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ABSTRACT

We define lowest weight polynomials (LWPs), motivated by so(d, 2) repre-
sentation theory, as elements of the polynomial ring over d×n variables obey-
ing a system of first and second order partial differential equations. LWPs
invariant under Sn correspond to primary fields in free scalar field theory
in d dimensions, constructed from n fields. The LWPs are in one-to-one
correspondence with a quotient of the polynomial ring in d × (n − 1) vari-
ables by an ideal generated by n quadratic polynomials. The implications
of this description for the counting and construction of primary fields are
described: an interesting binomial identity underlies one of the construction
algorithms.The product on the ring of LWPs can be described as a commu-
tative star product. The quadratic algebra of lowest weight polynomials has
a dual quadratic algebra which is non-commutative. We discuss the possible
physical implications of this dual algebra.
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1 Introduction

The counting and construction of primary fields in free scalar field theories
was found to have surprisingly simple and elegant geometrical structures in
[1, 2]. General primary fields in scalar field theory in d dimensions, which are
composites of n elementary fields, are in 1-1 correspondence with polynomials
in nd variables, xIµ where 1 ≤ µ ≤ d, 1 ≤ I ≤ n which solve a system
of linear first and second order partial differential equations, and obey an
invariance condition under Sn, the symmetric group of permutations of n
distinct objects. A holomorphic sector of primaries corresponds to the ring
of functions on an Sn orbifold. In [3] it was observed that the space of all
primary fields in a scalar theory corresponds to a quotient ring, and that this
ring also arises in the classification of effective actions.

At the core of these developments is a simple problem in the represen-
tation theory of the d-dimensional conformal algebra so(d, 2) and its sur-
prisingly rich connections to polynomial rings, modules over these rings, the
standard mathematics of algebraic geometry, as well as to non-commutative
algebras and their quotients. According to the operator-state correspondence
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in conformal field theory, local operators are in 1-1 correspondence with quan-
tum states. Corresponding to an elementary scalar field in d dimensions and
its non-vanishing derivatives is an irreducible representation V of so(d, 2).
The problem is to decompose the tensor product V ⊗n into irreducible rep-
resentations of so(d, 2)× Sn. A convenient realization of the representation
V is in terms of polynomials in xµ while for V ⊗n we have polynomials in
xIµ. This problem can be approached in two steps : Find all the states in
V ⊗n annihilated by the special conformal transformation generatorsKµ, then
decompose these states according to representations of so(d)× Sn. Further
projecting to the trivial representation of Sn gives the primary fields for free
scalar field theory. The states annihilated by Kµ are the states of lowest con-
formal dimension in irreducible representations of so(d, 2), which may have
non-trivial so(d) transformation properties. With the polynomial realization
of V ⊗n in hand, these states are certain polynomials in C[xIµ], which we call
lowest weight polynomials (LWPs). Following [1, 2] we review the fact that
LWPs in C[xIµ] are solutions of a system of first and second order partial
differential equations. We explain the 1-1 correspondence between the poly-
nomials and the elements of a quotient ring defined in [3]. The first order
equations take the form of a condition of vanishing centre of mass momen-
tum. They can be solved explicitly, leading to a description as a polynomial
ring in (n − 1)d variables XA

µ , with 1 ≤ A ≤ (n − 1) and transforming in
the irreducible representation of Sn corresponding to the hook-shaped Young
diagram [n− 1, 1] with first row of length n− 1 and second row of length 1.
We will denote this irrep as VH in the following. Our first new result (Section
2.4) is to give an explicit description of the quotient ring in dimension d in
terms of (n− 1)d generators and explicit quadratic relations. The quadratic
relations are given in terms of a Clebsch-Gordan decomposition problem for
Sn, which we explicitly solve.

The Hilbert series of the quotient ring, which can be deduced from the
character of V ⊗n implies counting formulae for the number of linearly inde-
pendent LWPs at each degree in C[XA

µ ]. These dimensions are expressed as
an alternating sum of positive quantities. A transform, which we dub the
confluent binomial transform, is found which gives the dimensions as sums
of positive quantities (Section 6). This leads directly to a construction al-
gorithm for the lowest weight polynomials, which we refer to as the first
construction algorithm. This is our second main result. We compare this
with two additional construction algorithms. Construction II works directly
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in C[xIµ] and imposes first and second order conditions. Construction III ex-
ploits the quadratic constraints and looks at an intersection of projectors. It
exploits analogies between the construction of LWPs and the construction of
traceless tensors of so(k), and as such it has links to Brauer algebras which
arise as commutants of so(k) in tensor spaces.

The paper is organized as follows. Section 2 starts with a review of
[1, 2, 3]. We describe the system of first and second order partial differential
equations for polynomials in C[xIµ] which define the LWPs. We explain the
correspondence with a quotient ring obtained by quotienting out an ideal I
generated by linear and quadratic constraints. We then establish a descrip-
tion of LWPs where we have solved the first order constraints. This leads to
a quotient ring of C[XA

µ ] by quadratic relations. These quadratic relations
are given explicitly in terms of Clebsch-Gordan coefficients for VH ⊗ VH .

In Section 3 we use the so(d, 2) character of V ⊗n to arrive at the Hilbert
series of the ring L of lowest weight primaries. Section 4 explains the exact
sequences of modules over the polynomial ring R = C[XA

µ ], which give a
resolution of L. This exact sequence implies the Hilbert series. It also leads
directly to exact sequences of vector spaces over C. Section 5 extracts count-
ing formulae for LWPs, refined according to so(d)× Sn irreps, which follow
from the exact sequences.

With an understanding of refined counting formulae, we expect to deduce
algorithms for construction of LWPs. One tricky point is that the count-
ing formulae in Section 5 involve alternating sums of dimensions of vector
spaces. In section 6 we show that the counting formula for dimensions of
LWPs obtained from the Hilbert series is equivalent to a formula as a sum
of positive constructible quantities. An important feature is that this con-
structive formula at fixed degree k is expressed in terms of LWPs at lower
degrees. Both the positive formula and the alternating sum formula involve
binomial coefficients. If we denote by VQ the vector space of quadratic con-
straints, the alternating sum formula involves dimensions of exterior powers
of VQ, while the positive formula involves dimensions of symmetric powers of
VQ. The key identity responsible for this inversion relating the positive and
alternating sum formula (6.9) turns out to be a special value of a confluent
hypergeometric function. Since the transform involves binomial coefficients,
is not the standard binomial transform of combinatorics, and has a connec-
tion to the confluent hypergeometric function, we use the name confluent

binomial transform. The reader is welcome to suggest a better name, with
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appropriate mathematical justification, which we will consider for our future
work on this subject. We follow up the discussion of the positive counting
formula by describing a construction algorithm for LWPs, which is imple-
mented in Mathematica. In Section 6.3 we show that the product on LWPs,
coming from the ring structure in R/I, can be expressed as a commutative
star product based on a decomposition of the space of all polynomials into
LWPs and a transverse space.

In Section 7 we give two additional construction methods mentioned ear-
lier in the introduction.

Section 8 discusses a number of future research directions related to this
work.

2 Primary fields from differential constraints

and Polynomial Rings

A key result motivating our study is the observation [2] that primary fields
constructed from n copies of a free scalar φ, along with their derivatives,
correspond to polynomials in variables xIµ subject to a system of linear dif-
ferential constraints and an Sn invariance condition. There are d first order
differential constraints coming from the lowest weight condition that Kµ an-
nihilates a primary field, as well as n Laplacian conditions, coming from the
equation of motion. We also explain, following the statement from [3], that
these primary fields are in 1-1 correspondence with elements of a polynomial
ring, of which the holomorphic sector forms a Calabi-Yau ring as highlighted
in [2]. The first order constraints take the form of a zero centre of mass
momentum condition, when we view these polynomials in xIµ as states in a
multi-particle quantum mechanics. They can be solved explicitly. This leads
to a formulation of the problem of finding the LWPs as a problem of solv-
ing n second order differential constraints acting on polynomials in (n− 1)d
variables, XA

µ , where 1 ≤ µ ≤ d, 1 ≤ A ≤ (n−1). The LWPs, now viewed as
polynomials in C[XA

µ ], are in 1-1 correspondence with the elements of a quo-
tient of C[XA

µ ] by an ideal generated by quadratic polynomials. The explicit
form of these quadratic polynomials is given in terms of Clebsch-Gordan co-
efficients for the couplings between VH ⊗ VH and V0 ⊕ VH , where V0 is the
trivial representation.

5



2.1 Review : Lowest weight states and primaries from

differential equations

The scalar field and its derivatives form a vector space V , which is an irre-
ducible representation of so(d, 2). This representation is isomorphic to the
space of harmonic polynomials in xµ. The connection between the standard
action of the conformal group on the fields and the action of differential
operators on the polynomials is explained in [2].

The generators of so(d, 2) form the algebra

[Kµ, Pν ] = 2Mµν − 2Dδµν
[D,Pµ] = Pµ

[D,Kµ] = −Kµ

[Mµν , Kα] = δναKµ − δµαKν

[Mµν , Pα] = δναPµ − δµαPν (2.1)

The algebra so(d, 2) is realised on these polynomials as [4]

Kµ =
∂

∂xµ
Pµ = (x2∂µ − 2xµx · ∂ − (d− 2)xµ)

D = (x · ∂ +
(d− 2)

2
)

Mµν = xµ∂ν − xν∂µ (2.2)

Thinking of xµ as the co-ordinates of a particle, this is a single particle
representation. The tensor product V ⊗n can be realized on a many-particle
space of functions Ψ(xIµ), where 1 ≤ I ≤ n labels the particle number. We
now have generators

KI
µ =

∂

∂xIµ

P I
µ =

(

d
∑

ρ=1

xIρx
I
ρ

∂

∂xIµ
− 2xIµ

d
∑

ρ=1

xIρ
∂

∂xIρ
− (d− 2)xIµ

)

(2.3)

The generators of the diagonal so(d, 2) acting as a sum of the generators on
each tensor factor of V ⊗n are

Kµ =
∑

I

KI
µ (2.4)
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Pµ =
∑

I

P I
µ (2.5)

Let H be the space of harmonic polynomials in xµ. Polynomials in xIµ
which are harmonic in each of the xIµ, i.e. which are annihilated by the n
operators

d
∑

µ=1

∂2

∂xIµ∂x
I
µ

(2.6)

span the space H⊗n.

A lowest weight polynomial (LWP) denoted L(xIµ) satisfies the equations

n
∑

I=1

∂L

∂xIµ
= 0 for 1 ≤ µ ≤ d

d
∑

µ=1

∂2L

∂xIµ∂x
I
µ

= 0 for 1 ≤ I ≤ n (2.7)

The Sn invariant lowest weight polynomials correspond to primary fields.
We will refer to the first constraint appearing above as the center of mass
constraint, for obvious reasons.

In this paper we will focus our attention on LWPs. The projection to Sn

invariants is a standard exercise, illustrated in concrete examples in [2].

2.2 LWPs and the quotient ring R/I
The polynomial ring C[xIµ] is denoted as R. Consider the ideal I generated

by the n elements
∑d

µ=1 x
I
µx

I
µ along with the d elements

∑

I x
I
µ. This is

denoted by

I = 〈
d
∑

µ=1

xIµx
I
µ,
∑

I

xIµ〉 (2.8)

and consists of elements in R of the form

n+d
∑

a=1

haga (2.9)
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where the ga refer to all the generators in (2.8) and ha are arbitrary elements
of the ringR. Following the statement in [3], we will explain that the quotient
ring R/I is isomorphic as a vector space over C to the primaries. R, I are
vector spaces over C and the quotient ringR/I is also a quotient vector space.
Each element is an equivalence class of vectors, related to each other by
addition of elements in I. For each lowest weight polynomial satisfying (2.7)
there is one such equivalence class. It is useful to explain this correspondence.

Consider the map φ : R → H⊗n defined by

φ : xI1µ1
xI2µ2

· · ·xIkµk
→ P I1

µ1
P I2
µ2
· · ·P Ik

µk
(1) (2.10)

∑

µ x
I
µx

I
µ are in the kernel of this map since, as is easily checked using the

explicit form of P I
µ in (2.3)

d
∑

µ=1

P I
µP

I
µ(1) = 0 (2.11)

The representation H⊗n is, by construction, a reducible lowest weight repre-
sentation of so(d, 2). 1 is a lowest weight state for SO(d, 2)×n annihilated by
KI

µ for all I ∈ {1, 2, · · · , n}. The irrepHn+k,j1,j2 contains lowest weight states
under the diagonal SO(d, 2) (annihilated by Kµ =

∑

I K
I
µ) of dimension

∆ = n
(

d−2
2

)

+ k and transforming in the rank k traceless symmetric tensor
irrep of so(d). There will be a multiplicity for each lowest weight state. This
is expressed by introducing a vector space of multiplicities Mk,j1,j2. Thus,
we can write

H⊗n =
⊕

k,j1,j2

Hn+k,j1,j2 ⊗Mk,j1,j2 (2.12)

For classification of the irreps of so(d, 2) and their character formulae, see [5]
and refs therein. A lowest weight state with ∆ = n + k generates a tower
of states at higher ∆ through the action of Pµ =

∑

I P
I
µ . These descendants

themselves form a subspace that can be characterized as follows

Descendants = Span(P({P I
µ})Pµ(1)) (2.13)

where P({P I
µ}) is any polynomial in the P I

µ . These correspond, under
the map φ to the ideal generated by xµ =

∑

I x
I
µ. The quotient space

8



H⊗n/Descendants is equivalent, as a vector space, to the space of lowest
weight states

L =
⊕

k,j1,j2

Mk,j1,j2 (2.14)

Now consider the homomorphism φ as a map from R to H⊗n/Descendants.
The kernel of this map is the ideal in R given by the ideal I in (2.8). This
shows that

L = H⊗n/Descendants = R/I (2.15)

Equality here means isomorphism, as graded vector spaces over C.

