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Abstract

Einstein-frame supergravity is accompanied by quantum correction

terms because of super-Weyl transformation. The correction term con-

sists of the field strength terms that respectively originate from gauge,

gravitational, and Kähler anomalies. In this paper, it is shown how the

full-kind one-loop Jacobian correction term is calculated and represented

in N = 1, D = 4 superspace formalism.
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1 Introduction

Various supersymmetric theories have been subject to researches and successful
as quantum field theories till today. For example, path integral calculation
of supersymmetric Yang-Mills theory has already been deeply researched [1–
5]. However, supergravity theory has not been understood so clearly as super-
Yang-Mills, due to the complexity of its Lagrangian and the difficulty in its
quantisation. In this paper, as a foothold for a better understanding of quantum
supergravity, we aim to calculate the qunatum correction term from super-Weyl
transformation in N = 1, D = 4 supergravity.

Matter-coupled supergravity Lagrangian is usually constructed via the Brans-
Dicke form, where the scalar curvature (i.e. the kinetic term of the graviton) is
unconventionally coupled with the matter scalar:

LBD/e = −1

2
e−K/3R+ · · · (1.1)

and thereafter transformed into the Einstein form by super-Weyl transforma-
tion:

LE/e = −1

2
R+ · · · . (1.2)

Here e is the vielbein determinant, R the (gravitational) scalar curvature, and
K = K(A,A†), an Hermitian function, the Kähler potential for the target man-
ifold of the nonlinear sigma model. Since the transformation from (1.1) to (1.2)
includes Weyl rescaling and chiral rotation of the fermions, the full Einstein-
frame Lagrangian in quantum theory requires the anomaly correction term:

Lfull
E = LE +∆L. (1.3)

In this paper we calculate ∆L at one loop. A previous research [6] has already
given a similar consideration and calculation, but it is incomplete in that

• they calculate only the gauge anomaly and ignore the gravitational one
and the Kähler one

• they ignore the Kähler-gauge coupling in the covariant derivative of the
chiral fermion in the case where the target manifold has a nontrivial Kähler
metric.

Hence this paper gives the full-kind, one-loop ∆L in the correct form, i.e. with
all kinds of (gauge, gravitational, and Kähler) anomalies and with the correct
gauge anomaly term where the Kälher metric is nontrivial. In order to do this,
we also construct the anomaly-calculation method (Fujikawa method) for the
gauge bosons and the Rarita-Schwinger fermion, not only for spin-1/2 fermions,
which is already well known. In a previous research [7] they treat the path-
integral measure in a prudent but complicated way in order to investigate how
the anomaly mediated gaugino mass is determined and expressed in terms of
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superfield, while we simply calculate the anomaly terms caused by super-Weyl
transformation.

This paper is organised as follows. In Section 2 we review the general super-
Weyl transformation and the specific parameter required when the Brans-Dicke
form is transformed into the Einstein form. In Section 3 we review the Fujikawa
method for spin-1/2 fields and apply it to construct the similar method of spin-1
and spin-3/2 versions. In Section 4, combining them, we calculate the anomaly
correction term from super-Weyl transformation and describe it in the terms of
the superfield strengths. Section 5 is the summary.

2 Super-Weyl Transformation

There are roughly two ways to construct the supergravity Lagrangian. The one
is superspace formalism [8–10], and the other is superconformal tensor calcu-
lus1 [11–18]. This paper is mainly described in superspace formalism, and the
notation follows [10] unless otherwise specified.

Matter-coupled supergravity Lagrangian by superspace formalism is con-
structed inevitably via the kinetic terms of the form [10]

LBD =

∫

d2Θ2E
[

3

8

(

D̄2 − 8R
)

e−(K+Γ)/3

+
1

16
H(ab)(Φ)W

(a)αW (b)
α + P (Φ)

]

+ h.c. (2.1)

=e

[

−1

2
e−K/3R− 1

4
e−K/3εklmn

(

ψ̄kσ̄lψmn − ψkσlψ̄mn

)

− i

2

(

χiσmDmχ̄i + χ̄iσ̄mDmχi

)

− ∂mAi∂mA
∗
i + · · ·

]

