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Abstract

The color memory effect is the non-abelian gauge theory analog of the gravitational

memory effect, in which the passage of color radiation induces a net relative SU(3) color

rotation of a pair of nearby quarks. It is proposed that this effect can be measured in

the Regge limit of deeply inelastic scattering at electron-ion colliders.
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1 Introduction

The passage of a gravitational wave causes the separation distance between a pair of inertial

test bodies to oscillate. After the wave has fully passed, the oscillations cease but the final

separation between the two bodies differs from the initial one. This is the gravitational

memory effect [1–3]. The universal formula for the DC separation shift has recently been

shown [4] to be fully equivalent to Weinberg’s soft graviton theorem [5], and also to be a

direct consequence of the infinite-dimensional asymptotic BMS symmetry [6, 7] of general

relativity. As such the memory effect measures subtle and rich features of general relativity

in the deep infrared.

The oscillations of test bodies caused by gravitational waves have been definitively measured

by LIGO [8]. It is hoped that the memory effect will soon be measured [9]. An obstacle

to measuring the memory effect is that the LIGO test-body-mirrors are on pendula which

eventually swing them back to their initial position, obscuring the DC memory effect. Obser-

vation is nevertheless expected to be possible because of a separation of scales: the timescale

of the pendula is longer than that of typical gravity wave signals, albeit not by terribly

much.1

Fully analogous memory effects also occur in QED and Yang-Mills theory, where they enjoy

1The timescale of the LIGO pendula is about 100 msec, while most of the power output (which sources

the memory) from GW150914 occurs over the slightly shorter scale 25 msec. eLISA should be excellent for

measuring memory.
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the same triangular equivalence to soft theorems and asymptotic symmetries. In classical

Yang-Mills theory, a pulse of color radiation incident on an initially color singlet pair of

nearby test quarks or ‘quark dipole’ causes oscillations in the relative quark color. After the

radiation pulse passes, a permanent relative color rotation remains and the quark dipole is

no longer a color singlet. This is the ‘color memory’ effect. In exact analogy to the gravity

case, the universal formula for the color rotation has been shown [10] to be fully equivalent

to the soft gluon theorem [11], and also to be a direct consequence of recently discovered

asymptotic Kac-Moody symmetries [12] of classical Yang-Mills theory.

One might expect that in QCD, which is based on SU(3) Yang-Mills theory, confinement

would obstruct any measurement of the color memory effect. However, confinement may be

viewed as an analog of the restoring pendula at LIGO: one must find a situation in which

a separation of scales allows the color rotation to be measured before confinement sets in.

In this paper we will argue that high-energy scattering of heavy ions and electrons provides

such a venue, in which the separation of scales arises when the Lorentz-contracted ion radius

is small compared to the QCD length.

We consider deeply inelastic electron–heavy ion scattering in the Regge limit, where the

momentum exchange is small compared to the center-of-mass energy. The physical picture

of the process begins with the electron emitting a virtual photon which splits into a quark-

antiquark pair forming a color singlet dipole. The quark dipole then traverses the ion and

acquires net color. There is considerable experimental and theoretical evidence that this

portion of the scattering process is well-approximated by the Color Glass Condensate (CGC)

effective field theory [13–16], in which the region around the ion is described by classical

Yang-Mills theory (corrected by running of the coupling) sourced by the hard partons inside

the ion. In this picture the quark dipole plays the role of the test quarks and crosses the

highly relativistic Lorentz-contracted ion in a retarded time short compared to the QCD

scale. The change in the quark dipole color charge as it crosses the CGC region surrounding

the ion is fully determined by the color memory effect. The cross-section for this stage in

the scattering process is determined by the “survival probability” for the dipole to remain in

a color singlet. Hence it is determined by the color memory effect.

As discussed herein, collider data to date are encouraging but do not decisively confirm this

picture [17–31]. Prospects for decisive confirmation of the color memory effect at a proposed

future Electron-Ion Collider are excellent.
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The paper is organized as follows. In section 2, we review relevant aspects of the classical

color memory effect presented in [10]. We start by reviewing the differential equation for the

gauge transformation relating physically inequivalent vacua and then recall how this gauge

transformation determines the classical relative color rotation of colored ‘test’ quarks. In

section 3, we describe how a classical color memory effect arises in the CGC effective field

theory. We show that the same differential equation for a gauge transformation naturally

emerges in the CGC framework and clarify why it may be regarded as a vacuum transition.

In section 4, we consider scattering processes in which the CGC theory is expected to apply

and explain how the associated observables depend on the color memory effect. The extent

to which the effect may have already been measured and the prospects for definitive future

confirmation are discussed.

