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Abstract: Surprising links between the deformation of 2D quantum field theories induced

by the composite TT̄ operator, effective string models and the AdS/CFT correspondence,

have recently emerged. The purpose of this article is to discuss various classical aspects

related to the deformation of 2D interacting field theories. Special attention is given to the

sin(h)-Gordon model, for which we were able to construct the TT̄-deformed Lax pair. We

consider the Lax pair formulation to be the first essential step toward a more satisfactory

geometrical interpretation of this deformation within the integrable model framework.

Furthermore, it is shown that the 4D Maxwell-Born-Infeld theory, possibly with the addi-

tion of a mass term or a derivative-independent potential, corresponds to a natural extension

of the 2D examples. Finally, we briefly comment on 2D Yang-Mills theory and propose a

modification of the heat kernel, for a generic surface with genus p and n boundaries, which

fully accounts for the TT̄ contribution.
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1 Introduction

Effective Field Theories (EFTs), are characterized by the presence of irrelevant fields in the La-

grangian which usually make quantization and the physical interpretation of the high-energy

regime very problematic. In two spacetime dimensions, the study of EFTs is experiencing a

period of renewed interest thanks to the discovery of surprising integrable-like properties of

the TT̄ composite operator, rigorously defined by Zamolodchikov [1] as the determinant of

the stress-energy tensor.

While the main source of inspiration of [1] were the non-perturbative factorization prop-

erties detected, within the Form-Factor approach, in [2], the TT̄ perturbative contributions to

the finite-size spectrum first emerged from the study of the RG flow connecting the Tricritical

Ising (TIM) to the Ising model (IM) [3]. The analysis of [3], was based on a combination of

powerful techniques such as conformal perturbation theory, exact scattering theory and the

Thermodynamic Bethe Ansatz (TBA).

The scattering among right and left mover massless excitations along the TIM → IM

critical line is described by a pure CDD [4] factor which, therefore, should contain information

on irrelevant fields. This observation triggered early studies on TBA models with modified

CDD kernels and lead to the conclusion that, in many cases, they were affected by short-

distance instabilities [5, 6] (see the related discussion in Section 9 of [7]). The fact that

seemingly consistent exact S-matrix models1 may display ultraviolet pathological behavior

was first detected in [9]. The interest towards this research topic remained very limited for

1For example, the wide family of scattering models proposed in the final discussion Section of [8].
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many years until an important step forward was made in [10, 11]: a link between the TBA

equations for free massless bosons, modified by a specific CDD factor, and the spectrum

of effective bosonic closed strings was discovered. The generalization to open strings, to

other conformal field theories and the observation that the effective action describing the

confining flux tube of a generic gauge theory was described, at least at leading order, by

a TT̄ perturbation was made in [12]. The connection between these observations and the

paper [1] was further clarified in [7, 13] where, among many other results, an inviscid Burgers

equation for the spectrum was identified, and the corresponding equation for the action [7]

lead to the reconstruction of the whole bosonic Born-Infeld (BI) Lagrangian in 2D [13].

Triggered by these works, remarkable connections have emerged with the AdS/CFT

duality [14–23] and flat space Jackiw-Teitelboim (JT) gravity [24, 25], together with general-

izations to non Lorentz-invariant perturbations [26–29].

The study of partition functions of TT̄-deformed models was started in [13] and further

developed in [25, 30, 31].2 Interesting results on entanglement were recently obtained in

[34, 35]. Finally, a link with stochastic processes was established and generalizations to

higher spacetime dimensions proposed in [30] (see also in [36, 37]).

The purpose of this article is to further investigate the properties of TT̄-deformed field

theories. Firstly, we shall review some of the results reported in [13], concerning classical

bosonic Lagrangians with interacting potentials. We will prove that the fairly complicated

expression for the perturbed Lagrangian, given in [13], can be recast into a much simpler

Born-Infeld type form. We shall also comment on the similarity between the inclusion of

the potential term and a transformation property for the spectrum first spotted in [7], as

the coefficient of the bulk contribution of the unperturbed energy is modified. The latter

results were anticipated in [38] and are partially connected, with some minor overlap, to the

papers [22, 36]. The TT̄-deformed sine-Gordon model is also discussed in detail and the

corresponding Lax operators are constructed.

Furthermore, motivated by the observations made many years ago in [39, 40] which link

plane wave scatterings in the 4D Maxwell-Born-Infeld (MBI) theory to a 2D bosonic Born-

Infeld model, we shall show that the MBI Lagrangian satisfies a simple generalization of the

equations described in [7, 13], similar but different from the higher dimensional proposals of

[30, 36, 37]. The introduction of a mass term or a derivative independent potential in the

original field theory affects the TT̄-deformed Lagrangian as in the 2D examples.

Finally, we will briefly discuss the exactly solvable example of 2D Yang-Mills and conjec-

ture a simple modification that includes the TT̄ contribution in the partition functions, and

more generally in the heat kernel for a generic surface with genus p and n boundaries.

2See also [32, 33] for earlier results on partition functions for the bosonic Born-Infeld models, in the context

of effective flux-tube theories.
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2 Deformed interacting bosonic Lagrangians from the Burgers equation

In [7, 13] it was proven that the energy levels En(R, τ) associated to the stationary states |n〉
with spatial momenta Pn(R) = 2πkn

R , (kn ∈ Z), satisfy the following inhomogeneous Burgers

equation

∂τEn(R, τ) =
1

2
∂R
(
E2
n(R, τ)− P 2

n(R)
)

= − R
π2
〈n|TT̄|n〉R , (2.1)

where the composite operator TT̄ is defined up to total derivative terms as

TT̄(z, z̄) := lim
(z′,z̄′)→(z,z̄)

T (z, z̄)T̄ (z′, z̄′)−Θ(z, z̄)Θ(z′, z̄′) , (2.2)

and the complex components T , T̄ and Θ of the stress-energy tensor are related to the

Euclidean components T11, T22 and T12 by the following relations:

(x1, x2) = (x, t) , (z, z̄) = (x1 + ix2 , x1 − ix2) , (2.3)

