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Abstract

We perturbatively calculate classical radiation in Yang-Mills theory and dilaton gravity, to
next-to-leading order in couplings. The radiation is sourced by the scattering of two relativistic
massive scalar sources with the dynamical effect taken into account, corresponding to the post-
Minkowskian regime in gravity. We show how to arrange the Yang-Mills radiation such that
the duality between color and kinematics is manifest, including the three-term Jacobi identity.
The search for duality-satisfying expressions exploits an auxiliary bi-adjoint scalar theory as
a guide for locality. The double copy is obtained by replacing the color factors in Yang-Mills
with kinematic counterparts, following Bern-Carrasco-Johansson construction in S-matrix. On
the gravity side, the radiation is directly computed at the third post-Minkowskian order with
massive sources. We find perfect agreement between observables in dilaton gravity and the
Yang-Mills double copy. This non-trivially generalizes the leading-order rules by Goldberger
and Ridgway. For the first time, the kinematic Jacobi identity appears beyond field-theory
S-matrix, suggesting that the color-kinematics duality holds more generally. Our results offer
a path for simplifying analytical calculations in post-Minkowskian regime.
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1 Introduction

After a century of effort, gravity remains at the heart of modern physics. The enormous complexity
in gravity, even in the classical level, is one of the obstructions for making advances. This can be
seen from the non-linear nature in Einstein-Hilbert action which limits the space of exact solutions
and the range of perturbative orders. The need for a better theoretical understanding is particularly
urgent, after the breakthrough of gravitational wave detection [1].

Seeking insights for unraveling gravity from field theory has a long history. A classic example
by Kawai, Lewellen and Tye (KLT) [2] is that a closed string can be related to a product of open
strings. In the low-energy limit, the KLT relation implies that gravity can be viewed as a square of
Yang-Mills theory (YM). Crucially, the hidden connection between gravity and YM is manifest at
the level of the S-matrix, which is physical and free from the gauge artifacts.

The connection between gravity and YM has gone deeper after the seminal work by Bern,
Carrasco, and Johansson (BCJ) [3, 4]. They start with a YM amplitude whose color factors C; of

cubic diagrams are related by

Ci+C; =0
Ci+C,£Cr=0 (1)

from the anti-symmetry of structure constants and Jacobi identity. A sharp conjecture by BCJ is
that the kinematic numerators, when expanded in cubic diagrams, can be made to satisfy the same

generic algebraic relations,

Ci+C£C =0  N£N,£N,=0 2)

which goes by the name color-kinematics duality. Given their similarity, we replace color numera-
tors C; with duality-satisfying representations N;. The resulting amplitude, with two copies of N,
magically becomes a gravitational amplitude! By manifesting the duality between color and kine-
matics, the BCJ double copy generalizes the KLT relations to quantum level. Many gauge theories
are shown to have color-kinematics duality, including various matter contents and supersymmetries
at both tree and loop levels. Their double copies agree with a variety of gravitational theories. See
Ref. [5, 6] and references therein. Apart from conceptually intriguing, the complexity of gravity is
tremendously simplified into YM degrees of freedom via the double copy, which is the key behind
multi-loop gravity calculations [4, 7-21].

Can the double-copy idea really simplify calculation in gravity beyond the vanilla S-matrix, and
possibly illuminate gravitational wave physics? This is initiated in Ref. [22] by studying the Kerr-
Schild solutions in gravity which can be linked to gauge theory. Such similarities between gravity and

gauge theory have been extended further [23-29]. The double-copy structure of classical radiation
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as Bremsstrahlung has been studied in various theories [25, 27, 30-36]. A squaring relation in
curved spacetime among three-point amplitudes has been also found recently [37]. All the studies
so far have restricted to either known exact solutions, which are difficult to find in gravity, or to
leading order in perturbative solutions. In contrast, the power of double copy in S-matrix goes far
beyond the simplest examples at three point. To show double copy is indeed promising, we have to
establish an example beyond the leading-order approximation.

The classical radiation as perturbative solutions in worldline formalism is particularly promising
for further studies [30-36]. First, there is still a notion of on-shell emission amplitudes as gauge-
invariant observables. Based on the success of S-matrix program, where the hidden connections
are discovered from physical quantities, any double-copy structure should be revealed first in ob-
servables. Second, the perturbative regime is standard in worldline formalism. The observables
are available by brute-force calculation, so we can test the double-copy structure at higher orders.
Moreover, the worldline formalism directly gives results in the classical limit. Any progress made
here can be readily applied to general relativity.

Taking classical limit is not as trivial as we might think. The meaning of classical limit is
two-fold. The obvious one is to set 4 — 0. A common belief is that classical limit corresponds to
tree-level approximation. While the statement is true for massless theories, it becomes subtle for
massive particles because loop diagrams still contain classical pieces by the inhomogeneous scaling
of propagators under the i — 0 limit [38, 39]. On top of this, the classical limit also forbids anti-
particles from being present. Given these two subtleties, it is non-trivial to extract classical limit
from a field-theory calculation. The endeavor of applying S-matrix techniques to general relativity
is still an active area of research [40-53]. The worldline formalism is therefore advantageous because
both can be implemented straightforwardly.

In this paper we calculate classical radiation in YM and dilaton gravity to next-to-leading order,
with a particular focus on their double-copy structure. The gravitational theory considered here
is dilaton gravity, which contains a dilaton minimally coupled in gravity. It is the expected grav-
itational theory by double copying YM. The system is comprised of two massive scalar particles,
with arbitrary mass ratio and initial velocities, as long as the impact parameter is much larger
than Schwarzschild radius. (Details will be discussed in Section 2.) After the two point sources
pass through each other, classical radiation is measured by an observer at spatial infinity. This
corresponds to the post-Minkowskian regime in gravity [54-63], where a scattering process is cal-
culated order-by-order in Newton constant GGy. The scattering angle at the second order has been
computed by Westpfahl [62]. From the field theory point of view, this is an inelastic scattering of
two scalars with a graviton in the final state. Our results should be comparable to the one-loop
integrand in the aforementioned classical limit. It should be distinguished from the post-Newtonian
approximation of a bounded, rather than scattering, binary system where the perturbation is done

around small velocities. (A suitable field-theory framework for post-Newtonian system would be the



effective field theory constructed in Ref. [64].) Although the scattering scenario might not occur as
often as inspiral black holes in astrophysics, it has been applied as inputs to the effective one-body
formalism which could be useful for simulating binary black holes [65-68].

At next-to-leading order, the three-term Jacobi identity begins to appear among the color factors
in YM. Whether a kinematic version of Jacobi identity exists becomes a non-trivial test of color-
kinematics duality. Although the systems we investigated are still scattering processes, classical
radiation has a very different structure than field-theory S-matrix, rooted from the non-trivial
classical limit discussed above. In particular, the locality structure is scrambled under the classical
limit. This makes double copy challenging because one of its pillars is the preservation of locality by
maintaining the propagators. To expose color-kinematics duality, we exploit an auxiliary bi-adjoint
scalar theory (BS) as a guide. The double copy construction is then formulated in a suitable fashion
for worldline formalism. Despite many difference in details, the kinematic numerators in YM can

still be arranged to satisfy the same algebraic relation as color factors as Eq. (2), including

as the first example of kinematic Jacobi identity beyond field-theory S-matrix. Despite all such
complications, it is still striking that the core of color-kinematics duality in Eq. (2) remains to hold.

After establishing color-kinematics duality, we find the on-shell classical radiation agrees per-
fectly between dilaton gravity and the double copy of YM. Already at the level of action, the
complexity in gravity is much more significant than YM and BS. Direct computation in gravity
then leads to an explosion in the number of terms in the final expression. However, the success of

color-kinematics duality simplifies a complicated expression in the gravity amplitude Agr as
C’i—>NZ‘ Ci—>NL‘
Aps — > Ay —— Aar (4)

by using the bi-adjoint scalar amplitude Agg supplemented with duality-satisfying representation
N; from YM. This opens the avenue to extend the power of color-kinematics duality to perturbative
solutions in classical gravity.