2 Color memory review

In this section we review the color memory effect in the form derived in [10]. We work in

retarded coordinates (u, r, z, z̄) in which the Minkowski metric reads

ds2 = −dt2 + (dx1)2 + (dx2)2 + (dx3)2

= −du2 − 2dudr + 2r2γzz̄dzdz̄, γzz̄ =
2

(1 + zz̄)2
. (2.1)

The retarded coordinates are related to the Cartesian coordinates (t, x1, x2, x3) by

t = u+ r, (x1, x2, x3) = r

(

z + z̄

1 + zz̄
,
−i(z − z̄)

1 + zz̄
,
1− zz̄

1 + zz̄

)

,

(x1)2 + (x2)2 + (x3)2 = r2.

(2.2)

Future null infinity, denoted I+, is approached by taking the limit of r → ∞ for fixed u. In

this limit, (z, z̄) become stereographic coordinates on the ‘celestial sphere’ at I+.

Consider a pair of classical (unconfined) test ‘quarks’ at I+ subject to an SU(3) Yang-Mills

field with non-abelian field strength Fµν = F a
µνT

a and gauge potential Aµ = Aa
µT

a, where

T a are the generators of the gauge group SU(3) in the triplet representation. The color of a

quark q moving along a trajectory with tangent vector uµ evolves according to

uµ(∇µq − igYMAµq) = 0, (2.3)
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where gYM is the coupling. Aµ obeys the Yang-Mills equation sourced by a matter current

jMµ

∇νFνµ − igYM[A
ν , Fνµ] = jMµ . (2.4)

Under the passage of a finite-duration color radiation flux through I+, the pair of quarks will

acquire a relative color rotation given by the solution to (2.3). To describe this explicitly,

it is convenient to work in temporal gauge, Au = 0, and assume that before some initial

retarded time ui, the pair of quarks is in the vacuum characterized by the flat connection

Az(ui, r, z, z̄)|I+ = 0. During a finite interval ui < u < uf , color flux passes through I+,

after which the system returns to vacuum and the gauge connection on the celestial sphere

is again flat, but not vanishing. Given our Az = 0 starting configuration, the change in the

gauge connection over an interval ui < u < uf is just the flat connection at the final time

Az(uf , r, z, z̄)|I+ = 1
gYM

i U∂zU
†|uf

. Solving (2.4) in a large-r expansion, this is given by the

solution to the non-linear differential equation on the sphere

−∆
(

Dz̄A
(0)
z +DzA

(0)
z̄

)

= γzz̄

(
∫ uf

ui

duJ (2)
u +∆F (2)

ru

)

, (2.5)

where ∆A denotes the change in flat connections between ui and uf . Here

Ju = igYM
γzz̄

r2
([Az, Fz̄u] + [Az̄, Fzu]) + jMu , (2.6)

for any field O(r, u, z, z̄) we define O(n)(u, z, z̄) as the coefficient of the r−n term in its large-r

expansion about I+, and Dz is the covariant derivative with respect to γzz̄. (2.5) was solved

perturbatively in a weak-field expansion in [10].

Consider a pair of quarks, initially coincident at point (z1, z̄1) on the celestial sphere in a color

singlet. Then at or before u = ui we separate one of the quarks to (z2, z̄2), which involves no

color rotation because we are taking the initial connection to vanish. They then evolve with

no color rotation (because Au = 0) from ui to uf along I+ fixed at their respective points on

the sphere and are recombined at time uf back at (z1, z̄1). Since according to (2.5) the final

connection is flat but nonvanishing, the recombined quarks are no longer in a color singlet.

Rather they acquire the relative color rotation

U(z1, z̄1)U
†(z2, z̄2) = U(z1, z̄1; z2, z̄2) = P exp

(

igYM

∫ (uf ,z1,z̄1)

(uf ,z2,z̄2)

A

)

, (2.7)

where P denotes path ordering, and there is no dependence on the path taken between the

endpoints. This is the color memory effect. The relative color rotation of the recombined
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quarks measures the change in the flat gauge connection between ui and uf , which can be

interpreted as a transition between the vacua at ui and uf [12, 32]. The formula is easily

generalized (by conjugation) to the case of a flat but nonzero initial connection.

This analysis pertains directly to an initially color singlet ‘quark dipole’, where (z1, z̄1) and

(z2, z̄2) would be the locations of the two ends of the dipole and (2.7) measures the amount

by which the quark dipole fails to remain in a color singlet configuration.