, (2.2)

which has unconventionally matter-coupled kinetic terms (Brans-Dicke form)
of the gravitational multiplet and non-Kähler kinetic terms of the chiral mat-
ter multiplet. Here H(ab) is the gauge kinetic function, W (a)α the gauge field
strength2, where (a) is the index for the adjoint representation, P the superpo-
tential, K the Kähler potential3, and Γ = Γ(Φ,Φ†, V ) the gauge counterterm,
which renders the Lagrangian gauge invariant. In order to transform Lagrangian
into the canonical Einstein (and Kähler) form, Weyl transformations and some
other transformations are required and they are united as super-Weyl transfor-
mation. Thus in this section we resummarise the general super-Weyl transfor-
mation in the superfield level and its special parameter for the transformation
from Brans-Dicke form to Einstein form. The results in this section are quoted
from [10] and [6] as a whole.

1Actually there is a construction method integrating both methods, which is called super-
conformal superspace formalism. Refer to [19–23], for example.

2W (a)α should not be confused with Wαβγ , one of the gravitational field strengths.
3Throughout this paper, K denotes K(Φ,Φ†) in the context of superfields, while it denotes

K(A,A∗) in the context of component fields.
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2.1 General Super-Weyl Transformation

Since supergravity in superspace has a large number of redundant degrees of
freedom, torsion constraints are required to reduce them. Super-Weyl transfor-
mation is the transformation that includes supervielbein rescaling and preserves
the torsion constraints. A general infinitesimal super-Weyl transformation is
parametrised by a chiral superfield Σ as4

δSWE = 6ΣE +
∂

∂Θα
(SαE)

δSWΦ = −Sα ∂

∂Θα
Φ

δSW
[(

D̄2 − 8R
)

U
]

= −(D̄2 − 8R)
[

(4Σ− 2Σ†)U
]

− Sα ∂

∂Θα

[(

D̄2 − 8R
)

U
]

δSWWα = −3ΣWα − Sβ ∂

∂Θβ
Wα, (2.3)

where

Sα = Θα
(

2Σ† − Σ
)
∣

∣+Θ2 (DαΣ)| (2.4)

and U is an arbitrary real superfield of super-Weyl weight zero5. These trans-
formations induce an infinitesimal variation of the Lagrangian:

δL =

∫

d2Θ2E
{

3

8

(

D̄2 − 8R
)

[

2
(

Σ + Σ†
)

e−(K+Γ)/3
]

+ 6ΣP

}

+ h.c. (2.5)

Thus a general finite transformation is

L 7→ L′ =

∫

d2Θ2E
{

3

8

(

D̄2 − 8R
)

exp

[

−1

3

(

K + Γ− 6Σ− 6Σ†
)

]

+
1

4
H(ab)W

(a)W (b) + e6ΣP

}

+ h.c. (2.6)

2.2 Parameters from Brans-Dicke to Einstein

By transformation (2.6), the Lagrangian can be transformed into the form with-
out undesirable couplings: without Brans-Dicke couplings of the gravitational
multiplet or non-Kähler kinetic terms of the matter multiplet. In order to op-
erate this transformation, it is necessary that Σ should satisfy

K| = 6(Σ + Σ†)|, (DαK)| = 6(DαΣ)|, (D2K)| = 6(D2Σ)|, (2.7)

4These transformation rules should be understood in Θ expansion: for example, in general
χ in Φ can be transformed even though Φ is of Weyl weight zero, since the supervielbein EA

M is
transformed and Θ expansion is dependent on the supervielbein via the covariant derivative.

5Here we require only the case of weight zero, but in more general the field U may have
nonzero super-Weyl weight. See [10] for that case.
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or K − 6Σ− 6Σ† has no lowest, Θ, and Θ2 components [6]. The first condition
corresponds to the canonical kinetic term of the graviton, the second to that
of the gravitino, and the third to those of the matter multiplets6. Note that
Γ has no contribution to (2.7), since Γ can be assumed to be in the Wess-
Zumino gauge, where Γ has no lowest, Θ, Θ2 coefficients [10]. These conditions
determine the chiral parameter Σ required for the transition to Einstein frame:

Σ = B +
√
2Θϕ+Θ2C, (2.8)

with

B =
1

12
K + iφ, ϕ =

1

6
Kiχ

i, C =
1

6
KiF

i − 1

12
Kijχ

iχj , (2.9)

where

Ki ≡
∂K

∂Ai
, Kij ≡

∂2K

∂Ai∂Aj
, (2.10)

and F i is the Θ2 component of Φi. Note that φ, the imaginary part of the
lowest component, is left arbitrary. From the point of view that the Lagrangian
should be of the Einstein and Kähler form, φ can be set to 0 by the condition
(2.7). However, the degree of freedom of φ plays a significant role in the anomaly
calculation, as shown in Chapter 4.

3 Fujikawa Method

The transformation (2.3) includes Weyl rescaling of each field, and furthermore
chiral rotations of the fermions. Since these transformations are anomalous, a
correction term that originates in the variation of the path integral measure
should be added to the Lagrangian in the quantum theory7. In order to cal-
culate this correction term, an anomaly calculation technique, which is called
Fujikawa method, can be utilised. Originally Fujikawa method was devised for
the calculation of symmetry breaking (i.e. how much different the divergence of
the conserved current is from zero), but the functional measure variation from
the field redifinition can also be calculated in almost the same way. Although
Fujikawa method for spin-1/2 fields is already well known [24], the similar meth-
ods for spin-1 and spin-3/2 fields are yet to be clearly constructed. Thus in this
section we review Fujikawa method and construct the similar anomaly calcula-
tion methods for the gauge vector bosons and the Rarita-Schwinger field.

6Refer to Appendix A for a detailed explanation.
7The anomaly correction term cannot be avoided even if one adopt the Einstein-frame

Lagrangian as the starting point of the quantum theory, since the Einstein-frame SUSY trans-
formation contains Weyl rescaling.
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3.1 Generalities

In general, the functional measure Dφ, of a field φ (not necessarily a scalar), for
the (Wick-rotated and Euclideanised) path integral

∫

Dφ e−S[φ] =

∫

Dφ exp

(

−
∫

d4xL[φ]
)

(3.1)

is defined as

Dφ ≡
∏

n

dan, (3.2)

where an is the expansion coefficients by the orthonormal basis:

φ(x) =
∑

n

anφn(x) (3.3)

∫

d4xφ†m(x)φn(x) = δmn, (3.4)

and the basis functions φn(x) are the eigenfunctions of the “Hermite, gauge-
covariant differential operator” O:

Oφn = λnφn. (3.5)

Note that φn and an satisfy

an =

∫

d4xφ†n(x)φ(x) (3.6)

∑

n

φn(x)φ
†
n(y) = δ(x− y). (3.7)

Then for an infinitesimal transformation φ 7→ φ′ = φ+αφ with a parameter α,8

which satisfies |α| ≪ 1,

a′n =

∫

d4xφ†n(x)φ
′(x)

=
∑

m

am

(

δmn +

∫

d4xφ†n(x)α(x)φm(x)

)

≡
∑

m

am (δmn +Mmn) , (3.8)

8Note that in general the parameter α is not necessarily a scalar, but may have spinor or
Lorentz indices if the field φ is a spinor or a vector.
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and the functional measure varies as

Dφ′ = Dφ det

(

∂a′

∂a

)

(3.9)

det

(

∂a′

∂a

)

= exp tr log (δmn +Mmn)

∼ exp trM

= exp

[

∑

n

∫

d4xφ†n(x)α(x)φn(x)

]

. (3.10)

However, the sum
∑

n φn(x)φn(x) is ill-defined because of (3.7). Therefore this
sum should be regularised in a gauge-invariant way:

∑

n

∫

d4xφ†n(x)α(x)φn(x)

→
∫

d4xTr

[

α(x)
∑

n

et
2λ2

nφn(x)φ
†
n(x)

]∣

∣

∣

∣

∣

t=0

, (3.11)

where Tr denotes the full trace, i.e. the trace with respect to all indices such as
spinor or coordinate ones9. Furthermore, the internal sum is

∑

n

et
2λ2

nφn(x)φ
†
n(x) =

∑

n

et
2λ2

nφn(y)φ
†
n(x)

∣

∣

∣

∣

∣

y=x

= et
2O2

x

∑

n

φn(y)φ
†
n(x)

∣

∣

∣

∣

∣

y=x

= et
2O2

xδ(x− y)
∣

∣

∣

y=x

=

∫

d4k

(2π)4
e−ikxet

2O2

eikx. (3.12)

Thus it suffices to define appropriate O’s and calculate the integral (3.12) for
spinors, vectors, and Rarita-Schwinger fields.