The rest of the paper is organized as follows. We introduce the backgrounds in Section 2,
including a review on worldline formalism and double copy construction. A summary of calcu-
lation is given in Section 3. Most of the next-to-leading order results are lengthy and thus are
provided as ancillary files to this work’s arXiv submission, ym_pos_NLO.m, ym_radiation NLO.m,
gr_pos_NLO.m, gr _dilaton NLO.m and gr_radiation NLO.m, whose definitions can be found in
Appendix A and B. After the calculation is done, we discuss color-kinematics duality in Section 4,

including the BCJ and KLT amplitude relations. We conclude in Section 5.



2 Setups

This section introduces the necessary backgrounds before we go to next-leading-order calculations.
The first two sections contains a review of the worldline formalism used in Ref. [30, 31], in a fashion
that is readily applicable for higher order calculations. The last part is devoted to be a compact

review of color-kinematics duality and double copy.

2.1 Actions and Equations of Motion

The systems we consider in this paper consist of point particles and radiation fields, which are
described by worldlines and field theories respectively. For example, in Yang-Mills theory we have
point particles with trajectory and color charge degrees of freedom along the worldlines, as well as

the gauge field mediating the interaction. The dynamics is compactly encoded in the full action

S = Spp + Ses/ym/ar

as a combination of the point-particle action Sy, and the field-theory part Sgs/ym/ar, whose details
depend on the theories. While the worldline degrees of freedom only appear in S,,, the fields couple
to both the worldline and the fields themselves. The actions are usually fixed by power-counting
and symmetries in the system. Once the action is given, the classical equations of motion (EoM)

follow straightforwardly. Let us discuss YM, dilaton gravity, and finally BS in turn.

Yang-Mills Theory The full action in YM is the sum of

S, = —m/d7+/dw%-0¢

1
Sym = 1 /dda: Forr e

pv

(5)

where 7 is the proper time of the point particle and the proper velocity v* = dz*/dr. With
the gauge field A and coupling g, we also have the covariant derivative D, = 0, + igAjT* and
F, = 0uAy —g fabcAZA,ﬁ as the non-Abelian field strength.! The field-theory action in YM is
standard. The first term in the worldline action is also standard for a free particle. In the second
term, v (7) is the color wave function on the worldline which transforms linearly under the gauge
group. The point particle couples to the gauge field via the color charge ¢ = 1 T%). Note that
the worldline action manifests the reparametrization and gauge invariance, and is the leading term
with lowest number of derivatives. The action can also be derived from current conservation [30].
To make the notation more in line with particle physics, from now on we rescale the worldline

parameter 7/ = 7/m for each worldline, and p* = muv*.

1Other relevant conventions are [T%, T?] = i f2%¢T¢, tr(T*T") = §45/2, and the adjoint generator (T;dj)lg = —jfabe,



The EoM then follow from the least action principle. For the position and color of a point

particle, we have

2 /
TIT) _ ger( i () oy (6)
AT) _ g (e)ec(!) A, "

where the gauge field is evaluated at the worldline position z#(7’). We emphasize that z#(7"), p*(7'),
and ¢*(7') are the full time-dependent variables and are distinct from the initial conditions used later
in perturbative solutions. After adding a Fadeev-Popov gauge fixing term Sqrp = — [ ddm(a“AZ)z /2,
the EoM for gauge field can be derived

04w () = 224 g 5 [ drl ()i a5 — ilr) 0
K i
(;‘iz(;t _ gfabcAbzx(a,uAch o 28VAc,u) + gfabCAfL&l/A:i _ g2fabefechb1/Ac,uAlcjl. (9)
i

We use S;,; to denote all interactions in the field-theory action. The gauge field is also sourced by
all the present point particles which we now explicitly sum over. Without the point sources, the

EoM is Berends-Giele recursion relation for tree-level amplitudes [69].

Dilaton Gravity The minimal action for a point particle in gravity is —m? [dr’. The form of
the action is fixed by power counting and reparametrization invariance. However, in the presence of
dilaton ¢ we can dress this action with arbitrary function of ¢ and still maintain reparametrization

and diffeomorphism invariance. The specific coupling we need to match the double copy of YM is
Spp = —m? /ah"e’“Z5 (10)
where the gravitational coupling x? = 327Gy = 1/m;? and the dilaton gravity action is

Sen = [ d'ag [—;Rw(d— 2) g" D, é Dy . (11)

which is the usual Einstein-Hilbert action plus a minimally coupled dilaton.?

The geodesic equation of a point particle is

d?zH (7! , ) ) )
dT’(Q ) =10 p"(T")p7 (') + km?g"?0,¢ — kp!(")p” (7')0,0 (12)

M
where 'V

is Christtoffel symbol and all the fields are evaluated at z#(7"). Note that we have applied
Gup"p” =m? as a conserved quantity to simplify the above equation. To derive the EoM for fields,

the metric is expanded around flat space, g, = 7 + Khy. From now on, the indices are raised

2We use mostly minus metric through out.



and lowered by flat metric unless otherwise noted. As in YM, we also need a gauge-fixing term
Sar = [ d*z (9,h%)(0,h*?). The equation of motion of the graviton then follows

K [~ 1 ~
Dh/,u,l/ = —5 |:Tu,j — mnHVTO' (13)

where [ is the d’Ambertian in flat space and we introduce a coordinate dependent pseudo-tensor

7 2 55111 1 kp(x(T! IN V(] /
() = == S 4 3 [l el (e (7)o — (7). (14)
pv i

as the collection of all interacting terms in EoM. The first term corresponds to the energy-momentum
in spacetime, which can be expanded into an infinite tower of vertices comprised of gravitons and
dilatons, and the second term is the energy-momentum of the point particles. It is conserved,
GMT # = (0, and can be interpreted as the tadpole term in the background field gauge effective
action [64]. Similarly, the full EoM for dilaton reads

V39" D, Dy = —4(;_2) > m / drle" 6 (z — (). (15)

Note that the left hand side of the above contains the [J¢ in flat space and a tower of dilaton-graviton
interactions, which will be moved to the right-hand side when solving the EoM perturbatively.
Although the procedure to find EoM seems straightforward, in practice it is daunting to expand
the Einstein-Hilbert action and even the leading-order three-point vertex is barely tractable by
hand, not to mention that this is only at the level of the EoM.? In contrast, the entire EoM for
YM are summarized in Eq. (6), (7), (8), and (9). The potential advantage of the double-copy

construction should be clear hereafter.

Bi-adjoint Scalar Theory The bi-adjoint theory is motivated as a cousin of YM which has
two copies of global color symmetries. The bi-adjoint scalar ¢%® carries the adjoint indices a and
a for the color and the dual color group respectively. The point sources are charged under both

symmetries and interact via the bi-adjoint scalar. The action is the sum of
Spp = —m® / dr' + /dT' (¢Tz’p -0y + ygbaac“éa)

1, (16)
Sos = [ e (50,0 = 41 ¥ buaoe

where y is a coupling constant [31]. All quantities in dual color are denoted with tildes. The
wave function v transform under some representation of both groups. The color and dual charge
are then the contraction with respect to the respective adjoint generator, ¢* = 9T (T“ Q1 ) 1 and
& =t (I ® T‘i) 1. The cubic interaction of bi-adjoint scalar manifests the double-copy structure

3See Ref. [70-72] for attempts to simplify the gravity action using insights from the double copy and amplitudes.



between color and the dual color group. The worldline action is then fixed by symmetries and the

mass dimension of the coupling y. The full EoM are simply

d?zH(7") B

N L (17)
W) _ e (e () (18)
P e (e () (19)
D0 (a) = ™ P @) +y S [ @R M) @)

where all scalar fields in worldline EoM are evaluated at z#(7') as before.