T11 = − 1

2π
(T̄ + T − 2Θ) , T22 =

1

2π
(T̄ + T + 2Θ) , T12 = T21 =

i

2π
(T̄ − T ) . (2.4)

At finite volume R, the expectation values of the Euclidean components of the stress-energy

tensor are related to En and Pn through [41]:

En(R, τ) = −R 〈n|T22 |n〉 , ∂REn(R, τ) = −〈n|T11 |n〉 , Pn(R) = −iR 〈n|T12 |n〉 . (2.5)

Since (2.1) holds for any n, in the following we will drop the subscript n: En(R, τ) = E(R, τ)

and Pn(R) = P (R) = 2πk
R , (k ∈ Z). As a side remark, notice that from [13] it follows(

E(R, τ)

P (R)

)
=

(
cosh (θ0) − sinh (θ0)

− sinh (θ0) cosh (θ0)

)(
E(R0, 0)

P (R0)

)
, (2.6)

with

sinh θ0 =
τ P (R)

R0
=
τ P (R0)

R
, cosh θ0 =

R+ τ E(R, τ)

R0
=
R0 + τ E(R0, 0)

R
, (2.7)

and

R2
0 = (R+ τ E(R, τ))2 − τ2P 2(R) , R2 = (R0 + τ E(R0, 0))2 − τ2P 2(R0) . (2.8)

Therefore the solution to (2.1) can be written in implicit form as

E2(R, τ)− P 2(R) = E2(R0, 0)− P 2(R0, 0) . (2.9)

It would be interesting to check if there exists an extension to higher spacetime dimensions

of the Lorentz-type map (2.6) corresponding to the generalizations of the TT̄ deformation

proposed in [30, 36, 37] and/or to the quantum version of the Maxwell-Born-Infeld model
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discussed in Section 4.

If the boundary conditions at τ = 0 are the energy levels of a CFT, i.e. of the form:

E(R, 0) =
A

R
, (2.10)

the general solution to (2.1) is

E(R, τ) =
R

2τ

(
−1 +

√
1 +

4τ

R2
A+

4τ2

R2
P 2(R)

)
=

R

2τ

(
−1 +

√
1 +

4τ

R2
A+

4τ2

R4
(2πk)2

)
.

(2.11)

The consequence, on the latter expression, of an additional bulk term in the unperturbed

energy (2.10),

E(R, 0) =
A

R
+ F0R , (2.12)

was considered in [7]. Imposing the initial condition (2.12), the solution to (2.1) becomes:

E(R, τ) =
F0R

1− τ F0
+
R

2τ̃

(
−1 +

√
1 +

4τ̃

R2
A+

4τ̃2

R2
P 2(R)

)
, (2.13)

with τ̃ = τ(1− τF0), that is a reparametrization ∆En(R, τ)→ ∆En(R, τ̃) of the perturbing

parameter τ in the energy differences ∆En(R, τ) = En(R, τ)− E0(R, τ).

Furthermore, it was argued in [7] that (2.1) is equivalent, up to total derivative terms, to the

following fundamental equation for the Lagrangian :

∂τL(τ) = det[Tµν(τ)] , TT̄(τ) = −π2det[Tµν(τ)] , (2.14)

with µ, ν ∈ {1, 2} and Euclidean coordinates (x1, x2). By solving perturbatively (2.14) with

initial condition

L(~φ, 0) = ∂~φ · ∂̄~φ , ~φ = (φ1(z, z̄), . . . , φN (z, z̄)) , (2.15)

it was proved in [13] that the deformed Lagrangian L(~φ, τ) coincides with the bosonic Born-

Infeld model or, equivalently, the Nambu-Goto Lagrangian in the static gauge:

L(~φ, τ) =
1

2τ

(
−1 +

√
1 + 4τL(~φ, 0)− 4τ2B

)
=

1

2τ

(
−
√

det[ηµν ] +
√

det [ηµν + τ hµν ]

)
,

(2.16)

with hµν = ∂µ~φ · ∂ν~φ and

B = |∂~φ× ∂̄~φ|2 = −1

4
det [hµν ] . (2.17)

Here, we would like to extend the result (2.16) to generic interacting bosonic Lagrangians of

the form:

LV (~φ, 0) = ∂~φ · ∂̄~φ+ V (~φ) , (2.18)

where V (~φ) is a generic derivative-independent potential. Instead of solving (2.14) using a

perturbative brute-force approach, as in [13], we proceed by postulating that the evident
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similarity between equations (2.11) and (2.16), may be extended also to the TT̄-deformation

of (2.18). Concretely, by comparing (2.16) with (2.11), it is easy to check that the following

rescaled Lagrangian

Lχ(~φ, τ) =
1

χ
L
(
~φ,

τ

χ2

)
, (2.19)

also satisfies a Burgers equation

∂τLχ(~φ, τ) = Lχ(~φ, τ) ∂χLχ(~φ, τ)− B
χ3

, (2.20)

with initial condition Lχ(~φ, 0) = 1
χ ∂

~φ · ∂̄~φ. Notice that the introduction of the auxiliary

adimensional scaling parameter χ allows us to establish a link between (2.14), i.e.

∂τLχ(~φ, τ) = − 1

π2

1

χ
TT̄χ(τ) , TT̄χ(τ) = −π2det[Tµνχ (τ)] , (2.21)

and the Burgers equation (2.20) for Lχ(~φ, τ). Motivated by this simple observation, we solve

now (2.20) with τ = 0 initial condition

LVχ (~φ, 0) = Lχ(~φ, 0) + χV (~φ) , (2.22)

the result is

LVχ (~φ, τ) =
χV (~φ)

1− τ V (~φ)
+

χ

2τ̄

(
−1 +

√
1 +

4τ̄

χ2
L(~φ, 0)− 4τ̄2

χ4
B

)
, (2.23)

with τ̄ = τ(1 − τV (~φ)). It is now straightforward to check that LVχ (~φ, τ) still fulfills the

fundamental equation (2.21).

In the N = 1 case, we first obtained the compact form (2.23) performing a resummation of

the more complicated, but equivalent, expression given in [13] and subsequently we developed

the more direct approach, which again maps (2.21) to a Burgers-type equation. The latter

technique was independently proposed in [36] and applied to different classes of systems and

also to models in higher spacetime dimensions. We address the interested reader to [36] for

a detailed description of this alternative method. The result (2.23) is in perfect agreement

with [42], where the first two perturbative contributions of the deformed free massive boson

action were determined using diagrammatic techniques.