While the expression for this phase was obtained in a particular gauge in which the initial

connection was flat and Au = 0, we readily obtain a gauge covariant expression for the net

color rotation, whose trace is given by

WC =
1

Nc
Tr P exp

(

igYM

∮

C

A

)

, (2.8)

where Tr(T aT b) = δab, Nc = 3, and C is the closed contour on I+ circling around the loop

defined by the separated quark worldlines.

3 Color memory in the CGC

Remarkably, the conditions necessary for the color memory effect arise naturally in the

description of high-energy scattering in the Regge limit of QCD. The Regge limit, which

entails taking the center-of-mass energy
√
s → ∞ at fixed (large) squared momentum transfer

−t = Q2 ≫ Λ2
QCD, is both accessible and routinely achieved at colliders. Rephrasing the

Regge limit in deeply inelastic scattering as taking Bjorken xBj ∼ Q2/s → 0 at fixed large

Q2 elucidates the physical regime probed in this limit as that of configurations in hadrons

containing large numbers of partons, primarily gluons, each carrying a small fraction x

(≈ xBj) of the hadron’s momentum.2

Broadly speaking, the physical picture that emerges resembles that of the color memory

effect. The relevant degrees of freedom are the ‘soft’ small-x gluons (or wee gluons) radiated

by faster, localized partons at larger x. Moreover, since Q2 ≫ Λ2
QCD, the dynamics of

2In deeply inelastic scattering, a lepton probes a hadron of momentum P by exchanging a photon of

momentum q. Bjorken xBj is defined by xBj ≡ − q2

2P ·q
, where q2 = Q2 is the squared four-momentum

transferred. xBj is fixed by kinematics to coincide with the longitudinal momentum fraction x =
p+

P+ carried

by the struck parton.
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the wee gluons is weakly coupled and deconfined, albeit strongly correlated, because gluon

occupancies are non-perturbatively large (∼ 1/g2YM). These considerations therefore suggest

that our discussion in the previous section may be directly applicable to the physics of high

energy hadron scattering in QCD. Indeed, we will show in this section that the color memory

effect is contained in a classical effective field theory of QCD at small x, the Color Glass

Condensate (CGC) [13–16].

The CGC is formulated in the infinite momentum frame (IMF) P+ → ∞ for a hadron

moving in the x+ direction where

x± =
t± x3

√
2

, ~x = (x1, x2) (3.1)

are the lightcone coordinates, and the flat metric (2.1) becomes

ds2 = −2dx+dx− + dxidxi, i = 1, 2, (3.2)

where the sum over the repeated transverse index i is here and hereafter implied. These

coordinates are related to the spherical retarded coordinates in (2.1) by

x+ =
1√
2

(

u+
2r

1 + zz̄

)

, x− =
1√
2

(

u+
2rzz̄

1 + zz̄

)

, x1 + ix2 =
2rz

1 + zz̄
. (3.3)

The IMF is reached by taking λ → ∞ with (x+, x−) → (λx+, λ−1x−) or equivalently

(r, u, z, z̄) → (λr, λ−1u, λ−1z, λ−1z̄). In this infinitely boosted frame (3.3) reduces to

x+ =
√
2r, x− =

1√
2
(u+ 2rzz̄) , x1 + ix2 = 2rz, (3.4)

the celestial sphere at null infinity is flattened to a 2d plane, and the retarded metric reads

ds2 = −2dudr + 4r2dzdz̄. (3.5)

Since the IMF is used to describe a hadron moving in the x+ direction, evolution in x+ is

naturally interpreted as evolution in time. The utility of this frame is that it clearly exhibits

the natural separation of scales appearing in the Regge limit. In particular, a parton with

lightcone momentum k+ = xP+ has typical x+ lifetime

∆x+ ∼ 1

k−
=

2k+

m2
⊥

= x
2P+

m2
⊥

, (3.6)
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where m2
⊥ ≡ kiki +m2 and longitudinal spread

∆x− ∼ 1

k+
=

1

xP+
. (3.7)

As such, large-x (or ‘hard’) modes with lightcone momenta k+ ∼ P+ are vastly time di-

lated relative to the small-x (or ‘soft’) modes with longitudinal momenta k+ ≪ P+. For

the purposes of small-x dynamics, the problem can be formulated as an effective field the-

ory [33–35]–the CGC–wherein large-x modes are treated as static color sources coupled to

the classical gauge fields at small x. Likewise, the large-x color sources are highly Lorentz

contracted in the x− direction [13, 33, 36] with support ∼ 1/P+. Working in the gauge

A+ = 0, (3.8)

the static color current can therefore be approximated by a shockwave travelling in the x+

direction:

jµ = δµ+δ(x−)ρ(~x), ρ = ρaT a. (3.9)

To first approximation, we can ignore time-dependent fluctuations of the wee gluons, so

that their configurations are just given by static (x+-independent) classical solutions to the

Yang-Mills equation with color current source (3.9). We will return to this point later in this

section, but the upshot is that the full power of the CGC as an effective theory lies in the

fact that it justifies this approximation over a range in parameter space.