2.2 Perturbation and Observables

The EoM derived in previous section are general. In this paper we solve these EoM perturbatively
around a small coupling constant. The zeroth order solution corresponds to a free particle with
straight line trajectory and stationary (dual) color charge, when applicable. All radiation fields are

turned off at zeroth order. We parametrize the worldline degrees of freedom as

o (1)) = b + pli't’ + ozt (21)
ci(r)) = ¢ + ¢ (22)

7

and similarly for the dual color charge. Here b, p!', and ¢? are the initial conditions at 7/ — —o0.
The perturbation is then encoded in dzf and dc?, whose time dependence are not shown, and
the radiation field as a series expansion in coupling constants. This perturbation regime crucially
set the zeroth order as free particles with straight line trajectories, corresponding to the post-
Minkowskian regime of gravity. As we emphasize in the introduction, this should be distinct from
the non-relativistic perturbation of bound states, e.g., the post-Newtonian regime of binary systems.
Nevertheless, these solutions are still strictly classical and readily applicable to general relativity.

With the zeroth order sources, we can plug into the radiation EoM to find the fields at next
order. For example, Eq. (9) yields the gauge field emitted from the zeroth order charge ¢* and
momentum p* of a particle

Au(k>: /d/ ik-(b+pt’) a

a

= —ﬁ 216 (k - p) €™ cp, (23)

as illustrated in Figure la. This is not yet the physical radiation at leading order for reasons we

will explain soon. This can then be plugged into into Eq. (6) and (7) to yield the deviation from

straight trajectory and static color charge.
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(N}

(a) Radiation (b) Deviation in worldline

Figure 1: The diagram on the right is for the radiation in Eq. (23), and on the left is the diagram
for worldline trajectory and color charge in Eq. (25) and Eq. (26) respectively. The solid straight
lines are massive sources and the wavy lines are radiations.

With the radiation in momentum space, the position equation of motion in Eq. (6) at leading
order becomes

2 S ol d ) ,
d“ox _ / d’k e—zk~(b+p7 ) Capu Fauy(k) (24)

dr?2 7 ) (2n)d
with all higher order terms neglected.* We can find the trajectory deviation by integrating the
above twice from past infinity to the present time. This can easily be done because the only time
dependence comes from the phase of free particle trajectory. With the boundary condition imposed

by k-p — (k- p+ie), this yields trajectory deviation at leading order

ot = —g/ il e’““'(b*m/)il cp” B (k) (25)
(2m) (k- p)? ’
by plugging the field strength in Eq. (23). The corresponding diagram is shown in as Figure 1b.

; / . .
—ik-(+r7)  The convenience of scattering

The time dependence of dx* entirely resides in the phase e
processes is that solving the EoM is equivalent to dressing the “propagator” —1/(ik-p). The position
EoM is second order in time so there is a double propagator. For color charge there is only a single

propagator because its EoM is first order,

5t = g / d°k e_ik.(b-kpr’); fabccbpl/ Ac (k). (26)
(2m)d (ik - b) v
The form of this propagator is indeed related to the propagator 1/((p + k)?> — m?) in field theory
by taking the classical limit [32]. The presence of both double and single propagator is one of the
challenges to make the double copy work directly in the classical limit.
Let us pause for a moment and examine the small parameters used for perturbative expansions

in these theories. There are several relevant quantities in the system: the typical size of impact

4Note that the radiation could come from a different particle and proper labeling is required.
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parameters b, the energy of the particles F 2 m, the color charges ¢ and ¢, and finally the coupling
constants. The typical scale of the radiation momentum is then set by 1/b. Applying the power
counting to Eq. (25), we can see the deflection da* < b if

, 2P
s
s B

for YM and similarly other theories [30, 31]. The phase space volume I'(42)/ (47r)d2;2 is neglected
from the above formulae. The deviation on color charge is also under control if ¢ ~ ¢ ~ Eb.
Finally, we demand the angular momentum FEb > h such that the quantum effect, namely pure
graviton loop, does not enter. Overall this implies the impact parameter should be much larger
than Schwarschild radii of the sources.

We can calculate higher order results by iteration. The differences from the above are that the
fields can self-interact, and the sources are not static anymore. The latter not only corresponds to
substituting the initial momentum and color charges into higher order perturbations, but an extra
phase from trajectory deviation. As we have seen the radiation is naturally solved in momentum
space, as in Eq. (23), while the point particles naturally live in real space. Therefore we have to
Fourier transform back and forth between the worldline and radiation. To see this, the part of YM

radiation sourced by a worldline
D _7/d7_/ ik-(b+p7’) ik~6w Ca(T,)pM(T,) (30)
and the position EoM

2 Sl d ) , ]
d*ox _ / (d k e—zk~(b+p7— ) e—zk~6a: Ca(T/)pV(T,) F‘wy(k:). (31)

dr'? 27)d
contain the phase e®™9% from the path correction which is then expanded order by order. The
calculation would not be consistent without this phase included. This phase makes the locality
highly scrambled particularly at higher orders. For instance, at next-to-leading order we have to

—ik0r o (—ik - dz)? with dz being the leading-order path deviation. The leading-order

include e
path deviation contains the propagator dz o 1/(l; - p)? where [; is the momentum of radiation
inducing the path change. The propagator structure of (—ik - dz)? is then 1/(l; - p)*(l; - p)? from
radiation sourced by particle ¢ and 7. It is difficult to assign a Feynman diagram to reproduce such
pole structure along the line of Ref. [32]. Therefore we will calculate the radiation via algebraically
solving the equations of motion from now on.

Nevertheless, the worldline formalism is well-established and we can push to higher orders di-

rectly. It is helpful to streamline the structures of kinematic constraints beforehand. The radiation

11



with momentum £ is a series expansion in powers of coupling

2 // /nﬂ (2m)%0" (k —gli)ﬂ‘“(n)> (32)

perm

2n+1

-5 (2

where the phase space integration of worldline i is defined as

/ / & 2w (py - 1) P (33)

This summarizes the pattern in Eq. (23) as n = 0, the leading-order results in Ref. [30, 31, 33-36] as
n = 1, and the next-to-leading-order results in this paper as n = 2. Let us go through each element
in turn. At the order O(g?"*!), the sources inserted are labeled by 4 ranging from 1 to n + 1. Each
source can absorb or emit radiation as we include the back reaction. The corresponding phase space
is integrated with the phase shift and kinematic constraint d(p; -/;) in Eq. (33). The phase shift and
kinematic constraint is universal for the following reasons. As we see in Eq. (31) and likewise for
color charge, the absorption of momentum [; will induce a phase e~#(®*Pi7)  On the other hand,
the emission in Eq. (30) also gives rise to a phase of opposite sign. So if [; is the net momentum

emitted by a worldline ¢, overall the time-independent part of phase shift is e

. Moreover, the
time-dependent part of the phase shift yields the kinematic constraint p; - [; = 0 for each worldline,
after integrating the proper time from past infinity to future infinity. The kinematic constraint can
be easily understood as the on-shell condition (p; — [;)* — m? = 0 of the point particle in classical
limit [32]. The overall momentum conservation relates radiation momentum £ to the total net
momentum emission by worldlines Y, ;. Finally, if there are more than n sources in the system,
we have to sum over permuting the labeling of n external sources into other possible combinations.
For instance, there are two source insertions for n = 1. The permutation sum then corresponds to
the sum over all possible pairs of particles in the system.

