D6,2n−4 ≡ −2(5− 2n)

2n− 2
D4,2n−2.

Using (3.15) and (3.16) in the case i = 4, we get

(3.18)
30

(2n− 2)(2n− 4)
D4,2n−2 ≡ D6,2n−4 +

5

8
D8,2n−6,

modulo inductive data. Similarly, (3.15) and (3.16) show that there are nontrivial relations
D2i,2n+2−2i ≡ pi(n)D4,2n−2 for rational functions p(n) for all i, modulo inductive data. So it
is enough to find three linearly independent relation betweenD4,2n−2, D6,2n−4, and D8,2n−6.
From the Jacobi relation

W 4
(0)(W

6
(1)W

2n−6) = (W 4
(0)W

6)(1)W
2n−6 +W 6

(1)(W
4
(0)W

2n−6),

we get
6

2n− 4
D4,2n−2 ≡ −3

8
D8,2n−6 +

4

2n− 4
D6,2n−4 +

3

2n− 4
∂C6,2n−4,

modulo inductive data. Since C6,2n−4 is determined by S2n+2,1, we get the relation

(3.19)
6

2n− 4
D4,2n−2 ≡ −3

8
D8,2n−6 +

3

2n− 4
D6,2n−4

modulo inductive data, together with data determined by S2n+2,1. Then (3.17)-(3.19) are
the desired linearly independent relations. �
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Lemma 3.6. The set S2n+2,1 of products W 2i
(1)W

2n+2−2i is determined from inductive data, Jacobi

relations of type (W 2i,W 2j,W 2k) for 2i+ 2j + 2k = 2n+ 4, and the sets S2n+2,ℓ for ℓ ≥ 2.

Proof. By assumption L(1)W
2n = 2nW 2n and W 4

(1)W
2n−2 = W 2n, so we begin with the case

2i ≥ 6. We impose the Jacobi relation

(3.20) W 2n−4
(1) (W 4

(1)W
4) = W 4

(1)(W
2n−4
(1) W 4) + (W 2n−4

(1) W 4)(1)W
4 + (W 2n−4

(0) W 4)(2)W
4.

By (2.7), the left hand side of (3.20) is

W 2n−4
(1) W 6 =

∑

i≥0

(−1)i
1

i!
∂i(W 6

(i+1)W
2n−4).

Therefore modulo derivatives of elements of S2n+2,ℓ for ℓ ≥ 2,

W 2n−4
(1) W 6 ≡ W 6

(1)W
2n−4 = a6,2n−4W

2n + C6,2n−4.

As for the right hand side, modulo terms which are either derivatives of elements of
S2n+2,ℓ for ℓ ≥ 2, or are determined by inductive data, we have

W 4
(1)(W

2n−4
(1) W 4) ≡ W 4

(1)(W
4
(1)W

2n−4) = W 4
(1)W

2n−2 = W 2n,

(W 2n−4
(1) W 4)(1)W

4 ≡ (W 4
(1)W

2n−4)(1)W
4 ≡ W 2n−2

(1) W 4 ≡ W 2n,

(W 2n−4
(0) W 4)(2)W

4 =

(

∑

i≥0

(−1)i+1 1

i!
∂i(W 4

(i)W
2n−4)

)

(2)

W 4

=

(

− 3

2n− 2
∂W 2n−2 + ∂W 2n−2

)

(2)

W 4 =

(

6

2n− 2
− 2

)

W 2n−2
(1) W 4

≡
(

6

2n− 2
− 2

)

W 4
(1)W

2n−2 =

(

6

2n− 2
− 2

)

W 2n.

Collecting terms, we see that

a6,2n−4 =
6

2n− 2
,

and that C6,2n−4 is determined modulo inductive data and derivatives of elements of
S2n+2,ℓ for ℓ ≥ 2.

Next, we impose the Jacobi relation

(3.21) W 4
(1)(W

6
(1)W

2n−6) = W 6
(1)(W

4
(1)W

2n−6) + (W 4
(1)W

6)(1)W
2n−6 + (W 4

(0)W
6)(2)W

2n−6.

Since W 6
(1)W

2n−6 =
6

2n− 4
W 2n−2+C6,2n−6, where C6,2n−6 depends only on L,W 4, . . . ,W 2n−4

and their derivatives and is determined by inductive data, the left hand side of (3.21) is

W 4
(1)

(

6

2n− 4
W 2n−2 + C6,2n−6

)

≡ 6

2n− 4
W 2n.

For the right hand side, we have

W 6
(1)(W

4
(1)W

2n−6) = W 6
(1)W

2n−4 =
6

2n− 2
W 2n + C6,2n−4,

(W 4
(1)W

6)(1)W
2n−6 = W 8

(1)W
2n−6 = a8,2n−6W

2n + C8,2n−6,

(W 4
(0)W

6)(2)W
2n−6 =

(

3

8
∂W 8 + β

)

(2)

W 2n−6
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≡ −6

8

(

a8,2n−6W
2n + C8,2n−6

)

.

Here β depends only on L,W 4,W 6, so β(2)W
2n−6 does not depend on W 2n. It is immediate

that

a8,2n−6 =
48

(2n− 4)(2n− 2)
,

and that C8,2n−6 is determined modulo inductive data and derivatives of elements of
S2n+2,ℓ for ℓ ≥ 2. Similarly, for 2i > 6, by imposing the Jacobi relation

(3.22) W 4
(1)(W

2i
(1)W

2n−2i) = W 2i
(1)(W

4
(1)W

2n−2i) + (W 4
(1)W

2i)(1)W
2n−2i + (W 4

(0)W
2i)(2)W

2n−2i,

the same argument shows that both a2i+2,2n−2i and C2i+2,2n−2i are determined modulo
inductive data and derivatives of elements of S2n+2,ℓ for ℓ ≥ 2. This shows that S2n+2,1 is
determined modulo this data. �

Lemma 3.7. The set S2n+2,2 of products W 2i
(2)W

2n+2−2i is determined from inductive data, Jacobi

relations of type (W 2i,W 2j,W 2k) for 2i+ 2j + 2k = 2n+ 4, and the sets S2n+2,ℓ for ℓ ≥ 3.

Proof. First, since L(2)W
2n = L(2)(W

4
(1)W

2n−2), we impose the Jacobi identity

L(2)(W
4
(1)W

2n−2) = W 4
(1)(L(2)W

2n−2) + (L(2)W
4)(1)W

2n−2

+ 2(L(1)W
4)(2)W

2n−2 + (L(0)W
4)(3)W

2n−2.
(3.23)

By inductive assumption, L(2)W
2n−2 is known and is expressible in terms of L,W 2i

for 4 ≤ 2i ≤ 2n − 4. Then W 4
(1)(L(2)W

2n−2) is also determined by inductive data. The

term (L(2)W
4)(1)W

2n−2 vanishes because W 4 is primary, and the remaining terms are ex-
pressible in terms of W 4

(2)W
2n−2 together with inductive data. So determining L(2)W

2n is

equivalent to determining W 4
(2)W

2n−2.

To determine W 4
(2)W

2n−2, we impose the Jacobi relation

(3.24) W 2n−4
(1) (W 4

(2)W
4) = W 4

(2)(W
2n−4
(1) W 4) + (W 2n−4

(1) W 4)(2)W
4 + (W 2n−4

(0) W 4)(3)W
4.

Since W 4
(2)W

4 only depends on L,W 4 and their derivatives, the left hand side of (3.24) is

determined by inductive data. Next, by (2.7), we have

W 4
(2)(W

2n−4
(1) W 4) + (W 2n−4

(1) W 4)(2)W
4 =

∑

i≥1

(−1)i+1 1

i!
∂i

(

(W 2n−4
(1) W 4)(i+2)W

4

)

.

Since W 2n−4
(1) W 4 = W 2n−2 modulo terms which depend only on L,W 4, . . . ,W 2n−4, and is

known by inductive data, the sum W 4
(2)(W

2n−4
(1) W 4) + (W 2n−4

(1) W 4)(2)W
4 in (3.24) is deter-

mined by inductive data together with derivatives of elements of S2n+2,ℓ for ℓ ≥ 3. Finally,
the remaining term in (3.24) is

(W 2n−4
(0) W 4)(3)W

4 ≡ −(W 4
(0)W

2n−4)(3)W
4 = − 3

2n− 2
∂W 2n−2

(3) W 4 =
9

2n− 2
W 2n−2

(2) W 4

=
9

2n− 2

∑

i≥0

(−1)i+1 1

i!
∂i(W 4

(i+2)W
2n−2),

modulo inductive data. Therefore W 4
(2)W

2n−2 is expressible in terms of inductive data

together with derivatives of elements of S2n+2,ℓ for ℓ > 2. Since L(2)W
2n can be expressed

in terms of W 4
(2)W

2n−2, the same holds for L(2)W
2n.
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Next, for 2i ≥ 4 we impose the Jacobi relation

W 4
(2)(W

2i
(1)W

2n−2i) = W 2i
(1)(W

4
(2)W

2n−2i) + (W 4
(2)W

2i)(1)W
2n−2i + 2(W 4

(1)W
2i)(2)W

2n−2i

+ (W 4
(0)W

2i)(3)W
2n−2i.

(3.25)

This allows us to express W 2i
(2)W

2n+2−2i for all i in terms of inductive data together with

derivatives of S2n+2,ℓ for ℓ ≥ 3. �

Lemma 3.8. For all k > 2, the set S2n+2,k of products W 2i
(k)W

2n+2−2i is determined from inductive

data, Jacobi relations of type (W 2i,W 2j,W 2k) for 2i+ 2j + 2k = 2n + 4, and the sets S2n+2,ℓ for
ℓ > k.

Proof. The argument is the same as the proof of Lemma 3.7. Imposing the Jacobi relation

(3.26) L(k)(W
4
(1)W

2n−2) = W 4
(1)(L(k)W

2n−2) +
∑

i≥0

(

k

i

)

(L(i)W
4)(k+1−i)W

2n−2

shows that determining L(k)W
2n is equivalent to determining W 4

(k)W
2n−2. Imposing the

Jacobi relation

(3.27) W 2n−4
(1) (W 4

(k)W
4) = W 4

(k)(W
2n−4
(1) W 4) + (W 2n−4

(1) W 4)(k)W
4 + (W 2n−4

(0) W 4)(k+1)W
4

shows that W 4
(k)W

2n−2, and hence L(k)W
2n, are determined from inductive data together

with S2n+2,ℓ for ℓ > k. Finally, imposing the Jacobi relation

(3.28) W 4
(k)(W

2i
(1)W

2n−2i) = W 2i
(1)(W

4
(k)W

2n−2i) +
∑

r≥0

(

k

r

)

(W 4
(r)W

2i)(k+1−r)W
2n−2i

shows that W 2i
(k)W

2n+2−2i can be expressed in terms of inductive data together with S2n+2,ℓ

for ℓ > k. �

This process terminates after finitely many steps since all elements of S2n+2,k vanish for
k > 2n+ 1. Therefore we have proven the following.

Theorem 3.9. There exists a nonlinear conformal algebra Lev(c, λ) over the ring C[c, λ] satisfying
skew-symmetry, whose universal enveloping vertex algebra Wev(c, λ) has the following properties.

(1) Wev(c, λ) has conformal weight grading

Wev(c, λ) =
⊕

n≥0

Wev(c, λ)[n],

and Wev(c, λ)[0] ∼= C[c, λ].
(2) Wev(c, λ) is strongly generated by {L,W 2i| i ≥ 2}.
(3) The OPE relations for

L(z)W 2i(w), W 2j(z)W 2k(w), 2i ≤ 12, 2j + 2k ≤ 14,

which are consequences of the Jacobi identities of type (W 2i,W 2j,W 2k) for 2i+2j+2k ≤ 16,
all hold.

(4) The additional Jacobi identities (3.10)-(3.11), (3.14), (3.20)-(3.28), which appear in the above
lemmas, all hold as consequences of (2.6)-(2.9) alone.

Moreover, Wev(c, λ) is the unique initial object in the category of vertex algebras with the above
properties.
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It is not yet apparent that all Jacobi identities of the form (W 2i,W 2j,W 2k) hold in
Wev(c, λ) as consequences of (2.6)-(2.9) alone, or equivalently, that Lev(c, λ) is a nonlin-
ear Lie conformal algebra and Wev(c, λ) is freely generated.

