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Abstract

We formulate the conditions defining the irreducible continuous spin representa-
tion of the four-dimensional Poincaré group based on spin-tensor fields with dotted
and undotted indices. Such a formulation simplifies analysis of the Bargmann-Wigner
equations and reduces the number of equations from four to three. Using this for-
mulation we develop the BRST approach and derive the covariant Lagrangian for the
continuous spin fields.

1 Introduction

Description of the irreducible representations of the Poincaré and AdS groups play important
role in the formulation of the higher spin field models (see e.g. the reviews [I], [2]). One of
such representations is representation with continuous spin.

Continuous (or infinite) spin representation of the Poincaré group [3H5] being massless
has unusual properties such as an infinite number of degrees of freedom and appearance of
the dimensional parameter p in the conditions defining the irreducible representation (see
for the review [0]). Lagrangian for the bosonic field in d = 4 was first proposed in ref. [7]
and its structure was analyzed in ref. [8]. Later Lagrangian for bosonic continuous field
was generalized for d > 4 and written in terms of a tower of double traceless tensor fields
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in the works [9] and in terms of two towers of traceless fields in the works [10] (see also
the approaches to Lagrangian constriction in the works [ITHI6] for bosonic and fermionic
fields and relation to the string theory in [I7,[18]). Interaction of continuous spin fields with
finite spin massive fields was considered in the papers [19,20]. Model of relativistic particle
corresponding to continuous spin field has been constructed in the recent work [21].

In the present paper we develop the BRST approach to derive the Lagrangian for the
continuous spin fields in four-dimensional Minkowski space. This approach is a direct gen-
eralization of the general BRST construction which was used in our works for deriving the
Lagrangians for the free fields of different types in flat and AdS spaces (see e.g. [22H26] and
the references therein, see also the review [27] ) The crucial element of our approach is the
implementation of the two-component spinor description for the continuous spin fields. We
suppose that the BRST construction in terms of spin-tensor fields, considered in the given
paper, essentially simplifies an clarifies the derivation of the Lagrangian and its analysis.

The paper is organized as follows. In the next section we consider a new, in comparison
with ref. [3], possibility of realization for the spin momentum operators in terms of two-
component spinors and obtain new equations for the field realizing the continuous spin
irreducible representation of the Poincaré group. After this we solve one of these equations
and in section Bl we construct Lagrangian on the base of the BRST method. Then we show
that after removing one auxiliary field and rescaling the other fields and the gauge parameter
the Lagrangian obtained exactly coincides with Lagrangian derived by Metsaev [10].

2 Spin-tensor representation

According to Bargmann and Wigner [3], the continuous spin field are characterized by the
following eigenvalues of the Casimir operators

P>U =0 W2¥ = 20, (1)

In order to obtain these equations in explicit form we need the explicit expressions for the
operators entering into the Casimir operators. Such expressions for the operators depend on
how ¥ transforms under action of the Poincaré group.

In the works on continuous spin field it usually was done in the following way. Let us
introduce an auxiliary 4-dimensional vector w* and define

QOS(I’ w) = Pui..ps (ZL’) wht . 'wus> (2)

where ¢, . (x) is a totally symmetric tensor field. Then one realizes the spin momentum
operator for ,(z,w) as follows

M 0 0

= w”iaw” - wuiawu. (3)

IThe various applications of the BRST-BFV construction in the continuous spin field theory have been
studied in refs. [9}10}14}T5L19,28,29].



Using this relation for the spin momentum operator one can write the Wigner equations [3]
p*¥(p,w) = 0,
(pyw” + p)¥(p,w) = 0,

0
Y v =
Yo (p,w) =0,

(85}” 8181),, + 1) U(p,w)=0. (4)
If the four equations (4l) are satisfied, then the field W will satisfy () and thus will describe
the irreducible representation of the Poincare group with continuous spin.

We want to turn attention that there is another possibility to realize the spin momentum
operator and corresponding representation. Instead of usual tensor fields (2) we consider the
spin-tensor field ¢, ., ; ; () with n undotted and k dotted indices and define

P T, E,8) = Qi (@) €€ E (5)

where we have introduced two auxiliary bosonic 2-dimensional spinors £* and g’ of the
Lorentz groupﬁ. In this representation the spin momentum operator looks like thi

M, = oMy — 5% M,, (6)
where
My = %f%ca% + %fcﬁcbaia = —% (faﬁb + flﬂTa>, (7)
Wiy = g+ 5€ger = =5 (6 +Gm) ©)
M= iz Ta= iz )

One can prove that the operator (@) satisfies the commutation relation for the Lorentz group
generators.