Working in A+ = 0 gauge and taking the gauge fields to be x+-independent, the Yang-Mills

equations simplify to

∂iFi− − igYM[Ai, Fi−] = −δ(x−)ρ(~x) ,

∂jFji − igYM[Aj , Fji] = 0 .
(3.10)

The second equation in (3.10) can be immediately solved by setting Fij = 0, i.e. no mag-

netic fields. This turns out to be the physically relevant case and we restrict to such field

configurations from now on.

Further taking A− = 0, the first equation in (3.10) becomes

∂−∂iAi − igYM[Ai, ∂−Ai] = δ(x−)ρ(~x) . (3.11)

In terms of the net color current (2.6) J− = −δ(x−)ρ(~x)− igYM[Ai, ∂−Ai], (3.11) integrates

to

− ∂i∆Ai =

∫ x−

f

x−

i

dx−J− , (3.12)

7



where we assume that x−
i < 0 < x−

f and ∆Ai is the change in flat connections on the

transverse plane between x− = x−
i and x− = x−

f .

(3.12) is clearly a special case of the central memory equation (2.5). First we note that since

(3.12) is x+-independent we may take it to I+ simply by shifting x+. Second, since (3.12) was

derived in the IMF, it must be compared to a memory equation in an infinite momentum

frame. As discussed above, such a frame can be reached by rescaling the retarded radial

coordinates so that the celestial sphere is flattened to a plane with γzz̄ = 2 as in (3.5). The

above-imposed static condition in A+ = 0 gauge implies we are solving the equation with

∆F
(2)
ru = 0. Setting ∆F

(2)
ru to zero in (2.5), it transforms into (3.12) under the coordinate

transformation (3.4) from (3.5) to (3.2). This establishes the equality of the large gauge

transformations ∆A encountered in CGC with those of the memory effect.

Thus far, by working in the IMF, we have shown how deconfined gluons in vacuum-to-

vacuum field configurations appear in the Regge limit of QCD. However, these arguments

implicitly rely on a weak-coupling description in which quantum fluctuations of wee gluons

are parametrically suppressed. Nevertheless, the full effective field theory framework that

comprises the CGC can be used to justify these assumptions. To begin with, the separation

of partons into large-x sources and small-x gluons inevitably introduces a cutoff Λ+ that

distinguishes the two. The requirement that physical observables do not depend on the

“arbitrary” separation between large k+ > Λ+ and small k+ < Λ+ modes lends itself to a

Wilsonian renormalization group (RG) treatment ensuring independence of observables on

Λ+: small quantum fluctuations around the classical solutions (g2YM log(Λ+/Λ′+) ≪ 1) can be

integrated out generating the same classical theory at scale Λ′ with ρ → ρ′ [37]. Importantly,

the classical theory at the new scale Λ′ still exhibits vacuum transitions because although

ρ′ has increased support in the x− direction compared to ρ, the classical wee gluons at the

new scale are guaranteed to be delocalized over an even larger distance in x− by virtue of

the new cutoff Λ′. Hence renormalization group evolution can be viewed as a function of x.

We now turn to some specific solutions of (3.10). The solutions to (3.11) of interest in

the CGC are those obtained by regularizing the delta function in x− (understood to have

support ∼ 1/Λ+). Without loss of generality, we take the source to have support over the

range 1/P+ < x− < 1/Λ+, where P+ ≫ Λ+. We introduce a new coordinate (defined for

8



x− ≥ 0), the spacetime rapidity

η = ηsource − log(x−/x−
source), (3.13)

where

ηsource ≡
1

2
log

Λ+

Λ−
, x−

source ≡
1

Λ+
, Λ− ≡ Λ2

⊥

2Λ+
, (3.14)

and Λ2
⊥ is a typical transverse momentum scale. One then finds

η
∣

∣

x−= 1

xP+

= ηhadron + log x, ηhadron ≡ 1

2
log

P+

P−
= log

√
2P+

Λ⊥
. (3.15)

The sources in the two coordinate systems are related by

x−ρ(x−, ~x) = −ρη(η, ~x). (3.16)

Fij = 0 implies that the transverse component of the gauge potential takes the form

Ai(η, ~x) =
i

gYM
U(η, ~x)∂iU

†(η, ~x) . (3.17)

Ai may be set to zero by a residual gauge transformation which preserves our gauge condition