Analogous to radiation, we can also parametrize the degrees of freedom on a worldline (labeled

with subscript 1) as a sum over perturbation in coupling

59:’1‘:2( S [ [ ettt st >)

n perm

50(11: ( on Z / / —ilyot-(b1+p17’) 5C%(n )>

perm

(34)

For order (9(92”), the worldline deviation is induced by sources from ¢ = 2,3,---n and lioy = > 5 l;
is the total radiation momentum absorbed by the worldline. If there are more than n particles in the
system, the permutation sums over all the possible source insertions. Note the time dependences
of both functions entirely lie in the phase e~#et (b14p17)

We are only interested in the observables measured by an apparatus at spatial infinity. The

observable can be extracted by imposing retarded boundary condition, 1/k% = 1/((ko + i€)? — 122)

12



To propagate the field to infinity, it amounts to localize the field at pole k? = 0 when integrating
out the radiation momentum k [73]. Let us consider the gauge field measured by a distant observer
in four dimension. Similar formulae apply to other type of fields in general dimension. For an

observer at distance r and direction 77, we have

AFo(1 ) = 471”4 ;i‘;e—iwtr T[4 (e 4% (K)) (35)
where ¢, is the retarded time and k* = (w, lg) is the momentum 4-vector with spacial direction
aligned with 7. Taking the residue imposes the on-shell condition k> = 0 shown above. This
explains why the gauge field in Eq. (23) is not yet the leading-order radiation, because the on-shell
condition does not have support on the kinematic constraint 6(k - p). We also need to project into
the two helicity states in four dimension via a polarization vector, which satisfies the transverse
condition k - ey = 0 and normalized, ey - €} = —1. It is easy calculate the energy momentum and
angular momentum transmitted by the radiation once we have the above. So the final radiation is
only relevant up to the on-shell and transverse conditions.

In sum, the radiation is given order by order as Eq. (32). The explicit formulae for BS and
dilaton gravity are provided in Eq. (43) and Eq. (58). The off-shell currents are rational function
of the initial conditions and momentum emitted by each worldline insertion, analogous to the loop

integrand in S-matrix. Given off-shell currents with momentum k, the emission amplitudes read

Aps(n) = lim J*(n)

Ayn(n) = lim e, - J"(n)
Ap(n) = k121m0 ew - I (n)
Aoln) = Jim ()

with the on-shell condition imposed. The (dual) color indices are omitted in the emission amplitudes.
In generic dimension, the polarization vector for YM satisfies k-e = 0. For gravity, the polarization is
symmetric, transverse, and traceless, ke, = e}, = 0. These on-shell amplitudes are gauge-invariant

objects where the double copy applies.

2.3 Color and Kinematics

Let us first review the color-kinematics duality and double copy in field theory. A tree-level ampli-

tude in Yang-Mills can be expressed as

Cz' i
2. D]iv (37)

i

where C; and N; is the respective color and kinematic numerator, and the propagator denominator

D; associated with cubic diagram 7. Note that the color and propagators are one-to-one to a cubic

13



diagram which will not be the case for classical radiation. There is an intrinsic ambiguity in N;
because the Yang-Mills theory has a quartic vertex. The Yang-Mills amplitude is the gauge invariant
under the sum over different diagrams, which are related by color identities in Eq. (1). Crucially
the gauge invariance only relies on these algebraic relations, regardless of details in color factors.

A remarkable observation by Bern, Carrasco, and Johansson is that the double copy relation is
manifest through the color-kinematics duality in Eq. (2). If we replace color factors with kinematic
numerators

Ci = N, (38)

then a YM amplitude in Eq. (37) becomes

N;N;
2 h (39)

i

which turns out to be an amplitude in gravity! This miraculous connection is based on two pillars—
locality and gauge invariance. The locality structure, encoded in the propagators, is preserved
during the double copy construction.” Second, the gauge invariance relies on the color identities,
which are obeyed by the kinematic numerators in Eq. (2). Therefore the gauge invariance is not only
preserved in Eq. (39) as the original YM, but is enhanced to (linearized) diffeomorphism invariance
in gravity via double-copy structure. Being both local and gauge invariant, the double copy is
justified as a gravitational amplitude which can be proven rigorously [8, 74].

The success of double copy hinges on the color-kinematics duality. However, it is far from obvious
that such duality-satisfying representation exists. In particular, the Jacobi identity imposes non-
trivial constraints on the numerators. The existence of such representation, the so-called BCJ
numerators, has been proven at tree level but remains to be a conjecture beyond this. Even the
existence is known, finding explicit expression for BCJ numerators requires non-trivial effort. See
Ref [5, 6] for more details.

Many features of double copy can be learned by studying the bi-adjoint scalar amplitude

> (40

%

where we replace the kinematic numerators in YM with dual color factors [5, 6]. The bi-adjoint
scalar theory shares the same traits as any other theories with color-kinematics duality. For instance,
the color-stripped amplitudes, which are the amplitudes when we project Eq. (40) to a minimal
basis of color factors, are still dependent under the so-called BCJ amplitude relations. When we
stripped both color factors and remove the redundancies from amplitude relations, these doubly
stripped amplitudes form a matrix whose inverse becomes the KLT kernel. The very same kernel
allows us to double copy from YM to gravity directly at the level of amplitudes. We will see that

bi-adjoint scalar theory plays an important role in worldline formalism as well.

5More generally, double-copy construction can still hold even with non-local numerators.
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The gravity amplitude obtained from YM double copy is not just Einstein gravity, but contains
other fields called factorized gravity.® From degrees of freedom counting in little group, it is obvious
that the YM double copy contains more than the usual graviton. Specifically, if we use the polar-
ization e, and €, for each of the YM copy, the resulting polarization e,é, in gravity is factorized
which can be decomposed as three terms

e, = ; <e#él, +é,e, —2 6;€2Puy> + ; (e 6y — €ue,) + %

where P,, = 1, — (kuqv + quk.) /K - q is a projector transverse to momentum k, and a light-like

P

s (41)
reference g,.” The first term is symmetric and traceless, and thus corresponds to the usual graviton.
The second one corresponds to an anti-symmetric two-form, and the trace part from the last term
gives a dilaton. If the two-form is not present, we have a theory with graviton and dilaton whose
action is given by Eq. (11). Although it is possible to double copy gauge theories into Einstein
gravity, as demonstrated [16, 32|, we only consider dilaton gravity in this work as an initial study

at next-to-leading order.

3 Summary of Calculation

We now proceed to calculate radiation at higher order in various theories. At the next-to-leading
order, corresponding to fifth power in coupling constant, there are three source insertions for ra-
diation with n = 1,2,3. Without loss of generality, we can first treat the third insertion as an
independent third body, with its own initial momentum and color charge, and calculate the current
involving three sources. If we want to retrieve the classical radiation in a two-body system, the
current is then extracted from a generic three-body system by identifying the initial conditions of

the sources. Take YM current as an example,

1
Tr(2-body) = o (j“a(?)—body)

+ J"(3-body)

p3=p1,c3=C1

(42)

where we set the initial momentum ps as p; or ps and likewise for the charges. Note the net
momentum /3 emitted by the third source insertion should remain to be independent to [; . Since
the three-body current assumes the sources are distinct, there is an overall symmetry factor 2! for
the over-counting of identifying two sources. Similar formulae hold for the trajectory and color
charge at next-to-leading order. These integrands are analogous to the bare integrand in field
theories, including self-energy renormalization to leading order. See Figure 2 for an illustration.
Although this is book-keeping method, it is important for seeing the double-copy structure as we
will discuss in Sec. 5. Unless otherwise noted, from now on we consider a three-body system with
initial conditions p; 3, and the (dual) color charges ci23 and ¢ 23 when applicable. This avoids

extra terms in permutation sum in Eq. (32) at next-to-leading order.

5The name is not yet settled in literatures. It is also called fat gravity, extended gravity, or A” = 0 supergravity.
"The final results are independent of the reference vector.
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Figure 2: A schematic diagram contributed to next-to-leading order radiation in the same notation
as Figure 1. This becomes a self-energy correction to particle 1 with leading order radiation if we
identify the particle 3 with particle 1.

3.1 Bi-adjoint Scalar Theory
The perturbative solutions of bi-adjoint theory follow from EoM in Eq. (17) to Eq. (20). Analogous
to YM, we also factor out all kinematic constraints and phase space integration

o0 -3 (Y ¥ I [ erwo-xus o)

n perm ;=1

ot = Z (inn Z ﬁ /e—iltot‘(b'i‘pT,) 5;{{!(”)) (43)

n perm =1 “?