To construct the second Casimir operator for the spin-tensor representation one uses the
explicit expression for the spin operator (@) acting on the spin-tensor fields. In this case the
second Casimir operator becomes

_ . ; 1 s
W2 = —Muy My PP 4 o (Mo M 4 M M%) P2 (10)
After some transformations the second Casimir operator takes the form

1 — 1 - __
w? = 5(50“5)@0”%)13#13,, + 5(50’“7‘(’)(71’0”5)P“PV
1 o ah s
+5 (MabM“b + M M z{“wa> p? (11)
2The two-component spinors have been used for description of the representations with continuous spin

in ref. [4]. However they were applied for the other aims.
3We use the notation as in book [30]




Using the identity
((otm)(RGVE) PP, = (£0tE) (76" 7) PP, + £%%4 (i + ma") P? (12)
we can write the operator W2 in two equivalent forms
W? = (£o*€)(r6"m)P,P,

1 T
+3 <MabM“b + M NI ¢ 5“@5%) P? (13)
or

W? = (éo'rm)(767€)P,P,
1 _
+5 (MabM“b + M, N — gamwaga) P2, (
We will consider the irreducible representation with continuous spin on the fields ¥(p, £, éi ),
depending on the momentum p, and spin-tensor variables £ and £%. Let the field ¥(p, &

3]
satisfies the constraints

pU(p, &€ =0, (15)
((mo"m)py + i) ¥ (p,€,€) =0, (16)
((£0")pu — i) ¥(p, &, €) = 0. (17)

Then on can show that conditions () are satisfied and hence the field ¥(p, &, €) describes
the irreducible representation with continuous spin. Thus we have obtained the equations
on the field ¥ in the spin-tensor representation. Equations (I5)-(I7) are similar to the
“modified Wigner’s equations” in the paper [16]. In the case under consideration analog
of the fourth equation in (H]) are resolved automatically due to the properties of the two
component spinors.

We will construct the Lagrangian for the continuous spin field. To do that one should
somehow decompose ¥(p, &, €) in a series of ¢ and € and get the spin-tensor fields. How-
ever, one can see that, because of equation (I7), ¥(p,&,€) such a direct decomposition is
impossible. Therefore we first solve (I7) in the form

U(p, &, €) = 0((€0"pu — in) @(p. &, €)- (18)
One can prove that if the field p(p, £, €) obeys equations
0*p(x,€,€) =0, (19)
e 00 0 =
(Uu 8€a 85“ 8 M ) QO(ZE,E,E) - Oa (20)

then the field W(p, &, &) will satisfy the rest equations (I5) and (I6). Here we have made
Fourier transform from momentum p# representation into the coordinates x* representation.
Equations (I9) and (20) have a solution in the form of an expansion in £ and &

P Zm@ (@) €7 o)

Since we are going to construct Lagrangian for real bosonic fields we will consider n = k

case in (21]).



3 Lagrangian construction

Following the general BRST approach in higher spin field theory we begin with realization
of the equations (I9) and (20) in auxiliary Fock space.
Let us introduce creation and annihilation operators

(0le; = (0]¢* = 0, a’|0) = a,|0) =0, (0[0) =1
with the following nonzero commutation relations
[&d,éﬁ-] = 5;, a0, c°] = 6°.

The states in the auxiliary Fock space are defined as follows

e’} 1 ) . .
o) = Z ki) lor) = —m %(k)b(l) (x)c (k) Cb(z)|0>- (22)
ke, l=0 34

We determine the Hermitian conjugation in the Fock space by the rule
(aa>+ = Ed (Ed)+ == aa ((_1[1>+ = Ca (Ca)+ == C_Ld

Then the state which is Hermitin conjugate to state (22) is written as follows

0 1 .
ol = ), (0™ ay@ " am. (23)
Py VEN!

Let us introduce the following operators
lo = 0° I, = a®d;a" If =~ (24)
Here 0,5 = 0, 0,. One can show that these operators satisfy the commutation relation
17, 11] = (N + N + 2)l, (25)
where
N = ca, N = ¢;a" (26)

All other commutators among these operators (24]) vanish.
One can show that in order for a state |p) describe the continuous spin representation it
is necessary that the following constraints on the vector |¢) will satisfied

o) =0 (h = p)lp) =0 (27)

where k = [ in ([22)) is assumed.
Now we turn to construction of the BRST charge and the Lagrangian. Taking into
account that the Lagrangian is real, we should get the Hermitian BRST charge. However, the
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system of constraints (27)) is not invariant under the Hermitian conjugation. This situation
is similar with BRST Lagrangian construction for free higher spin fields. Construction of
the BRST charge for such a case was studied in works [22], [24] and we will follow these
works. First of all we introduce the operator I —u and then add it to the set of constraints
(27). Thus set of operators ly, I1—p, {7 —p will be invariant under Hermitian conjugation.
Moreover this set of operators will form an algebra with the only nonzero commutator (25])

5 = li = ] = (N + N +2)l. (28)

Now we can apply the procedure described in the works [22], [24] and construct Hermitian
BRST charge on the base of operators ly, [y—u, I —pu. As a result we arrive at the Hermitian
BRST charge in the form

Q =nolo + 07 (Il — p) + m(F — p) + i m(N + N +2)P,. (29)