Step 3: Free generation of Wev(c, λ). In order to prove that Wev(c, λ) is freely generated,
we need to consider certain simple quotients of Wev(c, λ). First, let

I ⊆ C[c, λ] ∼= Wev(c, λ)[0]

be an ideal, and let I · Wev(c, λ) denote the vertex algebra ideal generated by I . The
quotient

(3.29) Wev,I(c, λ) = Wev,I(c, λ)/I · Wev(c, λ)

has strong generators {L,W 2i| i ≥ 2} satisfying the same OPE relations as the corre-
sponding generators of Wev(c, λ) where all structure constants in C[c, λ] are replaced by
their images in C[c, λ]/I .

We now consider localizations of Wev,I(c, λ). Let D ⊆ C[c, λ]/I be a multiplicatively
closed subset, and let R = D−1(C[c, λ]/I) denote the localization of C[c, λ]/I along D.
Then we have the localization of C[c, λ]/I-modules

Wev,I
R (c, λ) = R⊗C[c,λ]/I Wev,I(c, λ),

which is a vertex algebra over R.

Theorem 3.10. Let I , D, and R be as above, and let W be a simple vertex algebra over R with the
following properties.

(1) W is generated by a Virasoro field L̃ of central charge c and a weight 4 primary field W̃ 4.

(2) Setting W̃ 2i = W̃ 4
(1)W̃

2i−2 for 2i ≥ 6, the OPE relations for L̃(z)W̃ 2i(w) and W̃ 2j(z)W̃ 2k(w)

for 2i ≤ 12 and 2j + 2k ≤ 14 are the same as in Wev(c, λ) if the structure constants are
replaced with their images in R.

Then W is the simple quotient of Wev,I
R (c, λ) by its maximal graded ideal I.

Proof. The assumption that {L̃, W̃ 2i| i ≥ 2} satisfy the above OPE relations is equivalent

to the statement that the Jacobi relations of type (W̃ 2i, W̃ 2j, W̃ 2k) for 2i+2j+2k ≤ 16 hold
in the corresponding nonlinear conformal algebra, which is possibly degenerate. Then all

OPE relations among the generators {L,W 2i| i ≥ 2} of Wev,I
R (c, λ) must also hold among

the fields {L̃, W̃ 2i| i ≥ 2}, since they are formal consequences of these OPE relations

together with Jacobi identities, which hold in W . It follows that {L̃, W̃ 2i| i ≥ 2} closes
under OPE and strongly generate a vertex subalgebra W ′ ⊆ W , which must coincide with

W since W is assumed to be generated by {L̃, W̃ 4}. So W has the same strong generating

set and OPE algebra as Wev,I
R (c, λ). Since W is simple and the category of vertex algebras

over R with this strong generating set and OPE algebra has a unique simple graded object,

W must be the simple quotient of Wev,I
R (c, λ) by its maximal graded ideal. �

Some quotients of Wev(c, λ). We now consider a family of vertex algebras that arise as
quotients of Wev(c, λ) in this way. Let

(3.30) Ck(n) = Com(V k(sp2n), V
k(osp(1|2n)),
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that is, the coset of the affine vertex algebra of sp2n inside the affine vertex superalgebra
of osp(1|2n). We shall regard Ck(n) as a one-parameter vertex algebra, defined over a
localization of the ring C[k]. It has central charge

c(k) = − kn(3 + 4k + 2n)

(1 + k + n)(1 + 2k + 2n)
,

and has a well-defined limit

lim
k→∞

Ck(n) ∼= A(n)Sp
2n ,

where A(n) denotes the rank n symplectic fermion algebra and A(n)Sp
2n denotes the orb-

ifold under the full automorphism group Sp2n; see Example 7.3 of [CL3]. This orbifold
has the following properties.

(1) A(n)Sp
2n is generated by the weights 2 and 4 fields. This follows from Theorem 3.2 of

[CL2]. Note that the weight 4 field in [CL2] is not primary with respect to L, but this
result still holds if we replace it by the unique primary field.

(2) A(n)Sp
2n is freely generated of type W(2, 4, . . . , 2n) and has graded character

(3.31) χ(A(n)Sp
2n , q) =

∑

n≥0

dim(A(n)Sp
2n [n])qn =

n
∏

i=1

∏

k≥0

1

1− q2i+k
.

This appears as Corollary 5.7 of [CL2].
(3) A(n)Sp

2n is a simple vertex algebra; see [KR], Theorem 1.1 and Remark 1.1, or [DLM].

Lemma 3.11. As a one-parameter vertex algebra, Ck(n) inherits these properties; it is generated
by the weights 2 and 4 fields, freely generated of type W(2, 4, . . . , 2n), and simple. Equivalently,
Ck(n) inherits these properties for generic values of k ∈ C.

Proof. The argument is the same to the proof of Corollary 8.6 of [CL1]. �

As above, set W 2i = W 4
(1)W

2i−2 for i ≥ 3. For n ≥ 7, it follows from Weyl’s second fun-

damental theorem of invariant theory for the standard representation of sp2n [We], that
among the generators {L,W 2i| 2 ≤ i ≤ 7} there can be no normally ordered polynomial
relations. Therefore for n ≥ 7, and k generic, all Jacobi identities of type (W 2r,W 2s,W 2t)
among the generators {L,W 2i| i ≥ 2} of Ck(n) must hold as consequences of (2.6)-(2.9)
alone, for 2r + 2s + 2t ≤ 16. For 2 ≤ n ≤ 6, it is straightforward to verify by com-
puter that among the generators {L,W 2i| i ≥ 2} of A(n)Sp

2n , all Jacobi relations of type
(W 2r,W 2s,W 2t) hold as consequences of (2.6)-(2.9) alone, for 2r+2s+2t ≤ 16. This prop-
erty is then inherited by Ck(n) for 2 ≤ n ≤ 6 and k generic, since after suitably rescaling,
a nonvanishing Jacobi relation among the corresponding fields in Ck(n) would remain
nontrivial in the limit as k → ∞.

Theorem 3.12. For all n ≥ 2, the one-parameter vertex algebra Ck(n) is the simple quotient of

Wev,I
R (c, λ) for some prime ideal I ⊆ C[c, λ] and some localization R of C[c, λ]/I . The maximal

proper graded ideal I ⊆ Wev,I
R (c, λ) is generated by a singular vector of weight 2n+ 2 of the form

(3.32) W 2n+2 − P (L,W 4, . . . ,W 2n),

where P is a normally ordered polynomial in L,W 4, . . . ,W 2n, and their derivatives.
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Proof. Since Ck(n) is generated by L and W 4, strongly generated by {L,W 2i| i ≥ 2}, all
Jacobi identities of type (W 2r,W 2s,W 2t) hold for 2r + 2s + 2t ≤ 16, and all structure
constants are rational functions of k, it follows from Theorem 3.10 that there exists some
rational function

λ(k) =
f(k)

g(k)

such that the OPE relations of L(z)W 2r(w) and W 2s(z)W 2t(w) for 2r ≤ 12 and 2s+2t ≤ 14
are satisfied if c and λ are replaced by c(k) and λ(k), respectively.

Letting J ⊆ C[c, λ, k] be the ideal generated by

c(1 + k + n)(1 + 2k + 2n) + kn(3 + 4k + 2n), g(k)λ− f(k),

we can eliminate k to obtain a prime ideal I ⊆ C[c, λ] such that some localization R of
C[c, λ]/I is isomorphic to some localization D−1C[k]. Here D is a multiplicatively closed
subset of C[k] containing (1 + k + n), (1 + 2k + 2n) and all roots g(k).

Since Ck(n) is of type W(2, 4, . . . , 2n), there must be a singular vector in Wev,I
R (c, λ) of

weight 2n+2 such that the coefficient of W 2n+2 is nonzero. If this coefficient is not invert-
ible in R, we may localize R further (without changing notation) so it becomes invertible,
and the singular vector has the form (3.32). Since Ck(n) is simple as a vertex algebra over

R, it must be the simple quotient Wev,I
R (c, λ)/I, by Theorem 3.10. Here I is the maximal

proper graded ideal of Wev,I
R (c, λ). Finally, we need to show that (3.32) generates I.

Let I ′ ⊆ I be the ideal in Wev,I
R (c, λ) generated by (3.32). Since Ck(n) ∼= Wev,I

R (c, λ)/I,

Ck(n) is also a quotient of Wev,I
R (c, λ)/I ′, and Wev,I

R (c, λ)/I ′ is of type W(2, 4, . . . , 2n); see
Theorem 4.1 below. Since Ck(n) is freely generated, there can be no more relations in

Wev,I
R (c, λ)/I than in Wev,I

R (c, λ)/I ′, so I ′ = I. �

Corollary 3.13. All Jacobi identities of type (W 2i,W 2j ,W 2k) hold as consequences of (2.6)-(2.9)
alone in Lev(c, λ), so Lev(c, λ) is a nonlinear Lie conformal algebra with generators {L,W 2i| i ≥
2}. Equivalently, Wev(c, λ) is freely generated by {L,W 2i| i ≥ 2} and has graded character

(3.33) χ(Wev(c, λ), q) =
∑

n≥0

rankC[c,λ](Wev(c, λ)[n])qn =
∏

i≥1

∏

k≥0

1

1− q2i+k
.

For any prime ideal I ⊆ C[c, λ], Wev,I(c, λ) is freely generated by {L,W 2i| i ≥ 2} as a vertex
algebra over C[c, λ]/I , and

(3.34) χ(Wev,I(c, λ), q) =
∑

n≥0

rankC[c,λ]/I(Wev,I(c, λ)[n])qn =
∏

i≥1

∏

k≥0

1

1− q2i+k
.

For any localization R = D−1(C[c, λ]/I) along a multiplicatively closed set D ⊆ C[c, λ]/I ,

Wev,I
R (c, λ) is freely generated by {L,W 2i| i ≥ 2} and

(3.35) χ(Wev,I
R (c, λ), q) =

∑

n≥0

rankR(Wev,I
R (c, λ)[n])qn =

∏

i≥1

∏

k≥0

1

1− q2i+k
.

Proof. If some Jacobi identity of type (W 2i,W 2j,W 2k) does not hold as a consequence of
(2.6)-(2.9), there would be a null vector of weight 2N in Wev(c, λ) for some N . Then
rankC[c,λ](Wev(c, λ)[2N ]) would be smaller than that given by (3.33), and the same would
hold in any quotient of Wev(c, λ)[2N ], as well as any localization of such a quotient. But
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since Ck(N) is a localization of such a quotient and is freely generated of type W(2, 4, . . . , 2N),
this is impossible. �

Corollary 3.14. Wev(c, λ) is a simple vertex algebra.

Proof. If Wev(c, λ) is not simple, it would have a singular vector ω in weight 2N for some
N . Let p ∈ C[c, λ] be an irreducible polynomial and let I = (p) ⊆ C[c, λ]. By rescaling
if necessary, we can assume without loss of generality that ω is not divisible by p, and
hence descends to a nontrivial singular vector in Wev,I(c, λ). Then for any localization R

of C[c, λ]/I , the simple quotient of Wev,I
R (c, λ) would have a smaller weight 2N submodule

than Wev,I(c, λ) for all such I . This contradicts the fact that Ck(N) is such a quotient. �

Corollary 3.15. The automorphism group of Wev(c, λ) is trivial.

Proof. By definition, an automorphism g preserves the Virasoro generator, L. Therefore,
under g, Virasoro primaries must map to Virasoro primaries. It is easy to check that
in weight 4, there is only one such primary vector up to scaling, namely W 4, therefore
g(W 4) = tW 4 for some t ∈ C[c, λ]\{0}. Considering the OPE of g(W 4) with g(W 4) forces
t = 1. Since Wev(c, λ) is generated by L and W 4, g must now be trivial. �

4. CLASSIFICATION OF VERTEX ALGEBRAS OF TYPE W(2, 4, . . . , 2N)

Theorem 3.10 and Corollary 3.14 reduce the classification of vertex algebras of type
W(2, 4, . . . ) with the above properties to the classification of ideals I ⊆ C[c, λ] such that
Wev,I(c, λ) is not simple. In this section, we restrict to the case where I = (p) for some
irreducible p ∈ C[c, λ], so that Wev,I(c, λ) is a one-parameter vertex algebra in the sense
that R has Krull dimension one. Later, in Section 8 we will consider the case where I is a
maximal ideal.

It follows from Corollary 3.13 that Wev(c, λ)[n] is a free C[c, λ]-module whose rank is
given by (3.33). Recall that it has a symmetric bilinear form

〈, 〉n : Wev(c, λ)[n]⊗C[c,λ] Wev(c, λ)[n] → C[c, λ], 〈ω, ν〉n = ω(2n−1)ν,

and that the Shapovalov determinant detn ∈ C[c, λ] is the determinant of the matrix of
this form. Also, recall that an irreducible element p ∈ C[c, λ] lies in the level n Shapovalov
spectrum if p divides detn but does not divide detm for any m < n.