2.3 Representation theory of VH

The I index of xIµ, ranging over 1 ≤ I ≤ n, transforms in the natural repre-
sentation, Vnat of Sn. This representation has an orthogonal decomposition
into irreducible representations

Vnat = V0 ⊕ VH (2.16)

V0 is the one-dimensional representation. VH has dimension (n − 1) and
corresponds to the Young diagram [n − 1, 1] with row lengths n− 1, 1. The
tensor product VH ⊗ VH can be decomposed into irreducible representations
as

VH ⊗ VH = V0 ⊕ VH ⊕ V[n−2,2] ⊕ V[n−2,1,1] (2.17)

The explicit Clebsch-Gordan coefficients for V0 and VH will turn out to be
useful in obtaining a new description of the ring defined earlier in Section
2.2, where the linear constraints have been solved.

Let us write

Vnat = Span {e1, e2, · · · , en} (2.18)

and introduce the inner product

〈eI , eJ〉 = δIJ (2.19)
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The Sn action on Vnat is

Dnat(σ)eI = eσ−1(I) (2.20)

and obeys the homomorphism property

Dnat(σ1)D
nat(σ2) = Dnat(σ1σ2) (2.21)

The inner product (2.19) is invariant under the Sn action. The linear com-
bination

e0 =
1√
n

n
∑

I=1

eI (2.22)

is invariant, normalized to 1 and spans V0. We can choose a convenient
orthonormal basis for VH as

eA =
1

√

A(A+ 1)
(e1 + e2 + · · ·+ eA − AeA+1) (2.23)

for A ∈ {1, 2, · · · , n− 1}. Introducing the notation SAI for these coefficients
we have

eA =

n
∑

I=1

SAIeI (2.24)

for A ∈ {1, 2, · · · , n− 1}, and

SAI =
1

√

A(A + 1)

(

−A δI,A+1 +

A
∑

J=1

δJ,I

)

(2.25)

It is also useful to introduce extend A to A ∈ {0, 1, · · · , n− 1}, so that

eA=0 =
1√
n
(e1 + e2 + · · ·+ en)

S0I =
1√
n

for 1 ≤ I ≤ n (2.26)

We have the orthonormality relations

n
∑

I=1

SAISBI = δAB (2.27)
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This expresses the orthonormality of states eA, A ∈ {1, · · · , n − 1} within
VH , and within V0 for A,B = 0, as well as the orthogonality of all the states
in VH with the invariant state in V0. We also have

n−1
∑

A=0

SAISAJ = δIJ (2.28)

Given these orthogonality relations, the inverse transformation expressing eI
in terms of the eA are

eI =

n−1
∑

A=0

SAIeA (2.29)

The following sum will play a crucial role in our subsequent treatment of
the ring defined in Section 2.2

κABC =
n
∑

I=1

SCISAISBI (2.30)

Let DH
CC′(σ) denote the matrix representing the permutation σ in the hook

representation H . Note that κABC has the following Sn invariance property.

κABC =
n
∑

I=1

〈H,C|nat, I〉〈H,B|nat, I〉〈H,A|nat, I〉

=

n
∑

I=1

〈H,C|nat, σ(I)〉〈H,B|nat, σ(I)〉〈H,A|nat, σ(I)〉

=

n
∑

I=1

n−1
∑

A′,B′,C′=1

DH
CC′(σ)DH

BB′(σ)DH
AA′(σ)SC′ISA′ISB′I

=
n−1
∑

A′,B′,C′=1

DH
CC′(σ)DH

BB′(σ)DH
AA′(σ)κA′B′C′ (2.31)

This shows that κABC is a state in VH⊗VH ⊗VH which is invariant under the
simultaneous linear transformation of the three states by Sn. We know there
is, up to normalization, precisely one such state, since VH appears once in the
Clebsch-Gordan decomposition of VH ⊗ VH . Equivalently V0 appears once in
VH ⊗ VH ⊗ VH . We conclude that κABC is this Clebsch-Gordan coefficient.
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In Appendix A we calculate this invariant explicitly to get

κABC = −ABCδA,B,C +BCδB,CΘ(B < A) + ABδA,BΘ(A < C) + ACδA,CΘ(A < B)
−CΘ(C < A)Θ(C < B)− BΘ(B < A)Θ(B < C)−AΘ(A < C)ΘA < B)
+Min(A,B,C) (2.32)

Θ(B < A) is defined to be 1 if B < A and 0 otherwise. We also find that

κ(zA) ≡
n−1
∑

A,B,C=1

κABCzAzBzC

=
∑

A

A(1− A2)z3A +
∑

A<B

3A(1 + A)z2AzB (2.33)

and

κA(z) =
∑

B,C

κABCzBzC

= A(1− A2)z2A +
∑

B:B<A

B(1 +B)z2B +
∑

B:A<B

2A(1 + A)zBzA

(2.34)

2.4 Solving the center of mass constraint and a poly-

nomial ring with quadratic relations

In solving the constraints that determine the LWPs, a fruitful approach is
to solve the center of mass constraint (COM) and only then consider the
remaining constraints in (2.7). This approach exploits the Sn structure of
the problem. We will use the elements of Sn representation theory from
Section 2.3.

As noted earlier, the I index transforms in the natural representation of
Sn which has a decomposition into irreducibles as

Vnat = V0 ⊕ VH (2.35)

We will use the coefficients SAI for this decomposition introduced in Section
2.3 to define

XA
µ =

n
∑

I=1

SAIx
I
µ (2.36)
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X0
µ is invariant under Sn. The XA

µ for 1 ≤ A ≤ n − 1 form an orthonormal
basis of states in VH .

The COM condition is satisfied by setting

X0
µ = 0 (2.37)

The inverse transformation, following (2.29), is

xIµ =

n−1
∑

A=0

SAIX
A
µ (2.38)

The quadratic conditions can be expressed as

n−1
∑

A,B=0

d
∑

µ=1

SAISBIX
A
µX

B
µ = 0 (2.39)

The linear COM conditions (2.37) imply the quadratic conditions become

n−1
∑

A,B=1

d
∑

µ=1

SAISBIX
A
µX

B
µ = 0 (2.40)

It is useful to express this in the V0 ⊕ VH basis. Towards this end, multiply
by SCI and sum over I to find

QC ≡
n
∑

I=1

n−1
∑

A,B=1

d
∑

µ=1

SCISAISBIX
A
µX

B
µ = 0 (2.41)

For C = 0, we get

Q0 =
∑

A

d
∑

µ=1

XA
µX

A
µ = 0 (2.42)

For C > 0 we have

d
∑

µ=1

n−1
∑

A,B=1

κCABX
A
µX

B
µ = 0 (2.43)

Note that, while the A,B indices range over {1, · · · , n − 1}, the C index
ranges over {0, 1, · · · , n − 1}. Given the explicit formulae stated in Section
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2.3 and derived in Appendix A, the quadratic constraints can be expressed
as

For 1 ≤ A ≤ (n− 1) :

A(1−A2)

d
∑

µ=1

XA
µX

A
µ +

∑

B:B>A

d
∑

µ=1

2A(1 + A)XA
µX

B
µ +

∑

B:B<A

d
∑

µ=1

B(1 +B)XB
µ X

B
µ = 0

and

n−1
∑

A=1

d
∑

µ=1

XA
µX

A
µ = 0 (2.44)

The upshot is that we have a description of the construction of the pri-
maries as the construction of polynomials in the hook variables XA

µ with
1 ≤ A ≤ n − 1, 1 ≤ µ ≤ d, subject to the quadratic constraints (2.44). In
Appendix B we study the variety defined by these quadratic constraints for
some low values of n, d, and compute the associated Hilbert series using Sage.
It is in complete agreement with our counting of LWPs.

2.5 V0 ⊕ VH decomposition of Laplacian constraints.

The LWPs solve the n Laplacian conditions

∑

µ

∂2F

∂xIµ∂x
I
µ

= 0 (2.45)

These n conditions transform in the natural representation Vnat of Sn. We
can again move to the V0 ⊕ VH basis as follows

�C =
n
∑

I=1

d
∑

µ=1

SCI
∂2

∂xIµ∂x
I
µ

(2.46)

Now expand the x-derivatives in terms of X-derivatives, and use the fact
that we are acting on translation invariant functions to drop derivatives with
respect to X0

µ. We have

n
∑

I=1

d
∑

µ=1

SCI
∂2

∂xIµ∂x
I
µ

=
∑

I

n−1
∑

A,B=1

d
∑

µ=1

SCISAISBI
∂2

∂XA
µ ∂X

B
µ

(2.47)
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Notice that the quantity

κABC =
n
∑

I=1

SCISAISBI (2.48)

introduced in the previous section, has appeared above.

There are n−1 linear combinations of the Laplacians which transform as
VH , given by

�C =
n−1
∑

A,B=1

d
∑

µ=1

κABC
∂2

∂XA
µ ∂X

B
µ

(2.49)

Together with the Sn invariant Laplacian

�0 =

d
∑

ν=1

n−1
∑

A=1

∂2

∂xAν ∂x
A
ν

(2.50)

we have n differential operators acting on the functions of XA
µ .

In summary, we have now arrived at a description of LWPs as polynomial
functions in XA

µ i.e. functions on

(Rd)(n−1) (2.51)

subject to the n Laplacian conditions in (2.49) and (2.50). The LWPs are
dual to primary operators in the free CFT.

3 Counting of lowest weight states in V ⊗n

V is the representation of so(d, 2) collecting all the states which correspond,
by the operator-state correspondence, to a single scalar field and its deriva-
tives. Above we have established that the lowest weight states in V ⊗n form
a polynomial ring. We will develop this description further in this section by
counting these lowest weight states. Specifically, we give a formula for the
generating function of the number of lowest weight states in V ⊗n, at weight
∆ = n

(

d−2
2

)

+ k. The Sn invariant states among these lowest weight states
are the primaries.
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In d dimensions, the character of the free scalar field so(d, 2) irrep is

χV (s) = trs∆ = s(d−2)/2 (1− s2)

(1− s)d
(3.1)

The character for V ⊗n, a reducible representation, is then

χV ⊗n(s) = (χV (s))
n = sn(d−2)/2 (1− s2)n

(1− s)nd
(3.2)

The trace of s∆ over states obtained by acting with momenta on a lowest
weight state (annihilated by Kµ) with ∆ = n(d− 2)/2 + k is

sn(d−2)/2+k

(1− s)d
(3.3)

Let the multiplicities of these lowest weight states in V ⊗n be Nk. To deter-
mine the multiplicities Nk we expand χV ⊗n(s) in terms of the traces in (3.3)
as follows

χV ⊗n(s) = sn(d−2)/2 (1− s2)n

(1− s)nd
=

∞
∑

k=0

Nk
sn(d−2)/2+k

(1− s)d
(3.4)

Hence the generating function for the multiplicities of lowest weight states is

∞
∑

k=0

Nks
k =

(1− s2)n

(1− s)d(n−1)

=
1− ns2 + n(n−1)

2
s4 + · · ·

(1− s)d(n−1)

=
1

(1− s)d(n−1)

n
∑

k=0

(−1)k
(

n

k

)

s2k (3.5)

In this result we can already recognize elements of our discussion from section
2 appearing. Indeed, the denominator of the Hilbert series given above shows
that there are d(n − 1) generators in the ring. These are the XA

µ . The
numerator implies that at quadratic order, we have n relations. These are
the constraints (2.42) and (2.43). Note that

(

n
k

)

is the dimension of the k-
fold anti-symmetric product of VQ, the n dimensional space spanned by the
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quadratic constraints QA. An important point for the discussion in the next
section is that

1

(1− s)d(n−1)

(

n

k

)

s2k (3.6)

is the trace of s∆ over R ⊗ Λk(VQ). Finally, it is worth noting that the
counting function in the first line of (3.5) is palindromic.

4 The ring of lowest weights in V ⊗n

In the previous section we have obtained the counting function for the lowest
weights in V ⊗n. These lowest weights form a polynomial ring. The count-
ing function for the ring is a rational function. The ring is a quotient of
the polynomial ring, by an ideal. The ideal is generated by n quadratic
expressions.

The structure of the counting function can be explained using the theory
of Hilbert series, in terms of the relations between the generators of the
ideal, relations between these relations and so on. This notion of generators,
relations and relations between relations is made precise in the theory of
Hilbert series in terms of exact sequences of modules over the polynomial
ring. References we found useful include [6, 7, 8].

In this section we will describe the relevant exact sequence and show that
it matches the counting function derived from so(d, 2) representation theory.
We then explain how the exact sequence of modules of the polynomial ring R
leads to exact sequences of vector spaces over the base field C. These exact
sequences are used to derive a refined counting formula for so(d)× Sn irreps
among the lowest weights. The so(d) scalar lowest weights are of interest in
effective field theory [3].

4.1 Exact sequence of modules

We will consider the following exact sequence of modules over R = C[XA
µ ]

0
f0−→ R⊗ Λn(VQ)

fn−→ · · · → R⊗ Λ2(VQ)
f2−→ R⊗ VQ

f1−→ R fR−→ L fL−→ 0
(4.1)
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The tensor products are defined over the base field C. Elements of R⊗ VQ
are given by

n−1
∑

A=0

hA ⊗QA (4.2)

where hA ∈ R. The map f1 acts as

f1 :

n−1
∑

A=0

hA ⊗QA →
n−1
∑

A=0

hAQA (4.3)

Its image is the ideal generated by QA. This ideal I(d, n), consists of elements
in the ring R = C[XA

µ ] of the form

n−1
∑

A=0

hAQA (4.4)

where hA are general elements in R(d, n).