It is also instructive to derive the classical Hamiltonian density HV (~φ, ~π, τ) associated

to the Lagrangian density LV (~φ, τ) = LVχ=1(~φ, τ) and compare it with the expression of the

quantized energy spectrum (2.13). Using the shorthand notation ~φ′ = ∂1
~φ and ~̇φ = ∂2

~φ for

the derivatives w.r.t. the Euclidean space and time respectively, the conjugated momentum

is

~π =
∂LV (~φ, τ)

∂~̇φ
, (2.24)
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and the Hamiltonian density is a straightforward generalization of the single boson case

reported in [20]

HV (~φ, ~π, τ) =
V (~φ)

1− τ V (~φ)
+

1

2τ̄

(
−1 +

√
1 + 4τ̄ H(~φ, ~π, 0) + 4τ̄2 P2(~φ, ~π)

)
, (2.25)

where H(~φ, ~π, 0) = 1
4 |~φ
′|2 − |~π|2 = −T22(0) is formally the Hamiltonian density of the free

undeformed theory, while P(~φ, ~π) = −i~π · ~φ′ = −iT12(τ) is the conserved momentum density

of the deformed theory, following the convention (2.5).

Notice that expression (2.25) has the same formal structure of (2.13). It is then easy to

show that, introducing the auxiliary variable χ in HV (~φ, ~π, τ) exactly in the same way as in

LV (~φ, τ), the Hamiltonian density fulfills an inhomogeneous Burgers equation analogous to

(2.1) with the replacements

R→ χ , P 2 → P2 . (2.26)

Finally let us make some concluding remarks concerning the structure of the energy spectrum

(2.13). Looking at expression (2.13), we notice the appearance of new special points in the

parameter τ , beside the square-root singularity already discussed in [7, 10–13].

• The deformed bulk term F (τ) = F0R
1−τ F0

in (2.13) diverges at τLP = 1
F0

which represents

a Landau-type pole singularity.

• There exists a unique value τ0 = 1
2F0

such that the energy spectrum reduces exactly to

a pure square-root form, without any additional term

E(R, τ0) =
R

2τ̃0

√
1 +

4τ̃0

R2
A+

4τ̃0
2

R2
P 2(R) , τ̃0 = τ0(1− τ0F0) . (2.27)

As noticed in [12], in this case the finite-size expectation value of the TT̄ becomes size and

state independent:

〈TT̄(τ0)〉R = − π
2

2R
∂R
(
E2(R, τ0)− P 2(R)

)
= −

(
π

2τ̃0

)2

. (2.28)

Here we would like to make the additional remark that, with the choice of a constant potential

V (~φ) = F0 in (2.23), the TT̄ composite field becomes ~φ-independent at τ = τ0 :

TT̄(τ0) = −
(
π

2τ̃0

)2

. (2.29)

3 The TT̄-deformed sine-Gordon model

Out of all possible bosonic theories corresponding to the Lagrangian density (2.23), in this

Section we will focus on the TT̄-deformed classical sine-Gordon model, which corresponds to

the case of a single boson field φ interacting with a sine potential. We will first derive the
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exact expression of the single kink solution at any value of the perturbing parameter τ and

discuss the effect of the deformation, as τ is varied. The main result of this Section is the

proof that the TT̄ deformation preserves the classical integrability of the sine-Gordon model,

we will arrive to this conclusion by explicitly constructing the Lax pair of the deformed theory.

3.1 Simple kink-like solutions

Consider the sine-Gordon Lagrangian in Minkowski coordinates (x, t) with signature ηµν =

diag(+1,−1) defined as

LSG(φ) =
1

4
(φ2
x − φ2

t ) + V (φ) , V (φ) = 4 sin2(φ/2) , (3.1)

and the TT̄-deformed sine-Gordon Lagrangian

LSG(φ, τ) =
V

1− τV
+

1

2τ (1− τV )

(
−1 +

√
1 + τ (1− τ V )(φ2

x − φ2
t )

)
, (3.2)

where the shorthand notation φµ = ∂µφ for spacetime derivatives will be used hereafter.

The equations of motion (EoMs) associated to (3.2) can be compactly written as

(1− τV )2 (φxx − φtt) − τ (1− τV )3 (φxxφ2
t − 2φxtφxφt + φttφ

2
x

)
=

1

2
τV ′ (1− τV ) (3 + 2S)

(
φ2
x − φ2

t

)
+ (1 + S)V ′ , (3.3)

where we have set

S =
√

1 + τ (1− τV )
(
φ2
x − φ2

t

)
. (3.4)

In order to find a solution φ(x, t) to (3.3), we proceed by parametrizing it using three generic

functions F , X and T as follows

F (φ) = X (x) + T (t) . (3.5)

Then all the derivatives of φ can be expressed in terms of F , X and T

φx =
Xx

F ′
, φt =

Tt
F ′

, φxx =
Xxx

F ′
−X2

x

F ′′

F ′3
, φtt =

Ttt
F ′
− T 2

t

F ′′

F ′3
, φxt = −XxTt

F ′′

F ′3
, (3.6)

so that the (3.3) becomes

(1− τV )2 F ′2 (Xxx − Ttt)− τ (1− τV )3 (XxxT
2
t + TttX

2
x

)
= (1− τV )2 F ′′

(
X2
x − T 2

t

)
+

1

2
τV ′ (1− τV ) (3 + 2S)F ′

(
X2
x − T 2

t

)
+ (1 + S)V ′F ′3 , (3.7)

and (3.4) reads

S2 = 1 + τ
1− τV
F ′2

(
X2
x − T 2

t

)
. (3.8)
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We can now solve (3.8) for the combination X2
x−T 2

t and compute its higher order derivatives

by chain rule,3 thus obtaining

X2
x − T 2

t =
S2 − 1

τ (1− τV )
F ′2 , (3.9)

Xxx = −Ttt =
F ′
[
2SS′ (1− τV ) + τ

(
S2 − 1

)
V ′
]

