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Abstract

We study top-down embeddings of massive Anti-de Sitter (AdS) gravity in type-IIB string theory.
The supergravity solutions have a AdS, fiber warped over a manifold Mg whose shape resembles that
of scottish bagpipes: The ‘bag’ is a conventional AdSs-compactification manifold, while the ‘pipes’ are
highly-curved semi-infinite Janus throats. Besides streamlining previous discussions of the problem,
our main new result is a formula for the graviton mass which only depends on the effective gravitational
coupling of the bag, and on the D3-brane charges and dilaton jumps of the Janus throats. We compare
these embeddings to the Karch-Randall model and to other bottom-up proposals for massive-AdS-
gravity, and we comment on their holographic interpretation. This is a companion paper to [I], where
some closely-related bimetric models with pure AdSs;xS® throats were analyzed.



1. Introduction

Efforts to endow the graviton with a tiny mass have a long history, going back to the work of Fierz
and Pauli [2] and continuing unabated today — for reviews and references see [3][4][5]. The problem is
of obvious theoretical interest, and could have far-reaching implications for cosmology. In one recent
development it has been argued that a key obstruction to the graviton mass — the appearance of a
Boulware-Deser ghost [6], can be removed in certain classical non-linear extensions of the Fierz-Pauli
action [7][8](see also [A]). Questions, however, remain both in what concerns the consistency of such
classical theories, and with regards to their range of validity if viewed as effective field theories around
a given classical background.[]

One may hope to answer such questions by embedding massive gravity in an ultraviolet-complete
theory like string theory. In this paper we will consider four-dimensional Anti-de Sitter (AdS) solutions
of IIB string theory in which the lowest spin-2 mode has a tiny mass m,. In discussions of massive
gravity, AdS is known to be an ‘easier case’ since it does not suffer from some of the difficulties
encountered in the Mikowski and de Sitter backgrounds. There is, in particular, no van Dam-Veltman-
Zakharov discontinuity [I7][I8], and hence no need for the strong non-linearities known as Vainshtein
screening [19]. It remains therefore to be seen whether our embeddings of massive AdS gravity carry
any lessons for these other backgrounds.

The general idea behind the embeddings, due to Karch and Randall [20][21], is to ‘locally localize’
the graviton on an AdSy brane living in AdSs bulk. Using a thin-brane approximation these authors
showed that if the ratio of AdS radii is small, Ls/Ls < 1, the lightest graviton mode acquires a tiny
mass. The proper string-theory realization of the idea had to wait for the derivation of exact solutions
describing intersecting D3, D5 and NS5-branes [22] - [27] . One key departure from the Karch-Randall
model is the failure of the thin-brane approximation for the localizing brane, which is a D3-D5-NS5
bound state. As shown in [24] the AdS radius of this composite brane cannot be made parametrically
larger than its thickness. As a result the Kaluza-Klein scale (beyond which any 4d description must
break down) is Ly, and not Ls as in ref. [2I]. This is related to the familiar scale separation problem
of AdS flux vacua, for a discussion see [28][29] [30]E|

The purpose of the present note is to derive an (almost universal) formula for the graviton mass
in these string-theory embeddings. This is a follow-up paper to ref. [I] which analyzed closely related
embeddings of bigravity models. Apart from the change in emphasis compared to [1], we will here also
extend the results of this reference by allowing the dilaton to vary in the AdSs bulk which is deformed
to the supersymmetric Janus background [22]. This modifies the graviton mass by a multiplicative
factor that we will compute. Our formula for the graviton mass is derived on the gravity side. It
is an interesting open problem to match it with a computation of the anomalous dimension of the
energy-momentum tensor on the CFT side.