R⊗ VQ is a module for R. An element h ∈ R acts as

n−1
∑

A=0

hA ⊗QA →
n−1
∑

A=0

hhA ⊗QA (4.5)

Since L is the quotient R/I and the map fL takes all the elements of L to 0,
the image of fR is the kernel of fL. Thus the sequence is exact at R and L.

The elements of R⊗ ΛI(VQ) are

ǫA1,··· ,AI ,AI+1,··· ,AnhA1A2···AI
⊗QA1 ⊗QA2 · · · ⊗QAI

(4.6)

(the repeated indices AI+1, · · · , An are summed). Under the map fI , they
go to

ǫA1,··· ,AI ,AI+1,··· ,AnhA1A2···AI
QA1 ⊗QA2 · · · ⊗QAI

(4.7)

Under the composite map fI ◦ fI−1, we have

fI ◦ fI−1 : ǫ
A1,··· ,AI ,AI+1,··· ,AnhA1A2···AI

⊗QA1 ⊗QA2 · · · ⊗QAI
→

ǫA1,··· ,AI ,AI+1,··· ,AnhA1A2···AI
QA1QA2 ⊗QA3 · · · ⊗QAI

= 0 (4.8)
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This shows that

Im(fI) ⊆ Ker(fI−1) (4.9)

Thus we have established that the image of fI is in the kernel of fI−1. For
exactness we need to show that the image of fI is equal to the kernel of fI−1.
This will follow, by additionally proving that Ker(fI−1) ⊆ Im(fI).

To proceed further, motivated by the analysis in Chapter 4 of [9] (where
exactness is proved for a sequence involving Symk(V )⊗Λk(V ), in the context
of proving that Sym(V ) and Λ(V ) are Koszul algebras), we introduce two
operators. The first operator, d, is a re-expression of the maps fI introduced
above. We define

d =
n−1
∑

A=0

QA ⊗ ιA (4.10)

where QA acts by multiplying any polynomial f in R by
∑d

µ=1 κABCX
B
µ X

C
µ

and ιA is interior multiplication with QA

ιA(QB1 ∧ · · · ∧QBi
) =

i
∑

k=1

(−1)k−iQB1 ∧ · · · ∧ Q̂Bk
∧ · · · ∧QBi

if A = Bk

= 0 A /∈ {B1, B2, · · · , Bi} (4.11)

It is simple to demonstrate, using this definition, that d2 = 0, which is equiv-
alent to the discussion above that lead to the conclusion (4.9). To motivate
the second operator we need, we employ a decomposition of polynomials
that will be derived in Section 6.2: the space of degree d polynomials can be
decomposed as

p(d) = p
(d)
h +QAp

(d−2)
h,A +QAQBp

(d−4)
h,AB + · · · (4.12)

with the coefficients p
(d)
h , p

(d−2)
h,A , p

(d−4)
h,AB all annihilated by (C = 0, 1, ..., n−1).

�C =
n−1
∑

A,B=1

d
∑

µ=1

κCAB
∂2

∂XA
µ ∂X

B
µ

(4.13)

The repeated index A in the second term is summed, as are the A,B in the
third term, etc. The decomposition (4.12) is unique in the sense that the
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coefficients p
(d)
h , p

(d−2)
h,A , p

(d−4)
h,AB ,..., in the expansion are unique. The second

operator we use is

α =

n−1
∑

A=0

dA ⊗ ψA (4.14)

where

ψA(g) = g ∧QA (4.15)

and the action of dA is defined using the expansion (4.12): dA simply removes

a QA from each term and it annihilates p
(d)
h :

dA

(

p
(d)
h +QBp

(d−2)
h,B +QBQCp

(d−4)
h,BC + · · ·

)

= p
(d−2)
h,A + 2QBp

(d−4)
h,AB + · · ·

(4.16)

Again, from these definitions it is easy to see that α2 = 0: applying dA twice
produces a symmetric two index tensor pqh,ABC···DQC · · ·QD which vanishes
when summed against g ∧QA ∧QB, which is antisymmetric in A,B.

We will now argue that α ◦ d+ d ◦ α is not degenerate, that is, it has an
inverse. In fact, we will show that acting on a monomial of degree t in the
Qs, it is proportional to the identity

α ◦ d+ d ◦ α = 1 + t (4.17)

In this case, acting on any element k
(q)
h,AB···EQAQB · · ·QE ⊗ QA1 ∧ · · · ∧ QAi

in the kernel of d, we have

(α ◦ d+ d ◦ α)k(q)h,AB···EQAQB · · ·QE ⊗QA1 ∧ · · · ∧QAi

= d ◦ α(k(q)h,AB···EQAQB · · ·QE ⊗QA1 ∧ · · · ∧QAi
)

= d
(

α(k
(q)
h,AB···EQAQB · · ·QE ⊗QA1 ∧ · · · ∧QAi

)
)

= (1 + t)k
(q)
h,AB···EQAQB · · ·QE ⊗QA1 ∧ · · · ∧QAi

(4.18)

so that

Ker(fI−1) ⊆ Im(fI) (4.19)
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and hence, together with (4.9) we have exactness

Ker(fI−1) = Im(fI) (4.20)

Let us now complete the argument by showing that α ◦d+d◦α is indeed
not degenerate. For d◦α we find (assume that p

(q)
h,AB···E has t indices AB · · ·E)

d ◦ α(p(q)h,AB···EQAQB · · ·QE ⊗QA1 ∧ · · · ∧QAi
)

= d





∑

S /∈{A1,...,Ai}

tp
(q)
h,SB···EQB · · ·QE ⊗QA1 ∧ · · · ∧QAi

∧QS





=
∑

S/∈{A1,...,Ai}

tQSp
(q)
h,SB···EQB · · ·QE ⊗QA1 ∧ · · · ∧QAi

+
∑

S/∈{A1,...,Ai}

i
∑

k=1

(−1)i−k+1tQAk
p
(q)
h,SB···EQB · · ·QE ⊗QA1 ∧ · · · Q̂Ak

· · · ∧QAi
∧QS

(4.21)

For α ◦ d we have

α ◦ d(p(q)h,AB···EQAQB · · ·QE ⊗QA1 ∧ · · · ∧QAi
)

= α

(

i
∑

k=1

(−1)i−kp
(q)
h,AB···EQAQB · · ·QEQAk

⊗QA1 ∧ · · · Q̂Ak
· · · ∧QAi

)

=

i
∑

k=1

∑

S /∈{A1,...,Âk,...,Ai}

(−1)i−kdS(p
(q)
h,AB···EQAQB · · ·QEQAk

)⊗QA1 ∧ · · · Q̂Ak
· · · ∧QAi

∧QS

=
i
∑

k=1

∑

S /∈{A1,...,Âk,...,Ai}

(−1)i−ktp
(q)
h,SB···EQB · · ·QEQAk

⊗QA1 ∧ · · · Q̂Ak
· · · ∧QAi

∧QS

+ p
(q)
h,AB···EQAQB · · ·QE ⊗QA1 ∧ · · · ∧QAi

(4.22)

The second term in the answer (4.21) cancels against the first term in (4.22)
to leave

i
∑

k=1

tp
(q)
h,AkB···EQB · · ·QEQAk

⊗QA1 ∧ · · · ∧QAi

(4.23)
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Thus, we find

(d ◦ α + α ◦ d)(p(q)h,AB···EQAQB · · ·QE ⊗QA1 ∧ · · · ∧QAi
)

=
∑

S /∈{A1,...,Ai}

tp
(q)
h,SB···EQSQB · · ·QE ⊗QA1 ∧ · · · ∧QAi

+

i
∑

k=1

tp
(q)
h,AkB···EQB · · ·QEQAk

⊗QA1 ∧ · · · ∧QAi

+ p
(q)
h,AB···EQAQB · · ·QE ⊗QA1 ∧ · · · ∧QAi

= (1 + t)p
(q)
h,AB···EQAQB · · ·QE ⊗QA1 ∧ · · · ∧QAi

(4.24)

which is the result we wanted.

Finally, note that the above long exact sequence can be thought of as
consisting of several short exact sequences. One is the standard short exact
sequence for quotients

0 → I → R → R/I → 0 (4.25)

The next is

Syz(I) → R⊗ VQ → I (4.26)

Here a basis for VQ gives the generators of I. Syz(I) is the syzygy module
for I. It is generated by Λ2(VQ) so that its generators and relations are
expressed in a sequence

Syz(Syz(I)) → R⊗ Λ2(VQ) → Syz(I) (4.27)

4.2 Exact sequence of vector spaces over C

We can consider the vector space formed by polynomials of a fixed degree.
Since the modules of the last section are defined over the ring, a single exact
sequence of modules implies, upon specializing to fixed degree, an exact
sequence for each of these vector spaces. The polynomials at fixed n and fixed
degree k are polynomials dual to primaries constructed using n fields and k
derivatives. There is therefore an interesting CFT motivation to consider
the exact sequences between the vector spaces formed by polynomials of a
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fixed degree, which is the goal of this section. The XA
µ transform as Vd ⊗ VH

of so(d) × Sn, where Vd is the d-dimensional vector of so(d) and VH is the
(n − 1) dimensional hook representation of Sn. For convenience, we define
VdH = Vd ⊗ VH . Polynomials of degree k in XA

µ form a vector space over C

isomorphic to the space of rank k symmetric tensors, denoted Symk(VdH).

At k = 2 we have

0 → VQ → Sym2(VdH) → L(2, d, n) → 0 (4.28)

The space of LWPs at k = 2, denoted L(2, d, n), is obtained by setting the
QA’s to zero. The space Sym2(VdH) is the space of degree two polynomials in
the hook variables XA

µ . The QA’s form a subspace of Sym2(VdH), so we have

a map from VQ to Sym2(VdH). The definition of L(2, d, n) as the quotient
space ensures that the image of the first map is exactly the kernel of the
second map, so that the sequence above is exact. Denoting the dimension of
Symk(VdH) by S(k, d, n), we know that

S(k, d, n) =
((n− 1)d+ k − 1)!

k!((n− 1)d− 1)!
≡ S(k,D = d(n− 1)) (4.29)

The second equality emphasizes the fact that this depends only on D =
d(n − 1). The exact sequence (4.28) implies the following formula for the
dimension of the space of LWPs

L(2, d, n) = S(2, d, n)− Dim(VQ) (4.30)

It is simple to check this independently by comparing to the coefficient of s2

in the expansion of (3.5).

Next, consider degree k = 4. The relevant exact sequence is

0 → Λ2(VQ) → Sym2(VdH)⊗ VQ → Sym4(VdH) → L(4, d, n) → 0 (4.31)

as we explain below. Start by introducing the map f defined by

f : Sym2(VdH)⊗ VQ → Sym4(VdH) (4.32)

Concretely, we have

f : QA ⊗Xa1
µ1
Xa2

µ2
→ QAX

a1
µ1
Xa2

µ1
=

d
∑

µ=1

κABCX
B
µ X

C
µ X

a1
µ1
Xa2

µ2
(4.33)
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Thus, under this map we find

f : QA ⊗QB −QB ⊗QA → 0 (4.34)

Thus, the kernel of the map is Λ2(VQ). When we have a 4-term exact sequence
as above the far right vector space is the cokernel, i.e.

L(4, d, n) = Sym4(VdH)/Im(f) (4.35)

This is indeed the definition of L(4, d, n): It is the quotient space of the
degree 4 polynomials in XA

µ obtained by setting to zero anything of the form
QXX . The exact sequence (4.31) implies the following relation

L(4, d, n) = S(4, d, n)− S(2, d, n)Dim(VQ) + DimΛ2(VQ) (4.36)

which agrees with the coefficient of s4 in the expansion of (3.5).

These exact sequences generalize to any k. We have

0 → Symk−2L(VdH)⊗ ΛL(VQ) → · · · → Symk−2I(VdH)⊗ ΛI(VQ) → · · ·
→ Symk−2(VdH)⊗ VQ → Symk(VdH) → L(k, d, n) → 0

(4.37)

where L = min(⌊k
2
⌋, n). If k is even and k/2 ≤ n, then the second term in

the sequence is Λk/2(VQ). If k/2 ≥ n, it is Symk−2n(VdH) ⊗ Λn(VQ). If k is

odd and (k − 1)/2 ≤ n, then the first non-trivial term is VdH ⊗ Λ
k−1
2 (VQ). If

n ≤ (k − 1)/2, then it is Symk−2n(VdH)⊗ Λn(VQ).