The generalities above can be applied also to theories that contains gravity,
but note that the transformation parameter should be for the weight-corrected
field φ̃ ≡ √

eφ with no diffeomorphism indices10. For example, the parameter
for the gravitino should be understood as the one for ψ̃a ≡ √

eψa, not for ψm

or ψa. Here shown are the coefficients for the infinitesimal transformation (2.3)

9Remember that in general φ and α can have spinor or coordinate indices.
10In the argument below we use fields with diffeomorphism indices for simplicity in the

calculation of the spacetime trace, but the results are not affected. Only the transformation
parameters are relevant.

7



with Σ| = ζ + iξ:

δeam = 2ζeam

δψ̃a = 3(ζ − iξ)ψ̃a

δÃ = 0

δχ̃ = 3(ζ + iξ)χ̃

δF̃ = 2(ζ + 3iξ)F̃

δλ̃ = (ζ − 3iξ)λ̃

δṽa = −2ζṽa

δD̃ = (ζ − 3iξ)D̃. (3.13)

3.2 Spinor Field: Review

The path integral approach to the quantum anomaly of a spinor has long been
established [24]. The operator O should be taken to be /̃D ≡ γmD̃m, where D̃m

is the full covariant derivative, including the gravitational, gauge, and Kähler
connections. Then the integral (3.12) is estimated as

∫

d4k

(2π)4
e−ikx exp

[

t2 /̃D2
]

eikx

=

∫

d4k

(2π)4
exp

[

t2 ( /̃D + i/k)2
]

=
1

t4

∫

d4k

(2π)4
exp

(

−k2 + 2it/k /̃D + t2 /̃D2
)

(kt 7→ k) (3.14)

t→0−−−→ 1

384π2

[

2ΩmnΩmn + 2 (�γmnΩmn) + 3 (γmnΩmn)
2
]

, (3.15)

where Ωmn = [D̃m, D̃n], the field strength of the covariant derivative11.

3.3 Vector Field

The path integral measure for a vector field can be defined basically in a similar
way to that for a spinor, but the gauge degree of freedom should be treated care-
fully. A candidate for the differential operator O is O2Ak = ∇l (∇lAk −∇kAl).
However, this O2 is not elliptic, and therefore the integral (3.12) does not con-
verge. This is because Ak has the gauge freedom, and therefore the integrand
of (3.12) is constant in the direction of this freedom. Thus it is necessary to fix
the gauge and suppress the divergence. In order to do that, the diffeomorphism-
invariant Lorentz gauge condition ∇kA

k = 0 can be adopted. Then the second-

11Actually (3.14) contains terms that diverge as 1/t4 and 1/t2, but they cancel out those
from the functional measure variation of the bosonic field. Refer to Appendix B for a detailed
calculation.
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order differential operator above

∇l (∇lAk −∇kAl) = �Ak +R l
k Al

∼
(

δ l
k �+R l

k

)

Al

≡ (�+ R̂)Ak (3.16)

is now elliptic. The plane-wave trace (3.12) is evaluated as

∫

d4k

(2π)4
e−ikxet

2(�+R̂)eikx

t→0−−−→ 1

192π2

[

2 (�R) + 6RmnRmn −RklmnRklmn

]

(3.17)

where Rklmn and Rmn are the (gravitational) Riemann curvature tensor and
Ricci tensor respectively. Note that in supergravity theory Am has only the
gravitational connection in its covariant derivative, and therefore the result is
written in only terms of the curvature tensor from the metric. Since Am is
transformed only by Weyl rescaling (i.e. scalar-like transformation), we have
already taken the coordinate trace in (3.17).