There have been two other proposals in the literature for realizing massive AdS gravity in string
theory. They relied either on transparent boundary conditions in AdS [31][32], or on multi-trace
deformations in CFT [33][34][35]. In these proposals the graviton mass is a quantum, one-loop effect.
Although our embeddings could be possibly rephrased in these other frameworks by integrating out
messenger degrees of freedom, they have the advantage of relying on proper classical solutions of
10d supergravity. They do not therefore suffer from some difficulties of the above proposals, namely
non-locality of the worldsheet theory, or hard-to-control renormalization group flows [36] [37][38]. The
‘price to pay’ is that the graviton mass is quantized and cannot be tuned continuously to zero. We

1For a very partial list of references raising or trying to address such questions see [10] - [16] and the above reviews.
2As explained in ref. [28] scale non-separation is unavoidable for solutions with a continuous R-symmetry, i.e. for the
vast majority of known solutions of 10d supergravity including the ones discussed here. The authors of this reference

outline possible ways out of the problem.



will return to this point towards the end.

This paper is organized as follows: In section 2 we recall why defect or interface CFT [40] - [43] is
the appropriate holographic setup for Higgsing the AdS graviton. Holographic duality is not crucial to
our later analysis, but it provides useful insights on the underlying mechanism. Section 3 explains the
group theory of the Higgsing, i.e. the recombination of representations of the N = 4 superconformal
algebra osp(4|4) which is the symmetry of the relevant background solutions. This section can be
skipped without affecting the flow of the paper.

Section 4 describes the qualitative characteristics of the supergravity solutions that lead to a small
graviton mass. These solutions consist of AdS, fibers warped over six-dimensional manifolds with
the shape of scottish bagpipes. The ‘bag’ describes a standard AdS, compactification, while the non-
compact ‘pipes’ are highly-curved Janus throats. In section 5 we calculate, following [I], the graviton
mass to leading order in the throat-to-bag size, and show that it only depends on few parameters of
the solutions: the radius and dilaton variation in each throat, and the effective gravitational coupling
of the bag solution. This is the main technical result of the paper. To extract its physical significance
we reexpress it in three different ways. In section 6 we comment on the relation to bimetric and
multi-trace models, while section 7 contains some concluding remarks. Explicit expressions for the

metric and dilaton of the ‘bagpipes’ solutions are collected in the appendix.

2. Mass as holographic leakage

We begin our discussion of massive AdS gravity from the dual CFT side. This sheds instructive
light on the Higgsing mechanism and motivates the construction of the dual supergravity solutions.
Recall that holographic duality associates to any AdS, vacuum of string theory a three-dimensional
conformal field theory (CFT3). The AdS, graviton is mapped to the energy-momentum tensor Ty of
the CFTj, and the mass (mg) of the former to the scaling dimension (Ag) of the latter via [39]

mg Li=Ag(Ay —3), (1)

where L, is the AdSy radius.ﬂ The operator Ty, and its tower of derivatives arrange themselves in a
spin-2 highest-weight representation of the conformal algebra so(2,3). Usually the energy-momentum
tensor is conserved, 8°T,;, = 0, so this representation must be short since it has three null descendant
states. A simple algebraic computation then shows that T,; must have canonical scaling dimension

Ay =3, and the dual AdS, graviton is hence massless.

To obtain a massive graviton we must therefore allow 3d energy-momentum to ‘leak out’.E| There

are two possibilities that are consistent with so0(2,3) symmetry:

(i) Couple the original theory to another 3d theory so that conformal symmetry is preserved. The
coupling could be a double- trace deformation [33][34], or it could be mediated by messenger
degrees of freedom [I]. If it is weak the dual low-energy string theory is a bimetric theory,

with one graviton massless and the other obtaining a small mass;

(ii) Consider the original theory as a defect or boundary of some higher-dimensional theory, in
the simplest case a CF'T4. The 3d energy-momentum can now leak out in the extra dimension
T, = Tusldefect 7 0. There is therefore now no shortening condition, and Ty, acquires an

anomalous dimension [44], e = A, — 3 > 0 (unitarity requires that it be non-negative).