One basic building block that the above sequences are constructed from
is the following

· · · → Symk−2I(VdH)⊗ ΛI(VQ) → Symk+2−2I(VdH)⊗ ΛI−1(VQ)
→ Symk+4−2I(VdH)⊗ ΛI−2(VQ) · · · (4.38)

A simple generalization of the discussion above gives the maps required for
this basic building block. First note that the space ΛI−1(VQ) is spanned by

ǫA1···AI−1AI ···ALQA1 ⊗QA2 ⊗ · · · ⊗QAI−1
(4.39)

with L = min(⌊k
2
⌋, n) as above. Define the map f which maps

f : Symk+2−2I(VdH)⊗ ΛI−1(VQ) → Symk+4−2I(VdH)⊗ ΛI−2(VQ) (4.40)
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as follows

f(Xa1
µ1

· · ·Xak+2−2I
µk+2−2I

⊗ ǫA1···AI−1AI ···ALQA1 ⊗QA2 ⊗ · · · ⊗QAI−1
)

=

d
∑

µ=1

Xa1
µ1

· · ·Xak+2−2I
µk+2−2I

κAI−1BCX
B
µ X

C
µ ⊗ ǫA1···AI−1AI ···ALQA1 ⊗QA2 ⊗ · · · ⊗QAI−2

It is clear that the image of the map

g : Symk−2I(VdH)⊗ ΛI(VQ) → Symk+2−2I(VdH)⊗ ΛI−1(VQ) (4.41)

is in the kernel of f . Indeed, the image of g is spanned by

d
∑

µ=1

Xa1
µ1

· · ·Xak−2I
µk−2I

κAIBCX
B
µ X

C
µ ⊗ ǫA1···AI−1AI ···ALQA1 ⊗QA2 ⊗ · · · ⊗QAI−1

(4.42)

Under f this maps to zero

f(

d
∑

µ=1

Xa1
µ1

· · ·Xak−2I
µk−2I

κAIBCX
B
µ X

C
µ ⊗ ǫA1···AI−1AI ···ALQA1 ⊗QA2 ⊗ · · · ⊗QAI−1

)

=
d
∑

µ,ν=1

Xa1
µ1

· · ·Xak−2I
µk−2I

κAIBCX
B
µ X

C
µ κAI−1FGX

F
ν X

G
ν ⊗

ǫA1···AI−1AI ···ALQA1 ⊗QA2 ⊗ · · · ⊗QAI−2
= 0 (4.43)

where the last equality follows because

d
∑

µ,ν=1

κAIBCX
B
µ X

C
µ κAI−1FGX

F
ν X

G
ν (4.44)

is symmetric under swapping AI and AI−1, and it is contracted with ǫA1···AL .
To complete the discussion, consider

· · · → Symk−2(VdH)⊗ VQ → Symk(VdH) → L(k, d, n) → 0 (4.45)

In terms of the map h which maps

h : Symk−2(VdH)⊗ VQ → Symk(VdH) (4.46)
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we have L(k, d, n) = Symk(VdH)/Im(h), which is true since L(k, d, n) is the
quotient space of the degree k polynomials in the XA

µ obtained by setting
anything of the form QX · · ·X to zero.

The argument above shows that the image is in the kernel. To establish
exactness, we need to show that the kernel is equal to the image. This can
be done exactly as we did it in Section 4.1. We again introduce d (again
motivated by the mappings we just discussed) and α, defined precisely as we
did above. The generalization of the argument is then obvious and we will
not repeat it here.

The exact sequences we have presented in this section imply that

L(k, d, n) =

min(⌊k
2
⌋,n)

∑

I=0

(−1)IDim(Symk−2I(VdH))Dim(ΛI(VQ)) (4.47)

This formula will be used in the next section to refine the counting of LWPs,
by keeping track of the so(d)× Sn irreps of the LWPs. To understand why
this refined counting is possible, note that the maps involved in the exact
sequences given in this section, all commute with so(d) × Sn. The maps
involved in the vector space exact sequences involve replacing QA by its
explicit form κABCX

B
µ X

C
µ . Since the spacetime indices are fully contracted,

the maps replaces an so(d) scalar with an so(d) scalar. Similarly, since κABC

is an invariant tensor, the map is from the hook to the hook irrep. Since this
refinement holds for all of the vector space exact sequences, it should hold
for the module exact sequences too. This is indeed clear from the expressions
d =

∑

AQA ⊗ ιA used in Section 4.1.

5 Refined counting formulae

We have managed to count the number of LWPs of fixed degree, or equiv-
alently, lowest weight states in V ⊗n. There are good reasons to refine this
counting using the so(d)×Sn symmetry present in the problem. Primaries in
the free field theory are Sn invariants. They are labeled by their dimension
and so(d) representation property. In addition, so(d) scalars are relevant
for identifying possible terms in the Lagrangian of effective field theory [3].
This refined counting will ultimately lead to a construction algorithm for
the LWPs. In this section we will carry out this refined counting, using the
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formula (4.47) which follows from the exact sequences developed in the last
section.

A useful starting point for the refined counting is (4.47) which we re-write
slightly here, by substituting VQ → Vnat

L(k, d, n) =

min(⌊k
2
⌋,n)

∑

I=0

(−1)IDim(Symk−2I(VdH))Dim(ΛI(V
(Sn)
nat )) (5.1)

We can start by writing

Symk−2I(VdH) =
⊕

Λ1,Λ3,1⊢n

V
(so(d))
Λ1

⊗ V
(Sn)
Λ3,1

⊗ VΛ1,Λ3,1 (5.2)

The RHS is the decomposition of Symk−2I(VdH) in terms of irreducible rep-
resentations of so(d)× Sn, labeled by (Λ1,Λ3,1). Λ3,1 is a partition of n. A
basis in terms of irreps will include a multiplicity label for the pair (Λ1,Λ3,1),
this multiplicity space is denoted by VΛ1,Λ3,1 .

We will denote the dimensions of these multiplicity spaces by
Mult((Symk−2I(VdH); Λ

so(d)
1 ⊗ Λ

(Sn)
3,1 ). We can also decompose the antisym-

metric (wedge) product of n copies of the natural representation ΛI(V
(Sn)
nat )

into irreps of Sn. The number of times a given Sn irrep Λ3,2 appears will be

denoted by Mult(ΛI(V
(Sn)
nat ); Λ

(Sn)
3,2 ). We can now write the so(d)× Sn refined

version of (5.1) as

L(Λ
so(d)
1 ,Λ

(Sn)
3 ; k, d, n)

=
∑

Λ3,1,Λ3,2⊢n

min(⌊k
2
⌋,n)

∑

I=0

(−1)IMult((Symk−2I(VdH); Λ
so(d)
1 ⊗ Λ

(Sn)
3,1 )

Mult(ΛI(V
(Sn)
nat ); Λ

(Sn)
3,2 )C(Λ3,1,Λ3,2; Λ3)

(5.3)

C(Λ3,1,Λ3,2; Λ3) is the Kronecker multiplicity for Λ3,1⊗Λ3,2 → Λ3. The LHS
is the multiplicity of irreps Λ1,Λ3 in the space of lowest weight states of
dimension L(k, d, n). Consequently, we have

L(k, d, n) =
∑

Λ1,Λ3

Dimso(d)(Λ1)DimSn
(Λ3)L(Λ

so(d)
1 ,Λ

(Sn)
3 ; k, d, n) (5.4)
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It is important to note that the alternating sum formula (5.1) for L(k, d, n)
does not, by itself, imply the refined formula (5.3). However, the exact
sequences underlying (5.1), alongside the fact discussed in Section 4 that
the maps in this exact sequence are so(d)× Sn invariant, do imply that the
sequences can be restricted to specific irreps and hence imply the refined
counting formulae.

We will now make (5.3) more explicit to produce some general so(d)×Sn

refined counting formulae for the space of lowest weight states. To determine
how many times irrep Λ3,2 appears in ΛI(Vnat), we take the trace of the
projector to Λ3,2 from ΛI(Vnat). The result is

Mult(ΛI(V
(Sn)
nat ); Λ

(Sn)
3,2 )

=
∑

p⊢n

∑

q⊢I

(−1)q2+q4+···
χp
Λ3,2

Sym(p)Sym(q)

I
∏

i=1





∑

d|i

dpd





qi

(5.5)

where χΛ3,2 is the Sn character of the permutation with cycle structure p in
irrep Λ3,2 and

Sym(p) =
∏

i

ipipi! (5.6)

with pi denoting the number of parts in partition p that are equal to i. This
is obtained by setting Λ2 = [1k] in (C.4) of Appendix C, and using the fact
that characters in the anti-symmetric are given by (−1)q2+q4+···. We now
need to consider refining Symk(VdH). For the so(d) part, we can use so(d)
characters. For d = 3, we have so(3), so that we only need well known su(2)
results. For d = 4, we will use so(4) = su(2)× su(2), so again we need only
su(2) results.

5.1 Refined Counting: general d

We can make the formula (5.3) more explicit for general d. The formulae
we write here will be not be as computationally efficient as for d = 3, 4 but
may still be useful in further studies of so(d, 2) representations and free field
primaries in higher dimensions. We focus on the d-dependent quantity

Mult(Symk(VdH); Λ
so(d)
1 ⊗ Λ

(Sn)
3 )
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in (5.3). Symk(VdH) is the Sk invariant part of (Vd ⊗ VH)
⊗k = V ⊗k

d ⊗ V ⊗k
H .

We have the decompositions

V ⊗k
d =

⊕

Λ1,Λ2

V
so(d)
Λ1

⊗ V
(Sk)
Λ2

⊗ VΛ1,Λ2 (5.7)

and

V ⊗k
H =

⊕

Λ3,Λ4

V
(Sn)
Λ3

⊗ V
(Sk)
Λ4

⊗ VΛ3,Λ4 (5.8)

To count Sk invariants in V ⊗k
dH , we use the above while setting Λ4 = Λ2. This

leads to

Mult(Symk(VdH ,Λ
so(d)
1 ⊗ Λ

(Sn)
3 ) =

∑

Λ2⊢k

Mult(V ⊗k
d ,Λ

so(d)
1 ⊗ Λ

(Sk)
2 )Mult(V ⊗k

H ,Λ
(Sn)
3 ⊗ Λ

(Sk)
2 )

(5.9)

The Mult(V ⊗k
d ,Λ

so(d)
1 ⊗Λ

(Sk)
2 ) can be calculated using characters of so(d) and

Sk.

Mult(V ⊗k
d , V

so(d)
Λ1

⊗ Λ
(Sk)
2 )

=
1

k!

∑

σ∈Sk

∫

dUχΛ1(U)χΛ2(σ)trV ⊗k
d

(U⊗kσ)

=
∑

p⊢k

∫

dUχΛ1(U)
χp
Λ2

Sym p

∏

i

(trU i)pi (5.10)

For the cases of d = 3, 4 we will give expressions below in terms of gener-
ating functions, which are more explicit than the group integrals above.

5.2 Refined counting: d = 3 case

We need the multiplicities of V
Λ
so(3)
1

⊗ V
Λ
(sk)
2

in V ⊗k
3 . This problem has been

considered in [10]. Our coordinates XA
µ are in the 3 of so(3), which is the

spin 1 of SU(2). For d = 3, Λ1 is parameterised by one integer l for the spin.
Our multiplicities are given by formula 6.2 of [10], with m = 2 for spin 1.
The result is

Mult(V ⊗k
3 , [l]⊗ Λ2)
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= Coefficient



q0, (1− q)q
∑

i ci(ci−1)/2 + l/2−k
∏

(i,j)∈Λ2

(1− q3−i+j)

(1− qh(i,j))





(5.11)

where the notation is an instruction to pick up the coefficient of q0 in the
expansion of the second argument above. ci is the length of the i’th column
of Λ2. k is the number of boxes in Λ2. (i, j) label the row and column of
the boxes in Λ2 and h(i, j) is the hook length of the box. The multiplicity

Mult(Symk−2I(VdH); (Λ
so(d)
1 = [l])⊗Λ

(Sn)
3,1 )) which appears in the present so(3)

instance of (5.1) can be made more explicit. We use VdH = V
so(d)
d ⊗ V Sn

H so
that the k fold tensor power is

(VdH)
⊗k−2I = (V ⊗k−2I

d ⊗ V ⊗k−2I
H ) (5.12)

We can decompose the so(d) and Sn parts separately into irreps of so(d)×Sk

and Sn × Sk respectively. Identifying the Sk irreps and summing projects to
the invariant of Sk. The outcome is

Mult(Symk−2I(VdH); (Λ
so(d)
1 = [l])⊗ Λ

(Sn)
3,1 ))

=
∑

Λ2⊢k−2I

Mult(V ⊗k−2I
3 , [l]⊗ Λ2))Mult(V ⊗k−2I

H , V
(Sn)
Λ3,1

⊗ V
(Sk−2I )
Λ2

)

(5.13)

where

Mult(V ⊗k−2I
H , V

(Sn)
Λ3,1

⊗ V
(Sk−2I )
Λ2

) =
∑

p⊢n

∑

q⊢k

χp
Λ1
χq
Λ2

Sym(p)Sym(q)

k
∏

i=1



−1 +
∑

d|i

dpd





qi

(5.14)

We have again used Appendix C. Explicit counting results obtained by im-
plementing the formulas of this section in Sage are given in Appendix D.

5.3 Refined counting : the d = 4 case

The fundamental of SO(4) is the V1/2⊗ V̄1/2 of SUL(2)×SUR(2), where V1/2
is the two-dimensional spin half irrep of SU(2). XA

µ transforming in V4⊗VH
can be written as XA

α,α̇ to reflect the description as V1/2 ⊗ V1/2 ⊗ VH . It is
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useful to think of V1/2 as a two-dimensional rep of U(2), which we call UL(2)
and likewise V̄1/2 as an irrep of UR(2).

The decomposition relevant for our discussion is

V ⊗k
1/2 =

⊕

Λ2,1∈Y
(k)
2

V
uL(2)
Λ2,1

⊗ V
(Sk)
Λ2,1

(5.15)

where Y
(k)
2 is the set of Young diagrams with k boxes and at most two rows.