A+ = 0 but generates a nonzero Aη. Doing so leads to a useful formula for Ai in terms of

the sources in the Ai = 0 gauge, as follows [37]. When Ai = 0, the first equation in (3.10)

reduces to the Poisson equation in the transverse plane and can be solved for Aη via standard

Green’s function methods [37, 38]:

Aη(η, ~x) =

∫

d2~yG(~x− ~y)ρ̃η(η, ~y),

G(~x− ~y) = − 1

2π
log |~x− ~y|, ~∂2G(~x− ~y) = −δ(2)(~x− ~y), (3.18)

where ρ̃η differs from ρη appearing previously by the gauge transformation used to set Ai = 0

(see (3.22) that follows). Aη may be set back to 0 by a gauge transformation

Aµ → g

(

Aµ +
i

gYM

∂µ

)

g†, (3.19)

where

g(η, ~x) = P exp

(

igYM

∫ ηi

η

dη′
∫

d2~yG(~x− ~y)ρ̃η(η
′, ~y)

)

≡ Uηi,η(~x). (3.20)

One thereby obtains an expression for Ai in terms of the data ρ̃η

Ai(η, ~x) =

∫

d2~y ∂iG(~x− ~y)

∫ ηi

η

dη′Uηi,η′(~x)ρ̃η(η
′, ~y)Uη′,ηi(~x) . (3.21)

9



For completeness, notice that the Yang-Mills equation solved by this expression is

Di
dAi

dη
= ρη(η, ~x) = Uηi,η(~x)ρ̃η(η, ~x)Uη,ηi(~x), (3.22)

where Di = ∂i − igYM[Ai, ·] is the gauge-covariant derivative.

In (3.21), the gauge field at the rapidity η depends on the sources at larger rapidities; this

equation can therefore be solved iteratively from an initial condition set at a rapidity ηi

beyond which the source density has no support (for example η > ηhadron). As such, ηi will

correspond to the initial retarded time ui from section 2 where the transverse component

of the gauge field vanishes. Likewise, the source vanishes at rapidities η < ηsource, and the

gluon fields at these rapidities describe the final vacuum configuration which is generically

different from the initial vacuum set by the initial condition at large rapidity.

Uηi,η(~x) defined in (3.20) is simply related to the color rotation (2.7). To see this, let us

determine the relative color rotation when Au or equivalently Aη is the only non-zero com-

ponent. In this case, the contributions to the relative color rotation of a quark dipole come

from the segments of the worldlines extending in the η direction at fixed separated points in

the transverse plane. This color rotation is related to (2.7) by a gauge transformation that

sets Aη = 0

g(ηf , ~x1)U
†
ηi,ηf

(~x2)Uηi,ηf (~x1)g
†(ηf , ~x1) = U(z1, z̄1)U

†(z2, z̄2), (3.23)

where ~x is related to (z, z̄) by the coordinate transformation (3.4) and η is related to u by

(3.4) and (3.13). Simplifying this using (3.20) we find this becomes

Uηi,ηf (~x1)U
†
ηi,ηf

(~x2) = U(z1, z̄1)U
†(z2, z̄2). (3.24)

The prescription for computing physical observables in CGC is to perform an average over

color charge configurations,

〈O〉 =
∫

[Dρ]WΛ+ [ρ]O[ρ] , (3.25)

where the weight functional WΛ+ [ρ] represents the distribution of the large-x color charge

densities. If one assumes that the sources are uncorrelated, as in a large nucleus for in-

stance [33, 38, 39], then the weight functional can be taken to be a Gaussian distribution

WΛ+ [ρη] = N exp

(

−
∫ ∞

0

dη

∫

d2~x
Trρη(η, ~x)

2

2µ2
Λ(η, ~x)

)

, (3.26)
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where N is a normalization constant. Here µ2
Λ(η, ~x), the color charge squared per unit ra-

pidity per unit area, is a dimensionful scale in the CGC EFT. As we shall discuss further

in the next section, it can be fixed by computing a physical observable, and thence used to

compute other observables. As mentioned previously, the requirement that 〈O〉 be indepen-

dent of Λ+ generates a Wilsonian RG equation in x for WΛ+, the JIMWLK equation [40–43].

In a limit of low parton densities ρ/|~k|2 ≪ 1, the JIMWLK equation simply reduces to the

BFKL equation [44,45] that resums all the radiative emission and virtual Feynman graphs of

perturbative QCD in the leading logarithmic g2YM log(1/x) ∼ 1 approximation. As a result

of the RG procedure, the structure of the classical equations we described here is unchanged

by these quantum corrections. Namely, quantum fluctuations of gluons, which become large

at small x and would in principle spoil the classical approximation, are recast as statistical

fluctuations of the classical source ρ. Hence, their primary effect [46] is the evolution of

µ2
Λ with respect to x, which is described by a nontrivial closed form nonlinear evolution

equation–the Balitsky-Kovchegov equation [47, 48].