These two options are related — we will here focus on option (ii) which can be obtained as a limit of

option (i). Since the graviton mass is proportional to the 3d energy-momentum leakage, we want the

3In warped compactifications both mg and L4 vary in the transverse space, but their product is constant — see below.
4Leakage of T, should not be confused with the transparent boundary conditions of [3I] on the gravity side.



latter to be Weak.ﬂ In principle this could be achieved by fine tuning a (nearly or exactly) marginal
bulk-boundary coupling, but this is not the mechanism at work here. Weak leakage will be instead
ensured by the scarcity of the bulk CFTy degrees of freedom, as compared to those of the boundary
CFT3. A consequence of this is that the Higgsing will not be a continuous process in these models,
even though the graviton mass can be arbitrarily small.

Let us be now specific about the defect CFT. The natural candidate for the bulk CFTy is N' =4
super Yang-Mills with gauge group SU(n) and coupling gyy. Its half -BPS superconformal bound-
aries and interfaces have been analyzed by Gaiotto and Witten [45]. Half-maximal supersymmetry
guarantees the stability of the solutions, and gives extra technical control, but it is not otherwise
essential. The graviton mass, in particular, is not a protected quantity as we will see in a minute.
Weak leakage of 3d energy-momentum could be achieved in the decoupling limit gy — 0, but this
limit is singular. A better alternative is to insist that there are much fewer degrees of freedom in
the bulk than on the boundary. We will indeed show in section 5 that the anomalous dimension of
Top scales like € ~ n?/ F;, where Fj is the free energy on the 3-sphere which measures the boundary
degrees of freedom [46).

3. Recombination of representations

Before moving to geometry, let us discuss the Higgsing from the point of view of representation
theory. Let D(A, s) denote a unitary highest-weight representation of s0(2, 3) with conformal primary
of spin s and scaling dimension A. Massive gravitons belong to long representations of the algebra.
The decomposition of a long spin-s representation at the unitarity threshold reads [31]

D(s+1+¢s) i> D(s+1;8)®D(s+2;s—1) . (2)
Thus the AdS, graviton (s = 2) acquires a mass by eating a massive Goldstone vector. In the 10d
supergravity this vector must be the combination of off-diagonal components of the metric and tensor
fields that is dual to the CFT operator T,4.

Since we will here deal with A/ = 4 backgrounds, fields and dual operators fit in representations
of the larger superconformal algebra osp(4|4). These have been all classified under mild assumptions
[47][48]. In the notation of [48] (slightly retouched in [49]) the supersymmetric extension of the above

decomposition reads
e—0

LYY ——— A0 @ By[o);™ 3)
where L denotes a long representation, A; (B;) a short representation that is marginally (absolutely)
protected, and [s]g;j ) denotes a superconformal primary with spin s, scaling dimension A and so(4)
R-symmetry quantum numbers (j;5'). The above decomposition (or recombination) describes the
Higgsing of the N' = 4 graviton multiplet in AdS;. That this is at all possible is not automatic. For
instance N = 4 supersymmetry forbids the Higgsing of ordinary gauge symmetries because conserved
vector currents transform in absolutely protected representations of osp(4|4) [50][51].

The bosonic field content of the above N/ = 4 multiplets is as follows:
(0% = [0]%9 @ [0] P @ [11§592OD g 2] P @ fermions (4)

B, [0]51;1) — [O]gl;l) ® [1]§1;1)@(1;0)®(0;1) @ [O]§2;0)®(0;2)®(1;0)€9(0;1)69(1;1)69(0;0)

@[1]510;0)@(1;0)@(0;1) @ [0]511;1)@(0;0) o [O]éo;o) & fermions . (5)

5In generic defect CFTs the defect-to-bulk leakage is very strong and Ag — 3 ~ O(1). In such cases there is no hope
of any effective 4d description on the gravity side.