This decomposition is an example of Schur-Weyl duality (see for example
[11]). The u(2) irrep associated with a Young diagram having row lengths
(r1, r2) has su(2) spin (r1 − r2)/2 and dimension r1 − r2 + 1. Similarly we
have

V̄ ⊗k
1/2 =

⊕

Λ2,2∈Y
(k)
2

V
uR(2)
Λ2,2

⊗ V
(Sk)
Λ2,2

(5.16)

For the k’th power of the hook we have

V ⊗k
H =

⊕

Λ3∈Y (n)

Λ2,3∈Y (k)

V
(Sn)
Λ3

⊗ V
(Sk)
Λ2,3

⊗ VΛ3,Λ2,3 (5.17)

The dimension of VΛ3,Λ2,3 is the multiplicity of the irrep V
(Sn)
Λ3

⊗ V
(Sk)
Λ2,3

in the

tensor product. The dimension is given by equation (C.4). The final result
is

Symk(V4H) =
⊕

Λ3∈Y (n)

Λ2,1∈Y
(k)
2

Λ2,2∈Y
(k)
2

Λ2,3∈Y
(k)
2

V
uL(2)
Λ2,1

⊗ V
uR(2)
Λ2,2

⊗ V
(Sn)
Λ3

⊗ VΛ3,Λ2,3 ⊗ V Skinvts
Λ2,1,Λ2,2,Λ2,3

(5.18)

where V Skinvts
Λ2,1,Λ2,2,Λ2,3

is the space of Sk invariants in the Kronecker product

Λ2,1 ⊗ Λ2,2 ⊗ Λ2,3 of Sk irreps. The multiplicity of irrep Λ
(Sn)
3 , (l1, l2)so(4)

appearing in Symk(V4H) is thus

∑

Λ2,1∈Y
(k)
2

∑

Λ2,2∈Y
(k)
2

∑

Λ2,3∈Y (k)

δ(r1(Λ2,1)− r2(Λ2,1), l1)δ(r1(Λ2,2)− r2(Λ2,2), l2)
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Mult(V
(Sk)
Λ2,3

⊗ V
(Sn)
Λ3

, V ⊗k
H )C(Λ2,1,Λ2,2,Λ2,3) (5.19)

C is the Kronecker coefficient for Sk. We can plug this into (5.3) in order
to get the refined counting for d = 4. Counting results obtained from these
formulas using Sage are given in Appendix E.

6 The Confluent Binomial Transform and

construction

The exact sequences we derived in Section 4 have led to a dimension for-
mula for L(k, d, n) (or for I(k, d, n)) as an alternating sum involving exterior
powers of VQ. In this section we will show that there is a dimension formula
for I(k, d, n) as a positive sum involving symmetric powers of VQ. The two
formulas are related by an identity involving binomial coefficients. There is
some superficial similarity to equations involved in the binomial transform
of combinatorics, but the identity at hand is different. As we will explain,
the key identity which makes it work is a property of the Tricomi Confluent
Hypergeometric Function. Consequently, we name it the Confluent Binomial
transform (CBT). In this section we will develop these ideas discussing the
dimension formula for I(k, d, n) as a positive sum in detail. This forms the
foundation for a construction algorithm for the LWPs. For this reason, we
will refer to the positive dimension formula in terms of a positive sum as
the construction formula. To go beyond counting and get the construction
algorithm for the LWPs requires a discussion of an inner product.

6.1 From resolution to construction : counting with-

out signs

Using characters we have obtained the generating function of the number of
LWPs as follows

(1− s2)n

(1− s)d(n−1)
=

∞
∑

l=0

L(l, d, n)sl (6.1)

We will derive an interesting expression for L(l, d, n) in terms of S(k, d, n)
which is the dimension of Symk(VdH). Our starting point is the explicit
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expression

S(k, d, n) =
((n− 1)d+ k − 1)!

k!((n− 1)d− 1)!
≡ S(k,D = d(n− 1))

(6.2)

The second equality emphasizes the fact that this depends only on D =
d(n− 1). Observe that

1

(1− s)D
=

∞
∑

k=0

S(k,D)sk (6.3)

or

1

(1− s)d(n−1)
=

∞
∑

k=0

S(k, d, n)sk (6.4)

Then we have

(1− s2)n

(1− s)d(n−1)
=

∞
∑

p=0

n
∑

k=0

S(p, d, n)
n!(−1)k

k!(n− k)!
sp+2k

=

∞
∑

l=0

n
∑

k=0

S(l − 2k, d, n)
n!(−1)k

k!(n− k)!
sl (6.5)

We now find

L(l, d, n) =

n
∑

k=0

(−1)kn!

k!(n− k)!
S(l − 2k, d, n) (6.6)

which is precisely the dimension formula that is implied by the exact se-
quences described in Section 4. We will now argue that there is a second
formula relating L(l, d, n) and S(l − 2k, d, n), given by

S(p, d, n) =

⌊ p
2
⌋

∑

i=0

L(p− 2i, d, n)
(n+ i− 1)!

i!(n− 1)!
(6.7)

Start by substituting the formula (6.6) for L(k, d, n) in terms of S(k, d, n)
into (6.7) to find

S(p, d, n) =

⌊ p
2
⌋

∑

i=0

n
∑

k=0

(−1)kn!

k!(n− k)!

(n + i− 1)!

i!(n− 1)!
S(p− 2i− 2k, d, n)
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=

⌊ p
2
⌋

∑

m=0

min(m,n)
∑

k=0

(−1)kn

(m− k)!k!(n− k)!
S(p− 2m, d, n) (6.8)

This is indeed an equality, which follows after using the identity

min(m,n)
∑

k=0

(−1)k

(m− k)!k!(n− k)!
=

1

n
δm,0 (6.9)

The equation (6.7) implies, after subtracting the i = 0 term L(p, d, n), that
the dimension of the ideal generated by VQ is

Dim(I(p, d, n)) =
⌊ p
2
⌋

∑

i=1

L(p− 2i, d, n)
(n+ i− 1)!

i!(n− 1)!
(6.10)

It turns out that the identity (6.9) is related to a hypergeometric function.
Introduce the function

F (x;m,n) =

⌊ p
2
⌋

∑

m=0

min(m,n)
∑

k=0

(x)k

(m− k)!k!(n− k)!
(6.11)

With the help of Mathematica, we find

F (x;m,n) =
(−1)mxm

m!n!
U [−m, 1 −m+ n,−x−1] (6.12)

where U is a tricomi confluent hypergeometric function. Consequently we
have

⌊ p
2
⌋

∑

m=0

min(m,n)
∑

k=0

(x)k

(m− k)!k!(n− k)!
=

(−1)mxm

m!n!
U [−m, 1 −m+ n,−x−1] (6.13)

This reduces our identity to a property of the tricomi confluent hypergeo-
metric function when the last argument is 1

1

m!n!
U [−m, 1 −m+ n, 1] =

1

n
δm,0 (6.14)

The equation (6.10) gives the dimension of the ideal at each k, as a
sum of positive terms. The ideal generated by the quadratic polynomials
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{QA : 0 ≤ A ≤ n − 1} consists of expressions of the form
∑

A hAQA where
hA ∈ R = C[XA

µ ]. We can organize the ideal, as a vector space over C,
according to how many Q’s they contain if we restrict the coefficients hA
to be without Q’s, in other words to belong to the quotient space R/I.
Elements of degree k containing a single Q, for example, are of the form

∑

A

lAQA (6.15)

where lA is in L(k−2, d, n), the space of LWPs of degree k−2. Consequently,
a subspace of I(k, d, n) is

L(k − 2, d, n)⊗ VQ (6.16)

At this point, we use the identity (6.7), derived with the help of the confluent
binomial transform, to decompose I(k, d, n) as

I(k, d, n) =
⌊k
2
⌋

⊕

i=1

L(k − 2i, d, n)⊗ Symi(VQ) (6.17)

This decomposition gives a way of constructing the space of LWPs, recur-
sively in k. Start with k = 2.

Sym2(VdH) = VQ ⊕ L(2, d, n) (6.18)

From this we read off the fact that the ideal I(2, d, n) is VQ and L(2, d, n) is
the complement to VQ. With an appropriate inner product, to be discussed
in the next section, this will be an orthogonal complement. Now use (6.17)
to write

I(4, d, n) = (L(2, d, n)⊗ VQ)⊕ Sym2(VQ) (6.19)

We know L(2, d, n) from the first step so we can construct this. We then
we take the orthogonal complement to I(4, d, n) in Sym4(VdH) to obtain
L(4, d, n). We then repeat the process: from (6.17) we can construct I(6, d, n)
using

I(6, d, n) = (L(4, d, n)⊗ VQ)⊕ (L(2, d, n)⊗ Sym2(VQ)⊕ Sym3(VQ))
(6.20)
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Now take the orthogonal complement to I(6, d, n) in Sym6(VdH) and we get
L(6, d, n). A similar construction starting from L(1, d, n) = VdH will give a
recursive construction for all the odd k cases.

Much as the exact sequences of vector spaces over C are related to exact
sequences of modules over R = C[XA

µ ], the above equations decomposing the
polynomials in XA

µ of each degree k, can be collected into a statement about
the ring R. The quadratic QA’s span the vector space VQ. The symmetric
algebra of VQ, denoted by Sym(VQ) is the direct sum of symmetrised tensor
products of all degrees

Sym(VQ) =

∞
⊕

k=0

Symk
C
(VQ) (6.21)

The degree 0 part is defined as C. The above decompositions of R at each
degree are captured by

R(d, n) = R(d, n)/I(d, n)⊗C SymC(VQ) (6.22)

which indeed follows from the fact that I is generated by quadratic con-
straints spanning VQ. The subscript C indicates that we are tensoring over
the base field, not over the ring.

6.2 Implementing the construction using the natural

inner product

In the last section we have described an algorithm for the construction of the
polynomials that correspond to primary operators. The algorithm works by
recursively proceeding in degree, using orthogonality to construct the higher
degree spaces from the lower degree ones. The only missing ingredient in the
algorithm was the question of which inner product should be used. In this
section we will fill this hole and give a detailed account of the algorithms
that have been implemented using Mathematica.

Recall that the LWPs are both translation invariant and harmonic. The
requirement of translation invariance is the primary constraint, written us-
ing the differential operator realization of the conformal group which sets
Kµ = ∂

∂xµ . The condition that the polynomials are harmonic follows from
the equation of motion for the free scalar. The irrep V+ corresponding to
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states of the free scalar field, is the space spanned by harmonic and transla-
tion invariant polynomials in xµ. To deal with polynomials that correspond
to primaries built using a product of n scalar fields, we replace xµ → xIµ
with I = 1, 2, · · · , n. The LWPs are now given by the solution to a sys-
tem of differential equations involving COM conditions (d equations) and
the Laplacian conditions (n equations).

Our construction makes use of a natural inner product on polynomials in
xµ, defined by

< xµ1 · · ·xµk
, xν1 · · ·xνk >=

1

k!

∑

σ∈Sk

δµ1,νσ(1)
δµ2,νσ(2)

· · · δµk ,νσ(k)
(6.23)

Polynomials of different degree are orthogonal. There is an obvious extension
to polynomials in the multi-particle system, i.e. polynomials of degree k in
xIµ as follows

< xI1µ1
· · ·xIkµk

, xJ1ν1 · · ·xJkνk >=
1

k!

∑

σ∈Sk

δµ1,νσ(1)
δI1Jσ(1) · · · δµk ,νσ(k)

δIkJσ(k) (6.24)

The construction starts by recognizing that harmonic polynomials can be
obtained as an orthogonal subspace, with orthogonality given by the above
inner product. To make the argument, start by noting that polynomials of
a fixed degree k in xµ correspond to symmetric tensors of degree k. The
symmetric tensors span the space

Symk(Vd) (6.25)

We will now argue that symmetric tensors with non-vanishing trace form
a vector subspace of Symk(Vd) which is orthogonal to the traceless tensors.
The traceless tensors correspond to harmonic polynomials, which establishes
the result.

For simplicity, start with the single particle case. Consider the differential
operator

∑d
µ,ν=1 xµxµ

∂2

∂xν∂xν
. Let it act on all polynomials of fixed degree

- it is a linear operator on this space. This linear operator is hermitian
with respect to the natural inner product introduced above and hence it is
diagonalisable. The harmonic polynomials are the null eigenvectors, while
the traceful eigenvectors belong to the non-zero eigenspace. Since the linear
operator is hermitian eigenstates of different eigenvalue are orthogonal with
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respect to the inner product introduced above. This proves that, for the
single particle case, the traceless tensors form an orthogonal subspace of
Symk(Vd).

The single particle argument is easily generalized: the polynomials in
xIµ which are annihilated by all n Laplacians must be orthogonal to any
polynomial that is not annihilated by one or more Laplacians. The hermitian
linear operator that plays a role in the multi-particle case is the sum of the
single particle operators

OL ≡
n
∑

I=1

d
∑

µ,ν=1

xIµx
I
µ

∂2

∂xIν∂x
I
ν

(6.26)

Anything harmonic in all the xIµ is in the null space of OL. Any eigenvector
not annihilated by all the Laplacians belongs to a non-zero eigenspace of OL.
Since eigenfunctions with distinct eigenvalues are orthogonal this proves that
the multi-harmonic polynomials are orthogonal to the polynomials which are
not multi-harmonic.

We still need to consider the Kµ conditions which we have named the
COM conditions above. A polynomial of degree k in the xIµ is an element of

Symk(Vd ⊗ Vnat). We will first outline the argument for the simplest case of
d = 1. Start from the observation that Symk(Vnat) = Symk(V0 ⊕ VH) which
implies the decomposition

Symk(Vnat) = Symk(V0 ⊕ VH) =
k
∑

l=0

Syml(V0)⊗ Sym(k−l)(VH) (6.27)

Since the natural inner product is Sn invariant, this decomposition is orthog-
onal with respect the natural inner product

< xI , xJ >= δIJ (6.28)

The l = 0 subspace is annihilated by the COM differential operator. Thus,
polynomials that obey the center of mass condition again form an orthogonal
subspace of Symk(V1). A second approach to demonstrate the same fact,
makes use of the operator

O1 =
n
∑

I,J=1

xI
∂

∂xJ
(6.29)
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which is hermitian with respect to the natural inner product. The trans-
lation invariant polynomials belong to the null space of O1, while the non-
translation invariant eigenvectors are not annihilated by O1 and hence belong
to a non-zero eigenspace of O1. Since eigenfunctions of a hermitian operator
with distinct eigenvalues are orthogonal we arrive at our earlier conclusion
that polynomials obeying the center of mass condition again form an orthog-
onal subspace of Symk(V1). As for the Laplacian discussion above, we can
generalize this discussion from d = 1 to general d. For general d we consider

Ocm =

n
∑

I,J=1

d
∑

µ=1

xIµ
∂

∂xJµ
(6.30)

The null space of Ocm are polynomials invariant under simultaneous transla-
tion xIµ → xIµ + aµ. Anything not annihilated by Ocm belongs to a non-zero
eigenspace of Ocm. Since eigenfunctions with distinct eigenvalues are orthog-
onal this proves that the translation invariant polynomials are an orthogonal
subspace of Symk(Vd ⊗ Vnat) for any d.