In any case, the weight function WΛ+ [ρ] introduces a dimensionful scale in the CGC EFT,

which ultimately appears in CGC observables. In the case of a Gaussian form of the weight

functional as in (3.26), the scale set by µΛ is a measure of the size of the color fluctuations of

the source ρη per unit area, per unit rapidity. Hence, it is in turn directly related to the size

of the color memory effect. This relation will be explained in more detail in the following

section.

The above discussion is key to measuring the color memory effect in QCD since we are

unable to directly observe colors of particles. In the next section, we will see that the QCD

analog of the probes, which serve as the analog of the pair of nearby inertial detectors in the

gravitational memory effect, are color dipoles that are sensitive to the color flux from the

target long after the interaction and can be simply related to physical observables at collider

energies.

4 Measuring color memory in deeply inelastic scattering

In general, a pair of quarks interacting with the shockwave field will be color rotated accord-

ing to (2.7). For the specific case of the CGC, the pair will be color rotated by (3.24). This
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rotation is not directly observable in QCD. However cross-sections in Regge asymptotics are

sensitive to the color averaged product of the rotation at a given transverse spatial location

~x and its Hermitian conjugate at a different spatial location ~y.

The simplest and cleanest measurement of color memory is in deeply inelastic scattering

(DIS) off protons and nuclei. At high energies, the spacetime picture is that of the virtual

photon emitted by the electron splitting into a quark-antiquark pair that subsequently scat-

ters coherently off the shockwave [49–54]. In the eikonal approximation, the effect of the

shockwave is to induce a color rotation on a quark at ~x by U(~x) ≡ U−∞,∞(~x) in (3.20).

Combining this with the corresponding formula for an antiquark at ~y and using (3.24) we

obtain the scattering amplitude for a color dipole

S(~x, ~y) = 1

Nc

Tr
(

U(~x)U †(~y)
)

= WC, (4.1)

where the amplitude is normalized to 1 in the case where U is the identity matrix in the

fundamental representation. Here we see that the the color memory effect – or quark dipole

color misalignment – is directly responsible for the leading term in the dipole scattering

amplitude! Since this amplitude pertains to the forward scattering limit, it is simply related

to the dipole cross-section by the optical theorem:

σdipole(x,~r) = 2

∫

d2~b [1− 〈Re S(~x, ~y)〉] , (4.2)

where ~r = ~x−~y, ~b = (~x+~y)/2, x ≈ xBj (up to higher order corrections) and 〈· · · 〉 corresponds

to the expectation value in (3.25). The x dependence enters through the averaging over color

charge configurations.

The inclusive DIS virtual photon-hadron cross-section σγ∗H(x,Q
2) factorizes into a piece

corresponding to the splitting of the virtual photon into a quark-antiquark pair and the

dipole scattering cross-section. It can be expressed as [48, 52, 55] (see also [56, 57])

σγ∗H(x,Q
2) =

∫ 1

0

dz

∫

d2~r|Ψ(z, ~r, Q2)|2γ∗→qq̄ σdipole(x,~r) , (4.3)

where Ψ(z, ~r, Q2)γ∗→qq̄ is the lightcone wavefunction [51] for a photon splitting into a qq̄ pair

of transverse size |~r|, with the quark carrying a fraction z of the virtual photon longitudinal

momentum. Thus while WC is not directly observable, we see however that the inclusive DIS

cross-section in the high energy limit can be simply related to the color memory effect.
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To understand the effect of the statistical averaging procedure, let us calculate (4.2) assuming

a Gaussian distribution (3.26) of color sources. If the color sources are Gaussian distributed,

then all correlation functions can be written in terms of the two-point function

〈ρa(x−, ~x)ρb(y−, ~y)〉 = δabδ(x− − y−)δ(2)(~x− ~y)µ2(x−,~b). (4.4)

It follows that the dipole scattering amplitude in (4.2) can be obtained by exponentiating

the leading order term arising from an expansion of (3.20). Taking µ2 to be ~b-independent,

the result is

〈S(~r)〉 = exp

{

−g2YMCF

∫

d2~k

(2π)2
1− ei

~k·~r

|~k|4
∫

dx−µ2(x−)

}

≈ exp

{

−1

4
|~r|2Q2

s

}

, (4.5)

where CF is the quadratic Casimir in the fundamental representation and Qs is the saturation

scale

Q2
s =

g2YM

4π
CF log

(

1

Λ2
QCD|~r|2

)

∫

dx−µ2(x−). (4.6)

The QCD scale ΛQCD arises as an infrared cutoff for the logarithmically divergent integral

in (4.5) while the dipole separation acts as a UV cutoff |~k| ∼ 1/|~r|.