+ 2F ′′
(
S2 − 1

)
(1− τV )

2τ (1− τV )2 F ′ . (3.10)

Equation (3.10) implies Xxx = −Ttt = c0, where c0 is an arbitrary constant. Setting c0 = 0

and using (3.9), equations (3.7) and (3.10) become respectively

2
(
S2 − 1

)
(1− τV )F ′′ + τV ′F ′ (S + 1)2 (2S − 1) = 0, (3.11)

2
(
S2 − 1

)
(1− τV )F ′′ +

[
2SS′ (1− τV ) + τ

(
S2 − 1

)
V ′
]
F ′ = 0, (3.12)

which can be combined to give

S′ (1− τV ) = τS (S + 1)V ′ −→ S (φ) =
1− c

c− τV (φ)
, (3.13)

where c is an arbitrary integration constant. Plugging expression (3.13) for S(φ) into (3.11),

or equivalently (3.12), we obtain the following equation

2 (c− τV ) (2c− 1− τV )F ′′ + τ (3c− 2− τV )V ′F ′ = 0 , (3.14)

which solution is

F ′(φ) = k̃
c− τV (φ)√

1− 2c+ τV (φ)
, (3.15)

F (φ) = 2k ± k̃
(1 + 4τκ)F

(
φ
2 | −

1
κ

)
− 8τκE

(
φ
2 | −

1
κ

)
2
√
τκ

. (3.16)

In (3.16), k and k̃ are integration constants and κ is related to c via c = 1
2 − 2τκ, while F

and E are elliptic integrals of the first and second kind, respectively.

From the choice c0 = 0 it follows that Xx = 2α and Tt = 2β with α and β arbitrary constants.

Plugging this expression for Xx and Tt together with (3.15) into (3.8) one gets the following

equation (
1− c

c− τV (φ)

)2

= 1 + 4τ (1− τV (φ))
(
α2 − β2

) 1− 2c+ τV (φ)

k̃2 (c− τV (φ))2 . (3.17)

which allows to fix k̃ as

k̃ = ±2
√
τ
√
α2 − β2 . (3.18)

In conclusion, we have found a class of moving soliton solutions

(1 + 4τκ)F
(
φ
2 | −

1
κ

)
− 8τκE

(
φ
2 | −

1
κ

)
√
κ

= ±2
αx+ βt− k√

α2 − β2
, (3.19)

3This part relies fundamentally on the fact that the variables are separate.
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Figure 1: The TT̄-deformed stationary kink solution (3.20) (α = 1, β = 0) for different

values of the perturbation parameter τ . The critical value τ = 1/8 (c) corresponds to a shock

wave singularity.

which correspond to the TT̄ deformation of a particular family of elliptic solutions to the

sine-Gordon equation [43, 44]. The deformed single kink, is probably the most physically

interesting solution belonging to (3.19). With an appropriate scaling of the parameters, we

find:

8τ cos

(
φ

2

)
+ log

(
tan

(
φ

4

))
= ±2

αx+ βt− k√
α2 − β2

. (3.20)

In Figure 1, the stationary kink-solution is depicted for four different values of the perturbing

parameter τ , τ = 1/8 corresponds to a shock-wave singularity. Finally, notice that (3.20)
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τ = 0 , κ = 10-5
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Figure 2: The general solution (3.19) for the undeformed (a) and the deformed (b) theory,

for small values of κ.

fulfills 
∂φ (z, z) =

2α sin
(
φ(z,z)

2

)
1− 4τ + 4τ cos (φ (z, z))

,

∂φ (z, z) =

2
α sin

(
φ(z,z)

2

)
1− 4τ + 4τ cos (φ (z, z))

.

(3.21)

Since the TT̄ perturbation does not spoil integrability, it is tempting to identify (3.21) as

the first-step Bäcklund transformation from the vacuum solution. Unfortunately, equations

(3.21) do not contain much information about integrability, and the complete form of the

Bäcklund transformation is expected to be very complicated. A first, more concrete, step

toward a fully satisfactory understanding of the classical integrability of this system will be

taken in Section 3.2 below, where the Lax operators are explicitly constructed. Finally, let

us conclude this Section with a brief discussion on the more complicated examples within the

family of solutions (3.19). Without much loss in generality we consider only the stationary

(β = 0, α = 1) cases. At τ = 0, equation (3.19) reduces to:

x (φ) = k ±
F
(
φ
2 | −

1
κ

)
√
κ

−→ φ (x) = ±2am

(√
κ (x− k)

∣∣∣− 1

κ

)
, (3.22)

where am
(
x
∣∣∣k) is the amplitude of Jacobi elliptic function, they correspond to staircase type

solutions, see Figure 2. At τ 6= 0 they display a deformed shape similar to that observed for

the single kink solution, with a shock-wave singularities at τ ' 1/8.
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3.2 Integrability: the TT̄-deformed Lax pair

As a first step towards the expression of the Lax operators for the TT̄-deformed sine-Gordon

model, let us look at the Euler-Lagrange equations in complex coordinates:

∂

(
∂LSG (φ, τ)

∂(∂φ)

)
+ ∂̄

(
∂LSG (φ, τ)

∂(∂̄φ)

)
=
∂LSG (φ, τ)

∂φ
, (3.23)

with the Lagrangian given by

LSG (φ, τ) =
V (φ)

1− τV (φ)
+

−1 + S (φ)

2τ (1− τV (φ))
, S(φ) =

√
1 + 4τ (1− τV ) ∂φ ∂̄φ . (3.24)

The potential V (φ) is defined in (3.1), and from the explicit expression of S (we omit the

explicit dependence on φ hereafter) we see that

∂S

∂φ
= −τ V ′

1− τ V
S2 − 1

2S
, (3.25)

∂S

∂(∂φ)
=

4τ (1− τV ) ∂̄φ

2S
,

∂S

∂(∂̄φ)
=

4τ (1− τV ) ∂φ

2S
. (3.26)

Equation (3.23) can be immediately recast into the following form

∂

(
∂̄φ

S

)
+ ∂̄

(
∂φ

S

)
=
V ′

4S

(
S + 1

1− τV

)2

. (3.27)