Let p be an irreducible factor of det2N+2 of level 2N + 2. Letting I = (p) ⊆ C[c, λ],
Wev,I(c, λ) will then have a singular vector in weight 2N + 2. Often, the coefficient of
W 2N+2 in this singular vector is nonzero. By inverting this coefficient, we obtain a local-
ization R of C[c, λ]/I such that this singular vector has the form

(4.1) W 2N+2 − P2N+2(L,W
4, . . . ,W 2N)

in Wev,I
R (c, λ). Here P2N+2 is a normally ordered polynomial in the fields L,W 4, . . . ,W 2N

and their derivatives, with coefficients in R. This implies that W 2N+2 decouples in the

quotient of Wev,I
R (c, λ)/J , where J denotes the vertex algebra ideal generated by (4.1). In

other words, we have the relation

W 2N+2 = P2N+2(L,W
4, . . . ,W 2N)
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in Wev,I
R (c, λ)/J . Applying the operator W 4

(1) to this relation and using the fact that

W 4
(1)W

2N+2 = W 2N+4 and W 4
(1)W

2N = W 2N+2, we obtain a relation

W 2N+4 = Q2N+4(L,W
4, . . . ,W 2N+2).

If the terms ∂2W 2N+2 or : LW 2N+2 : appear in Q2N+4, they can be eliminated using (4.1) to
obtain a relation

W 2N+4 = P2N+4(L,W
4, . . . ,W 2N).

Inductively, by applying W 4
(1) repeatedly and using (4.1) to eliminate W 2N+2 or : LW 2N+2 :

if necessary, we obtain relations

W 2m = P2m(L,W
4, . . . ,W 2N)

in Wev,I
R (c, λ)/J , for all 2m > 2N + 2. This implies

Theorem 4.1. Let p be an irreducible factor of det2N+2 of level 2N + 2, and let I = (p). Suppose

that there exists a localization R of C[c, λ]/I such that Wev,I
R (c, λ) has a singular vector of the

form

(4.2) W 2N+2 − P2N+2(L,W
4, . . . ,W 2N).

Let J ⊆ Wev,I
R (c, λ) be the vertex algebra ideal generated by (4.2). Then the quotient Wev,I

R (c, λ)/J
has a minimal strong generating set

{L,W 2i| 2 ≤ i ≤ 2N},
and in particular is of type W(2, 4, . . . , 2N).

The ideal J is sometimes (but not necessarily) the maximal graded ideal I ⊆ Wev,I
R (c, λ).

However, the assumption that p does not divide detm for m < 2N + 2 implies that there
are no singular vectors in weight m < 2N + 2, so there can be no decoupling relations
of the form W 2m = Pm(L,W

4, . . .W 2m) for 2m < 2N + 2. Therefore the simple quotient

Wev,I
R (c, λ)/I is also of type W(2, 4 . . . , 2N).

Theorem 4.2. For all N ≥ 2, there are finitely many isomorphism classes of simple one-parameter
vertex algebras of type W(2, 4, . . . , 2N), which satisfy the hypotheses of Theorem 3.10.

Proof. Any such vertex algebra must be the simple quotient of Wev,I
R (c, λ) for some ideal

I = (p) ⊆ C[c, λ] and some localization R of C[c, λ]/I , such that Wev,I
R (c, λ) has a singular

vector in weight 2m ≤ 2N + 2. But there are only finitely many divisors of detm for
m ≤ 2N + 2. �

Later, we will see that for N ≥ 3, the correspondence between these ideals and the
isomorphism classes of such vertex algebras, is a bijection; see Corollary 8.3.

5. PRINCIPAL W-ALGEBRAS OF TYPE B AND C

The B and C type principal W-algebras are isomorphic after the level shift (1.1) by
Feigin-Frenkel duality, so we shall only consider the type C algebra Wℓ(sp2n, fprin). It has
central charge

(5.1) c = −n(ℓ+ 2n + 2ℓn+ 2n2)(−3− 2ℓ+ 4ℓn+ 4n2)

ℓ+ n+ 1
,
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and is well known to be freely generated of type W(2, 4, . . . , 2n). Although often assumed
in the physics literature, it is not obvious that Wℓ(sp2n, fprin) is generated by the weight 2
and 4 fields. This must be established in order to conclude that it arises as a quotient of
Wev(c, λ).

The following theorem is analogous to the celebrated resulted of Frenkel, Kac, Radul,
and Wang [FKRW] that the GLn-orbifold of the rank n bc-system is isomorphic to H ⊗
Wk(sln, fprin) at level k = 1 − h∨ = 1 − n. The proof is due to T. Creutzig, and we thank
him for explaining it to us.

Theorem 5.1. Let A(n) denote the rank n symplectic fermion algebra as above. Then A(n)Sp
2n is

isomorphic to Wℓ(sp2n, fprin) at level ℓ = 1/2− h∨ = −1/2− n.

Proof. For all ℓ ∈ C, there is an injective vertex algebra homomorphism

γ : Wℓ(sp2n, fprin) → π0

known as the Miura map, where π0 denotes the rank n Heisenberg vertex algebra; see
Theorem 5.17 and Remark 5.18 of [A3]. The image of γ lies in the joint kernel of the
screening operators

∫

V−αi/ν dz : π0 → π−αi/ν , ν =
√
ℓ+ h∨.

Here
∫

V−αi/ν dz maps π0 to the Heisenberg module π−αi/ν , and αi runs over a set of simple
roots for sp2n. By Theorem 14.4.12 of [FBZ], for generic values of ℓ,

Wℓ(sp2n, fprin) =
⋂

i

Ker

(
∫

V−αi/ν dz

)

.

In the case ℓ = −1/2−n, W−1/2−n(sp2n, fprin) has central charge −2n, which is the same as
the central charge of A(n)Sp

2n , and
∫

V−αi/ν dz =
∫

V−
√
2αi

dz.

A recent paper of Flandoli and Lentner [FL] describes a related algebra, which (in the
above notation) is the joint kernel of the screening operators

∫

V−αi/
√
2 dz inside the lattice

vertex algebra of the coroot lattice of type Bn rescaled by
√
2, which is just the root lattice

of sp2n rescaled by
√
2. By Corollary 7.8 of [FL], the joint kernel of

∫

V−αi/
√
2 dz in this

lattice vertex algebra is isomorphic to the even subalgebra A(n)even ⊆ A(n). It follows that
W−1/2−n(sp2n, fprin), which lies in

⋂

i Ker(
∫

V−
√
2αi

dz) ⊆ π0, is a subalgebra of A(n)even.

Recall that A(n), and hence A(n)even, has automorphism group Sp2n. Moreover, the
operators

∫

V−
√
2αi

dz where αi ranges over the n − 1 simple short roots, generate the
upper nilpotent part of sln ⊆ sp2n. The condition that an element ω ∈ π0 lies in the
joint kernel of these n − 1 screening operators, forces ω to lie in (A(n)even)GLn = A(n)GLn .
Therefore W−1/2−n(sp2n, fprin) is a subalgebra of A(n)GLn .

By Theorem 4.3 of [CL2], A(n)GLn is of type W(2, 3, . . . , 2n + 1), and the explicit gen-
erators were written down. Using this description, it is straightforward to check that
A(n)GLn has a unique up to scalar primary field of weight 4, which in fact lies in A(n)Sp

2n .
Therefore the image of the weight 4 field of W−1/2−n(sp2n, fprin) in A(n)GLn must lie in
A(n)Sp

2n . Since A(n)Sp
2n is generated by the weights 2 and 4 fields, and the graded charac-

ters of W−1/2−n(sp2n, fprin) and A(n)Sp
2n coincide, we conclude that W−1/2−n(sp2n, fprin) ∼=

A(n)Sp
2n . �
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Corollary 5.2. As a one-parameter vertex algebra, Wℓ(sp2n, fprin) is generated by the weights 2
and 4 fields.

Proof. We regard Wℓ(sp2n, fprin) as a vertex algebra over a localization R of the ring C[ℓ].
Let Vℓ ⊆ Wℓ(sp2n, fprin) denote the subalgebra generated by the weights 2 and 4 fields.

If Vℓ were a proper subalgebra of Wℓ(sp2n, fprin) as vertex algebras over R, then V−1/2−n

would be a proper subalgebra of W−1/2−n(sp2n, fprin), where both are obtained by replac-
ing ℓ with −1/2−n. But this contradicts the fact that A(n)Sp

2n is generated by the weights
2 and 4 fields. �

Remark 5.3. By the same argument as Proposition A.4 of [ALY], Wℓ(sp2n, fprin) is generated by
the weights 2 and 4 fields for all noncritical values of ℓ. We thank T. Arakawa for pointing this out
to us.

Corollary 5.4. For all n ≥ 2, Wℓ(sp2n, fprin) can be obtained as a quotient of Wev(c, λ) of the

form Wev,In
Rn

(c, λ)/In for some prime ideal In ⊆ C[c, λ] and some localization Rn of C[c, λ]/I .

Here In denotes the maximal proper graded ideal in Wev,In
Rn

(c, λ).

Proof. Recall that by Lemma 3.11, A(n)Sp
2n is generated by L,W 4, strongly generated by

{L,W 2i| i ≥ 2}, and all Jacobi identities of type (W 2i,W 2j,W 2k) hold as consequences
of (2.6)-(2.9) alone, for 2i + 2j + 2k ≤ 16. Since A(n)Sp

2n ∼= limℓ→−1/2−nWℓ(sp2n, fprin),
these properties are inherited by Wℓ(sp2n, fprin) for generic ℓ. The result then follows from
Theorem 3.10. �

Note that the OPE algebra is determined by the coefficient of W 4 in the fourth order
pole of W 4 with itself. After rescaling W 4 so that its eighth order pole with itself is c

4
, this

coefficient is denoted by
√
C in [H], and is now only determined up to sign. The explicit

formula for C appears in Appendix A of [H]. Using this equation and (3.6) and (3.8), we
can find the explicit generator pn of In as follows. First, we must rescale the field W 4 in
Wev(c, λ) by the factor

µ =
21
√
3

8
√

(c− 1)(24 + c)(2c− 1)(22 + 5c)(1− 49λ2(c− 25)(c− 1))
,

so that the eighth order pole of W̃ 4 = µW 4 with itself is c
4
. Using (3.6) and (3.8), we obtain

(5.2) C = − 21168λ2(c− 1)(24 + c)(2c− 1)

(22 + 5c)(−1 + 49λ2(c− 25)(c− 1))
.

Equating these two expressions for C, after some simplifications we obtain the explicit
formula for pn, which appears in Appendix A.

Zhu functor. The Zhu functor is a basic tool in the representation theory of vertex alge-
bras [Z]. Given a vertex algebra V over C with weight grading V =

⊕

n≥0 V[n], the Zhu
algebra Zhu(V) is a certain vector space quotient of V with quotient map πZhu : V →
Zhu(V), with the structure of a unital, associative algebra.

If V is strongly generated by homogeneous elements {α1, α2, . . . }, Zhu(V) is generated
by {ai = πZhu(α

i)}. An N-graded V-module M =
⊕

n≥0M [n] is called a positive energy
module if for every a ∈ V[m], a(n)Mk ⊆ M [m + k − n − 1], for all n and k. For a field
a ∈ V[m], a(m− 1) acts on each M [k]. The subspace M [0] is a Zhu(V)-module with action
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πZhu(a) 7→ a(m−1) ∈ End(M [0]). In fact, M 7→ M [0] is a bijection between irreducible, pos-
itive energy V-modules and irreducible Zhu(V)-modules. If Zhu(V) is commutative, all
its irreducible modules are one-dimensional. The corresponding irreducible V-modules
M =

⊕

n≥0M [n] are then cyclic, and will be called highest-weight modules.

It is known that the Zhu algebra of Wk(sp2n, fprin) is independent of k and is isomorphic
to the center of U(sp2n), which is the polynomial algebra on the fundamental invariants
of sp2n; see [A1], Theorem 4.16.3.

The Zhu algebra of vertex algebras over a ring R can be defined in a similar way.

Theorem 5.5. The Zhu algebra Zhu(Wev(c, λ)) is isomorphic to the polynomial algebra

(5.3) C[c, λ]⊗C C[ℓ, w2i| i ≥ 2],

where the generators are the images of {L,W 2i| i ≥ 2} under the Zhu map. For any ideal

I ⊆ C[c, λ], any localization R of C[c, λ]/I , and any quotient Wev,I
R (c, λ)/I, the Zhu algebra

Zhu(Wev,I
R (c, λ)/I) is a quotient of a localization of (5.3), and hence is abelian.