We see Qs is proportional to the color charge density µ of the sources and moreover, it

weakly depends on the transverse resolution |~r| of the probe. For fixed dipole size |~r|, σdipole

increases with µ, meaning that larger color charge densities of the sources result in a stronger

deflection of the dipole and therefore indicates an enhanced color memory effect.

For fixed Qs, (4.2) and (4.6) show that small size dipoles are less affected by the field

distribution of the nucleus, while large dipoles are strongly absorbed. The transition between

these behaviors occurs at |~r| ∼ 1/Qs. This scale coincides with the scale at which the nucleus

becomes densely populated with strong gluon fields of typical momenta ∼ Qs. The inverse of

the saturation scale also plays the role of the length scale at which color charges of effective

gluon distributions are screened. Moreover, it is the typical transverse momentum of closely

packed wee gluons in the hadron [58–60]. This implies that the coupling should be evaluated

at Qs, and the assumption is that the CGC applies as an EFT when Qs is sufficiently large

in comparison with ΛQCD.

A consequence of the nontrivial Ai generated by the color memory effect is that the corre-

lator 〈AiAi〉, computed using (3.25) and (3.26), is directly proportional to the non-abelian
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Weizsäcker-Williams distribution of gluons in the hadron [33, 34, 37, 38]. The correspond-

ing color field strengths are characterized by a typical saturation momentum scale Qs ∝ µ

where µ is the color charge density of sources per unit volume in (3.26); a high energy probe

experiencing an instantaneous interaction with the gluon shockwave will therefore receive

a transverse momentum kick of order |∆~p| ∼ Qs, of which it will retain the color memory

until the much longer timescales of hadronization. This is the non-abelian analog of the

electromagnetic memory effect [61, 62].

In fact, it is precisely the color rotation (3.20) that gives rise to a transverse momentum

kick of a quark propagating through a target. This is because (4.1) is also related to the

amplitude for a quark (or antiquark) to acquire a momentum kick ∆~p when scattering off a

nucleus. Summing over final states of the nucleus and quark colors as well as averaging over

initial colors [16], the associated probability P(~b,∆~p) is
∫

d2~bP(~b,∆~p) =

∫

d2~b

∫

d2~re−i∆~p·~r〈S(~r)〉. (4.7)

Using the dipole scattering amplitude found before, this probability reduces to

P(~b,∆~p) ≈
∫

d2~re−i∆~p·~re−
1

4
|~r|2Q2

s ≈ 4π

Q2
s

e−|∆~p|2/Q2
s , (4.8)

where the dependence of Qs on |~r| was ignored, a good approximation for large enough

|~r|.3 This is a Gaussian distribution centered at ∆~p = 0 whose width is proportional to the

saturation scale and whose amplitude decreases as 1/Q2
s. It follows that larger Qs lead to

larger momentum kicks in agreement with our previous interpretation of Qs as associated

with the strength of the color memory effect.

While we have just shown that there is a simple interpretation of the two-point dipole

correlator 〈Tr
(

U(~x)U †(~y)
)

〉 of the lightlike Wilson loop in the fundamental representation

as measuring a momentum kick or relative color rotation, more generally in QCD, the color

memory effect is also captured by higher point quadrupole, sextupole, · · · correlators as

well as in both the fundamental and adjoint Wilson line representations [63–65]. Such

structures are ubiquitous in high-energy QCD and can, in principle, be extracted from a

variety of measurements in both DIS and hadron-hadron collisions [66]. Interestingly, as

observed in [66], dijet measurements in both DIS off nuclei and in proton-nucleus collisions

are sensitive to the Weizsäcker-Williams gluon distribution we mentioned previously.