With this expression for the equations of motion, we can proceed and search for a pair of

matrices

L =

(
−a b
c a

)
, L̄ =

(
ā b̄

c̄ −ā

)
, (3.28)

such that the zero-curvature condition

∂L̄− ∂̄L =
[
L, L̄

]
, (3.29)

is satisfied iff φ solves (3.27). In terms of the Lax pair’s components, (3.29) is equivalent to

the following three equations

∂ā+ ∂̄a = bc̄− cb̄ , (3.30a)

∂̄b− ∂b̄ = 2ab̄+ 2āb , (3.30b)

∂c̄− ∂̄c = 2ac̄+ 2āc . (3.30c)

We choose (rather arbitrarily) the first (3.30a) to correspond exactly to the equation of motion

for φ. It is then reasonable to choose

a = γ
∂φ

2S
, ā = γ

∂̄φ

2S
, (3.31)
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with κ and arbitrary constant to be determined later. The equations (3.30) become

bc̄− cb̄ = γ
V ′

8S

(
S + 1

1− τV

)2

, (3.32a)

∂̄b− ∂b̄ = γ
∂φ

S
b̄+ γ

∂̄φ

S
b , (3.32b)

∂c̄− ∂̄c = γ
∂φ

S
c̄+ γ

∂̄φ

S
c . (3.32c)

Now it comes the most tricky part of our construction: determining the form of the remaining

functions b, c, b̄ and c̄. We can proceed by making a perturbative expansion in τ , solving the

equations and trying to recognize some pattern in the terms. Sparing the reader the boring

details, one arrives at the following Ansatz:

b =
[
µei

φ
2B+ (V, S) + µ̃e−i

φ
2 (∂φ)2B− (V, S)

]
, (3.33a)

c =

[
1

µ̃
e−i

φ
2B+ (V, S) +

1

µ
ei
φ
2 (∂φ)2B− (V, S)

]
, (3.33b)

b̄ =
[
µ̃e−i

φ
2B+ (V, S) + µei

φ
2
(
∂̄φ
)2
B− (V, S)

]
, (3.33c)

c̄ =

[
1

µ
ei
φ
2B+ (V, S) +

1

µ̃
e−i

φ
2
(
∂̄φ
)2
B− (V, S)

]
, (3.33d)

γ =
i

2
. (3.33e)

Here the parameters µ and µ̃ are completely arbitrary complex numbers. They can be, in

principle, regarded as two independent spectral parameters. However, as we shortly see, there

really exists a single independent spectral parameter, up to global SL (2,C) rotation. The

expressions above, when inserted into the equations (3.32), give

B+ =
(S + 1)2

8S (1− τV )
, B− =

τ

2S
. (3.34)

We thus arrive to the following form of the Lax pair for the TT̄-deformed sine-Gordon model:

L =

 −i∂φ4S µei
φ
2

(S+1)2

8S(1−τV ) + µ̃e−i
φ
2 (∂φ)2 τ

2S

1
µ̃e
−i

φ
2

(S+1)2

8S(1−τV ) + 1
µe

i
φ
2 (∂φ)2 τ

2S i
∂φ
4S

 ,

L̄ =

 i
∂̄φ
4S µ̃e−i

φ
2

(S+1)2

8S(1−τV ) + µei
φ
2

(
∂̄φ
)2 τ

2S

1
µe

i
φ
2

(S+1)2

8S(1−τV ) + 1
µ̃e
−i

φ
2

(
∂̄φ
)2 τ

2S −i ∂̄φ4S

 . (3.35)

There is one final manipulation that we wish to perform. As we mentioned above, the presence

of two independent spectral parameters µ and µ̃ is redundant and we can fix the dependence

of the Lax pair on a single parameter λ =
√
µ/µ̃ by applying the following global SL (2,C)

rotation:

L −→ L̃ = S−1LS , L̄ −→ ˜̄L = S−1L̄S , (3.36)
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where

S =

(√
µ̃λ 0

0 1√
µ̃λ

)
≡

(
(µ̃µ)

1
4 0

0 (µ̃µ)−
1
4

)
. (3.37)

We end up with the following expressions (omitting the tildas on the transformed Lax oper-

ators)

L =

 −i∂φ4S λei
φ
2

(S+1)2

8S(1−τV ) + 1
λe
−i

φ
2 (∂φ)2 τ

2S

λe−i
φ
2

(S+1)2

8S(1−τV ) + 1
λe

i
φ
2 (∂φ)2 τ

2S i
∂φ
4S

 ,

L̄ =

 i
∂̄φ
4S

1
λe
−i

φ
2

(S+1)2

8S(1−τV ) + λei
φ
2

(
∂̄φ
)2 τ

2S

1
λe

i
φ
2

(S+1)2

8S(1−τV ) + λe−i
φ
2

(
∂̄φ
)2 τ

2S −i ∂̄φ4S

 . (3.38)

Now, by using the following limiting behaviours

S −→
τ→0

1 , B+ −→
τ→0

1

2
, B− −→

τ→0
0 , (3.39)

we easily verify that, in the vanishing perturbation limit τ → 0, we recover, as expected, the

usual Lax pair for the sine-Gordon model:

L =

(
−i∂φ4

λ
2 e

i
φ
2

λ
2 e
−i

φ
2 i

∂φ
4

)
, L̄ =

(
i
∂̄φ
4

1
2λe
−i

φ
2

1
2λe

i
φ
2 −i ∂̄φ4

)
. (3.40)

Therefore, we have proved that the classical integrability of sine-Gordon model survives the

TT̄ deformation, by displaying the existence of the Lax pair (3.38). We wish to conclude this

Section by remarking that the knowledge of the Lax pair for the TT̄-deformed sine-Gordon

model comes with two additional results:

• Single boson BI Lax pair, obtained by simply looking at the Euler-Lagrange equations

(3.23) with V = V ′ = 0:

L =

(
−i∂φ4S 0

0 i
∂φ
4S

)
, L̄ =

(
i
∂̄φ
4S 0

0 −i ∂̄φ4S

)
. (3.41)

• sinh-Gordon Lax pair, which can be derived from (3.35) by simply redefining the field