The supergraviton multiplet A has in addition to the spin-2 boson, six vectors and two scalar fields,
making a total of 16 physical states.El The eaten Goldstone multiplet By contains 112 physical bosonic
states and as many fermions. These latter include massive spin-3/2 states which are not part of the
spectrum of gauged 4d supergravity [49]. Higgsing with that much supersymmetry is thus necessarily
a higher dimensional process.

4. Scottish bagpipes

We turn now to the gravity side of the Higgsing. The local form of all solutions of type-1IB
supergravity with osp(4]|4) symmetry has been derived by D’Hoker et al [22][23] (see also [52][53]
for earlier work). Global solutions and the detailed holographic dictionary have been worked out in
[26][27][49]. All solutions are warped products of AdSy over a base manifold Mg,

6
dsly = Li(y)dsias, + Y 9i(y) dy'dy’ (6)

4,j=1

where dsids4 is the metric of the unit-radius Anti-de Sitter spacetime, {y’} are the coordinates of Mg
with metric g;;, and L4(y) is the local radius of the AdS, fiber at a point y. The base manifold Mg
is itself the warped product of two 2-spheres over a Riemann surface. The complete AdSyxS? x §2
fiber realizes the s0(2,3) x s0(4) C 0sp(4[4) bosonic symmetry of the backgrounds.

For the lightest 4d graviton to acquire mass, Mg should not be a compact manifold. The manifolds
that lead to a small graviton mass actually resemble six-dimensional Scottish bagpipes: they have one
or more semi-infinite throats (the ‘pipes’) attached to a large central core (the ‘bag’) as illustrated in
figure . The full 10d geometry of the pipes is AdS;x S, or its Janus generalization [23] in which the
dilaton is also allowed to vary. A crucial technical remark [25][20] is that under certain mild conditions
(existence of both NS5-brane and D5-brane charges in the bag) pipes can be shrank smoothly awayEl

Xﬁ’ D3-brane
throat

~ Lbag

5-brane

Figure 1: The ‘bagpipes’ manifold Mg consists of semiinfinite pipes with cross-sectional radius Ls, attached to a
compact bag of typical size ~ Lyag > Ls. The dark curves on the bag depict 5-brane singularities. The AdSy scale
factor diverges at infinity in the pipes so that the full 10d geometry asymptotes to (AdSs/Zz2)xS5.

6The CFT operators include Ty, six conserved R-symmetry currents and two scalar operators. Taking into account

the conservation laws this gives also a total of 25 — 9 = 16 independent operators.
7Strictly-speaking this is possible in the supergravity approximation. In string theory the throat radii are quantized.



leaving behind simple coordinate singularities. Doing this reduces the bag to a compact manifold
Mg, and AdS4 X, Mg becomes a standard AdS, vacuum with a massless 4d graviton. Since we
want the graviton to acquire a small mass, we keep the throat radii finite but much smaller than the
characteristic bag size.

The exact metric and dilaton backgrounds of the solutions are summarized in the appendix.ﬂ The
bag depends on a set of integer D5-, NS5- and D3-brane charges which can be arranged in two Young
tableaux [26]. Most of these will play however no role here. The only relevant bag parameters are (i)
an overall measure of its size ~ Lyag to be defined below, and (ii) the values of the dilaton at the entries
of the throats. Note that the bag is a sort of ‘composite Karch-Randall brane’. Tuning the available
parameters to make it flat, as in ref. [20], makes it so thick that it ends up occupying (figuratively,
not literally) most of space [24]. As stated above this is a facet of the scale non-separation problem

of AdS vacua: Ly is parametrically tied to the characteristic size of M.