Proof. Since Wev(c, λ) is strongly generated by {L,W 2i| i ≥ 2}, Zhu(Wev(c, λ)) is gener-
ated by {ℓ, w2i| i ≥ 2}. Also, ℓ is central. The commutator [w2i, w2j] in the Zhu algebra
is expressed in terms of the OPE algebra and hence is a polynomial in {ℓ, w2i| i ≥ 2}
with structure constants in C[c, λ]. Since the Zhu algebra of Wk(sp2n, fprin) is abelian, each
structure constant is divisible by the generator pn of the ideal In in Corollary 5.4. Since
Wk(sp2n, fprin) is generated by the weight 4 field for all n ≥ 2, the polynomials pn must all
be distinct, so all of the above structure constants must vanish. The remaining statements
follow from the fact that for any vertex algebra V =

⊕

n≥0 V[n] as above, and any graded
ideal I ⊆ V , we have Zhu(V/I) ∼= Zhu(V)/I where I = πZhu(I). �

Corollary 5.6. For any vertex algebra W over C which arises as a quotient of Wev(c, λ), all irre-
ducible, positive energy modules are highest-weight modules, and are parametrized by the variety
Specm(Zhu(W)).

Poisson structure. For any vertex algebra V , we have Li’s canonical decreasing filtration

F 0(V) ⊇ F 1(V) ⊇ · · · .
Here F p(V) is spanned by elements of the form

: (∂n1α1)(∂n2α2) · · · (∂nrαr) :,

where α1, . . . , αr ∈ V , ni ≥ 0, and n1 + · · · + nr ≥ p [Li3]. Clearly V = F 0(V) and
∂F i(V) ⊆ F i+1(V). Set

grF (V) =
⊕

p≥0

F p(V)/F p+1(V),

and for p ≥ 0 let

σp : F
p(V) → F p(V)/F p+1(V) ⊆ grF (V)

be the projection. Then grF (V) is a graded commutative algebra with product

σp(α)σq(β) = σp+q(α(−1)β),

for α ∈ F p(V) and β ∈ F q(V). There is a differential ∂ on grF (V) defined by

∂(σp(α)) = σp+1(∂α), α ∈ F p(V).
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Finally, grF (V) has a Poisson vertex algebra structure [Li3]; for n ≥ 0, α ∈ F p(V), and
β ∈ F q(V), define

σp(α)(n)σq(β) = σp+q−nα(n)β.

The subalgebra F 0(V)/F 1(V) is isomorphic to Zhu’s commutative algebra C(V) [Z],
and is known to generate grF (V) as a differential graded algebra [Li3]. We change our
notation slightly and denote by ᾱ the image of α in C(V). It is a Poisson algebra with
product ᾱ · β̄ = α(−1)β and Poisson bracket {ᾱ, β̄} = α(0)β. Also, if the Poisson bracket on
C(V) is trivial, the Poisson vertex algebra structure on grF (V) is also trivial in the sense
that for all a ∈ F p(V), b ∈ F q(V) and n ≥ 0, σp(a)(n)σq(b) = 0; see Remark 4.32 of [AMII].

Theorem 5.7. For any vertex algebra W = Wev,I
R (c, λ)/I for some I and R as above, the Poisson

structure on C(W) and the Poisson vertex algebra structure on grF (W) are trivial.

Proof. Since C(W) is generated by {L̄, W̄ 2i| i ≥ 2} and {L̄,−} acts trivially on C(W), it

suffices to show that{W̄ 2j , W̄ 2k} = 0 for all j, k ≥ 2. But W 2j
(0)W

2k is a sum of normally

ordered monomials in {L,W 2i| 2 ≤ i ≤ j + k − 1} of odd weight 2j + 2k − 1. Therefore

each monomial must lie in F 1(W), so that W 2j
(0)W

2k = 0. �

6. PRINCIPAL W-ALGEBRAS OF TYPE D

Let Wℓ(so2n, fprin) denote the principal W-algebra at level ℓ associated to so2n for n ≥ 3.
It has central charge

(6.1) c = −n(5− 10n+ 4n2 − 2ℓ+ 2nℓ)(4− 8n+ 4n2 − ℓ+ 2nℓ)

ℓ + 2n− 2
,

and has a strong generator in each weight 2, 4, . . . , 2n− 2 and n.

Consider the coset

(6.2) Dk(n) = Com(V k+1(so2n), V
k(so2n)⊗ L1(so2n)).

By Theorem 8.7 of [ACL], we have

(6.3) Wℓ(so2n, fprin) = Dk(n), ℓ = −(2n− 2) +
k + 2n− 2

k + 2n− 1
.

Corollary 6.1. Wℓ(so2n, fprin) has an action of Z2, and the orbifold Wℓ(so2n, fprin)
Z2 is simple, of

type W(2, 4, . . . , 4n), and generated by the weight 4 field.

Proof. It is apparent that the action of SO2n on V k(so2n) ⊗ L1(so2n) which is infinitesi-
mally generated by the zero modes of V k+1(so2n), extends to an O2n-action on V k(so2n)⊗
L1(so2n). This yields the Z2 action on Dk(n). We have

limk→∞Dk(n) ∼= L1(so2n)
O2n ∼= F (2n)O2n ,

where F (2n) denotes the rank 2n free fermion algebra. By Theorems 6 and 9 of [L2],
F (2n)O2n is of type W(2, 4, . . . , 4n), and it is easily seen to be generated by the weight
4 field. It is simple by [KR, DLM]. Finally, these properties are inherited by Dk(n) for
generic values of k. �

Corollary 6.2. For all n ≥ 3, Wℓ(so2n, fprin)
Z2 can be obtained as a quotient Wev,Jn

Rn
(c, λ)/Jn

for some ideal Jn ⊆ C[c, λ] and some localization Rn of C[c, λ]/Jn. Here Jn denotes the maximal

proper graded ideal of Wev,Jn
Rn

(c, λ).
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Proof. This is similar to the proof of Corollary 5.4. �

As in the case of type C principal W-algebras, the explicit generator of Jn can be de-
duced from calculations of Hornfeck [H].

Theorem 6.3. For n ≥ 3, let

qn = 7λ(c− 1)(22 + 5c)(−3c+ 10n− 2cn− 19n2 + 2cn2 + 12n3)

− (−6c− 9c2 − 28n+ 120cn− 2c2n+ 10n2 − 147cn2 + 2c2n2 + 24n3 + 36cn3).
(6.4)

Then

(1) qn is an irreducible factor of det4n+2 of level 4n+ 2, and generates the ideal Jn ⊆ C[c, λ].
(2) There exists a localization Rn of C[c, λ]/Jn in which (c − 1), (22 + 5c), and (−3c + 10n −

2cn− 19n2 + 2cn2 + 12n3) are invertible, so that

(6.5) λ =
−6c− 9c2 − 28n+ 120cn− 2c2n+ 10n2 − 147cn2 + 2c2n2 + 24n3 + 36cn3

7(c− 1)(22 + 5c)(−3c+ 10n− 2cn− 19n2 + 2cn2 + 12n3)

in Rn, and there is a unique singular vector of weight 4n + 2

(6.6) W 4n+2 − P4n+2(L,W
4, . . . ,W 4n).

(3) We have an isomorphism

Wev,Jn
Rn

(c, λ)/Jn
∼= Wℓ(so2n, fprin)

Z2 ,

where Jn denotes the maximal proper graded ideal, and c and λ are related to ℓ as above.

Proof. If the generator W 4 of Wℓ(so2n, fprin)
Z2 is normalized so its eighth order pole with

itself is c
4
, the coefficient of W 4 appearing in the fourth order pole of W 4 with itself, de-

noted by
√
C in [H], is determined by

C =

36(−6c− 9c2 − 28n+ 120cn− 2c2n+ 10n2 − 147cn2 + 2c2n2 + 24n3 + 36cn3)2

(22 + 5c)(2 + c− 7n + cn+ 3n2)(c− 10n+ 2cn+ 16n2)(6c− 5n− 7cn + 4n2 + 2cn2)
;

(6.7)

see Equation 4.4 of [H]. As before, C is also given by (5.2). Equating (5.2) and (6.7) and
solving for λ yields (6.5) up to sign. Finally, by Remark 3.2, only one choice of sign,
namely, the one given by (6.5), is consistent with the OPE relations in Section 3. �

7. SOME OTHER ONE-PARAMETER QUOTIENTS OF Wev(c, λ)

In the introduction, we mentioned a few other one-parameter vertex algebras of type
W(2, 4, . . . , 2N) arising as cosets of affine vertex algebras inside other structures. Here we
show that they can all be obtained as quotients of Wev(c, λ) as above.

Theorem 7.1. Consider the following coset vertex algebras

Ek(n) = Com(V k(sp2n), V
k+1/2(sp2n)⊗ L−1/2(sp2n)), n ≥ 1,

Fk(n) = Com(V k+1/2(sp2n−2),Wk(sp2n, fmin)), n ≥ 2,
(7.1)

These vertex algebras can all be obtained in the form Wev,I
R (c, λ), for some prime ideal I ⊆ C[c, λ],

and some localization R of C[c, λ]/I .
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Proof. Recall that Ek(n) is of type W(2, 4 . . . , 2n2 + 4n) for generic values of k, and that

lim
k→∞

Ek(n) ∼= L−1/2(sp2n)
Sp

2n ∼= S(n)Sp
2n ,

where S(n) denotes the rank n βγ-system. By Lemma 3 and Theorem 1 of [L2], S(n)Sp
2n is

generated by the weight 4 field, and by Weyl’s fundamental theorems of invariant theory
for the standard representation of Sp2n [We], there are no normally ordered polynomial
relations among the generators {L,W 2i| i ≥ 2} of S(n)Sp

2n of weight less than 2n2+4n+2.
These properties are inherited by Ek(n) for generic values of k, so for n ≥ 2 the claim
holds by Theorem 3.10. In the case n = 1, S(1)Sp

2 is of type W(2, 4, 6) [BFH], and it can be
verified by computer that it is a quotient of Wev(c, λ) as above.

Next, by Theorem 5.2 of [ACKL],

lim
k→∞

Fk(n) ∼= T ⊗ Gev(n− 1)Sp
2n−2 ,

where T is a generalized free field algebra that is strongly generated by a field in weight
2, and Gev(n − 1) is another generalized free field algebra such that Gev(n − 1)Sp

2n−2 is of
type W(4, 6, . . . , 2n2 + 2n − 2). Note that in [ACKL], Gev(n − 2) is a typo and should be
replaced by Gev(n − 1). It is not difficult to check that Gev(n− 1)Sp

2n−2 is generated by the
weight 4 field. It follows that Fk(n) is generated by the weights 2 and 4 fields, and is of
type W(2, 4, . . . , 2n2+2n−2). There are no normally ordered relations of weight less than
2n2 + 2n among the generators {L,W 2i| i ≥ 2} of Fk(n), so for n ≥ 3, the claim follows
from Theorem 3.10. It is easy to verify by computer that it also holds for n = 2. �

Corollary 7.2. The vertex algebras Ek(n) and Fk(n) all have abelian Zhu algebras, so their irre-
ducible, positive energy modules are all highest-weight modules.

Explicit truncation curve for Fk(n). In [ACKL], it was shown that for levels k ∈ 1
2
+ N,

there is an embedding

Lk+1/2(sp2n−2) →֒ Wk(sp2n, fmin),

and that the simple quotient Fk(n) of Fk(n) coincides with

Com(Lk+1/2(sp2n−2),Wk(sp2n, fmin)).

Based on a remarkable coincidence of central charges, the following conjecture was made
in [ACKL].

Conjecture 7.3. For all n ≥ 2 and k ∈ 1
2
+ N,

Fk(n) ∼= Ws(sp2m, fprin), m = k +
1

2
, s = −(m+ 1) +

n + k + 1/2

2n+ 2k + 2
.

These are nondegenerate admissible levels for sp2m, so Ws(sp2m, fprin) is lisse and rational. This
conjecture implies that Wk(sp2n, fmin) is also lisse and rational for k ∈ 1

2
+ N.

Conjecture 7.3 turns out to be equivalent to an explicit formula for the truncation curve
in C2 that realizes Fk(n) as a quotient of Wev(c, λ).
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Conjecture 7.4. The truncation curve for Fk(n) has the following rational parametrization.

cn(k) =− (1 + 2k)(2 + 2k + n)(2 + 3k + 2n)

(1 + k + n)(1 + 2k + 2n)
,

λn(k) =− (1 + k + n)(1 + 2k + 2n)pn(k)

7(1 + k)(1 + 2k + n)(5 + 6k + 4n)qn(k)rn(k)
,

pn(k) = −60− 306k − 408k2 + 198k3 + 720k4 + 360k5 − 294n− 812kn+ 177k2n

+ 1916k3n + 1236k4n− 360n2 − 153kn2 + 1606k2n2 + 1504k3n2 − 102n3 + 464kn3

+ 776k2n3 + 24n4 + 144kn4,

qn(k) = 6 + 9k + 6k2 + 15n+ 20kn+ 12n2,

rn(k) = −2 + 24k + 86k2 + 60k3 − 36n+ 7kn+ 70k2n− 34n2 + 20kn2.