We are now ready to describe our construction algorithm. The space of
polynomials of fixed degree can be decomposed, with respect to the hermitian
operators Ocm and OL in terms of null and positive eigenvalues as follows

R(k) = (R(k))cm0 ⊕ (R(k))cm+
R(k) = (R(k))L0 ⊕ (R(k))L+ (6.31)

This decomposition is orthogonal with respect to the natural inner product.
The LWPs are in

(R(k))cm0 ∩ (R(k))L0 (6.32)

In the form just described, it is straight forward to produce a Mathematica
implementation of the construction algorithm that gives the full set of LWPs.
Run times increase as the degree k is increased.

An alternative construction algorithm that exploits more of the Sn struc-
ture of the problem, starts by considering polynomials in the hook variables
XA

µ , A = 1, · · · , n − 1. The advantage is that these polynomials already
satisfy the COM condition, so we only need to impose (2.42) and (2.43).
Again, by using Mathematica to pick up the subspace orthogonal to (2.42)
and (2.43) we have also implemented this alternative construction algorithm.
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The above discussion implies that the space of degree k polynomials can be
decomposed as

p(k) = p
(k)
h +QAp

(k−2)
h,A +QAQBp

(k−4)
h,AB + · · · (6.33)

p
(k)
h , p

(k)
h,A, · · · are all polynomials of degree k which are annihilated by the

Laplacians �A defined in (2.49). In the expansion only the first term p
(k)
h is

in (R(k))L0 . The remaining terms belong to (R(k))L+. In the expansion of

p(k), the leading term p
(k)
h is orthogonal to all of the subsequent terms.

6.3 Commutative star product on lowest weight poly-

nomials

As we saw in Section 2 the lowest weight polynomials are in 1-1 correspon-
dence with a quotient ring, which has an associative product inherited from
the quotient construction. Since the Laplacian constraints obeyed by the
polynomials of the ring are second order differential operators, given two
polynomials that obey the Laplacian constraints, the product of the two
will, in general, fail to. Using (6.33) we will show there exists a suitable com-
mutative star product so that given two polynomials that obey the Laplacian
constraints, the star product of the two also obeys the constraints.

The components in the decomposition (6.33) can be organized by the

grading defined by counting the number ofQs. QAp
(k−2)
h,A is degree 1, QAQBp

(k−4)
h,AB

degree 2 and so on. Polynomials obeying the Laplacian constraints are degree
zero. The key idea behind the star product is that the degree just defined
is additive: if polynomial f1 is of degree k1 and f2 is of degree k2 then the
product f1f2 is of degree k with k ≥ k1+k2. This is almost obvious: consider
the product of a degree k1 and degree k2 term

QA1 · · ·QAk1
p
(q1)
h,A1···Ak1

QB1 · · ·QBk2
p
(q2)
h,B1···Bk2

(6.34)

As we explained above, the product p
(q1)
h,A1···Ak1

p
(q2)
h,B1···Bk2

will not in general

obey the Laplacian constraints. Consequently we can again use the decom-
position (6.33) to write

p
(q1)
h,A1···Ak1

p
(q2)
h,B1···Bk2

= p
(q1+q2)
h,A1···Ak1

B1···Bk2
+QCp

(q1+q2−2)
h,A1···Ak1

B1···Bk2
C + · · · (6.35)
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Inserting this back into (6.34) proves the result.

With this observation, we can define the star product. Using (6.33) de-
compose the product of two polynomials, which each obey the Laplacian
constraints

f
(k1)
h g

(k2)
h = (fg)

(k1+k2)
h +QC(fg)

k1+k2−2
h,C + · · ·

+ QC1 · · ·QCm
(fg)

(k1+k2−2m)
C1···Cm

(6.36)

The star product we want is

f
(k1)
h ∗ g(k2)h = (fg)

(k1+k2)
h (6.37)

Only the degree zero term survives because all higher degree terms are set
to zero by the ideal of the ring.

We will now argue that this star product is associative. Recall that the
usual product on polynomials is associative

f
(k1)
h (g

(k2)
h h

(k3)
h ) = (f

(k1)
h g

(k2)
h )h

(k3)
h (6.38)

Refining both sides of this last equation according to degree, we can write
this as

f
(k1)
h

(

(gh)
(k2+k3)
h +QA(gh)

(k2+k3−2)
h,A + . . .

)

= ((fg)
(k1+k2)
h +QA(fg)

(k1+k2−2)
h,A + . . . )h

(k3)
h

(f(gh)
(k2+k3)
h )

(k1+k2+k3)
h +QA(f(gh)

(k2+k3)
h )

(k1+k2+k3−2)
h,A + . . .

= ((fg)
(k1+k2)
h h)

(k1+k2+k3)
h +QA((fg)

(k1+k2)
h h)

(k1+k2+k3−2)
h,A + . . .

(6.39)

Equating degree zero pieces on the two sides we have

(f(gh)
(k2+k3)
h )

(k1+k2+k3)
h = ((fg)

(k1+k2)
h h)

(k1+k2+k3)
h (6.40)

From our definition of the star product we have

f ∗ (g ∗ h) = f ∗ (gh)(k2+k3)
h = (f(gh)

(k2+k3)
h )

(k1+k2+k3)
h (6.41)

(f ∗ g) ∗ h = (fg)
(k1+k2)
h ∗ h = ((fg)

(k1+k2)
h h)

(k1+k2+k3)
h (6.42)
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It is now evident that

f ∗ (g ∗ h) = (f ∗ g) ∗ h (6.43)

demonstrating that the star product is indeed associative.

It is reasonable to expect (based on the study of special instances of
n, d) that this associative product can be expressed in terms of the ordinary
product fg, corrected by products of the form O(f)Õ(g) where O, Õ are ap-
propriate differential operators. Finding the explicit form of these operators
in generality would be an interesting exercise for the future.

7 Further construction methods for lowest

weight polynomials

The construction algorithm we gave in the previous section has a recursive
nature, and produces all the LWPs of degree up to any chosen maximum k.
At each k, it uses orthogonality to elements written in terms of the LWPs
at lower k. A second, more direct, algorithm works at fixed k, and imple-
ments the differential equations defining LWPs. A third algorithm works
with projectors, and is based on analogies between the construction of LWPs
and that of constructing symmetric traceless tensors. All of these algorithms
have been tested in Mathematica. We give a brief discussion of algebraic
geometry methods for constructing the quotient ring at hand.

7.1 Intersection of Kernels of two differential opera-

tors

In this section we will outline a closely related but distinct construction
algorithm. This new algorithm uses the fact that, as we explained earlier,
the space of LWPs can be identified as the common null space of a set of
differential operators. Here we will consider degree preserving version of
the differential operators, and by using positive semi-definiteness properties,
reduce the problem to that of finding the simultaneous null space of two
differential operators. This last step is implemented in Mathematica.
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Consider the space of polynomials of degree k in the dn variables xIµ where
1 ≤ I ≤ n. The degree k is a sum of degrees of k = k1 + k2 + · · ·+ kn, where
kI is the degree in the I’th variable. A general polynomial with specified
degrees (k1, k2, · · · , kn) is

X
~k
~µ = Xµ11,µ12,··· ,µ1k1

;µ21,µ22,··· ,µ2k2
;··· ;µn1,µn2,··· ,µnkn

= x1µ11
· · ·x1µ1k1

x2µ21
· · ·x2µ2k2

· · ·xnµn1
· · ·xnµnkn

(7.1)

All the µ indices take values in the range 1 ≤ µ ≤ d. X is symmetric in the
first k1 indices, the next k2 indices, etc. The number of independent X ’s is

n
∏

I=1

(d+ kI − 1)!

kI !(d− 1)!
(7.2)

We will be considering the vector space of the X ’s, for all ~k satisfying
∑

I kI = k. This is equivalently a sum over partitions of k with up to n parts
(since some of the kI could be zero). This vector space, denoted Wk;n,d, has
dimension

Dim(Wk;n,d) =

k
∑

k1,k2,··· ,kn=0

δ(k, k1 + k2 + · · ·+ kn)

n
∏

I=1

(d+ kI − 1)!

kI !(d− 1)!
(7.3)

Wk;n,d =

k
⊕

k1,k2··· ,kn=0∑
I kI=k

Symk1(Vd)⊗ Symk2(Vd)⊗ · · · ⊗ Symkn(Vd) (7.4)

On this subspace we have the linear operators

O(I)
L = (xI)2�(I) =

d
∑

α,β=1

xIαx
I
α

∂

∂xIβ∂x
I
β

(7.5)

which are degree preserving versions of the Laplacians.

Consider the sum of these n operators

OL =
n
∑

I=1

O(I)
L (7.6)
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The null space of this operator obeys all the Laplacian conditions. The dif-
ferent Laplacian operators are commuting operators and they are all positive
semi-definite operators, i.e. they all have eigenvalues which are non-negative.
Consequently, the vanishing of the sum guarantees the vanishing of the sum-
mands. Thus, polynomials in the null space of OL are harmonic.

For each α ∈ {1, 2, · · · , d}, we have a centre of mass operator

∂

∂xCM
α

=
n
∑

I=1

∂

∂xIα
(7.7)

Polynomial functions of {xIα : 1 ≤ I ≤ n} can be factored into sums of
centre of mass-dependent functions times functions of the differences. The
degree-preserving COM operator

∑

α

xCM
α

∂

∂xCM
α

=
∑

α

n
∑

I,J=1

xIα
∂

∂xJα
(7.8)

is positive semi-definite. Any operator of fixed degree, annihilated by ∂
∂xCM

α

is also annihilated by xCM
α

∂
∂xCM

α
. Therefore the following sum

OCM =

d
∑

α=1

xCM
α

∂

∂xCM
α

=
n
∑

I,J=1

d
∑

α=1

xIα
∂

∂xJα
(7.9)

has the property that its null space is the simultaneous null space of all the
d COM operators.

The null space of OCM obeys the lowest weight condition. We build the
combined operator

O =

(

OL

OCM

)

(7.10)

O is an operator in End(Wk;n,d). The null space of this operator is the
space of lowest weight polynomials of degree k. We have implemented this
algorithm in Mathematica and have checked that the dimension of the null
space of O does indeed agree with the number of LWPs.
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7.2 Constraints and Projectors on VdH ⊗ VdH

An interesting algebraic angle on the primaries problem is that in some sense
it is a generalization of the problem of finding symmetric traceless tensors of
SO(d). Nice bases for these tensors can be constructed using Young diagram
techniques for SO groups. These symmetric traceless tensors are annihilated
by contraction operators. The contraction tensors form part of a Brauer
algebra, so the symmetric traceless tensors of rank k for so(d) are related to
irreps of a Brauer algebra. This follows from the fact that the commutant of
SO(d) in V ⊗k

d , where Vd is the fundamental of so(d), is the Brauer algebra.
In the problem of symmetric tensors we are trying to find tensors

Tµ1,µ2,··· ,µk
(7.11)

such that

Tµ,µ,µ3,··· ,µk
= 0 (7.12)

Note that, because T is symmetric, we can move the paired indices to any
slot. Another way to phrase this is by considering the contraction operator

C12Tµ1,··· ,µk
= δµ1,µ2Tµ,µ,µ3,··· ,µk

= 0 (7.13)

The contraction operator is a projector from Vd ⊗ Vd to the trivial rep of
so(d).

In the present case, there is a natural generalized symmetric tensor in the
game

TA1,A2,··· ,Ak
µ1,µ2,··· ,µk

↔ XA1
µ1
XA2

µ2
· · ·XAk

µk
(7.14)

The symmetry is the Sk group of permutations of the pairs (µ,A). To start
it is constructive to consider the k = 2 case. Define

VdH = Vd ⊗ VH (7.15)

We are looking at the subspace of

V ⊗2
dH (7.16)

which is invariant under the S2 permutation of the two factors, i.e. we are
looking at

Sym2(VdH) (7.17)
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Now Vd⊗Vd contains a symmetric rank 2 tensor, an anti-symmetric rank two
tensor and a trace (invariant) of SO(d) all with multiplicity 1. The product
VH ⊗ VH decomposes under the diagonal Sn as

VH ⊗ VH = V0 ⊕ VH ⊕ V[n−2,2] ⊕ V[n−2,1,1] (7.18)

The symmetric part contains the first three spaces in the direct sum

Sym2(VH ⊗ VH) = V0 ⊕ VH ⊕ V[n−2,2] (7.19)

The constraints tell us that the projection to (V
(Sn)
0 ⊕ V

(Sn)
H )⊗ V

SO(d)
0 inside

Sym2(VdH) vanishes. So we are looking at vectors

v ∈ Sym2(VdH) (7.20)

which obey

(P
(SO(d))
0 (P

(Sn)
0 + P

(Sn)
H )) v = 0 (7.21)

Let us define

PL = (P
(SO(d))
0 (P

(Sn)
0 + P

(Sn)
H )) (7.22)

The operator PL is a projector obeying (PL)2 = PL which follows from

(P
(SO(d)
0 )2 = P

(SO(d))
0

(P
(Sn)
0 )2 = P

(Sn)
0

(P
(Sn)
H )2 = P

(Sn)
H

P
(Sn)
0 P

(Sn)
H = 0

P
(SO(d))
0 P

(Sn)
0 = P

(Sn)
0 P

(SO(d))
0

P
(SO(d))
0 P

(Sn)
H = P

(Sn)
H P

(SO(d))
0 (7.23)

This is a projector PL which acts on pairwise slots. It is the analog of
the contraction tensor of the Brauer algebra. Combine the µ,A indices into
a composite index M . We are considering symmetric tensors

TM1,··· ,Mk
(7.24)

that are annihilated by PL

PL
12TM1,M2,··· ,Mk

= PN1,N2

M1M2
TN1,N2,M3,··· ,Mk

= 0 (7.25)
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We have a very concrete formula for κABC and hence for P

(P )ν1,B1;ν2,B2

µ1,A1,µ2,A2
=

n−1
∑

A=0

δµ1,µ2δν1,ν2κA,A1,A2κA,B1,B2 (7.26)

The symmetry of T then also implies

PN1,N2

M1M2
TN1,M3,N2,··· ,Mk

= 0 (7.27)

and so on for any pair. We will now argue that to find a linear basis at
degree k in the ring of LWPs, we have to consider symmetric tensors T
obeying equation (7.25).