Here we have extended the Fock space by introducing 7y, 71, 7] which are the fermionic
ghost “coordinates” and Py, Py, Py which are their canonically conjugated ghost “momenta”
respectively. These operators obey the anticommutation relations

{m.Pi}=A{Punl} = {m,Po} =1 (30)

and act on the vacuum state as follows
m|0) = P1|0) = Po|0) = 0. (31)
They possess the standard ghost numbers, gh(n') = —gh(P;) = 1, providing the property

gh(@Q) = 1.
The operator (29) acts in the extended Fock space of the vectors

@) = [) + noPy 1) + ny" Py |p2) (32)

and realizes the gauge transformations

) =) + QIA), (33)
for the equation of motion
Q|®) =0, (34)
where |A) is the gauge parameter
[A) =P |A). (35)

The fields |¢1), |¢2) and and the gauge parameter |\) in relations ([B2]), (B5) have similar
decomposition like |¢) ([22) with £ = [. In case of 4 = 0 the BRST charge (29) becomes
BRST charge for the massless higher spin fields [31].



The equations of motion Q|®) = 0 and gauge transformations 6|®) = Q|A) in terms of
states |¢;) and gauge parameter |A) look like

lole) = I 1) + pler) =0 (36)
hle) = U 2) + (N + N +2)|p1) — plo) + ptlpa) =0 (37)
lolp2) — lile1) + pler) =0 (38)
o) = I[N —plN)  dlpn) = D[Ny dlpa) = LIN) — plA) (39)

The Lagrangian for the continuous spin field is constructed in the framework of the BRST
approach as follows (see e.g. [24])

L= [anolQme) -
= (@l{lole) — tHlen) b = (@il{nle) = oo + (¥ + N +2)|e) |
~ (@al{lolg2) — L)}

+u{{Blen) + (@1le) = (Bale) = (Balion) | (40)

Lagrangian (A0) consists of the sum of Lagrangians for massless bosonic fields plus pu-
dependent terms responsible for the continuous spin.

Now we rewrite the Lagrangian (40) in terms of the component fields. Using the equation
of motion (B37) we remove the field |p;) from the Lagrangian (40). Then calculating the “av-
erage values” over Fock space vectors, converting the spin-tensor fields into traceless tensor
fields and converting the spin-tensor gauge parameters into traceless tensor field parameters
we arrives at the Lagrangian

- s s v s—1
L= ) 2t )[82%@) = 8 0,0"Pup(s—1) = 5= 0u0uPap(s-2)
s=0
12
s) — s a’/ vu(s
+ 2(S+1)(‘Pu() Pau(s) T 10" Pu(s)

W w2s+1
- §5Mu(s—1> Ty ﬁau%u(s—l)]

N . s [25+3 s , o
=3 2ol { 002,y + O Paupta-) 25+ 1) T @urye
s=0

s+2
2
L 25 +3
s) s au vu(s

s+1 [T
— 0" poyu(s)y + = ——0 o 41
20 Pt + 5 T OuPants) (41)

and gauge transformations
s—1 y

0Pus) = 8 O Auts—1) = —5— M) 0" Avuts—2) = HAus)s (42)
5Q02 u(s) — _2(8 + 1) aV)\I/,u(s) — M )‘u(s)~ (43)
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We note that the set of the fields in Lagrangian (A1) is the same like in the Metsaev’s
Lagrangian (2.14) in [I0] in the case d = 4, m = 0. These Lagrangians will be exactly the
same if we make the redefinition of the fields p*™ — Anqﬁ?(n), by Anqb?g") and gauge
parameters A" — A, £ where A, = (2"7'n!)7Y/2 and also u — k. As a result we
conclude that the BRST Lagrangian construction works perfectly for the continuous spin
fields as well as for all other higher spin fields.

4 Summary

We have developed the Lagrangian BRST construction for the continuous spin field theory.

e We have reformulated the Wigner equations, defining the irreducible representation
with continuous spin, in terms of two auxiliary bosonic 2-component spinor variables.
The spin operator ([6)) for such an representation has been introduced. The represen-
tation is realized on fields satisfying the constraints (I3]), (I6]), (I7). The number of
the constraints turns out to be less than in case of the usually used representation in
terms of vectorial auxiliary variable.

e The constraints are reformulated in terms of operators acting on the vectors of the aux-
iliary Fock space. Extra operator has been introduced to provide the real Lagrangian.
The algebra of all operastors has been calculated.

e Hermitian BRST charge is constructed (29) for the continuous spin field theory, the
Lagrangian and gauge transformations in terms of the Fock space vectors (0], and
in terms of traceless tensor fields ({1), (42), (43) have been derived. The Lagrangian
coincides with Metsaev Lagrangian [10] after some redefinitions of the fields and gauge
parameters.

Thus, the BRST Lagrangian construction, developed in refs. [22-26] is generalized for the
continuous spin field.

The results of the paper can be applied for deriving the Lagrangians for fermionic con-
tinuous spin field and for supersymmetric continuous spin field theory. It would be also
interesting to generalize these results for the continuous spin fields in the AdS space.
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