(i X AT et

n perm =1 “?

a
oct

for the bi-adjoint current and worldline degrees of freedom, following notations in Eq. (32) and

Eq. (34). The expression for dual color can be found straightforwardly.

Leading Order Let us first summarize the results at leading order from Ref. [31]. To linear order

in coupling (n = 0), the bi-adjoint scalar current emitted by particle 2 with momentum [, is

7o (0) = 4 ()

3

using the notation in Eq. (43) and the subscript labels the particle. After this radiation is absorbed

by particle 1, its trajectory and color deviation are

(c1 - c2)(¢y - Co)lh
B(p1-12)?

(51 : 52) [01, Cz]a
3(p1- 1)

where [cy, co]® = if%%clcs and similarly the deviation of particle 2. Since there is only one source

52 (1) = (45)

5Ci(1) = — (46)

inserted at this level, we omit the trivial sum in Eq. (43) as can be done by permutations.
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To present the leading-order radiation, we introduce the notion of color stripping. To do so, we

first reduce the color factors to a minimal basis,
jad(n) = Z C’L ja&(n’ Cl) (47)

The function J%(n, C;) associated with each color factor Cj is the color-stripped object, and likewise
for the emission amplitude and point source.® At leading order, the independent color factors of

radiation emitted by particle 1,2 are
Cl - (Cl . CQ)CCIL, Cg - (Cl . Cg)Cg, Cg - [Cl, CQ]CL (48)

The explicit color-stripped currents are
l2 M l12 ~ 1
- C
1 3
13 (I p1)? 1312 - p1)

3 ~ il ~ 1
JN,Cy) =—C + C.
( 2 ’ 17 (L 'P2)2 ’ 13(ly - p2)

~ ~ 1 ~ 1 ~ 2
JN,C) =—Cis7——+Co—— 4+ C355
(1,G5) Bla-p) B -p) BB

with the momentum of the radiation [y = l; + l5. The off-shell currents serve as inputs for higher

jaa(l, Cl) - — é

order radiation.

From the above results, we can see two exotic features in classical radiation from field-theory
amplitudes. First, there are non-trivial numerators even for bi-adjoint scalar theory. Second, the
color and dual color is no longer diagonal. Both are features absent in field-theory amplitude and

clarify the formulation of double copy in classical radiation.

Next-to-leading Order Using the inputs from leading order and EoM, we find the next-to-
leading-order worldline trajectory and (dual) color charge. The results are summarized in Ap-
pendix B. For the radiation, the full list of numerators are given in Table 1. We can decompose the
current by these color numerators with Cy; removed via Jacobi identity. The first color-stripped

current

\7]_;)1(81(27 Cl)

- 4 ((1123 o) (123 - I3) _ CRAICT S _ CRAICT S )

BB\ (b-p)’ (s p)? (la-p)(pr-ls)® (s-p1)* (pr - los)?
g ( li2z - I3 _ ligg - 1o )
l%l:% (l2 'p1) (]91 : 123)2 (l3 'pl) (p1 : 523)2
Cis ligs - I3 ly - 13 Ci7 ly -1 ligg - lo
e\ TR T Tl ()
203 ( 2 'Pl) (53 'pl) (l3 'pl) D1 - log 203 (12 'pl) p1 - log (52 'pl) l3-p1
Cao Ca

‘|‘ - ) 50
2305 p0)(pr ms) BB p1) (1 - Iao) (50)

8We abuse the notation slight by using the same C; for color factors in a minimal basis but it should be clear
from the context.
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is symmetric under the exchange of particle 2,3 with l;;y = l; +{; + lx. Also,

a 1 l123 : l3 ~ l123 : l2 ~ 2l123 : l23 ~ >
Jgs(2,C4) =+ C, — C, — 2123778 A
BS( 4) l%l% (pl . l23)2 ( l2 P ! l3 " ! 153 !

1 ~ l123 . l23 ~ ) 1 < 1123 : l23 ~ )
+ Cia + Cr |+ Cis — G
1313515 - p2) (p1 - los) ( U ol ) T BBl ps) (01 las) T prlay

B 1 ((?17 Chs 2019>
BB(pr-las) \la-p1 l3-p1 3, )’

is anti-symmetric under the exchange of particle 2, 3. The follow two color-stripped amplitudes do

(51)

not have an isometry under the exchange of particles

) l123 - a3 <~ l3'123~) 1 <~ I3 - la3 ~ )
J58(2,Cr) = Cot = Cr ) + Cro+ 7 "Ca ),
s (2. C7) 13135 (I - p2) (p1 - los)? lyepy T By (s p2) (01 los) \ 0 lyope
(52)
B 1 ~ l123.l3~> 1 <~ l2-l3~>
jaa 27 C - _ Cqr — C — C + C
85(2 Cha) Bl - p1) (I3 - p1) ( Tl ) BBz p) (b)) \ lpr
1 ~ lg'l13~> 2 <~ l3'l13~ )
+ Cs — Co| — 555——|Cn+ Cis .
13035 (I3 - p1) (P2 - 13) ( Clyep ) BER(sop) \ Y lep
(53)
By removing C5; via Jacobi identity, the last color-stripped amplitude is associated is
. 1 C 2@) 1 ( Cy 206> Cy
jaa 27 O _ - 1 n B
A Ty <l2 o By ) BBs-lo) \lops By ) BEU-p) (s p2)

N 1 ( s Gy >+ 1 < Cu Cia )
135(p1 - 123) \I3(Is-p2)  15(l2 - p3) Bo(ps - liz) \GG(l1-p2)  13(L2-p1)

N 1 ( 205 N 20~ )_ 1 ( 2014 N 2Cs )
By \lF(li-p2)  B3(a-p1)) Bl \I3(3-p2)  13(l2 - ps)
N 1 (4@19_4@1>
BEE \ 135 i )

Note that it does not inherit the antisymmetry of 2 <» 3 in (9, because we have used Jacobi

(54)

identity. All other color-stripped amplitudes are related from these by permutation. For exam-
ple, the isometry of color numerators implies Aps(2,Cy) = —Aps(2,Cio)|1-2. An ancillary file
bs_radiation_NLO.m is attached for Aspgs. Unfortunately, the next-to-leading-order radiation is
lengthy even for the simplest bi-adjoint scalar theory. After all, it should be compared with a
seven-point tree amplitude or a five-point amplitude at one loop. The level of complexity only

keeps growing for YM and gravity.

3.2 Yang-Mills Theory

The general feature of YM has been introduced in Section 2. The EoM are given in Eq. (6), (7),

(8), and (9). The gauge current and the deviation of a point particle’s degrees of freedom are
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a a

Cr=(ci-e)(c-e)ef Cr =(ci-e)(c2-cs)ef Ciz=(c1i-c3)ler, e Cig=la, [e2, cs]
Co=(c1-c2)(ca-c3)cs Cs =(c1-c3)(ca-c3)cf Cuy=(co-c3)ler,ca]® Coo=[ea, [c3, 1]]”
Cs=1(c1-c3)(ca-c3)ct Cyg = (c1-ca)(er-c3)cy Cis = (c1-ca)[ea, 3] Co = ez, [e1, o]]”
Cy = (c1+ [ca,c3]) ¢f Cio = (c1-¢c3)(ca-c3)cy Cig = (c1 - ¢c3) [e2, c3]”

Cs = (c1+ [e2, ¢3]) Ci = (ar-e)(ea-c3)eg Cir=(c1- ) [es,ca]

Cs = (c1 - [ca,¢3]) 4 Cia = (c1-ca)(cy-c3)cd Cig = (¢ c3) [e3,1]”

Table 1: List of the color numerators relevant for radiation at next-to-leading order. The last three
satisfy Jacobi identity Chg + Coyy + Co1 = 0.

parametrized in Eq. (32) and (34) respectively.