The spectral problem for spin-2 excitations around any AdS, supergravity solution was set up
in ref. [24] (generalizing mildly [54]). Interestingly this problem only depends on the Einstein-frame
metric, and not on the scalar and flux background fields. Mass eigenstates factorize as ¥(y) X,
where Y, is an eigenfunction of the wave operator in AdSy, i.e. Eg‘;sxw = AxX,w Where Eé‘;s is
the (Lichnerowicz-Laplace) operator that acts on spin-2 (transverse-traceless) excitations, and the

eigenvalue A is related to the mass via
A+2=m?(y)Li(y) - (7)

Note that both the mass and the AdS, radius may vary as functions of the coordinates 7, but their
product is constant. It is this invariant squared mass that replaces the left-hand side of eq. in
warped (as opposed to direct-product) solutions.
The Kaluza-Klein mass spectrum is determined by the elliptic operator acting on the wavefunctions
¥(y) on Me [24]
2 L;* 4 i
M= —== 0 (Li\/gg" 0;9) = A+ 2) ¢ . (8)
V9
For direct-product solutions with constant L,, M? is simply the Laplace-Beltrami operator on M.
To define the spectral problem we need also to provide a norm. With canonically-normalized fields in

ten dimensionsﬂ the Kaluza-Klein reduction of the inner product reads [24]
Wilda) = [ %y GLEviva o
6

The mass-squared operator is thus hermitean and non-negative, as expected.

To summarize this section, we are interested in the smallest eigenvalue of the above mass operator,
M?2, for manifolds consisting of a large compact bag (Mg) attached to one or more thin semi-infinite
Janus throats. It actually turns out that the solutions studied here, whose CFT duals are N/ = 4
linear-quiver gauge theories, admit at most two semi-infinite throats. But more general backgrounds
based on star-like quivers could have more throats. As will be clear, each throat makes a separate

contribution to the squared mass of the graviton in the L5/Lya, < 1 limit.

8The supergravity solutions are actually singular at certain 2-cycles of Mg that are wrapped by D5- and NS5-branes.
In their vicinity higher-order stringy and loop corrections cannot be neglected, but fortunately they do not affect the
computation of the graviton mass at leading order in Ls/Lpag-

9n our convention v has dimensions of the 10d gravitational coupling k19 ~ [mass]4. An overall multiplicative
constant in the norm is irrelevant as it drops out from the expression for the mass.



5. Mass from Janus throats

The general spectral problem defined in and @D is a difficult one. But we are only interested

in the smallest eigenvalue given by the equivalent minimization problem
Ao +2 = miny U dSy /g L} (g”aiwajw)] with / Sy gL WP =1. (10)
Mg Me

Here \g + 2 = Agz(Ag — 3) is the lowest eigenvalue of M?, and the expression in square brackets is
(1| M2]1p) after an integration by parts. If Mg were replaced by the compact bag Mg (obtained by

truncating the pipes) the minimum would have been the constant wavefunction

wo<y>< | d6y\/§LZ>1/2 = Wb (1)

Me

corresponding to a massless graviton. But the infinite pipes make the constant 1 non-normalizable.
Indeed, /g L reaches a minimum value L# inside the pipes, then blows up at infinity where the
10d geometry asymptotes to that of (half) the boundary of AdSs. This is explained in the appendix
and illustrated in figure . Normalizable wavefunctions should therefore go to zero inside the pipes.
Furthermore, it is clear from eq. that in order to minimize the mass 1 should go to zero in the

region of minimal \/gLf where gradients have lower cost, as shown in fig. .

To make the argument precise, separate the manifold Mg in three parts: (I) the bag, (II) the
infinite throats, and (I11) the matching regions where throats are attached to the bag. Minimizing M?
in region (I) sets ¥ to a constant, so the bag does not contribute to the graviton mass. On the other

AdS; x S°

L4(.L)

Yo(z)

region (II1)

"/jbag r

Figure 2: Schematic drawing of the AdS4 radius L4 (green curve) and of the graviton wavefunction 1y (blue curve)
as functions of the coordinate x of the Janus throat. The radius reaches a minimum value of Ls inside the throat, and
grows as Ly cosh z on either side where the geometry asymptotes to AdSs5/Z2xS%. The left half of the throat is cut-off
by the ‘bag’ at a characteristic radius ~ Ly, > Ls. The graviton wavefunction approaches a constant in this region,
and vanishes exponentially at infinity. Since the matching region (III) contributes neither to the norm nor to the mass,

it can be shrunk for our purposes to a point.