(7.2)

In particular, if we let Kn ⊆ C[c, λ] be the ideal corresponding to this curve, then

Wev,Kn(c, λ) = Wev(c, λ)/Kn · Wev(c, λ),

which is a vertex algebra over the ring C[c, λ]/Kn, has a singular vector of weight 2n2 + 2n, and
the simple quotient is isomorphic to Fk(n) after a suitable localization.

The proof that Conjectures 7.3 and 7.4 are equivalent is analogous to the proof of Theo-
rem 8.3 of [L1]. The isomorphisms in Conjectures 7.3, together with the explicit generator
for the ideal In appearing in Appendix A, are enough to determine Kn uniquely.

Theorem 7.5. Conjecture 7.4 holds in the first nontrivial case n = 2. Therefore Conjecture 7.3
holds for n = 2 and all k ∈ 1

2
+ N, and Wk(sp4, fmin) is lisse and rational for all k ∈ 1

2
+ N.

Proof. This can be verified by computer by writing down the explicit generators of Fk(2)
and computing the fourth order pole of the field W 4 with itself. �

8. QUOTIENTS OF Wev(c, λ) BY MAXIMAL IDEALS AND COINCIDENCES BETWEEN

ALGEBRAS OF TYPE W(2, 4, . . . , 2N)

So far, we have considered quotients of the form Wev,I
R (c, λ) which are one-parameter

families of vertex algebras in the sense that R has Krull dimension 1. Here, we consider
simple quotients of Wev,I(c, λ) where I ⊆ C[c, λ] is a maximal ideal. Such an ideal always
has the form I = (c−c0, λ−λ0) for c0, λ0 ∈ C, and Wev,I(c, λ) is an ordinary vertex algebra
over C. We first need a criterion for when the simple quotients of two such vertex algebras
are isomorphic.

Theorem 8.1. Let c0, c1, λ0, λ1 be complex numbers and let

I0 = (c− c0, λ− λ0), I1 = (c− c1, λ− λ1)

be the corresponding maximal ideals inC[c, λ]. Let W0 and W1 be the simple quotients of Wev,I0(c, λ)
and Wev,I1(c, λ). Then W0

∼= W1 are isomorphic only in the following cases.

(1) c0 = c1 and λ0 = λ1,
(2) c0 = 0 = c1 and no restriction on λ0, λ1,
(3) c0 = 1,−24,−22

5
, 1
2
= c1, and no restriction on λ0, λ1,
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(4) c0 = c = c1, where c is arbitrary except for c 6= 1, 25, and

λ0 = ± 1

7
√

(c− 25)(c− 1)
= ±λ1,

(5) c0 = c = c1, where c is arbitrary except for c 6= 1, 25, and

λ0 = ±
√
196− 172c+ c2

21(c− 1)(22 + 5c)
= ±λ1.

Proof. Clearly the isomorphism W0
∼= W1 holds in case (1). It holds in case (2) as well

because the simple quotient is C for all λ. Next, we compute

det4 = −32

63
(c− 1)c3(24 + c)(2c− 1)(22 + 5c)2(−1 + 49λ2(25− 26c+ c2)).

In cases (3) and (4), W 4 is a singular vector in Wev,I0(c, λ) and Wev,I1(c, λ), so the simple
quotients W0 and W1 are just the Virasoro vertex algebra for all values of λ. Therefore the
isomorphism holds in cases (3) and (4).

Next, let I be the ideal generated by

p = −196 + 172c− c2 + 213444λ2 − 329868cλ2 + 30429c2λ2 + 74970c3λ2 + 11025c4λ2.

It is not difficult to check that p is an irreducible factor of det6. Solving for λ yields

λ = ±
√
196− 172c+ c2

21(c− 1)(22 + 5c)
,

and in Wev,I(c, λ) there is a unique up to scalar singular vector in weight 6 of the form

W 6 − 4096(24 + c)(2c− 1)2(13 + 72c)

3969(22 + 5c)2
: LLL : ∓128(2c− 1)

√
196− 172c+ c2

9(22 + 5c)
: LW 4 :

− 512(24 + c)(2c− 1)2(−2528 + 117c+ 176c2)

11907(22 + 5c)2
: (∂2L)L :

− 256(24 + c)(2c− 1)2(2048 + 2592c+ 295c2)

11907(22 + 5c)2
: (∂L)∂L :

∓ 8(2c− 1)(64 + 5c)
√
196− 172c+ c2

189(22 + 5c)
∂2W 4

− 256(24 + c)(2c− 1)2(−116− 764c+ 5c2 + 5c3)

35721(22 + 5c)2
∂4L.

(8.1)

In particular, W 6 decouples in the simple quotient of Wev,I(c, λ), and this quotient is the
unique one-parameter vertex algebra of type W(2, 4), with parameter c. It follows that
W0

∼= W1 in this case as well.

Conversely, suppose there is another case where W0
∼= W1. Necessarily c0 = c = c1

and λ0 6= λ1. Since we are not in the above cases, neither W 4 nor W 6 decouples in the
simple vertex algebras W0 and W1. By (3.6) and (3.8) the coefficient of W 4 in W 4

(3)W
4 in

W0 is a nontrivial multiple of λ0, and the coefficient of W 4 in W 4
(3)W

4 in W1 is a nontrivial

multiple of λ1. So we must have λ0 = ±λ1. Finally, by Remark 3.2, since W 6 does not
decouple, our choice of d28 from (3.8) forces λ0 = λ1, so we are in case (1). �
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Corollary 8.2. Let I = (p), J = (q) be prime ideals in C[c, λ] which lie in the Shapovalov spec-
trum of Wev(c, λ). Then aside from the coincidences given by Theorem 8.1, any additional point-
wise coincidences between the simple quotients of Wev,I(c, λ) and Wev,J(c, λ) must correspond to
intersection points of the truncation curves V (I) ∩ V (J).

Corollary 8.3. Suppose that A is a simple, one-parameter vertex algebra which is isomorphic to
the simple quotient of Wev,I(c, λ) for some prime ideal I = (p) ⊆ C[c, λ], possibly after localiza-
tion. Then if A is the quotient of Wev,J(c, λ) for some prime ideal J , possibly localized, we must
have I = J .

Proof. This is immediate from Theorem 8.1 and Corollary 8.2, since if I and J are dis-
tinct prime ideals in C[c, λ], their truncation curves V (I) and V (J) can intersect in at most
finitely many points. Then the simple quotients of Wev,I(c, λ) and Wev,J(c, λ) cannot co-
incide as one-parameter families. �

9. COINCIDENCES

As an application of Theorem 8.1, we classify all nontrivial coincidences among the sim-
ple vertex algebras Wℓ(so2n, fprin)

Z2 , Wℓ′(so2m, fprin)
Z2 , Wk(sp2r, fprin) and Wk′(sp2s, fprin).

Let I be an ideal in the Shapovalov spectrum and let Wev,I(c, λ) be the corresponding
one-parameter vertex algebra. Let Ak be a simple one-parameter vertex algebra which is
isomorphic to the simple quotient Wev,I(c, λ)/I, via

(9.1) L 7→ L̃, W 4 7→ W̃ 4, c 7→ c(k), λ 7→ λ(k).

Here {L,W} and {L̃, W̃ 4} are the standard generators for Wev,I(c, λ) and Ak, respectively,
and k 7→ (c(k), λ(k)) is a rational parametrization of the curve V (I). Then all structure

constants in the OPEs W̃ 2i(z)W̃ 2j(w) are polynomials in c(k) and λ(k), where W̃ 2i =

W̃ 4
(1)W̃

2i−2 for i ≥ 3. It follows that Ak is well-defined and the isomorphism (9.1) holds

for all values of k except for the poles of c(k) and λ(k). This should be contrasted with
previous statements that required us to work over a localization R of C[c, λ]/I . The rea-
son we localized was to obtain a singular vector of the form W 2N+2 − P (L,W 4, . . . ,W 2N)

in Wev,I
R (c, λ), so that the simple quotient Wev,I

R (c, λ)/I truncates to an algebra of type
W(2, 4, . . . 2N). Here we prefer not to localize; in this case, Wev,I(c, λ)/I need not truncate
to W(2, 4, . . . , 2N) for any N , but we do not need to exclude any values of k except for the
poles of c(k) and λ(k).

For generic k, the examples Ak in this paper are either Wk(sp2n, fprin), Wk(so2n, fprin)
Z2 ,

or a coset of the form Com(V k(g), Ãk), for some vertex algebra Ãk. In order to apply
Corollary 8.2 to find coincidences between one-parameter quotients of Wev(c, λ), there
are a few subtleties that we need to mention.

(1) Even though Ak is well-defined for all k away from the poles of c(k) and λ(k), the
specialization of Ak at a value k = k0, can fail to coincide with the algebra of interest.
This subtlety does not occur in the case of the W-algebras or their orbifolds, but it
does occur for the examples arising as cosets. The structure of cosets of the form

Ak = Com(V k(g), Ãk) for simple g was studied in [CL3] in a general setting. The

specialization of Ak at k = k0 can be a proper subalgebra of Com(V k0(g), Ãk0), but
by Corollary 6.7 of [CL3], under mild hypotheses that are satisfied in our examples,
this can only occur for rational numbers k0 ≤ −h∨, where h∨ is the dual Coxeter
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number of g. By a slight abuse of notation, if Ak is a one-parameter vertex algebra

that generically coincides with Com(V k(g), Ãk), by Ak0 we mean the specialization
of Ak at the value k = k0, even if it is smaller than the actual coset. If Ak is a one-
parameter quotient of Wev,I(c, λ), Ak0 will then be a quotient of Wev,I(c, λ), even if
the actual coset at this point is not such a quotient.

(2) Even if k0 is a pole of c(k) or λ(k), the algebra Ak might still be well-defined at k =
k0. For example, Ak = Wk(sp2n, fprin) is defined for all k0 ∈ C. The corresponding
truncation curve V (In) has the rational parametrization given by (A.2). Then c(k)

has a pole at the critical level k0 = −(n + 1), and λ(k) has poles at k0 = −2n2 − 1

2n− 1
,

k0 = −(n + 1)(2n− 1)

2n
, as well as the roots of the polynomials gn(k) and hn(k) which

are quadratic in k. At these points, Wk0(sp2n, fprin) cannot be obtained as a quotient
of Wev(c, λ), even though it is a well-defined vertex algebra.

Suppose that Ak,Bℓ are one-parameter vertex algebras that arise as the simple quotients
of Wev,I(c, λ),Wev,J(c, λ), respectively, and we wish to classify the coincidences between
their simple quotients Ak0 and Bℓ0 at points k0, ℓ0. By Corollary 8.2, aside from the degen-
erate cases given by Theorem 8.1, the coincidences for which k0 and ℓ0 are not poles of
c(k), λ(k), and c(ℓ), λ(ℓ), respectively, correspond to the intersection points in V (I)∩V (J).
On the other hand, if k0 is a pole of c(k) or λ(k), and ℓ0 is a pole of c(ℓ) or λ(ℓ), but Ak0,Bℓ0

are still defined, Corollary 8.2 does not apply, and we need to address the question of
whether or not Ak0 and Bℓ0 are isomorphic on a case-by-case basis.

Theorem 9.1. For 3 ≤ n < m, aside from the critical levels ℓ = −(2n− 2) and ℓ′ = −(2m− 2),
and the degenerate cases given by Theorem 8.1, all isomorphismsWℓ(so2n, fprin)

Z2 ∼= Wℓ′(so2m, fprin)
Z2

appear on the following list.

ℓ = −(2n− 2) +
2n− 1

2(m+ n− 1)
, ℓ = −(2n− 2) +

2(m+ n− 1)

2n− 1
,

ℓ′ = −(2m− 2) +
2m− 1

2(m+ n− 1)
, ℓ′ = −(2m− 2) +

2(m+ n− 1)

2m− 1
.

(9.2)

Proof. First, we exclude the values of ℓ and ℓ′ which are poles of the functions λn(ℓ) and
λm(ℓ

′) given by (B.1), since at these values, Wℓ(so2n, fprin)
Z2 and Wℓ′(so2m, fprin)

Z2 are not
quotients of Wev(c, λ). For all other noncritical values of ℓ and ℓ′, Wℓ(so2n, fprin)

Z2 and
Wℓ′(so2m, fprin)

Z2 are obtained as quotients of Wev,Jn(c, λ) and Wev,Jm(c, λ), respectively.