Leading Order The gauge field current to linear order in coupling is given in Eq. (23). The

leading-order deviation of point particle 1 is

bXL(1) = (u_pltpzl“) 55
1( ) l%(pl-lg) Y% 01l 2 ( )
b1 - D2 a
a 1 = = .
5C1( ) l%(pl . l2) [Cl, 02] (56)

Combining the self-interaction of gluon and the emission from point particles with leading-order

deviation, the leading-order radiation with momentum [; + Iy from particle 1,2 is

. Iy -1 1 -l
Tr(1,C) “p2<2”M—@+ @&”Qwﬁ

:l%(b ~p1) ly-p1 E ly - Dy
7 P1 - D2 li -l 1 p1 - Lo
J*(1,Cy) = < ”—z“>+<“— b 57
~ 2 . ? 12
TWLQ=”WrMM—%mM@+%?< . Qﬁ—WH@
I{l5 [{l3 ly - p1 l1-p2

where we use the color-stripping decomposition in Eq. (47) with the color numerators in Eq. (48).

Note that each color-stripped current satisfies Ward identity, 0,7"*(n, C;), even for off-shell current.

Next-to-Leading Order The trajectory and color deviation at next-to-leading order are given
in ym_pos_NLO.m and ym_color NLO.m with relevant color factors in Appendix B. The next-to-
leading-order gluon contains color numerators in Table 1. The full expression of J#*(2) can be

found in ym_radiation_NLO.m. We have verified Ward identity for the off-shell current.
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3.3 Dilaton Gravity

The gravity calculation follow from EoM in Eq. (12), Eq. (13), and (15). Analogous to other

theories, let us define °

-2 (20 L1 ez
|

perm ;=1 “?

o > nﬁ / (27r)d5d(k:—Zli)j(n)> (58)

perm =1

o =3 (z (;)Qn S ] J (5/'\’1“(71))

perm =1 “?

for the off-shell graviton and dilaton currents, and the trajectory of a point particle. Note the
indices in A" are raised from h,, by flat metric. We can also define an off-shell integrand for the

pseudo stress-energy tensor in Eq. (14)

= ((5)" ST entst- S m0) (59)

perm =1
such that uu
T (n) = T (n) = 277 (n) (60)
A non-trivial check for the calculation is the conservation of 0,7""(n) = 0 on the support of

the above kinematic constraints, even for off-shell momentum. For instance, the currents at O(k)
emitted by a point particle with momentum p are 7*/(0) = p'p” and J(0) = p*/(d — 2). The
stress-energy is not traceless for massive sources, and therefore dilaton is produced. It is obvious
that 0,7""(n) = 0 by the kinematic constraint in Eq. (58). The leading order results can be found
in Ref. [30] which we completely reproduce.

The trajectory deviation at O(x?) is also available as the function §X4'(2) in the ancillary file
gr_pos_NLO.m. As we choose the worldline parametrization to be (proportional to) the proper time,
we have g, (z(7'))p"(7")p”(7') = m? as a constant at any time 7. We have verified this at next-to-
leading order as a non-trivial check to trajectory deviation X} (2). Note that for this equality to
hold, the metric has to be evaluated at the worldline trajectory x*(7') to necessary order.

For next-to-leading-order radiation, 7#*(2) for graviton is provided in gr_radiation_NLO.m
and and the current J(2) for dilaton is given in gr_dilaton_NLO.m. First, we have verified Ward
identity 0,7 (2) = 0 even for off-shell stress-energy tensor. Also, the graviton emission amplitude

is independent of spacetime dimension, as a feature of dilaton gravity.

9The normalization of graviton and dilaton current are different from the bi-adjoint scalar theory and YM.
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4 Color-Kinematics Duality

Now we are ready to discuss the color-kinematics duality in classical radiation. With the previous
calculation, physical emission amplitudes are extracted via Eq. (36). The amplitudes of classical
radiation in worldline formalism are different from field theory in many places. As we have seen
concretely in Section 3, locality is obscured by the presence of both double and single propagators,
and also the phase perturbation from trajectory deviation. Even for the simple bi-adjoint scalar
theory in Section 3.1, there are kinematic numerators in the emission amplitudes and the two copies
of color factors are not diagonal. We lose the field-theory decomposition in Eq. (37). As locality
becomes opaque, it is not obvious how to define double copy, nor whether a duality-satisfying
representation exist at all. Any proposal as a square to gravity has to be examined explicitly as
there is no rigorous proof. We will also study the BCJ and KLT relations for classical radiation since
these are the direct consequences of color-kinematics duality. Let us restrict to physical emission

amplitudes now and discuss these issues in turn.

4.1 Double Copy in Worldline Formalism

Built on the hints from leading order studies [30-36], we propose a simple resolution: use the
bi-adjoint scalar theory to identify those kinematic terms that are suppose to be propagators.
Concretely, we write the emission amplitude in bi-adjoint scalar theory as

ABs(n) = (—1)“ Z Ol Pij C’j (61)

i,J

where we sum over all the color numerators Cj, C’j and n = 0,1,2,--- corresponds to the order
O(y**?"). The locality is encoded in P;;, which is not necessary diagonal, and nor only lies in the
denominator. Nevertheless, we use the amplitude in bi-adjoint scalar theory to define locality, and

span the YM amplitude accordingly

AYM(n) = Z C; Pij Nj (62)
‘7j

As in field theory, gauge invariance relies on the algebraic color identities in Eq. (1). We would
impose precisely the very same generic algebraic identities on kinematic factors /V;. Once this could

be done, this leads to the proposal
Acr(n) = (=1)" D_N; Py Nj, (63)

as the amplitude in dilaton gravity at O(k'*t?"). We replace the polarization in one of the copies
as €, such that the polarization has a factorized form e, = €,é,.
This proposal are motivated by gauge invariance and locality, as in the conventional BCJ double

copy. Despite other differences, the gauge invariance in YM also relies are the color identities.
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Therefore we can replace the color factors with kinematic numerators with the same algebraic
properties. This guarantees the gauge invariance in YM. Since the two color copies are on equal
footing in bi-adjoint scalar theory, the amplitude in Eq. (63) has doubly gauge invariance. For
locality, we find that the pole structure are still given by the usual propagator of radiation field,
and by solving the worldline EoM, e.g., Eq. (25) and (26). So keeping the kinematic kernel P;; in

bi-adjoint scalar for YM and gravity seems reasonable which we shall verify explicitly.

4.2 Duality-Satisfying Representations

To find duality-satisfying representations at next-to-leading order, first consider the color-stripped
amplitudes in bi-adjoint scalar theory and YM. Then we make an local kinematic ansatz N; for each
distinct (dual) color numerators C; in Table 1. Crucially, we demand the ansatze satisfy the same
isometries and Jacobi identity as color numerators. Otherwise gauge invariance is not guaranteed
later on. For example, the ansatz for Ny should be symmetric under exchange of 2 and 3 from the
property of C; and the ansatz for N, should be anti-symmetric under 2 <+ 3 as in C. A caveat
here is that we should only focus on the overall algebraic relation than peeping into the detailed
structure. From the leading-order rules in Ref. [30], it is tempting to assume the kinematic ansatz
for Cy56 as (p1as - €) times a universal anti-symmetric function, analogous to f®¢c¢chcs. However,
this demands too much from color-kinematics duality, since the algebraic relations are all we need
for gauge invariance. Thus, we emphasize that only the algebraic relations in Eq. (1) are imposed.