3.4 Rarita-Schwinger Field

A candidate for the gauge-covariant operator is Oψk = (1/
√
2)γklm∇lψm, but

the gauge condition ∇mψm = 0 needs to be imposed because of the same reason
as the case for vector fields. Then O2 is modified into an elliptic operator:

O2ψk = γklm∇lγmnp∇nψp

∼
[

δkl �+Xk
l

]

ψl

≡ (�+ X̂)ψk (3.18)

where

Xk
l =

1

4
δkl γ

mnΩmn +
1

2

(

γkmΩml + γlmΩmk
)

. (3.19)

The spacetime trace (3.12) is calculated as

∫

d4k

(2π)4
e−ikxet

2(�+X̂)eikx

t→0−−−→ 1

384π2

[

−3 (γmnΩmn)
2 + 6γklΩlmγ

mnΩnk − 16ΩmnΩmn

]

=
1

3072π2

(

6R2 − 12RmnRmn + 22RklmnRklmn − 11γabcdRmn
abRmncd

)

.

(3.20)

Similarly to (3.17), we have already taken the coordinate trace. The spinor-
index trace is yet to be summed.
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4 Jacobian Correction Term

In this section we finally calculate the Jacobian correction term ∆L in one-loop.
First, as a preparation, we in advance write down the square terms of the Yang-
Mills and gravitational field strengths in superfield notation. Then we compute
only the terms in ∆L that can be written as the squares of the bosonic field
strengths and describe them in terms of superfield by coefficient comparison.

Yang-Mills field strength is

∫

d2Θ2EΣW (a)αW (a)
α + h.c. = −eξV (a)mnṼ (a)

mn + · · · , (4.1)

where Σ is a chiral superfield and Σ| = ζ + iξ and the ellipses denote the terms
including fermions.

In Poincaré supergravity there are three gravitational field strengths [25]12:

∫

d2Θ2EΣWαβγWαβγ + h.c.

=e

[

− 1

24
ζ
(

R2 − 2RmnRmn +RklmnRklmn

)

+
1

48
ξǫabcdRmn

abRmncd + · · ·
]

(4.2)

∫

d2Θ2EΣ
(

D̄2 − 8R
) (

Gαα̇Gαα̇

)

+ h.c. = −eζ
(

2RmnRmn − 4

9
R2 + · · ·

)

(4.3)
∫

d2Θ2EΣ
(

D̄2 − 8R
) (

R†R
)

+ h.c. = −eζ · 1

18
R2 + · · · . (4.4)

Furthermore, there is a Kähler-curvature field strength of chiral superfield:

∫

d2Θ2EΣ
(

D̄2 − 8R
)

[

Rij∗

kl∗
(Φ)Rij∗mn∗(Φ)

× (DαΦk)(D̄α̇Φ
†l)(DαΦ

m)(D̄α̇Φ†n)
]

+ h.c.

= eζ · 8Rij∗

kl∗(A)Rij∗mn∗(A)(DpAk)(DqA†l)(DpA
m)(DqA

†n) + · · · , (4.5)

where Rij∗kl∗(Φ) = Rij∗kl∗(Φ,Φ
†) is the curvature tensor of the target Kähler

manifold in terms of superfield, and Rij∗kl∗(A) = Rij∗kl∗(A,A
†) similarly. From

here, we operate the calculation of the Jacobians and describe them in terms
of the superfield strengths above, for each of chiral, vector, and gravitational
multiplets.

12Note that the reference [25] is incomplete in that they have not calculated the parity-odd
term ǫRR of (4.2), which derives from the imaginary part of WαβγWαβγ.
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4.1 Chiral Multiplet

The curvature of covariant derivative (i.e. the commutator of covariant deriva-
tive) for the chiral spinor is

[Dm,Dn]χ
i =M i

mn jχ
j +

1

4
Rmnabγ

abχi, (4.6)

where

M i
mn j = V (a)

mn∇jX
(a)i +Ri

jkl∗ (A)(DmA
k)(DnA

†l), (4.7)

and X(a)i is the Killing vectors of the target Kähler manifold. Thus the plane-
wave trace (3.15) is estimated as