hand, at leading order in Ls/Lya, only the bag contributes to the norm of i. The reason is that
\/§L42 decreases exponentially fast in the matching region, and 1 vanishes exponentially fast in the
throat as will be shown in a minute. This fixes the constant value ¥y =~ ¥pag in region (I).

The region of minimal \/§Lf, on the other hand, where ¥y can vary with minimal mass cost, lies
deep inside the throat regions. Only the throats will therefore contribute to the graviton mass at this
leading order, an assumption whose validity will be again verified a posteriori.

In summary, the leading-order contribution to the norm comes from the bag, while the leading-
order contribution to the mass comes from the bottom of the throat where \/gL{ is minimal. The
matching region (III) contributes to neither and can be neglected. We may thus reformulate the
problem as a variational problem in the Janus geometry:

Ypag i matching region,

Ao + 2~ miny U dSy /g Lig7 0% 0|  with 1 — (12)
t

hroats 0 at inﬁnity .
The only residual dependence on Mg (viz. on the composite NS5-D5-D3 brane) is via the boundary
value 1., Whose physical meaning will soon be made clear.
The N = 4 supersymmetric Janus solution [23] depends on two parameters, the radius Ls and the

dilaton variation §¢. Like all other solutions in this class it has the fibered form
dsy = Lidsias, +ds3y,  with  dsiy, = f2dsd. + f2ds2, + 4pdzdz . (13)

The scale factors Ly, f, f ,p depend on the complex coordinate z that parametrizes the infinite strip.
We write z = x + 47 with 7 € [0, 7/2]. The metric factors and dilaton are given in the appendix. Here
we only need the combination that enters in the square brackets in . Things simplify actually
further because the spin-2 eigenfunctions in the Janus geometry factorize into spherical harmonics on
the 2-spheres, and separate functions of x and 7, and the lightest mode is only function of x [24].
Integrating over the 2-spheres and 7 gives E

oo 2 _
7;3L58/1; dx g(l‘) (dd)> ‘| with 'l/)(l') _ q/}bag at r = Tey (14)

Ao +2 = miny . 0 .
at r = oo,

where the function G(z), computed in the appendix, reads

cosh 22 + cosh 6(;5)2 (15)

G(@) := < cosh d¢
We have cutoff the integral at some large negative value z., at the boundary of the matching region.
The value of z. will drop out and could be replaced by —oo, its only role is to remind us that 1) would

have been a non-normalizable mode in the complete Janus geometry.
The variational problem can be easily solved,

d , diy Ty

2 (GZy =0 = 16
dx( - ) = Yo(x)=c1+c2 1t (16)
where c1, co are integration constants. We can perform the integral analytically with the result
v a® dx’
I = —_— =
(z,a) /0 (cosh 2z’ + a)?

B a? Io [Va—!—l—l—\/a—ltanhx] 3 a? tanh x (17)
2@ -1 | arl-_va_Ttamhz] (@2—1) [(a+1)—(a—1)tanhz]

1OWhen §¢ = 0 the 2-spheres and the coordinate 7 make up the 5-sphere in AdS5xS?, and G(x) = 4 cosh? z.



We here set cosh d¢ = a and chose the lower integration limit so that I is an odd function of z. Fixing
c1,C2 so as to satisfy the boundary conditions gives finally the graviton wavefunction in the throat

Yo(x,a) ~ %wbag [1 — [I(fc: L;))] . (18)

Note that I approaches its limiting values exponentially, so ¢g(z.) > ¥pag up to exponentially small
corrections. Furthermore at z — +00, 19 = O(e™2%) as required for the norm to be finite. The reader
can now check that this contribution to the norm is parametrically smaller than that of the bag, and
can be neglected as claimed earlier.