ϕ = iφ

L =

 −∂ϕ

4S̃
λe

ϕ
2

(S̃+1)
2

8S̃(1−τṼ )
− 1

λe
−ϕ

2 (∂ϕ)2 τ
2S̃

λe−
ϕ
2

(S̃+1)
2

8S̃(1−τṼ )
− 1

λe
ϕ
2 (∂ϕ)2 τ

2S̃

∂ϕ

4S̃

 ,

L̄ =

 ∂̄ϕ

4S̃
1
λe
−ϕ

2
(S̃+1)

2

8S̃(1−τṼ )
− λe

ϕ
2

(
∂̄ϕ
)2 τ

2S̃

1
λe

ϕ
2

(S̃+1)
2

8S̃(1−τṼ )
− λe−

ϕ
2

(
∂̄ϕ
)2 τ

2S̃
− ∂̄ϕ

4S̃

 , (3.42)
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where we introduced

Ṽ = 2 (1− coshϕ) , S̃ =

√
1− 4τ

(
1− τ Ṽ

)
∂ϕ∂̄ϕ . (3.43)

This proves that both theories, as expected, retain their integrable structure along the TT̄

flow.

4 Maxwell-Born-Infeld electrodynamics in 4D

Two-photon plane wave scattering in 4D Maxwell-Born-Infeld (MBI) electrodynamics was

considered by Schrödinger and others in pre-QED times (see, for example, [45] for a nice

historical review on the early period of non-linear electrodynamics theories). Later, in [39, 40]

it was shown that the scattering of two plane waves in MBI electrodynamics can be mapped

onto a specific solution of the 2D bosonic BI equations of motion, the N = 2 model in

equations (2.15) and (2.16). In particular, it is extremely suggestive that the resulting phase-

shift can be nicely interpreted as being the classical analog of the TT̄-related scattering phase.

Compare, for example, the results of [39, 40] with the discussion about the classical origin of

the time delay in [10] .

Motivated by these observations, in this Section we investigate the 4D MBI theory of

electrodynamics and show that interestingly it shares a lot of common aspects with the 2D

bosonic BI models studied in Section 2. In particular we will see that it arises as a deformation

of the Maxwell theory induced by the square root of the determinant of the Hilbert stress-

energy tensor.

Consider the MBI Lagrangian in 4D defined on a generic background metric gµν as

LMBI
g (A, τ) =

−
√
|det [gµν ] |+

√
det
[
gµν +

√
2τFµν

]
2τ

, (µ, ν = {1, 2, 3, 4}) , (4.1)

where Fµν = ∂µAν − ∂νAµ is the field strength associated to the abelian gauge field Aµ. In

Euclidean spacetime (gµν = ηµν ≡ diag(+1,+1,+1,+1)), (4.1) takes the form

LMBI(A, τ) =
−1 +

√
1− τ Tr [F 2] + τ2

4

(
Tr[FF̃ ]

)2

2τ
, (4.2)

where F̃µν = 1
2εµνρσF

ρσ is the Hodge dual field strength. From the expansion of (4.2) in

powers of τ around τ = 0

LMBI(A, τ) ∼
τ→0
−1

4
Tr[F 2] +

τ

16

(
Tr[F 2]2 − 4Tr[F 4]

)
+O(τ2)

= LM + τ
√

det[TM] +O(τ2) , (4.3)

one recognizes the Maxwell Lagrangian

LM(A) =
1

4
FµνF

µν = −1

4
Tr[F 2] , (4.4)
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at the order O(τ0). The O(τ) contribution in (4.3) is instead related to the determinant of

the Hilbert stress-energy tensor of the Maxwell theory TM, which can be computed from the

Noether theorem adding the Belinfante-Rosenfeld improvement to make it symmetric and

gauge invariant, i.e.

(TM)µν ≡ ∂LM

∂ (∂µAρ)
F νρ − ηµνLM = FµρF νρ − ηµνLM . (4.5)

Formula (4.3) hints that LMBI may arise from a deformation of Maxwell electrodynamics

effected by the operator O ≡
√

det[TMBI] according to the flow equation

∂τLMBI =
√

det[TMBI] , (4.6)

where TMBI is the Hilbert stress-energy tensor associated to the MBI Lagrangian. Using the

general definition

(TMBI)µν =
−2
√
g

δLMBI
g

δgµν
,
√
g ≡

√
| det[gµν ]| , (4.7)

it is possible to show that, in euclidean spacetime (gµν = ηµν), the following relation holds

O =
−1 + S(τ)− 2τ LM

2τ2S(τ)
= ∂τLMBI , S(τ) ≡

√
det
[
ηµν +

√
2τFµν

]
, (4.8)

thus proving the validity of (4.6).

As noticed in [22], the presence of an internal symmetry (in the current case the U(1) gauge

symmetry) makes the definition of the stress-energy tensor ambiguous. As already appears

at the perturbative level in (4.3), here the symmetric and gauge invariant Hilbert stress-

energy tensor seems to be the natural choice to get the BI Lagrangian as a deformation of

the Maxwell electrodynamics. However let us point out that there is no reason to rule out a

priori a deformation induced by the Noether stress-energy tensor, which is neither symmetric

nor gauge invariant.

Driven by the formal analogy between (4.2) and the bosonic 2D BI Lagrangian (2.16), now

we apply the same strategy of Section 2 to put interactions in the theory.