2ΩmnΩmn + 2 (�γmnΩmn) + 3 (γmnΩmn)
2

=N

(

−�R+
3

4
R2 − 1

4
RklmnRklmn +

1

8
γabcdRmn

abRmncd

)

+ 3γklmnV
(a)
kl V (b)

mn(∇iX
(a)j)(∇jX

(b)i)

+ 4Rij∗

kl∗(A)Rij∗mn∗(A)(DpAk)(DqA†l)(DpA
m)(DqA

†n) + · · · , (4.8)

where N is the number of chiral multiplets. Finally, using (3.13), the one-loop
correction term from the chiral multiplets is13

∆L1
chiral = ∆L1

chiral;K +∆L1
chiral;V +∆L1

chiral;G, (4.9)

where

∆L1
chiral;K

=
1

64π2

∫

d2Θ2EΣ
(

D̄2 − 8R
)

[

Rij∗

kl∗(Φ)Rij∗mn∗(Φ)

× (DαΦk)(D̄α̇Φ
†l)(DαΦ

m)(D̄α̇Φ†n)
]

+ h.c.

(4.10)

∆L1
chiral;V = − 3

16π2

∫

d2Θ2EΣW (a)αW (b)
α ∇iX

(a)j∇jX
(b)i + h.c. (4.11)

∆L1
chiral;G

=
N

128π2

∫

d2Θ2EΣ
[

24WαβγWαβγ

+ (D̄2 − 8R)(Gαα̇Gαα̇ − 64R†R + 6D2R)
]

+ h.c.

(4.12)
13Note that (4.8) is yet to be summed in spinor index.
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4.2 Vector Multiplet

The curvature of covariant derivative for the spinor in the vector multiplet is

[Dm,Dn]λ
(a) = −f (abc)V (b)

mnλ
(c) +

1

4
Rmnabγ

abλ(a), (4.13)

where f (abc) is the structure constant of the gauge group. Then, together with
(3.17) and using (3.13), the correction term from the vector multiplet is evalu-
ated as

∆L1
vector = ∆L1

vector;V +∆L1
vector;G, (4.14)

where

∆L1
vector;V =

3

16π2
NG

∫

d2Θ2EΣW (a)αW (a)
α + h.c. (4.15)

∆L1
vector;G

=
3

128π2
NG

∫

d2Θ2EΣ
[

− 8WαβγWαβγ

+ (D̄2 − 8R)(Gαα̇Gαα̇ + 8R†R+ 2D2R)
]

+ h.c.

(4.16)

Here NG is the Dynkin index of gauge multiplet, normalised to n for SU(n).

4.3 Gravitational Multiplet

The correction term from the gravitational multiplet is directly calculated from
(3.20) and (3.13):

∆L1
gravity =

1

16π2

∫

d2Θ2EΣ
[

− 33WαβγWαβγ

+ (D̄2 − 8R)(−Gαα̇Gαα̇ + 10R†R)
]

+ h.c.

(4.17)

5 Summary

In this paper we have calculated the one-loop quantum correction term to the
supergravity Lagrangian from super-Weyl field redefinition, including the trans-
formation from the Brans-Dicke form to the Einstein-frame Lagrangian. This
correction term is essentially inevitable since the Einstein-frame supersymme-
try transformation includes Weyl rescaling and chiral rotation of the fields. The
correction term is in total described as

∆L1 =∆L1
chiral;K +∆L1

chiral;V +∆L1
chiral;G

+∆L1
vector;V +∆L1

vector;G +∆L1
gravity, (5.1)
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where each term is evaluated as (4.10), (4.11), (4.12), (4.15), (4.16), and (4.17)
in terms of superfield.

In order to calculate the Jacobian correction term, we first expanded the
anomaly-calculation method, which is already well known as Fujikawa method
for a spinor, to the ones for a vector boson and a Rarita-Schwinger field. There-
after, by coefficient comparison, we adjusted the numerical factors in front of
superfield strengths and finally determined the entire form of the correction
term.