Use the inner product for polynomials in xIµ used before. This induces an
inner product of the same form on XA

µ . For operator

�A =
d
∑

µ=1

n−1
∑

B,C=1

κABC
∂2

∂XB
µ ∂X

C
µ

(7.28)

consider

(�A)
†
�A =

n−1
∑

B,C,D,E=0

d
∑

µ,ν=1

XD
ν X

E
ν κADEκABC

∂2

∂XB
µ ∂X

C
µ

(7.29)

This is a positive semi-definite operator. Any eigenvector v of eigenvalue λ
has the property

(v,�†
A�Av) = λ(v, v) = (�Av,�Av) ≥ 0 (7.30)

so λ ≥ 0. Hence being in the simultaneous null spaces is equivalent to being
in the null space of

n−1
∑

A=0

(�A)
†
�A (7.31)

Symmetric tensors in this null space are equivalently in the null space of PL
12.
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7.3 Standard algebraic geometry methods for R/I
As explained in Section 2, the LWPs are in 1-1 correspondence with the el-
ements of R/I. The quotient ring is defined in terms of equivalence classes.
Each equivalence class contains an LWP. There are standard algebraic geome-
try methods, based on Groebner bases, for the construction of the equivalence
classes. The Groebner bases rely on choosing certain orderings on monomi-
als [6]. To pick the LWPs within each equivalence class would probably be a
non-trivial additional step. The polynomials QA are polynomials with inte-
ger coefficients, so another approach to the quotient ring may be to use an
analog of Groebner bases which works for rings defined over integers (see e.g.
[12]). If we are interested in the effective action problem [3], it is only the
quotient ring which is of interest. If we are interested in constructing pri-
mary fields in CFT, the specific LWPs are important. It will be interesting
to investigate the efficacy of the different algorithms given here, relative to
the algebraic geometry methods, from the point of view of primary fields as
well as from the point of view of effective actions.

8 Discussion and Future Directions.

We have considered the problem of constructing primary fields in free scalar
CFTs in general dimensions, combining insights from [4, 1, 2] and [3]. This
has been a fruitful avenue, with the key results described in the introduction
and developed in the bulk of the paper.

A number of future projects are suggested by our results. We have given
a number of Mathematica constructions of lowest weight polynomials. These
codes are available upon request.

It would be interesting to compare the efficiency of the different algo-
rithms discussed in Sections 6 and 7. Extending the present work to fermions
and gauge fields is a worthwhile avenue. For the holomorphic sector of pri-
maries in the free fermion theory see [13].

To get primary fields in the CFT, we have to project to Sn invariants.
The Hilbert series of the Sn invariants is easy to write in terms of those
for the LWPs (see [4]). A complete description of the ring structure for Sn

invariants in the d = 3, 4 is a worthwhile goal in the short term.
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It would be interesting to investigate for more general rings, the connec-
tion between resolution and construction we have given in Section 6. In the
present case all the constraints are quadratic. There should be closely related
generalizations when the constraints are each homogeneous but of different
degrees.

8.1 Further developing the Analogy to tracelessness :

a generalization of Brauer algebras

In section 7.2 we developed an approach to the construction of LWPs, based
on projectors acting on degree k polynomials in XA

µ . These polynomials form

a vector space isomorphic to the space of symmetric tensors Symk(VdH). It
is useful to consider the tensor product V ⊗k

dH where we have the projectors
PL

ij acting on the slots labeled i, j, and subsequently projecting to the Sk

symmetric part. This is analogous to the problem of constructing symmetric
traceless tensors in V ⊗k

d . In this case there are finite algebras, the Brauer
algebras Dk(d) the commutant of o(d) in V ⊗k

d , which give a representation
theory meaning to this construction. For the representation theory of Dk(d),
see for example [14]. In the present case, we have an analog of the Brauer
algebra, namely the algebra generated by PL

ij ⊂ End(V ⊗k
dH ) along with per-

mutations in Sk. Let us call this algebra A(k, d, n). It is plausible that
the LWPs form irreducible reps of this algebra. It would be interesting to
investigate this conjecture.

As explained in [4], part of the motivation for studying free field primaries
comes from the goal of finding a uniform framework of algebraic structures,
based on two dimensional topological field theory (TFT2), for understanding
both the space-time dependence and the combinatoric structure of correla-
tors in N = 4 SYM. The combinatorics of the half-BPS sector is controlled
by a Frobenius algebra (TFT2) which is the space of conjugacy classes of
symmetric groups Sn for all n, resulting in useful Young diagram bases for
AdS/CFT [15]. For the quarter BPS sector at zero coupling, we have an alge-
bra which is a subspace of C(Sn+m) invariant under conjugation by Sn × Sm

[16, 17, 18]. This algebra arises as a way to describe nice bases for the ring
of polynomial gauge invariant functions of two matrices Y, Z, which are or-
thogonal under free field inner products [19, 20]. Analogous constructions
based on Brauer algebras provide an alternative approach to these orthogo-
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nal bases [21]. Generalizing these constructions to matrix systems forming
representations of general symmetry groups led to an initial foray into the
problem of constructing primary fields [22, 23].

The theme of finite dimensional algebras controlling questions about infi-
nite dimensional representations of the conformal group has been a recurring
theme. Developing the algebraic approach to LWPs based on representations
of A(k, d, n) would be a concrete manifestation of the unity between alge-
braic structure for combinatorics and space-time dependence of correlators
of gauge invariant observables.

8.2 Quadratic algebras and Koszul algebras.

We have shown that the LWPs are in 1-1 correspondence with the quotient
ringR/I, whereR = C[XA

µ ] and I is generated by (2.44). This is an example
of a quadratic algebra. These are defined by quotients of the tensor algebra
T (V) of a vector space V, determined by a quadratic form R ⊂ V ⊗ V [24].
In the present case, V = VdH (let us use basis vectors eAµ ) and R is spanned
by

eAµ ⊗ eBν − eBν ⊗ eAµ ,
∑

µ

∑

B,C

κABCe
B
µ ⊗ eCµ (8.1)

The quotient is T (V)/ < R >. For the explicit definition of < R > see
Chapter 4 of [9]. It involves tensoring with arbitrary tensor powers of V
on the left and right. The first line above ensures that we project from the
tensor algebra to the symmetric algebra. Equivalently we go from generators
of free algebras to commuting generators XA

µ . Every quadratic algebra has
a dual quadratic algebra defined by R⊥ ⊂ V ∗ ⊗ V ∗. In the present case, we
can work out that

R = Λ2(VdH) ⊕ Invtso(d)(Sym
2(Vd))⊗ (Sym2(VH))[n]+[n−1,1]

R⊥ = Λ2(V ∗
d )⊗ Λ2(V ∗

H) ⊕ (Sym2(V ∗
d ))

′ ⊗ Sym2(V ∗
H)

⊕ (Invt(Sym2(V ∗
d ))⊗ (Sym2(V ∗

H))[n−2,2]

(8.2)

The details are not important. An important observation is that T (V)/ <
R > is a commutative algebra due to the presence of Λ2(VdH) as a direct
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summand in R, while T (V)/ < R⊥ > is not commutative due to the lack of
such a direct summand.

A special class of quadratic algebras are said to be Koszul, which hap-
pens when the algebras form part of certain exact resolutions of the base field
(see [24, 9]). Koszul algebras have a property of Koszul duality whereby the
quadratic algebra and its dual quadratic algebra have equivalent derived cat-
egories of modules ( see [25] and references therein). An interesting question
is whether R/I is Koszul. If it is, this will be much more than a mathe-
matical curiosity. It is plausible that modules of R/I control the properties
of primary fields for fermions, gauge fields and higher spin fields. This is
expected by analogy to non-commutative geometry where the configuration
space of a scalar field becomes a non-commutative algebra and the config-
uration spaces of non-trivial fields becomes modules over the algebra [26].
Thus if the Koszul property holds in the present case, the physics of R/I
may be equivalent to the physics of the Koszul dual algebra. This would in-
dicate there might exist a hidden non-commutative reformulation of ordinary
quantum field theory !

So isR/I a Koszul algebra? Deformations of this algebra of lowest weight
primaries, where the coefficients κABC are modified so that they satisfy a
genericity condition, are Koszul [27]. A useful fact ( Example 2 follow-
ing Corollary 6.3 in [24]) is that C[x1, · · · , xn]/ < q1, · · · , qr > is Koszul
if q1, q2, · · · , qr form a regular sequence of quadrics. Applying this to our
case, the question is whether the {Q0, Q1, · · · , Qn−1} (without deformation
to reach the genericity condition of [27]) form a regular sequence. We leave
this as a question for the future.

8.3 Future direction : Coherence relations between

two products.

We showed in [4] that the OPE in free scalar theory can be used to define a
commutative so(4, 2) covariant algebra with a non-degenerate bilinear pair-
ing. The crossing equation of CFT becomes ordinary associativity of the
algebra. Here we have seen that there is an algebra controlling primary fields
for every n. The interplay between the commutative algebra coming from the
OPE and the algebra studied here is an interesting question for the future.
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A The invariant in VH ⊗ VH ⊗ VH

In this section we will give the derivation of (2.32). Inserting the explicit
expressions for the SAI we have

∑

I

SCISBISAI = NANBNC

∑

I

(

−C δI,C+1 +
C
∑

J1=1

δJ1,I

)

(

−B δI,B+1 +

B
∑

J2=1

δJ2,I

)(

−A δI,A+1 +

A
∑

J3=1

δJ3,I

)

(A.1)

Expanding the brackets out there are 8 terms. Call them T1, T2, · · ·T8. We
will deal with each term separately in what follows.

T1 = −ABC
∑

I

δI,C+1δI,B+1δI,A+1

= −ABCδABδBC

= −ABCδA,B,C (A.2)

T2 = BC

n
∑

I=1

δI,C+1δI,B+1

A
∑

J3=1

δJ3,I
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= BCδB,C

n
∑

I=1

δI,B+1

A
∑

J=1

δJ,I

= BCδB,C

A
∑

I=1

δI,B+1

= BCδB,CΘ(B < A) (A.3)

T3 = AC
∑

I

δI,C+1δI,A+1

B
∑

J2=1

δJ2,I

= ACδA,C

n
∑

I=1

δI,C+1

B
∑

J2=1

δJ2,I

= ACδA,C

B−1
∑

I=1

δI,B−C (A.4)

The last delta function is only non-zero if B ≥ C + 1. Define

Θ(B > C) = 1 if B > C
= 0 otherwise (A.5)

We can then write

T3 = ACδA,CΘ(B > C) (A.6)

For the fourth term, we have

T4 =

n
∑

I=1

δI,C+1

B
∑

J2=1

A
∑

J3=1

δJ2,IδJ3,I

=
B
∑

J2=1

A
∑

J3=1

δJ2,C+1δJ3,C+1

= Θ(B > C)Θ(A > C) (A.7)

Continuing, we have

T5 = BA
∑

I

δI,B+1δI,A+1

C
∑

J1=1

δJ1,I
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= BAδBA

∑

I

δI,A+1

C
∑

J1=1

δJ1,I

= BAδB,AΘ(A < C) (A.8)

T6 = −B
∑

I

δI,B+1

C
∑

J1=1

A
∑

J3=1

δJ3,IδJ1,I

= −
C
∑

J1=1

A
∑

J3=1

δJ3,B+1δJ1,B+1

= −BΘ(B < C)Θ(B < A) (A.9)

T7 = −A
∑

I

δI,A+1

C
∑

J1=1

B
∑

J2=1

δJ1,IδJ2,I

= −A
C
∑

J1=1

B
∑

J2=1

δJ1,A+1δJ2,A+1

= −AΘ(A < C)Θ(A < B) (A.10)

T8 =
∑

I

C
∑

J1=1

B
∑

J2=1

A
∑

J3=1

δJ1,IδJ2,IδJ3,I

=
C
∑

J1=1

B
∑

J2=1

A
∑

J3=1

δJ1,J3δJ2,J3

=

C
∑

J1=1

B
∑

J2=1

A
∑

J3=1

δJ1,J2,J3

= Min (A,B,C) (A.11)

Summing these terms gives (2.32).

A.1 The κ polynomial

The 3-index invariant κABC can be used to define a symmetric polynomial
in z1, z2, · · · , zn−1.