Recasting (4.2) into a more compact form

LMBI(A, τ) =
−1 +

√
1 + 4τ LM(A) + 4τ2BMBI

2τ
, BMBI = det[F ] , (4.9)

one immediately see that the quantity

LMBI
χ (A, τ) =

1

χ
LMBI

(
A, τ

χ2

)
, (4.10)

where χ is again an auxiliary adimensional parameter, satisfies the inhomogeneous Burgers

equation

∂τLMBI
χ (A, τ) = LMBI

χ (A, τ) ∂χLMBI
χ (A, τ) +

BMBI

χ3
, (4.11)
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with boundary condition

LMBI
χ (A, 0) =

1

χ
LM(A) . (4.12)

Now it is straightforward to introduce interactions in the theory. Starting from a boundary

condition of the form

LMBI,V
χ (A, 0) =

1

χ
LM(A) + χV (A) , (4.13)

where V (A) is a derivative-independent potential4, the solution to (4.11) becomes

LMBI,V
χ (A, τ) =

χV

1− τ V
+

χ

2τ̄

−1 +

√
det

[
ηµν +

√
2τ̄

χ2
Fµν

] , (4.14)

where τ̄ = τ(1 − τ V (A)) is the usual (local) redefinition of the deformation parameter. A

posteriori it is easy to check that LMBI,V
χ=1 (A, τ) is indeed solution to (4.6), i.e.√

det[TMBI,V ] = −S(τ̄)(2τ̄ V − 1)− (2τ V − 1) (1 + 2τ̄ LM)

2τ̄2 S(τ̄)
= ∂τLMBI,V (A, τ) . (4.15)

Following Section 2, it is interesting to perform a Legendre transformation on LMBI,V (A, τ)

to get the Hamiltonian density HMBI,V (Π,A, τ). Again, using a shorthand notation for the

time derivative Ȧµ = ∂4Aµ, the conjugated momentum is

Πi =
∂LMBI,V (A, τ)

∂Ȧi
, Π4 ≡ 0 , (i = 1, 2, 3) , (4.16)

and the Hamiltonian density takes the form

HMBI,V (Π,A, τ) =
V (A)

1− τ V (A)
+

1

2τ̄

(
−1 +

√
1 + 4τ̄ HM(Π,A) + 4τ̄2 |~PMBI(Π,A)|2

)
,

(4.17)

where HM(Π,A) = −1
2ΠiΠ

i + 1
4FijF

ij = −TM
44 is formally the Hamiltonian density of the

Maxwell theory and PMBI
i (Π,A) = −iTMBI

4i , (i = 1, 2, 3) , is the i-th component of the

conserved momentum density of the deformed theory, following the same convention of Sec-

tion 2. Notice that HMBI,V (Π,A, τ) is formally identical to the Hamiltonian density reported

in Section (2) for the 2D bosonic theory, and again it satisfies an analogous inhomogeneous

Burgers equation.

Furthermore, let us stress that setting a field-independent constant potential V (A) = F0,

also in this case there exists a special value of the parameter τ , i.e. τ0 = 1
2F0

, such that the

determinant of the Hilbert stress-energy tensor takes a constant value

det[TMBI(τ0)] =

(
π

2τ̄0

)4

, τ̄0 = τ0(1− τ0 F0) . (4.18)

4For instance V could be a mass term of the form V (A) = m2AµAµ which gives the Proca Lagrangian

describing a massive spin-1 field Aµ.
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Finally, we would like to make some comments about the generalization of the TT̄ deformation

to higher dimensions. Here we found that a 4D theory arises as a deformation induced by

a power 1/2 of the determinant of the stress-energy tensor. This result apparently does

not agree with the generalization to higher dimensions proposed in [30], from which one

would expect a power 1/(D − 1) = 1/3 instead. Interestingly, notice also that the operator√
det[TMBI] can be written in this form

√
det[TMBI] =

1

4

(
1

2
Tr [TMBI]2 − Tr

[
(TMBI)2

])
, (4.19)

which strongly resembles the generalization of the TT̄ operator to higher dimensions recently

proposed in [37], except for the factor 1/2 in front of Tr [TMBI]2 instead of 1/(D − 1) = 1/3.

Although in this Section we have seen that there are many similarities at the classical

level between the 4D Maxwell-Born-Infeld model and the 2D bosonic model discussed in

Section 2, the situation at the quantum level is in principle much more complicated. However

it would be remarkable if a structure similar to that reviewed in Section 2 could emerge for

the quantized energy spectrum.

5 Deformed 2D Yang-Mills

The 4D electrodynamics case turns out to be quite special, since in other dimensions the

MBI Lagrangian seems not to arise from a deformation of the Maxwell theory driven by any

power of the determinant of the Hilbert stress-energy tensor. Solving perturbatively equation

(2.14), with initial condition the Maxwell Lagrangian at τ = 0, only for the two-dimensional

case we were able to recover the full analytic expression for the deformed Lagrangian:

LM2(A, τ) =
3

4τ

(
3F2

(
−1

2
,−1

4
,
1

4
;
1

3
,
2

3
;
256

27
τ LM2(A, 0)

)
− 1

)
, (5.1)

where LM2(A, 0) = 1
2F21F

21 is the 2D Maxwell Lagrangian, and F21 = −F12 is the only

non-vanishing component of the field strength. Expression (5.1) is unexpectedly complicated,

however, since the quantized energy spectrum should still satisfy the Burgers equation (2.1),

simplifications may appear at the level of the classical Hamiltonian density. As before, de-

noting the time derivative as Ȧµ = ∂2Aµ, the conjugated momenta are

Π1 =
∂LM2(A, τ)

∂Ȧ1

, Π2 = 0 , (5.2)

and the explicit form of the Legendre map can be obtained using the Lagrange inversion

theorem to invert the relation (5.2). One finds that F21 can be expressed in terms of Π1 as

F21 =
4Π1(

2 + τ (Π1)2
)2 , (5.3)
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and ”surprisingly” the Hamiltonian density takes a very simple form

HM2(Π, τ) =
HM2(Π, 0)

1− τ HM2(Π, 0)
, (5.4)

where HM2(Π, 0) = −1
2(Π1)2 = −TM2

22 is the 2D Maxwell Hamiltonian. The results (5.1)

and (5.4) can be straightforwardly generalized to encompass the non-abelian 2D Yang-Mills

(YM2) theory with generic gauge group G. In fact, using the following definition for the

Hilbert stress-energy tensor of the YM theory

(TYM)µν ≡ ∂LYM

∂
(
∂µAaρ

)F νρa − ηµνLYM , (5.5)

where LYM(Aa) = 1
4F

a
µνF

µν
a is the YM Lagrangian and F aµν = ∂µAaν − ∂νAaµ + fabcAbµAcν is

the field strength associated to the non-abelian gauge field Aaµ, it is easy to prove that the de-

formed non-abelian Lagrangian and Hamiltonian densities, i.e. LYM2(Aa, τ) andHYM2(Πa, τ)