Matching all color-stripped amplitudes via Eq. (61) and Eq. (62) under

éi, — Ni, (64)
then yields a solution with 47 free parameters, corresponding to different generalized gauge degrees
of freedom. It is not obvious that the solutions exist at all. A particular choice of the duality-
satisfying representations is given in Table 2. It is straightforward to check that the kinematic
counterparts satisfy

as the first example of kinematic Jacobi identity beyond field-theory amplitudes! Note that it only
holds under the kinematic constraints, /; - p; = 0, and the on-shell and transverse conditions.
Using any of the duality-satisfying representations obtained from BS and YM, we are now ready
to test the double-copy construction at the next-to-leading order. On one hand, we first take the BS
amplitude and then substitute the color and dual color factors with duality-satisfying numerators
as instructed by Eq. (38).1% The explicit formulae of the BS amplitude is summarized in Eq. (50),
(51), (53) and (54), and the duality-satisfying numerators are given in Table 2. This yields the
amplitude in Eq. (63). On the other hand, we calculate the graviton and dilaton amplitudes using

19The polarization in one of the kinematic copies is replaced with é,,.
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Ny = (]91 pz)( pg)(p )

Ny = ( - [p3, p2] - lag) + %(pz - p3)(pr1 - QQ3>) (p1-€)+ % (p1 - l23) (p1 - [p2, 03] - €)
(

p1-p2)(p2 - p3)(p1-e)

Niz=(p1-p3) ((has - [pr,p2] - €) — (p1 - p2)(l2 - €))
Nyg = ( “[p2, 3] - l23) — %(pz - p3)(l123 - 923)) (p1-€) + (p1 - 123) (loz - [p2, ps] - €)
+

(p1 - [p2, 3] - 123) (I3 - €) — (p2 - p3) (1 - I, 1s] - €) — 5(las - L123) (p1 - [p2, 3] - €)

Table 2: An particular example of duality-satisfying representations where e, is the YM polarization
and g¢hs = Iy — I5. We define the tensor [a, bJ*” = a*b” — b'a” such that p - [a,b] - ¢ = (p-a)(b-q) —
(p-b)(a-q). All other numerators are related by permutations.

the standard EoM in dilaton gravity. Decomposing the double-copy amplitude via Eq. (41), we
arrive at the main result of this paper: The amplitudes agree precisely between the YM double
copy and dilaton gravity. It is miraculous that the rather enormous expression in gravity can be
summarized into a few equations.

Let us give a few remarks on the duality-satisfying representations we found here. Goldberger
and Ridgway found amazingly simple rules to match between YM and gravitational radiations [30].
The instruction is to replace color charge with momentum, and the structure constant with three-
gluon vertex in YM with appropriate momentum flow. Not unexpectedly, it gets a bit more compli-
cated at higher orders. First, the solutions are far from unique, because numerators by themselves
are not physical. The same ambiguity occurs to the BCJ numerators in field theory. In fact, we will
see that even the leading-order rules are not unique. At next-to-leading order, the leading-order
intuition suggests that Cy in Table 1 should be proportional to (p; - €) which is in tension with the
full range of solutions we find. Also it is unclear how to interpret a structure constant as a YM
three-gluon vertex beyond leading order because the momentum flow is ambiguous. Therefore we
believe the general statement of color-kinematics duality relies on the algebraic relations in Eq. (1),
while the interpretation of color charge as momentum and structure constant as three-gluon vertex
in YM are special rules at leading order.

The formulation in Eq. (42), treating a two-body system as a three-body system, is very impor-
tant for double copy to work. By breaking the degeneracy, we keeps many color factors in YM from
vanishing. For example, the color factor Cy = (¢; - [co, ¢3])c§, which appears in Figure 3, vanishes
identically once we identify c3 as ¢; or co. While this treatment seems to complicate YM calcula-
tion unnecessarily, this is exactly what we need to make the double copy works, because the very
same diagram is not zero in gravity. Indeed, this is consistent with our rules, where the kinematic

counterpart in Table 2 is not zero. Suppose we consider a two-body system in the beginning, this
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Figure 3: A schematic diagram which is zero is YM but non-zero in (dilaton) gravity. The conven-
tions follow Figure 2 but the wavy lines are gauge fields in YM, or gravitons in gravity. Particle
1 absorbs the leading-order radiation from 2 and 3 before emitting the final radiation. The corre-
sponding color factor is zero by antisymmetry of the structure constant once we identify the color
c3 with ¢y, following the prescription Eq. (42). The corresponding diagram is non-zero for gravity.

class of color factors will lead to C;FP;;N; = 0 which map to N;P;;N; # 0 under the double copy.
This “zero-to-nonzero” phenomena is not special: there are several examples already in multi-loop
calculations [10]. So our formulation is actually preferred by keeping those color factors around in
the beginning. We expect the same behavior to happen at higher orders.

Although the numerators are not unique, it is possible that there is a general pattern for one
particular good choice of the duality-satisfying representations. Comparing the color and kinematic

numerators in Table 1 and 2, we observe that
Ci-Cj — Di-Dj (65)

is compatible with color-kinematics duality so far. Such pattern, if continuing to hold at higher
orders, may lead to a kinematic algebra manifesting the color-kinematics duality, and could pinpoint

to the origin of double copy [75-78].

4.3 Amplitude Relations

The color-kinematics duality comes hand-in-hand with two types of relations among physical on-
shell amplitudes. The first type is the BCJ amplitude relations among color-stripped amplitudes.
The second type is the KLT relations realizing the double copy directly at amplitude level. Since
the KLT relations are for physical amplitudes, it allows us to obtain gravity amplitudes without
the specification of duality-satisfying representations. Let us consider them in turn for classical
radiation.

We begin by reviewing the BCJ amplitude relations. Consider the color-stripped amplitudes in

bi-adjoint scalar theory and YM obtained by projecting the color numerators C; to a minimal basis.!!

1We abuse the notation slight by using the same C; for color factors in a minimal basis
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Using the form in Eq. (61) and Eq. (62), we find Ags(n,C;) = P;;C; and Ayy(n, C;) = P;jN;. The
kernel P;; can be view as a matrix with indices run over minimal basis of color factors. If the
kernel is invertible, it would give rise to a unique duality-satisfying representations by matching
color-stripped amplitudes in bi-adjoint scalar theory and YM. However, it is often not the case and
consistent with the fact that duality-satisfying representations are not unique. This immediately

implies that the kernel Pj; has null vectors v; such that
Z Vi ABS,YM(”; Cl) = 0 (66)

as non-trivial relations among color-stripped amplitudes. Note that this relation is universal: it
holds for any theories satisfying color-kinematics duality.

For classical radiation, we find one BCJ relation even at leading order
1
(p1 - 12)A(L, Ch) + (p2 - 1) A(L, C2) + 3 (l% - lg) A(L,G5) = 0. (67)

which holds for both bi-adjoint scalar theory and YM. A quick way to verify the above relation is
from gauge invariance. Consider Eq. (63) with a longitudinal polarization é* o I{;, the left-hand-
side vanishes identically by gauge invariance and N; reduces to the null vector v; in above equation.
This relation implies that the leading-order rule [30], although being the simplest choice, is not
unique. We can shift the rules with anything proportional to the above relation without changing
the results.

Since double copy relates physical amplitude of various theories, it should be possible to do so
directly at the level of amplitudes at least for tree level. Indeed, such construction is the famous
KLT relations. Again, consider the amplitudes in double copy form in Eq. (62) and Eq. (63). Let

us ignore that P;; is not invertible for a moment. The gravity amplitude is naively given by

Acgr(n) = (—1)" Y_ Ny Py P;' Py N,

i
=(-1)" ZAYM(n, Ci) Sij Aym(n, Cy), (68)

0.
as a consequence of double copy form with S;; = Pgl How to reconcile with the fact that P,
as doubly-stripped amplitudes in bi-adjoint scalar theory, is not invertible in general? It turns out
the above squaring relation still makes sense by introducing pseudo-inverse [79]. Alternatively, we
can delete the redundant doubly-stripped amplitudes in bi-adjoint scalar theory due to the BCJ
relations. The remaining doubly-stripped amplitudes form a reduced kernel P;;, which is invertible

by construction. The KLT relations can then be derived straightforwardly.