κ(z1, z2, · · · , zn−1) =
∑

A,B,C

κA,B,CzAzBzC
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= −
∑

A

A3z3A +
∑

A>B

B2zAz
2
B +

∑

C>A

A2z2AzC +
∑

A<B

A2z2AzB −
∑

C<A;C<B

CzAzBzC

−
∑

B<C;B<A

BzAzBzC −
∑

A<B;A<C

AzAzBzC +
∑

A,B,C

Min(A,B,C)zAzBzC

= −
∑

A

A3z3A + 3
∑

A<B

A2z2AzB − 3
∑

A<B,A<C

AzAzBzC +
∑

A,B,C

Min(A,B,C)zAzBzC

(A.12)

We used a renaming of summation variables to get the last line. The third
term can be manipulated by separating into the case B = C, the case A <
B < C and the case A < C < B to give

−3
∑

A<B,A<C

AzAzBzC = −3
∑

A<B

AzAz
2
B − 3

∑

A<B<C

AzAzBzC − 3
∑

A<C<B

AzAzBzC

= −3
∑

A<B

AzAz
2
B − 6

∑

A<B<C

AzAzBzC (A.13)

The last term can be separated into the cases A = B = C, the case where
two are equal and smaller than the third, and the case where two are equal
and larger than the third, and the case where all are different

∑

A,B,C

Min(zA, zB, zC)zAzBzC =
∑

A

Az3A + 3
∑

A<B

Az2AzB + 3
∑

A<B

AzAz
2
B + 6

∑

A<B<C

AzAzBzC

(A.14)

Collecting all the terms leads to some cancellations and simplifications :

κ(zA) =
∑

A

A(1− A2)z3A +
∑

A<B

3A(1 + A)z2AzB (A.15)

In particular there are no terms where all the indices are different.

Consider now the polynomial κA(z1, z2, · · · , zn−1)

κA(z) =
∑

B,C

κABCzBzC (A.16)

Consider

∂κ(z)

∂za
=

∂

∂za

∑

A,B,C

κABCzAzBzC
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= 3
∑

B,C

κaBCzBzC = 3κa(z) (A.17)

So we find

κa(z) =
1

3

∂κ(z)

∂za
(A.18)

Now use the result (A.15) to find

κa(z) = a(1− a2)z2a +
∑

A<a

A(1 + A)z2A +
∑

a<B

2a(1 + a)zBza (A.19)

Rewrite

κA(z) = A(1− A2)z2A +
∑

B<A

B(1 +B)z2B +
∑

A<B

2A(1 + A)zBzA (A.20)

Using the above polynomial, we find the explicit form of the constraints
to be

For 1 ≤ A ≤ (n− 1) :

A(1−A2)X(A)
µ X(A)

µ +
∑

B:B>A

2A(1 + A)X(A)
µ X(B)

µ +
∑

B:B<A

B(1 +B)X(B)
µ X(B)

µ = 0

and

n−1
∑

A=1

X(A)
µ X(A)

µ = 0 (A.21)

B Examples of R/I at low n, d

Recall that V is the representation of so(4, 2) that has all the states which
correspond, by the operator-state correspondence, to the fundamental field
and its derivatives. The unrefined generating function for the fundamental
field of so(4, 2) is (the factor in front of the trace below removes the contri-
bution from the dimension of the scalar field itself)

s
2−d
2 trV (s

D) =
(1− s2)

(1− s)4
=

(1 + s)

(1− s)3
(B.1)
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This is exactly the unrefined Hilbert series for the conifold C (see eq. (4.5)
of [28]. This is not an accident: the conifold is the solution set of

z21 + z22 + z23 + z24 = 0 (B.2)

There are 4 generators and one quadratic relation, which matches the so(4, 2)
problem. In constructing the basic irrep for the free scalar field, we look at
states constructed by acting with Pµ on the ground state, and set to zero the
equation of motion PµPµ = 0.

For the case of the d = 4, n = 3 primaries (skipping the n = 2 case where
we have null vectors to deal with), we have the unrefined counting function

(1− s2)3

(1− s)8
(B.3)

This answer is intuitive: as we have explained, here we are looking at poly-
nomials in 3 coordinates x1µ, x

2
µ, x

3
µ. After solving the COM condition we

have polynomials in the two coordinates X1
µ, X

2
µ which are annihilated by

the Laplacian in X1, the Laplacian in X2, and by

d
∑

µ=1

∂2

∂X
(1)
µ ∂X

(2)
µ

(B.4)

This ring should be the ring of polynomials on C2 subject to the condition

d
∑

µ=1

Z(1)
µ Z(2)

µ = 0 (B.5)

So the counting of states in this case corresponds to a subvariety in the
product of two copies of the conifold.

In d = 3 the ring with generators z1, z2, z3 with relation

z21 + z22 + z23 = 0 (B.6)

is the A1 singularity. So the n = 3 problem is a subvariety of the product of
two A1 singularity.

It is easy to make further connections between the so(3, 2)) counting of
states in V ⊗n and the algebraic geometry of subvarieties. These connections
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can be verified using the SAGE computer package. For example, if n = 4 we
have the following four constraints (we have rescaled X(3) by

√
2)

X(1) ·X(2) +X(1) ·X ′(3) = 0
X(1) ·X(1) −X(2)X(2) +X(2) ·X ′(3) = 0

X(1) ·X(1) +X(2) ·X(2) − 4X ′(3) ·X ′(3) = 0
X(1) ·X(1) +X(2) ·X(2) + 2X ′(3) ·X ′(3) = 0 (B.7)

Setting d = 3 we have checked that we obtain the correct Hilbert series, by
using the sage commands

R.<x1,x2,x3,y1,y2,y3,z1,z2,z3>=PolynomialRing(QQ,9); R

I=Ideal([

x1*y1+x2*y2+x3*y3+x1*z1+x2*z2+x3*z3,

x1^2+x2^2+x3^2-y1^2-y2^2-y3^2+y1*z1+y2*z2+y3*z3,

x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-4*z1^2-4*z2^2-4*z3^2,

x1^2+x2^2+x3^2+y1^2+y2^2+y3^2+(z1^2+z2^2+z3^2)*2])

sage: I.hilbert_series()

The Hilbert series we obtain is

H(s) =
(1− s2)4

(1− s)9
(B.8)

which is indeed correct.

For n = 5, after a suitable rescaling, we have the following five constraints:

X(1) ·X(2) +X(1) ·X(3) +X(1) ·X(4) = 0
2X(1) ·X(1) − 6X(2)X(2) + 12X(2) ·X(3) + 12X(2) ·X(4) = 0

2X(1) ·X(1) + 6X(2) ·X(2) − 24X(3) ·X(3) + 24X(4) ·X(3) = 0
2X(1) ·X(1) + 6X(2) ·X(2) + 12X(3) ·X(3) − 60X(4) ·X(4) = 0

X(1) ·X(1) +X(2) ·X(2) +X(3) ·X(3) +X(4) ·X(4) = 0

Using the sage commands

R.<x1,x2,x3,y1,y2,y3,z1,z2,z3,w1,w2,w3>=PolynomialRing(QQ,12); R

I=Ideal([

x1*y1+x2*y2+x3*y3+x1*z1+x2*z2+x3*z3+x1*w1+x2*w2+x3*w3,
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2*(x1^2+x2^2+x3^2)-6*(y1^2+y2^2+y3^2)+12*(y1*z1+y2*z2+y3*z3)

+12*(y1*w1+y2*w2+y3*w3),

2*(x1^2+x2^2+x3^2)+6*(y1^2+y2^2+y3^2)-24*(z1^2+z2^2+z3^2)

+24*(z1*w1+z2*w2+z3*w3),

2*(x1^2+x2^2+x3^2)+6*(y1^2+y2^2+y3^2)+12*(z1^2+z2^2+z3^2)

-60*(w1^2+w2^2+w3^2),

(x1^2+x2^2+x3^2)+(y1^2+y2^2+y3^2)+(z1^2+z2^2+z3^2)

+(w1^2+w2^2+w3^2)])

I.hilbert_series()

we again obtain the correct Hilbert series

H(s) =
(1− s2)5

(1− s)12
(B.9)

C Derivation of a symmetric group multi-

plicity formula for V ⊗k
H

The multiplicity of Sn×Sk irreps in V ⊗k
H , where VH is the Sn irrep associated

with Young diagram [n − 1, 1], is obtained by taking the trace of appropri-
ate projectors which are expressible using characters [11]. We have (see for
example [23] for further explanation of this formula)

Dim(VΛ2,Λ1) =Mult(V ⊗k
H , V Sn

Λ1
⊗ V Sk

Λ2
)

=
1

n!k!

∑

σ∈Sn

∑

τ∈Sk

χΛ1(σ)χΛ2(τ)
∏

i

(trH(σ
i))Ci(τ)

=
∑

p⊢n

∑

q⊢k

χp
Λ1
χq
Λ2

Sym p Sym q

∏

i

(trH(σ
i
p))

qi (C.1)

Here σp is a perm with cycle structure p. Now note that we have

trVH
(σ) = trnat(σ)− trtriv(σ)

= C1(σ)− 1 (C.2)

and

trH(σ
i) = C1(σ

i)− 1
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= −1 +
∑

d|i

dCd(σ) (C.3)

When we raise a permutation to power i, all cycles of length d which divide
i split into d cycles of length 1. It follows

Dim(VΛ2,Λ1) =
∑

p⊢n

∑

q⊢k

χp
Λ1
χq
Λ2

Sym p Sym q

k
∏

i=1



−1 +
∑

d|i

dpd





qi

(C.4)

D Refined counting of LWPs in d = 3 dimen-

sions : Tables

In this Appendix we summarize multiplicities for primaries constructed using
n fields and k derivatives. These primaries transform in the spin l represen-
tation of so(3) and in the Λn of Sn.

l Λ3 Mult

2 [3] 1

2 [2, 1] 1

1 [1, 1, 1] 1

Table 1: Results for n = 3 fields and k = 2 derivatives.

l Λ3 Mult

3 [3] 1

2 [2, 1] 1

3 [2, 1] 1

3 [1, 1, 1] 1

Table 2: Results for n = 3 fields and k = 3 derivatives.
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l Λ3 Mult

4 [3] 1

3 [2, 1] 1

4 [2, 1] 2

3 [1, 1, 1] 1

Table 3: Results for n = 3 fields and k = 4 derivatives.

l Λ4 Mult

3 [4] 1

1 [3, 1] 1

2 [3, 1] 1

3 [3, 1] 2

2 [2, 2] 1

1 [2, 1, 1] 1

2 [2, 1, 1] 1

3 [2, 1, 1] 1

0 [1, 1, 1, 1] 1

Table 4: Results for n = 4 fields and k = 3 derivatives.
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l Λ5 Mult

3 [5] 1

1 [4, 1] 1

2 [4, 1] 1

3 [4, 1] 2

1 [3, 2] 1

2 [3, 2] 1

3 [3, 2] 1

1 [3, 1, 1] 1

2 [3, 1, 1] 1

3 [3, 1, 1] 1

1 [2, 2, 1] 1

2 [2, 2, 1] 1

0 [2, 1, 1, 1] 1

Table 5: Results for n = 5 fields and k = 3 derivatives.

E Refined counting of LWPs in d = 4 dimen-

sions : Tables

We give the multiplicities for primaries constructed using n fields and k
derivatives. These primaries transform in the spin (l1, l2) representation of
so(4) and in the Λn of Sn.

l1 l2 Λ3 Mult

1 1 [3] 1

1 1 [2, 1] 1

0 1 [1, 1, 1] 1

1 0 [1, 1, 1] 1

Table 6: Results for n = 3 fields and k = 2 derivatives.
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l1 l2 Λ3 Mult

3/2 3/2 [3] 1

1/2 3/2 [2, 1] 1

3/2 1/2 [2, 1] 1

3/2 3/2 [2, 1] 1

3/2 3/2 [1, 1, 1] 1

Table 7: Results for n = 3 fields and k = 3 derivatives.

l1 l2 Λ3 Mult

0 2 [3] 1

2 0 [3] 1

2 2 [3] 1

1 2 [2, 1] 1

2 1 [2, 1] 1

2 2 [2, 1] 2

1 2 [1, 1, 1] 1

2 1 [1, 1, 1] 1

Table 8: Results for n = 3 fields and k = 4 derivatives.
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l1 l2 Λ4 Mult

3/2 3/2 [4] 1

1/2 1/2 [3, 1] 1

1/2 3/2 [3, 1] 1

3/2 1/2 [3, 1] 1

3/2 3/2 [3, 1] 2

1/2 3/2 [2, 2] 1

3/2 1/2 [2, 2] 1

1/2 1/2 [2, 1, 1] 1

1/2 3/2 [2, 1, 1] 1

3/2 1/2 [2, 1, 1] 1

3/2 3/2 [2, 1, 1] 1

1/2 1/2 [1, 1, 1, 1] 1

Table 9: Results for n = 4 fields and k = 3 derivatives.
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l1 l2 Λ5 Mult

3/2 3/2 [5] 1

1/2 1/2 [4, 1] 1

1/2 3/2 [4, 1] 1

3/2 1/2 [4, 1] 1

3/2 3/2 [4, 1] 2

1/2 1/2 [3, 2] 1

1/2 3/2 [3, 2] 1

3/2 1/2 [3, 2] 1

3/2 3/2 [3, 2] 1

1/2 1/2 [3, 1, 1] 1

1/2 3/2 [3, 1, 1] 1

3/2 1/2 [3, 1, 1] 1

3/2 3/2 [3, 1, 1] 1

1/2 1/2 [2, 2, 1] 1

1/2 3/2 [2, 2, 1] 1

3/2 1/2 [2, 2, 1] 1

1/2 1/2 [2, 1, 1, 1] 1

Table 10: Results for n = 5 fields and k = 3 derivatives.
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