By Corollary 8.2, aside from the degenerate cases given by Theorem 8.1, all other co-
incidences Wℓ(so2n, fprin)

Z2 ∼= Wℓ′(so2m, fprin)
Z2 correspond to intersection points on the

truncation curves V (Jn) and V (Jm). These ideals are described explicitly by (6.4), and
a calculation shows that V (Jn) ∩ V (Jm) consists of exactly three points (c, λ), namely,
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(−24,− 1
245

), (1
2
,− 2

49
), and (cn,m, λn,m), where

cn,m = −mn(3 − 4m− 4n+ 4mn)

m+ n− 1
,

λn,m = − (m+ n− 1)f(n,m)

7(m− 1)(n− 1)(4mn− 1)g(n,m)h(n,m)
,

g(n,m) = −10 + 19m− 12m2 + 19n− 6mn− 8m2n− 12n2 − 8mn2 + 8m2n2,

h(n,m) = 22− 22m− 22n+ 15mn− 20m2n− 20mn2 + 20m2n2,

f(n,m) = 28− 38m− 14m2 + 24m3 − 38n− 364mn+ 969m2n− 696m3n+ 144m4n

− 14n2 + 969mn2 − 1746m2n2 + 828m3n2 − 112m4n2 + 24n3 − 696mn3 + 828m2n3

− 32m3n3 − 64m4n3 + 144mn4 − 112m2n4 − 64m3n4 + 32m4n4.

.

(9.3)

The first two intersection points occur at degenerate values of c. By replacing the param-
eter c with the levels ℓ, ℓ′ using (6.1), we see that the third intersection point yields the
nontrivial isomorphisms in Theorem 9.1. Moreover, by Corollary 8.2, these are the only
such isomorphisms except possibly at the values of ℓ, ℓ′ excluded above.

Finally, suppose that ℓ is a pole of the function λn(ℓ) given by (B.1). It is not difficult to
check that the corresponding values of ℓ′ for which cn(ℓ) = cm(ℓ

′), are not poles of λm(ℓ
′).

It follows that there are no additional coincidences at the excluded points. �

Remark 9.2. This family of coincidences was previously stated for the coset model of these orb-
ifolds in [CGKV], Equations 4.11 and 4.12.

Theorem 9.3. For 2 ≤ n < m, aside from the critical levels ℓ = −(n + 1) and ℓ′ = −(m + 1),
and the degenerate cases given by Theorem 8.1, all isomorphisms

(9.4) Wℓ(sp2n, fprin) ∼= Wℓ′(sp2m, fprin),

appear on the following list.

(1) ℓ = −(n + 1) +
n

2(m+ n)
, ℓ′ = −(m+ 1) +

m

2(m+ n)
,

(2) ℓ = −(n + 1) +
1 +m+ n

1 + 2n
, ℓ′ = −(m+ 1) +

1 +m+ n

1 + 2m
,

(3) ℓ = −(n + 1) +
1− 2m+ 2n

2(−1− 2m+ 2n)
, ℓ′ = −(m+ 1) +

1− 2n+ 2m

2(−1− 2n + 2m)
,

(4) ℓ = −(n + 1) +
1 + 2m+ 2n

2(2n− 1)
, ℓ′ = −(m+ 1) +

1 + 2m+ 2n

2(2m− 1)
,

(5) ℓ = −(n + 1) +
1 + n

1 + 2m+ 2n
, ℓ′ = −(m+ 1) +

1 +m

1 + 2m+ 2n
.

Proof. First, we exclude the values of ℓ and ℓ′ which are poles of the functions λn(ℓ) and
λm(ℓ

′) given by (A.2). For all other noncritical values of ℓ and ℓ′, Wℓ(sp2n, fprin) and
Wℓ′(sp2m, fprin) are obtained as quotients of Wev,In(c, λ) and Wev,Im(c, λ), respectively.

By Corollary 8.2, aside from the degenerate cases given by Theorem 8.1, all other co-
incidences Wℓ(sp2n, fprin) ∼= Wℓ′(sp2m, fprin) correspond to intersection points on the trun-
cation curves V (In) and V (Im). These ideals are described explicitly by (A.1), and a cal-
culation shows that V (In) ∩ V (Im) consists of exactly eight points: (−24,− 1

245
), (1

2
,± 2

49
),
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which do not depend on n and m, and five nontrivial points (cin,m, λ
i
n,m), i = 1, . . . , 5,

which appear explicitly in Appendix C. The first three intersection points occur at degen-
erate values of c. Replacing c with ℓ, ℓ′ in the remaining intersection points using (5.1),
it follows from Corollary 8.2 that the above isomorphisms all hold, and that these are all
such isomorphisms except possibly at the points excluded above. Finally, one checks that
if ℓ is a pole of the function λn(ℓ) given by (A.2), the corresponding values of ℓ′ for which
cn(ℓ) = cm(ℓ

′), are not poles of λm(ℓ
′). It follows that there are no additional coincidences

at the excluded points. �

Theorem 9.4. For n ≥ 2 and m ≥ 3, aside from the critical levels ℓ = −(n + 1) and ℓ′ =
−(2m− 2), and the degenerate cases given by Theorem 8.1, all isomorphisms

Wℓ(sp2n, fprin) ∼= Wℓ′(so2m, fprin)
Z2 ,

appear on the following list.

(1) ℓ = −(n + 1) +
m+ n

2n
, ℓ′ = −(2m− 2) +

m

m+ n
, ℓ′ = −(2m− 2) +

m+ n

m
,

(2) ℓ = −(n+ 1) +
1 + 2n

2(2m+ 2n− 1)
, ℓ′ = −(2m− 2) +

2(m− 1)

2m+ 2n− 1
, ℓ′ = −(2m− 2) +

2m+ 2n− 1

2(m− 1)
,

(3) ℓ = −(n + 1) +
1−m+ n

1− 2m+ 2n
, ℓ′ = −(2m − 2) +

2m− 2n− 1

2(m− n− 1)
, ℓ′ = −(2m − 2) +

2(m− n− 1)

2m− 2n− 1
.

For the third family, we must have m 6= n+ 1.

Proof. As above, we first exclude the values of ℓ and ℓ′ which are poles of the functions
λn(ℓ) and λm(ℓ

′) given by (A.2) and (B.1), respectively. Aside from the degenerate cases
given by Theorem 8.1, all other coincidences Wℓ(sp2n, fprin) ∼= Wℓ′(so2m, fprin)

Z2 corre-
spond to intersection points on the truncation curves V (In) and V (Jm). We find that these
curves have exactly five intersection points (−24,− 1

245
), (1

2
,− 2

49
), (cin,m, λ

i
n,m), i = 1, 2, 3,

which appear explicitly in Appendix C. Replacing c by ℓ, ℓ′ using (5.1) and (6.1), shows
that the above isomorphisms all hold, and that these are all such isomorphisms except
possibly at the excluded values of ℓ, ℓ′. Finally, one checks as in the previous two theo-
rems that there are no additional isomorphisms at the excluded values. �

Remark 9.5. In the third family above, suppose that m = 2n+2+ r for some integer r satisfying
0 ≤ r ≤ m− 6. Then we get

Wℓ(sp2n, fprin) ∼= Wℓ′(so2m, fprin)
Z2 , ℓ = −(n+1)+

1 + n+ r

3 + 2n+ 2r
, ℓ′ = −(2m−2)+

1 +m+ r

m+ r
.

Since ℓ is a nondegenerate admissible level for sp2n, Wℓ(sp2n, fprin) is lisse and rational [A4,
A5]. Since Wℓ′(so2m, fprin) is a simple current extension of Wℓ′(so2m, fprin)

Z2 , it is also lisse and
rational despite the fact that ℓ′ is not an admissible level for so2m.

Similarly, in the third family above, suppose that n = 2m− 1 + r for some integer r satisfying
0 ≤ r ≤ n− 5. Then

Wℓ(sp2n, fprin) ∼= Wℓ′(so2m, fprin)
Z2 , ℓ = −(n+1)+

1 + n+ r

2n+ 2r
, ℓ′ = −(2m−2)+

2m+ 2r − 1

2m+ 2r
.
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Since ℓ′ is nondegenerate admissible for so2m, both Wℓ′(so2m, fprin) and its orbifold Wℓ′(so2m, fprin)
Z2

are lisse and rational. Therefore Wℓ(sp2n, fprin) is also lisse and rational, even though ℓ is not an
admissible level for sp2n.

Recall the one-parameter vertex algebra Fk(n) = Com(V k+1/2(sp2n−2),Wk(sp2n, fmin))
for n ≥ 2 appearing in Theorem 7.1, which by Conjecture 7.4 is obtained as the simple
quotient of Wev,Kn(c, λ) via the parametrization (7.2) of the curve V (Kn). Also, recall that
the specialization Fk0(n) of the one-parameter algebra Fk(n) at k = k0, can be a proper
subalgebra of Com(V k0+1/2(sp2n−2),Wk0(sp2n, fmin)), but this can only occur for rational
numbers k0 ≤ −n − 1

2
. By abuse of notation, we shall use the same notation Fk(n) if k

is regarded as a complex number rather than a formal parameter, so that Fk(n) always
denotes the specialization of the one-parameter algebra at k ∈ C, even if it is a proper
subalgebra of the coset. For all k ∈ C, we denote by Fk(n) the simple quotient of Fk(n).

Assuming Conjecture 7.4, aside from the critical values and the degenerate cases, we
can find all nontrivial isomorphisms Fk(n) ∼= Wℓ(sp2m, fprin) and Fk(n) ∼= Wℓ(so2m, fprin)

Z2

by finding the intersection points V (Kn) ∩ V (Im) and V (Kn) ∩ V (Jm).

Conjecture 9.6. For n ≥ 2 and m ≥ 2, aside from the critical values k = −(n+1), k = −n−1/2,
and ℓ = −(m + 1), and the degenerate cases given by Theorem 8.1, all isomorphisms Fk(n) ∼=
Wℓ(sp2m, fprin) appear in the following list.

(1) k =
1

2
(2m − 1), ℓ = −(m + 1) +

m+ n

1 + 2m+ 2n
. This is the family of rational vertex

algebras for all m,n appearing in Conjecture 7.3.

(2) k =
1

3
(m− 2n− 2), ℓ = −(m+ 1) +

1 +m+ n

2m+ 2n− 1
. These vertex algebras are rational

for all m,n.

(3) k = −2(1 +m)(1 + n)

3 + 2m
, ℓ = −(m+ 1) +

3 + 2m

2(1 + 2m− 2n)
,

(4) k = −2m+ 4mn− 1

2(2m− 1)
, ℓ = −(m+ 1) +

2m− 1

2(2m− 2n− 1)
,

(5) k = −2 + 2m+ n+ 2mn

2(1 +m)
, ℓ = −(m+ 1) +

1 +m− n

2(1 +m)
,

(6) k = −m− n+ 2mn− 2

2(m− 1)
, ℓ = −(m+ 1) +

m− n

2(m− 1)
.

Conjecture 9.7. For n ≥ 2 and m ≥ 3, aside from the critical values k = −(n+1), k = −n−1/2,
and ℓ = −(2m − 2), and the degenerate cases given by Theorem 8.1, all isomorphisms Fk(n) ∼=
Wℓ(so2m, fprin)

Z2 appear in the following list.

(1) k =
1

2
(m− n− 2), ℓ = −(2m − 2) +

m+ n− 1

m+ n
, ℓ = −(2m− 2) +

m+ n

m+ n− 1
.

These vertex algebras are rational whenever n ≥ m− 1.

(2) k = −1 + 4m+ 4mn

2(1 + 2m)
, ℓ = −(2m− 2) +

2(m− n)

1 + 2m
, ℓ = −(2m− 2) +

1 + 2m

2(m− n)
,

(3) k = −m− 2n+ 2mn− 2

2m− 3
, ℓ = −(2m − 2) +

2(m− n− 1)

2m− 3
, ℓ = −(2m − 2) +

2m− 3

2(m− n− 1)
.
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For the third family, we must have m 6= n+ 1.

Remark 9.8. In view of Theorem 7.5, these conjectures both hold in the case n = 2, for all m.