3At small |~r| or equivalently large transverse momenta, (4.8) has a power law decay with |∆~p|.
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What’s the evidence for the color dipole/color memory effect? The high energy asymptotics

of the Regge limit is accessible at colliders where x < 10−3 for Q2 ≥ 1 GeV2 is routinely

achieved. It is observed that CGC-based models provide a good description of small-x

(x ≤ 0.01) data in DIS inclusive and exclusive electron-proton scattering measurements at

HERA [23]. This is however not conclusive because the values of the saturation scale Qs

in the proton extracted from the experiments are not much larger than non-perturbative

scales where the effects of confinement may be important. Larger values of the saturation

scale may be reached by instead considering heavy ion experiments. Namely, because the

coherence length of the dipole [50] lc ≫ 2R for x ≪ A−1/3 for a nucleus with atomic

number A, the saturation scale receives a significant nuclear “oomph”: Q2
s(A) ∼ A1/3 [18,

33]. Experiments of this nature were performed at RHIC, where for example deuteron-gold

collisions (at
√
s = 200 GeV/nucleon) measured correlations amongst hadron pairs flying

forward in the fragmentation region of the deuteron. A CGC computation predicted [17]

that the likelihood that these pairs would be azimuthally correlated back-to-back will be

diminished relative to those in proton-proton collisions due to the larger color memory effect

carried by the pairs. These correlations can be understood in terms of the momentum

broadening phenomenon discussed above, where the larger color memory effect characterized

by the larger saturation scale in deuteron-gold collisions in comparison to proton-proton

collisions leads to weaker correlations among the produced hadrons. While the predicted

effect has been observed [22] and is consistent with detailed CGC computations [25], more

data varying the collision energy, the nuclear size and the transverse momenta of the produced

pairs are necessary to confirm whether their systematics is consistent with the CGC.

There have also been studies of particle correlations in proton-nucleus collisions at the LHC at

the much higher center-of-mass energies of
√
s = 5.02, 8.16 TeV/nucleon. A prediction of the

CGC (first made for proton-proton collisions [19,21]) is that of a ridgelike structure in hadron

pair correlation functions, that is long range in the relative rapidity of the pairs but collimated

in their relative azimuthal angle. These were first observed in high-multiplicity triggered

proton-proton collisions at
√
s = 7 TeV by the CMS experiment [20], and a significant

enhancement of the signal was subsequently seen in proton-nucleus collisions [26,27]. While

the data for pairs with pT ≥ Qs is in agreement with CGC computations [24], there are

features of the data that seem to indicate that ridge correlations may potentially also be due

to final state scattering amongst the many produced secondaries. The situation is however
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fluid; a fairly recent review of ongoing work in theory and experiment can be found in [29].

A likely definitive search for color memory effects is feasible in DIS of electrons off large

nuclei at high energies. In this case, one has the large oomph factor of the color flux from

the nucleus but can also control for final state effects by varying the squared momentum

resolution Q2 of the lepton probe. The prospects for extraction of the color dipole cross-

section at a future Electron-Ion Collider are discussed in [30]. In particular, the inclusive

diffractive cross-section and exclusive vector meson cross-sections are proportional to σ2
dipole.

These display very strong systematic power law variations with Q2 and the nuclear size A [31]

and are therefore promising signatures for definitive discovery of the color memory effect in

QCD.
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A Classical colored particles

In Cartesian coordinates, the action for a classical colored particle (quark) of mass m = 1

charged under a non-abelian gauge field is

S =

∫

dτ

[

1

2
uµuµ − gYMQ

auµAa
µ

]

− 1

4

∫

d4yF a
µνF

aµν , (A.1)

where uµ = dxµ

dτ
is the tangent to the trajectory parametrized by τ . The equations of motion

are then
duµ

dτ
+ gYMQ

aF a
µνu

ν = 0, (A.2)

DµF
aµν(y) = gYM

∫

dτQauνδ(x(τ)− y) (A.3)

and are also known as the Wong equations [67]. Note that (A.3) implies that

Dν

∫

dτQuνδ(x(τ)− y) = 0, Dν ≡ ∂ν − igYM[Aν , ·], (A.4)
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which after integration by parts and using d
dτ

= uν∂ν amounts to

uνDνQ = 0. (A.5)

This means that the color charge Qa is parallel transported along the trajectory of the

quark. For Aµ and Q in an arbitrary representation of the colored particles, (A.5) can be

equivalently written as
dQa

dτ
− igYMu

ν [Aν , Q]a = 0. (A.6)

This equation can be solved iteratively and it follows that Q evolves according to

Q → UQU †, U = PeigYM

∫
dxµAµ. (A.7)

Assuming that classically, the charges Q are direct products of quark color vectors

QaT a
ij = qiq̄j , i, j = 1, 2, 3, (A.8)

we deduce that

q → Uq, q̄ → U∗q̄. (A.9)

Note that this implies that the colors of quarks transforming in the fundamental represen-

tation evolve according to
dq

dτ
− igYMu

νAνq = 0. (A.10)

It is also interesting to note that the form of the small-x effective action in the Color Glass

Condensate effective theory and its connections to Reggeon Field theory [68–70] can be

motivated by Wong’s equations [71].
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