The entire correction term is in a complicated form with many terms and
miscellaneous coefficients. This is because we are considering Poincaré super-
gravity. Poincaré supergravity is a theory that is obtained by gauge fixing
from conformal supergravity, and therefore Poincaré supergravity is a “math-
ematically halfway” theory in a sense. On the other hand one could consider
an anomaly calculation similar to this paper in conformal supergravity. Since
anomaly calculation is a “purely mathematical” operation, it might be expected
that the anomaly term could be simpler in conformal supergravity, where all the
field strengths, including the Kähler curvature, are put in a single supermulti-
plet. Further researches are expected for this topic.
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A Determination of Super-Weyl Parameter

In this section we derive the conditions (2.7), which finally determine the pa-
rameters (2.9), for the super-Weyl transformation from Brans-Dicke form to
Einstein form. For the detail of Θ expansion of each superfield, refer to [10].

First, out of the full Lagrangian

∫

d2Θ2E
(

D2 − 8R
)

exp

[

−1

3
(L+ Γ)

]

, (A.1)

where L = K − 6Σ − 6Σ†, the kinetic terms of each fields are included in the
term

∫

d2Θ2E
(

D2 − 8R
)

L. (A.2)

Since

(2ER)
∣

∣

∣

Θ=0
=

1

6
eR+ · · · , (A.3)

it is required that L| = 0 for the Einstein canonical kinetic term of the graviton.

13



Next, since

(DαR)| = −1

6
σaσ̄bψ

ab
α + · · · , (A.4)

with ψmn = Dmψn −Dnψm, it should be imposed that (DαL) | = 0 in order to
remove differential coupling like χσabψab.

Finally, since the term

D̄2K(Φ,Φ†) = −Θ2Ki∗j∗DmA†iDmA
†j + · · · (A.5)

spoils the Kähler form of the matter kinetic term, it is necessary to adjust with
Σ so that (D2L)| = 0.

B Calculation of Heat Kernel Expansion

In this section we derive a formula in order to calculate the spacetime trace
(3.15), (3.17), and (3.20). The methods and results in this section are in refer-
ence to [26] as a whole.

First,

∫

d4k

(2π)4
e−ikxet

2(�+X̂)eikx

=

∫

d4k

(2π)4
exp

{

t2
[

(D + ik)
2
+ X̂

]}

(B.1)

=
1

t4

∫

d4k

(2π)4
exp

[

t2
(

�+ X̂
)

+ 2itk · D − k2
]

(B.2)

∼
∫

d4k

(2π)4
1

24
e−k2×

:

[

16(k · D)4 + 12(−4)
(

�+ X̂
)

(k · D)2 + 12
(

�+ X̂
)2

]

:, (B.3)

where ∼ denotes extracting the constant term of the Laurent expansion in t,
the colon : X : denotes Weyl-ordered product of X , i.e.

: AB2 : =
1

3

(

AB2 +BAB +B2A
)

, (B.4)

and we have used

1

t4
eAt2+Bt+C ∼ 1

24
: eC

(

B4 + 12AB2 + 12A2
)

: . (B.5)
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Continue to calculate (B.3) to obtain

∫

d4k

(2π)4
e−ikxet

2(�+X̂)eikx

=
1

96π2

{

�
2 +Dµ

�Dµ +DµDνDµDν

− 2
[(

�+ X̂
)

�+Dµ
(

�+ X̂
)

Dµ +
(

�+ X̂
)

�

]

+ 3
(

�+ X̂
)2 }

(B.6)

=
1

96π2

[

DµDνDµDν −Dµ
�Dµ + 3X̂2 +�X̂ − 2DµX̂Dµ + X̂�

]

(B.7)

=
1

96π2

[

1

2
ΩµνΩµν + 3X̂2 +

(

�X̂
)

]

, (B.8)

14where Ωµν ≡ [Dµ,Dν ] and we have used

∫

d4k e−k2

= π2 (B.9)

∫

d4k e−k2

kµkν =
π2

2
gµν (B.10)

∫

d4k e−k2

kµkνkρkσ =
π2

4
(gµνgρσ + gµρgνσ + gµσgνρ) . (B.11)

For example, in the case for a spinor,

�+ X̂ = /̃D2 = γµγνD̃µD̃ν = �+
1

2
γµνΩµν , (B.12)

and therefore X̂ ≡ 1
2γ

µνΩµν . Substitute this into (B.8) and finally obtain (3.15).
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