10. THE RELATIONSHIP BETWEEN W(c, λ) AND Wev(c, λ)

In the notation of [L1], the universal two-parameter vertex algebra W(c, λ) is freely
generated of type W(2, 3, . . . ), and has strong generators {L,W i| i ≥ 3}. Here W 3 is
primary of weight 3, W 3

(5)W
3 = c

3
, and W i = W 3

(1)W
i−1 for i ≥ 4. It has a Z2-action deter-

mined by L 7→ L and W 3 7→ −W 3. It is natural to ask whether there is a homomorphism
Wev(c, λ) → W(c, λ)Z2 . However, it is easy to see that this is false. First, W(c, λ) has a
unique up to scalar primary weight 4 field

W̃ 4 = W 4 − 32

22 + 5c
: LL : − 3(c− 2)

2(22 + 5c)
∂2L.

Then W̃ 4 lies in W(c, λ)Z2 , and we consider the subalgebra of W(c, λ)Z2 generated by L

and W̃ 4. It is straightforward to verify that this subalgebra has 8-dimensional weight 6
subspace, with basis

: LLL :, : W 3W 3 :, : LW 4 :, : (∂2L)L :, : (∂L)2 :, W 6, ∂2W 4, ∂4L.

One the other hand, the weight 6 subspace of Wev(c, λ) is only 7-dimensional, with basis

: LLL :, : LW 4 :, : (∂2L)L :, : (∂L)2 :, W 6, ∂2W 4, ∂4L.

Instead, one can ask the following more refined question. Given a prime ideal I ⊆
C[c, λ] and a localization R of C[c, λ]/I , consider the quotient Wev,I

R (c, λ)/I by the maxi-
mal graded idea I, which is a one-parameter vertex algebra. Can we find another ideal

I ′ ⊆ C[c, λ] and a localization R′ of C[c, λ]/I ′, such that Wev,I
R (c, λ)/I is isomorphic to the

Z2-orbifold of WI′

R′(c, λ)/I ′, as a one-parameter vertex algebra? For this to happen, we
must have a singular vector in weight 6 in W(c, λ)Z2 , when c is a free parameter. One
can check by computer that there are exactly four truncation curves where this occurs,
which correspond to the algebras Wk(sln, fprin) for n = 3, 4, 5, and the parafermion al-
gebra Nk(sl2) = Com(H, V k(sl2)). For all n ≥ 3, it can be verified using the explicit
realization of Wk(sln, fprin) as a quotient of W(c, λ) that Wk(sln, fprin)

Z2 does not arise as a
quotient of Wev(c, λ), as a one-parameter vertex algebra. Therefore the only possible ex-
ample of such a one-parameter vertex algebra is Nk(sl2)

Z2 . We now show that it is indeed
such an example.

Recall that Nk(sl2) has central charge c =
2(k − 1)

k + 2
and is of type W(2, 3, 4, 5) for all

k 6= 0 [DLY]. By Theorem 7.1 of [L1], Nk(sl2) can be obtained from W(c, λ) as follows. Let
I ⊆ C[c, λ] be the ideal generated by

4λ(c+ 7)(2c− 1) + (c− 2)(c+ 4),

let D be the multiplicative set generated by (c+ 7) and (2c− 1), and let

R = D−1
C[c, λ]/I ∼= D−1

C[c].
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Then Nk(sl2) ∼= WI
R(c, λ)/I, where I is the maximal proper graded ideal of WI

R(c, λ). In
particular, Nk(sl2) is obtained from W(c, λ) by setting

(10.1) c =
2(k − 1)

k + 2
, λ =

k + 1

(k − 2)(3k + 4)
,

and then taking the simple quotient. Note that the specialization Nk0(sl2) of the one-
parameter vertex algebra Nk(sl2) at a value k = k0 coincides with Com(H, V k0(sl2)) for
all k0 6= 0. At k0 = 0, Com(H, V 0(sl2)) has an extra field in weight 1, so the specialization
N0(sl2) is a quotient of WI(c, λ) even though the actual coset Com(H, V 0(sl2)) is not.

The action of Z2 on Nk(sl2) is inherited from the above action of Z2 on W(c, λ). The
orbifold Nk(sl2)

Z2 has recently been studied by Jiang and Wang [JW], and they have clas-
sified the irreducible, positive-energy modules for the simple quotient Nk(sl2)

Z2 , for k a
positive integer.

It can be shown by a computer calculation that as a one-parameter vertex algebra,
Nk(sl2)

Z2 is of type W(2, 4, 6, 8, 10) and is generated by the weight 4 field. In addition,
there are no normally ordered relations among these generators in weight below 16, so it

follows from Theorem 3.10 that Nk(sl2)
Z2 is the simple quotient of Wev,I′

R′ (c, λ) for some I ′

and R′. The following is straightforward to verify by computer.

Theorem 10.1. The ideal I ′ is generated by

(10.2) 7λ(c− 1)(22 + 5c)(16− c+ c2) + 64 + 6c− 45c2 − 5c3.

In particular, Nk(sl2)
Z2 can be obtained from Wev(c, λ) by setting

(10.3) c =
2(k − 1)

k + 2
, λ =

(2 + k)(−4 − 33k − 15k2 + 4k3)

7(k − 4)(17 + 16k)(4 + 3k + k2)
,

and then taking the simple quotient.

By combining Theorems 6.3 and 10.1, we can find the coincidences among the simple
quotients Nk(sl2)

Z2 and Wℓ(so2n, fprin)
Z2 for n ≥ 3 by finding the intersection points of

their truncation curves V (I ′) and V (Jn). The complete list of intersection points is the
following.

(1)
(

− 24,− 1

245

)

,

(2)
(4n− 1

2n+ 1
,
(1 + 2n)(−1 − 33n− 60n2 + 64n3)

14(n− 1)(17 + 64n)(1 + 3n+ 4n2)

)

,

(3)
(

2− 3n, − −16 + 78n− 75n2 + 15n3

7(3n− 1)(15n− 32)(2− n+ n2)

)

,

(4)
(

− 2n

2n− 3
,

(2n− 3)(−48 + 93n− 45n2 + 4n3)

7(4n− 3)(17n− 33)(8− 11n+ 4n2)

)

.

Corollary 10.2. For n ≥ 3, aside from the critical levels k = −2 and ℓ = −(2n − 2), and the
degenerate cases given by Theorem 8.1, all isomorphisms Nk(sl2)

Z2 ∼= Wℓ(so2n, fprin)
Z2 , appear

on the following list.

(1) k = 4n, ℓ = −(2n− 2) +
2n

2n+ 1
, ℓ = −(2n− 2) +

2n+ 1

2n
,
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(2) k = −2(n− 1)

n
, ℓ = −(2n− 2) +

n− 1

n
, ℓ = −(2n− 2) +

n

n− 1
,

(3) k =
1

1− n
, ℓ = −(2n− 2) +

2n− 3

2n− 2
, ℓ = −(2n− 2) +

2n− 2

2n− 3
.

The proof that this list is complete is similar to the proofs of Theorems 9.1 and 9.3, and is
omitted. Similarly, we can find the coincidences between Nk(sl2)

Z2 and Wℓ(sp2n, fprin) for
n ≥ 2 by finding the intersection of their truncation curves V (I ′) and V (In). The complete
list of intersection points is the following.

(1)
(

− 24,− 1

245

)

,
(1

2
,
2

49

)

,

(2)
(

− 1− 6n, − 1− 27n− 60n2 + 60n3

14(1 + 3n)(30n− 17)(1 + n+ 2n2)

)

,

(3)
(

− 2 + n

n− 1
,

(n− 1)(16 + 30n− 33n2 + 2n3)

7(1 + 2n)(17n− 32)(2− 3n+ 2n2)

)

,

(4)
(

− 2n, − 16− 3n− 45n2 + 10n3

7(1 + 2n)(5n− 11)(8 + n+ 2n2)

)

,

(5)
( 4n

3 + 2n
,
(3 + 2n)(−24− 51n− 6n2 + 16n3)

7(2n− 3)(33 + 32n)(4 + 5n+ 2n2)

)

.

Corollary 10.3. For n ≥ 2, aside from the critical levels k = −2 and ℓ = −(n + 1), and the
degenerate cases given by Theorem 8.1, all isomorphisms Nk(sl2)

Z2 ∼= Wℓ(sp2n, fprin), appear on
the following list.

(1) k = − 4n

1 + 2n
, ℓ = −(n+ 1) +

n

1 + 2n
,

(2) k = −2

n
, ℓ = −(n + 1) +

n

2(n− 1)
,

(3) k = −2n− 1

1 + n
, ℓ = −(n + 1) +

1 + n

2n− 1
,

(4) k =
4n

3 + 2n
, ℓ = −(n + 1) +

3 + 2n

2(1 + 2n)
.

Type A orbifolds and even spin algebras. Even though Wk(sln, fprin)
Z2 does not arise as

a quotient of Wev(c, λ) as a one-parameter vertex algebra, there are certain special values
of k where the simple orbifold Wk(sln, fprin)

Z2 does indeed arise as a quotient of Wev(c, λ).
For example, the first family in Corollary 10.2 has this property since

N4n(sl2) ∼= Wk(sl4n, fprin), k = −4n +
1 + 4n

2 + 4n
,

by Theorem 6.1 of [ALY]. Similarly, the second family in Corollary 10.2 also has this
property for n ≥ 4, since

N−2(n−1)/n(sl2) ∼= Wk(sln−1, fprin), k = −(n− 1) +
n− 2

n
,

by Theorem 10.6 of [L1]. Finally, the family in Corollary 10.3 has this property since

N−4n/(1+2n)(sl2) ∼= Wk(sl2n, fprin), k = −2n +
2n− 1

2n+ 1
,
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by Theorem 10.6 of [L1].

Corollary 10.4. For n ≥ 3, we have isomorphisms of simple vertex algebras

Wk(sl4n, fprin)
Z2 ∼= N4n(sl2)

Z2 ∼= Wℓ(so2n, fprin)
Z2 ,

k = −4n +
1 + 4n

2 + 4n
, ℓ = −(2n− 2) +

2n

2n + 1
.

For n ≥ 4, we have isomorphisms of simple vertex algebras

Wk(sln−1, fprin)
Z2 ∼= N−2(n−1)/n(sl2)

Z2 ∼= Wℓ(so2n, fprin)
Z2 ,

k = −(n− 1) +
n− 2

n
, ℓ = −(2n− 2) +

n− 1

n
.

For n ≥ 2, we have isomorphisms of simple vertex algebras

Wk(sl2n, fprin)
Z2 ∼= N−4n/(1+2n)(sl2)

Z2 ∼= Wℓ(sp2n, fprin),

k = −2n+
2n− 1

2n+ 1
, ℓ = −(n + 1) +

n

1 + 2n
.

APPENDIX A. THE GENERATOR OF THE IDEAL In AND RATIONAL PARAMETRIZATION OF

V (In)

The explicit generator pn for the ideal In ⊆ C[c, λ] which gives rise to the type B and C
principal W-algebras as quotients of Wev(c, λ), is given by

pn = f(c, n) + λg(c, n) + λ2h(c, n),

f(c, n) = −204c2 − 192c3 + 171c4 + 952cn− 4612c2n + 2348c3n− 38c4n + 1568n2 − 7708cn2

+ 1788c2n2 + 2401c3n2 − 74c4n2 + 560n3 − 18936cn3 + 22280c2n3 − 2112c3n3 + 8c4n3

− 16304n4 + 18640cn4 + 3420c2n4 − 364c3n4 + 8c4n4 − 17408n5 + 27680cn5 − 10576c2n5

+ 304c3n5 − 3264n6 − 3072cn6 + 2736c2n6,

g(c, n) = −14(c− 1)(2c− 1)(22 + 5c)(n− 2)(n− 1)(3c+ 10n+ 2cn+ 12n2)

(5c+ 28n+ 2cn+ 40n2),

h(c, n) = 49(c− 1)2(22 + 5c)2(21c2 + 70cn− 14c2n + 200n2 − 135cn2 − 26c2n2 + 380n3

− 176cn3 + 8c2n3 + 436n4 + 132cn4 + 8c2n4 + 448n5 + 112cn5 + 336n6).