Concretely, return to the classical radiation at leading order. The doubly-stripped amplitude in
Eq. (49) form a 3 x 3 matrix. If we choose to delete the third column and row, as instructed by

Eq. (67), the matrix becomes diagonal and readily invertible. Then the general form in Eq. (68)
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reduces to
2
Agr(n) = = Y Aym(n, Cy) Sij Aym(n, Cj) (69)
ij=1

with S11 = 13(p1 - 12)?/(ly - l12), Sao = 3(p2 - 11)?/(I1 - l12), and zero otherwise. Note that the KLT
kernel Sj; is not necessarily a local matrix.

Both types of relations generalize at next-to-leading order. First, we find four BCJ relations
0 =(p1 - l123) A(2, Cy) + (p2 - li23) A(2,C5 ) + (p3 - l123) A(2,C6)
+ (I1 - lh23) A(2, Cho) + (I2 - l123) A(2, C0)
0 =(p1 - l123) A(2, Cg) + (P2 - l123) A(2, Cho) + (p3 - l123) A(2, C3)
— (I1 - lh23) A(2, C1g) + (I2 - l123) A(2, C16)

(70)

and also two more relations from the permutations of the second line. This implies there are only
16 independent color-stripped amplitudes at next-to-leading order. By deleting these redundancies,
the kernel P;; is now invertible and yields the KLT relations, which we verify numerically.

By realizing double copy at amplitude level, the KLT relations can be a fast numerical way to
generate gravitational radiation at higher orders. It also enables the construction from generalized
double copy [18, 20, 21]. It would be interesting to connect the BCJ and KLT relations to those in

the S-matrix with fundamental matter [16, 80-85] which we leave for future work.

5 Discussions and Outlook

In this paper, we calculate the classical radiation in bi-adjoint scalar theory, Yang-Mills theory,
and dilaton gravity to next-to-leading order. This is the first gravitational result in the third order
of post-Minkowskian expansion. By comparing BS and YM in the form of Eq. (61) and Eq. (62),
we realize color-kinematics duality in Eq. (2). The resulting double copy amplitude in Eq. (63)
completely agree with explicit calculation in dilaton gravity. We also observe the BCJ and KLT
relations which are also the signatures of color-kinematics duality.

From S-matrix to classical radiation, the seamless transition of double copy hinges on the gauge
invariance and locality—both works surprisingly well in the classical limit. The gauge invariance
in emission amplitudes is based on the on-shell limits of the currents in Eq. (32) and Eq. (58).
Although the currents look like loop integrands in the S-matrix, they are gauge invariant prior to
the integration by our direct calculation. This makes gauge invariance is preserved under double
copy without subtlety. Second, locality also holds well by the very same kernel in Eq. (61) for YM
and dilaton gravity. Further study along the line of Ref. [32] might make the observations here
transparent. We also find it important to break the degeneracy in color—by considering a generic

three-body system—to see the double-copy structure.
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Given the extension to broader theories at leading order [32, 34-36], it would be interesting to
see if the same can be done at next-to-leading order. The case with spinning sources [34, 36] is
particularly interesting. As the calculation becomes more involved, double copy could be even more
valuable than in scalar case here. Second, the anti-symmetric two-form can be appear when spin is
non-zero. Confirming double copy including spin and the two-form would complete the full picture.
More drastically, the S-matrix in seemingly different theories, e.g., YM and the non-linear sigma
model, are unified under the transmutations in Ref. [86]. Given the success of double copy here, it
is possible that the same unifying relations carry through to classical radiation in various theories.

Of course, the most interesting extension would be classical radiation in Einstein gravity. This
has been demonstrated at leading order [32]. In fact, the modified gauge theory written in Ref. [32]
is rather unique by demanding the coupling between the extra scalar and a massive source propor-
tional to mass. It is possible that the same model also works at higher orders. If it succeeds, the
results would immediately useful as the first calculation at third post-Minkowskian order in general
relativity.

The success at next-to-leading order suggests that the future at higher orders is promising.
Crucially, worldline formalism trivializes higher order calculations as tree-level-like processes with
multiple source insertions, along the line of Eq. (42). If we can fully understand such classical
processes as tree-level amplitudes in field theory, extending the results in Ref. [32], then the well-
developed techniques in S-matrix will be available. They could teach us how the double copy works
at higher order, for broader type of sources, and possibly lead to an all-order proof.

For future applications to LIGO, it relies on how much the double-copy construction can simplify
binary black holes especially in post-Newtonian regime. We have demonstrated that the classical
limit does not obstruct double copy, at least in the scattering process in post-Minkowskian regime.
However, post-Newtonian regime remains quite distinct in many qualitative features [64]. The time
dependence of orbiting binaries would less straightforward as scattering particles. However, the
recent success at leading order [33] suggests that these complications can be controlled. Alter-
natively, the results in post-Minkowskian scheme can be used as for extracting useful information
about post-Newtonian systems by using subtraction [38, 40-42] or effective one-body formalism [65—
68]. We hope the hidden simplicity found in gravitational S-matrix could eventually shed light on

the spacetime ripples from binary black holes.
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Ci=(c1-c)(c1-c3) Cs=1(c1-c3)[er,e0]* Cy = [eq,[ea, cs]]”
Cy=(c1-ca)(ca-c3) Cg=(c1-c2)[es, 1] Cro = [co, [e3,¢1]]"
C3 = (c1-c3)(ca-c3) COr=(ca-cs)ler, ] Cu=leg, e, oo
Cy=c1 - eo, 3 Cs = (c2 - c3)[es, c1]®

Table 3: List of the color numerators relevant for worldline degrees of freedom at next-to-leading
order. The first column is color singlet and used for the trajectory deviation, while the rest carries
an adjoint index and used in the color deviation. The dual color numerators follow similarly. The
last three satisfy Jacobi identity Cy + C1g + Ci; = 0.

discussions, comments on the manuscript, and the continuous encouragement.

A Notations in Ancillary Files

In all ancillary files, the notations are
1. pli] and 1[i] denotes p; and I; respectively.
2. nc[i] and nct[i] is the respective color numerator C; and a;.

3. kk[a,b] is the Lorentz inner product a - b between two Lorentz vector a* and b, except that

we use kk[a,b[1]] for a Lorentz vector a*.

4. keString[a,eE[1],b] is a tensor (a*b” 4 a"b*)/2 composed of two Lorentz vector a* and b*.

B Point Sources at Next-to-leading Order

We give the details of worldline degrees of freedom at next-to-leading order. First, the color nu-
merators needed for trajectory and color charges are given in Table 3. For a point particle labeled

by subscript 1 in bi-adjoint scalar theory, we find the next-to-leading order trajectory deviation is

(b)) (o) B+ (s p)° ) ol
p3)? 0X['(2) =C1C + CuCy e
(p1 - l2s) 1(2) 11 1212 (12.p1)2(l3_p1)2 4 4@@@3

- (Y i e (s

13135 (I - p2)’* 13135 (1> - ps)*
1313(ly - p1)(I3 - p1)

I, L
C,C c.C
B,y T (OO +CiC)

+ (C1Cy + CuC)

I
l23

— (0204 + 0402) m
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which is induced by the radiation emitted by worldline 2 and 3, and the color deviation is

(Iy - 13)61 + (I3 'pl)a; c (Iy - 13)(71 — (2 ‘p1)é4

B3 (Is - pr)° " BEGL-n)
(I3 - 153)Co + (I3 - p2) Cy _C (Iy - 153)C5 — (lz - p3) Cy

B13 (Is - p2)’ Y BBy (bps)

Cy Cs Cs 20,

Bi3(ls-p1) 13305 po) " 13155(12 - p3) l§l§l§3>
61 02 C~'3 26’4

TBE(L-p) BByl pa) | BBl ps) l%@%z)

(p1 . 123) 56?(2) = — 05

+Cr

(72)

where we have used Cy = —Cg — Cy; from Jacobi identity For YM, we also calculate §X}*(2) and

dC#(2) which are corrections at next-to-leading order. The full details are available in the ancillary

files ym_pos_NLO.m and ym_color_ NLO.m which involve the same color numerators in Table 3. The

50Xt (2) for a point source in dilaton gravity is also provided in gr_pos_NLO.m.
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