, have again the form (5.1) and (5.4) respectively with the formal replacement:

LM2(A)→ LYM2(Aa) ,HM2(Π)→ HYM2(Πa) , (5.6)

where LYM2(Aa) = 1
2F

a
21F

21
a and HYM2(Πa) = −1

2Π1 aΠ1
a = −TYM2

22 are the Lagrangian

and Hamiltonian density of YM2 respectively. Although the deformed Lagrangian is very

complicated, the Hamiltonian HYM2(Πa, τ) fulfills

∂τHYM2
χ (Πa, τ) = HYM2

χ (Πa, τ) ∂χHYM2
χ (Πa, τ) , (5.7)

with initial condition HYM2
χ (Πa, 0) = χHYM2(Πa), which means that HYM2(Πa, τ) behaves,

under the TT̄ deformation, as a pure potential term (cf. Section 2). The latter property can

be interpreted as an explicit manifestation of the well known pure topological character of

YM2.

This simple observation directly motivated the following proposal for the deformed ver-

sions of the partition functions/heat kernels [46–49] which is compatible with all known

consistency constraints [7, 13, 30]. The partition function of YM2 defined on an orientable

2D manifold M with genus p and metric gµν is

ZM(A) =

∫
DAµ e

− 1
4g̃2

∫
M dx2

√
gTr[FaµνF

µν
a ]

=
∑
R
d2−2p
R e−

g̃2

2
AC2(R) , (5.8)

where we have restored the explicit dependence on the Yang-Mills coupling constant g̃. In

(5.8), A is the total area ofM, the sum is over all equivalence classes of irreducible represen-

tations R of the gauge group G, dR is their dimension and C2(R) is the quadratic Casimir in

the representation R. The generalization of (5.8) to a manifold with genus p and n boundaries

corresponds to the so-called heat kernel:

ZM(g1, . . . , gn|A) =
∑
R
d2−2p−n
R χR(g1) . . . χR(gn)e−

g̃2

2
AC2(R) , (5.9)
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where gi are the Wilson loops evaluated along the boundaries, and χR denotes the Weyl

character of the representation R. According to (5.4), the TT̄ contribution is then included

through a simple redefinition, in the heat kernel (5.9), of the eigenvalues of the quadratic

Casimir operator:

C2(R)→ C2(R, τ) =
C2(R)

1− τ g̃2

2 C2(R)
, (5.10)

where the dressed operator C2(R, τ), also fulfills equation (5.7). Since (5.9) depends only on

the surface area A of the manifold, the deformed version ZM(g1, . . . , gn; τ |A) satisfies

− ∂τZM(g1, . . . , gn; τ |A) = A∂2
AZ
M(g1, . . . , gn; τ |A) . (5.11)

With the prescription (5.10), all the diffusion-type relations introduced in [30] (see also [25,

31]) for the partition functions on various geometries are automatically fulfilled:

• Cylinder: The cylinder partition function ZCyl(g1, g2|A) corresponds to the n = 2,

p = 0 case of (5.9). Setting A = RL, and implementing the prescription (5.10),

ZCyl(g1, g2; τ |A) trivially satisfies Cardy’s equation:

− ∂τZCyl(g1, g2; τ |A) = (∂L − 1/L)∂RZ
Cyl(g1, g2; τ |A) . (5.12)

• Torus: The partition function on the torus, ZT(A) corresponds to the n = 0, p = 1

case of (5.9) with A = L1L
′
2 − L2L

′
1, while the consistency equation for the deformed

partition function is:

− ∂τZT(τ |A) =

[
∂L1∂L′

2
− ∂L2∂L′

1
− 1

A

(
L1∂L1 + L′1∂L′

1
+ L2∂L2 + L′2∂L′

2

)]
ZT(τ |A) .

(5.13)

• Disk and Cone: In the case of a disk, or more in general of a cone with opening angle

X , the deformed partition function ZCone(g1; τ |A) corresponding to n = 1, p = 0 and

area A = 1
2 XR

2 satisfies

− ∂τZCone(g1; τ |A) =
1

R
X∂X

(
1

X
∂RZ

Cone(g1; τ |A)

)
. (5.14)

Finally, let us stress again that the modification (5.10) in (5.9) is expected to hold in general

for any value of p and n, possibly leading to a consistent deformation of the whole YM2 setup.

6 Conclusions

The Maxwell-Born-Infeld model is still playing an important role in modern theoretical

physics. It was initially proposed as a generalization of electrodynamics, in the attempt

to impose an upper limit on the electric field of a point charge, and it corresponds to the only

non-linear extension of Maxwell equations that ensures the absence of birefringence and shock
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waves. Another important feature of this special non-linear field theory is its electric-magnetic

self-duality.

The Maxwell-Born-Infeld theory emerges, from this work, as a natural 4D generalization

of the TT̄-deformed 2D models, as it shares with them some of the properties that make this

perturbation so interesting. There are many aspects that deserve further investigation. First

of all, it would be nice to extend the ideas of [30] to this 4D theory and try to derive an

evolution-type equation for the quantum energy spectrum at finite volume.

It would be important to explore the classical and quantum properties of the models

corresponding to the deformed Lagrangians (4.14) and to extend the analysis to more general

gauge theories.

Considering the interpretation of the 2D examples within the AdS3/CFT2 framework

given in [14], the search for analog deformations that preserve integrability in the ABJM

model and N = 4 super Yang-Mills, could lead to important progresses in our understanding

of quantum gravity.

Investigating, at a deeper level, the geometrical meaning of the TT̄ deformation in the 2D

setup by continuing the study of classical integrable models started in Section 3 appears to be

a more feasible but equally important objective. We have now a good control on the deformed

quantum spectrum but we have not yet reached an equally satisfactory level of understanding

about the influence that this deformation has on classical solutions such as multi-kink or

breather configurations. Adapting Bäcklund’s, Hirota’s and the Inverse Scattering methods

to the current setup would correspond to a natural extension of some of the results presented

in this paper. Finally, it is important to proceed with some concrete application of the YM2

heat kernel proposal of Section 5 and in particular with the study of the large N limit, which

might display novel physical and mathematical features compared to the unperturbed cases.
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