(A.1)

The variety V (In) ⊆ C2 is a rational curve that admits the following two rational
parametrizations with parameter k.
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cn(k) = −n(k + 2n+ 2kn + 2n2)(−3− 2k + 4kn+ 4n2)

1 + k + n
,

λn(k) = − (1 + k + n)fn(k)

7(1 + 2n)(−1− k + 2kn+ 2n2)(−1 + n+ 2kn+ 2n2)gn(k)hn(k)
,

gn(k) = −10 − 21k − 14k2 − 23n− 32kn− 16n2 + 8kn2 + 8k2n2 + 8n3 + 16kn3 + 8n4,

hn(k) = −22 − 22k − 22n− 15kn− 10k2n− 30n2 − 50kn2 − 30n3 + 40kn3 + 40k2n3

+ 40n4 + 80kn4 + 40n5,

fn(k) = −28 − 130k − 170k2 − 68k3 − 222n− 532kn− 161k2n + 228k3n+ 76k4n− 186n2

+ 687kn2 + 1892k2n2 + 908k3n2 + 730n3 + 2780kn3 + 1508k2n3 − 800k3n3 − 320k4n3

+ 1106n4 + 536kn4 − 2520k2n4 − 1360k3n4 − 136n5 − 2608kn5 − 2064k2n5 + 128k3n5

+ 64k4n5 − 888n6 − 1328kn6 + 384k2n6 + 256k3n6 − 304n7 + 384kn7 + 384k2n7

+ 128n8 + 256kn8 + 64n9.

(A.2)

cn(k) = −n(−3 + 2k + 2kn+ 4n2)(k − 2n + 2kn+ 4n2)

k + 2n− 1
,

λn(k) = − (k + 2n− 1)fn(k)

7(1 + 2n)(−1 + k + kn+ 2n2)(1− 4n+ 2kn+ 4n2)gn(k)hn(k)
,

gn(k)− 20 + 19k − 6k2 + 46n− 36kn+ 4k2n− 32n2 + 4k2n2 − 16n3 + 16kn3 + 16n4,

hn(k) = 22− 22k − 44n− 15kn+ 10k2n + 30n2 − 50kn2 + 30k2n2 − 60n3 + 40kn3 + 20k2n3

− 40n4 + 80kn4 + 80n5,

fn(k) = 56− 66k − 2k2 + 12k3 − 500n+ 1080kn− 941k2n+ 348k3n− 36k4n+ 760n2

− 792kn2 − 322k2n2 + 514k3n2 − 100k4n2 + 1476n3 − 4024kn3 + 2948k2n3 − 480k3n3

− 40k4n3 − 3656n4 + 3672kn4 + 240k2n4 − 600k3n4 + 40k4n4 + 496n5 + 3008kn5

− 2256k2n5 + 192k3n5 + 16k4n5 + 2816n6 − 3104kn6 + 192k2n6 + 128k3n6 − 1344n7

− 256kn7 + 384k2n7 − 384n8 + 512kn8 + 256n9.

(A.3)

The parametrization (A.2) gives rise to the type C algebra Wk(sp2n, fprin) at level k, and
the parametrization (A.3) gives rise to the type B algebra Wk(so2n+1, fprin) at level k.

APPENDIX B. RATIONAL PARAMETRIZATION OF V (Jn)

The explicit generator qn for the ideal Jn ⊆ C[c, λ] which gives rise Wℓ(so2n, fprin)
Z2 as

a quotient of Wev(c, λ), is given by (6.4). The variety V (Jn) admits the following rational
parametrization with parameter ℓ:
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cn(ℓ) = −n(5 − 10n+ 4n2 − 2ℓ+ 2nℓ)(4− 8n+ 4n2 − ℓ+ 2nℓ)

ℓ+ 2n− 2
,

λn(ℓ) = − (2n+ ℓ− 2)fn(ℓ)

7(n− 1)(1− 6n+ 4n2 + 2nℓ)(2− 8n+ 4n2 − ℓ+ 2nℓ)gn(ℓ)hn(ℓ)
,

gn(ℓ) = −40 + 22n+ 60n2 − 64n3 + 16n4 + 29ℓ− 40n2ℓ+ 16n3ℓ− 6ℓ2 − 4nℓ2 + 4n2ℓ2,

hn(ℓ) = 44 + 56n− 400n2 + 580n3 − 360n4 + 80n5 − 22ℓ− 65nℓ+ 220n2ℓ− 240n3ℓ

+ 80n4ℓ + 10nℓ2 − 30n2ℓ2 + 20n3ℓ2,

fn(ℓ) = −352 + 1608n+ 1200n2 − 11792n3 + 15800n4 − 3904n5 − 7296n6 + 6656n7

− 2176n8 + 256n9 + 388ℓ− 992nℓ− 5486n2ℓ+ 17312n3ℓ− 13688n4ℓ− 2368n5ℓ

+ 7936n6ℓ− 3584n7ℓ + 512n8ℓ− 130ℓ2 − 221nℓ2 + 4352n2ℓ2 − 7772n3ℓ2 + 2640n4ℓ2

+ 2784n5ℓ2 − 2112n6ℓ2 + 384n7ℓ2 + 12ℓ3 + 228nℓ3 − 1186n2ℓ3 + 1200n3ℓ3 + 160n4ℓ3

− 512n5ℓ3 + 128n6ℓ3 − 36nℓ4 + 100n2ℓ4 − 40n3ℓ4 − 40n4ℓ4 + 16n5ℓ4.

(B.1)

APPENDIX C. INTERSECTION POINTS

Recall that the truncation curves V (In) and V (Im) intersect at exactly eight points. Three
of these points (−24,− 1

245
) and (1

2
,± 2

49
) do not depend on n and m, and the remaining five

points (cin,m, λ
i
n,m), i = 1, . . . , 5, are as follows.

c1n,m = −(2m+ n+ 2mn)(m+ 2n+ 2mn)

m+ n
,

λ1
n,m = − (m+ n)f(n,m)

7(1 + 2m)(1 + 2n)(m+ n +mn)g(n,m)h(n,m)
,

g(n,m) = −6m2 − 5mn+ 4m2n− 6n2 + 4mn2 + 4m2n2,

h(n,m) = −22m+ 10m2 − 22n+ 25mn+ 30m2n + 10n2 + 30mn2 + 20m2n2,

f(n,m) = 12m3 − 36m4 + 70m2n+ 60m3n− 100m4n+ 70mn2 + 211m2n2 + 2m3n2 − 40m4n2

+ 12n3 + 60mn3 + 2m2n3 + 40m4n3 − 36n4 − 100mn4 − 40m2n4 + 40m3n4 + 16m4n4.

(C.1)
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c2n,m = −mn(4mn − 2m− 2n− 3)

1 +m+ n
,

λ2
n,m = − (1 +m+ n)f(n,m)

7(2mn−m− 1)(2mn− n− 1)g(n,m)h(n,m)
,

g(n,m) = −10− 21m− 14m2 − 21n− 18mn− 14n2 + 8m2n2,

h(n,m) = −22− 22m− 22n− 15mn− 10m2n− 10mn2 + 20m2n2,

f(n,m) = −28− 130m− 170m2 − 68m3 − 130n− 372mn− 93m2n+ 228m3n + 76m4n

− 170n2 − 93mn2 + 610m2n2 + 300m3n2 − 152m4n2 − 68n3 + 228mn3 + 300m2n3

− 192m3n3 − 16m4n3 + 76mn4 − 152m2n4 − 16m3n4 + 32m4n4.

(C.2)

c3n,m = − 4mn(3 + 2m+ 2n)

(2m− 2n− 1)(1 + 2m− 2n)
,

λ3
n,m = − (2m− 2n− 1)(1 + 2m− 2n)f(n,m)

7(1 + 2m)(1 + 2n)(2m+ 2n− 1)g(n,m)h(n,m)
,

g(n,m) = (5−m+ 6m2 − n− 16mn + 6n2),

h(n,m) = (11− 44m2 + 118mn+ 20m2n− 44n2 + 20mn2),

f(n,m) = −7 + 23m+ 34m2 − 92m3 − 24m4 + 23n+ 108mn+ 142m2n− 168m3n + 72m4n

+ 34n2 + 142mn2 + 344m2n2 − 88m3n2 − 92n3 − 168mn3 − 88m2n3 − 24n4 + 72mn4.

(C.3)

c4n,m = −2mn(3 + 2m+ 2n+ 4mn)

1 + 2m+ 2n
,

λ4
n,m = − (1 + 2m+ 2n)f(n,m)

7(1 + 2m)(1 + 2n)(1 + 2mn)g(n,m)h(n,m)
,

g(n,m) = (−10− 21m− 14m2 + 2n− 10mn− 12n2 + 8mn2 + 8m2n2),

h(n,m) = (−11− 22m− 22n+ 15mn+ 10m2n + 10mn2 + 20m2n2),

f(n,m) = (−14− 79m− 136m2 − 68m3 + 18n− 36mn− 179m2n− 228m3n− 76m4n

+ 104n2 + 274mn2 + 228m2n2 − 4m3n2 − 152m4n2 + 24n3 + 264mn3 + 260m2n3

− 96m3n3 + 16m4n3 − 72mn4 − 128m2n4 + 48m3n4 + 32m4n4).

(C.4)

45



c5n,m = −2mn(3 + 2m+ 2n+ 4mn)

1 + 2m+ 2n
,

λ5
n,m = − (1 + 2m+ 2n)f(n,m)

7(1 + 2m)(1 + 2n)(1 + 2mn)g(n,m)h(n,m)
,

g(n,m) = (−10 + 2m− 12m2 − 21n− 10mn + 8m2n− 14n2 + 8m2n2),

h(n,m) = (−11− 22m− 22n+ 15mn+ 10m2n+ 10mn2 + 20m2n2),

f(n,m) = (−14 + 18m+ 104m2 + 24m3 − 79n− 36mn+ 274m2n + 264m3n− 72m4n

− 136n2 − 179mn2 + 228m2n2 + 260m3n2 − 128m4n2 − 68n3 − 228mn3

− 4m2n3 − 96m3n3 + 48m4n3 − 76mn4 − 152m2n4 + 16m3n4 + 32m4n4).

(C.5)

Finally, recall that the truncation curves V (In) and V (Jm) intersect at two points (−24,− 1
245

)

and (1
2
,− 2
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) that do not depend on n and m, and three additional points (cin,m, λ

i
n,m),

i = 1, 2, 3, which are as follows.

c1n,m = −(2mn−m− 2n)(m− n+ 2mn)

m+ n
,

λ1
n,m = − (m+ n)f(n,m)

7(m− 1)(1 + 2n)(2mn−m− n)g(n,m)h(n,m)
,

g(n,m) = (−7m2 − 7mn− 6n2 − 4mn2 + 4m2n2),

h(n,m) = (−22m− 5m2 − 22n− 5mn+ 10n2 − 30mn2 + 20m2n2),

f(n,m) = (−34m3 + 19m4 − 68m2n + 38m3n− 22mn2 − 185m2n2 + 302m3n2 − 80m4n2

+ 12n3 − 204mn3 + 302m2n3 − 80m3n3 − 36n4 + 100mn4 − 40m2n4 − 40m3n4 + 16m4n4).

(C.6)

c2n,m = −2mn(4m− 2n+ 4mn− 3)

2m+ 2n− 1
,

λ2
n,m = − (2m+ 2n− 1)f(n,m)

7(2m+ 2mn− 1)(1− 2n+ 4mn)g(n,m)h(n,m)
,

g(n,m) = −10 + 19m− 12m2 + 2n− 22mn+ 8m2n− 12n2 − 8mn2 + 8m2n2,

h(n,m) = 11− 22m− 22n− 15mn+ 20m2n− 10mn2 + 20m2n2,

f(n,m) = 14− 33m− 2m2 + 24m3 − 74n+ 404mn− 873m2n + 696m3n− 144m4n+ 80n2

− 178mn2 − 260m2n2 + 452m3n2 − 112m4n2 + 24n3 − 264mn3 + 348m2n3 − 256m3n3

+ 64m4n3 + 72mn4 − 128m2n4 − 48m3n4 + 32m4n4.

(C.7)
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c3n,m = − mn(4m− 2n− 3)

(2m− 2n− 1)(m− n− 1)
,

λ3
n,m = − (2m− 2n− 1)(m− n− 1)f(n,m)

7(m− 1)(2m− n− 1)(1 + 2n)g(n,m)h(n,m)
,

g(n,m) = 10− 19m+ 12m2 + 21n− 28mn + 14n2,

h(n,m) = −22 + 66m− 44m2 − 66n+ 73mn+ 20m2n− 44n2 − 10mn2,

f(n,m) = 28− 94m+ 62m2 + 52m3 − 48m4 + 186n− 668mn+ 857m2n− 504m3n

+ 144m4n+ 430n2 − 1267mn2 + 1198m2n2 − 376m3n2 + 408n3 − 772mn3 + 304m2n3

+ 136n4 − 76mn4.

(C.8)
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[PR] T. Procházka and M. Rapčák, Webs of W-algebras, J. High Energy Phys. 2018, no. 11, 109, front

matter+87 pp.
[T] K. Thielemans, A Mathematica package for computing operator product expansions, Int. Jour. Mod. Phys.

C2 (1991) p.787.
[We] H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton University Press, 1946.
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