Plugging the above wavefunction in the expression leads to the graviton mass. Note that g
obeys eq. , so the integrand is a total derivative and one finds

3 oo 2 3 oo
T s dipo T o8 dipo
A+2 = T Lg /xcdxg<dx) =7 Ly [de Uy . . (19)

Since G(z)dipo/dr = —tPpag/21(00,a) and [1g]3° = —Ypag, we finally get

A 2—7T—BL821 —S—WBLBQJ 20
o+ T8 waag/ (OO,CL) Ty 5¢bag (a)7 ( )

where we have introduced the Janus correction factor J(a),

a3 a2
J(a,)71 ::6[(00,@)2(0/23_:03/210g|:a+\/a2—1:|—(a§)_1). (21)

As a = cosh 0¢ ranges from 1 to co, J(a) decreases monotonically from 1 to 0, see figure . The
function is normalized so as to drop out for AdSsxS® throats, while more generally it has the effect
of reducing the graviton mass.

This can be understood intuitively as follows: d¢ is the difference between the value of the dilaton
at the entry of the throat and its value at infinity. The former is fixed by the bag (see the appendix).
The latter is a free parameter that determines the coupling constant gyy of the dual 4d, NV = 4
super Yang-Mills theory. Taking gym to zero (and hence |§¢| — oo) decouples the bulk CFT from
the defect, restores conservation of T,; and sends the graviton mass to zero. The same is true, by
S-duality, if gynm is taken to infinity — it is the bulk magnetic theory now that decouples manifestly.
These limits are however singular. Not only does supergravity break eventually down, but also the

spectrum in the Janus throat becomes quasi-continuous [24] invalidating any effective 4d description.

0.6}
0.4l

0.2f

0.0

o9

0 2 4 6 8

Figure 3: The Janus correction function, J, defined in equation (21)).



Eqns. , are the main result of this paper. To extract their physical meaning we will rewrite
them in three different ways. We first express 91ag, defined in eq. , in terms of geometric data,

2 = /M VAL = Vo (L) omg (22)

where Vg is the volume of the bag, and (Li)bag the average AdS, squared radius (which is finite after
truncating away the throats). The contribution to the graviton mass thus readsE
3m3LE

m X J(COSh 5(;5) . (23)

geometric : mg L =
In the conventional AdSs x Mg vacua the AdS radius is of the same order as the Kaluza-Klein scale
(this is again the scale non-separation problem), so (Vg)'/? ~ L%ag ~ (L3)bag- Thus m? is suppressed
by the eighth power of Ls/Ly4, as compared to the second power which is the result in the thin-brane

Karch-Randall model [55].

For a different rewriting, we use the relation between the compactification volume and the 4d
effective gravitational coupling, x%, = Vs k3 where k1 is the coupling in ten dimensions. Using also
the relations 2x%, = (2m)7a’ A2 and L} = 4ma’ 2\, n, where o’ is the Regge slope, )\, the string
coupling constant (which can be absorbed in the definition of the Einstein-frame metric) and n the
quantized D3-brane charge of the throat [56] we get
3n? kK3

1672 (L) e x J(coshdg) . (24)

gravitational : mg L} =

This rewriting in terms of four-dimensional parameters brings forth two important points. First,
the graviton mass is quantized so the Higgsing cannot be continuous [I]. Of course, to trust the
supergravity approximation we need n > 1. The mass does vanish with two continuous parameters,
k4 and (cosh §¢)~!, which can be taken to zero, but these limits are singular.

The second remark is that has the same parametric form as the result found in refs. [31][32].
In these references the mass is a quantum effect arising from integrating out matter fields, while in
our case it arose from a standard small-fluctuation analysis around a classical supergravity solution.

We will comment on this again in the next section.

One final rewriting sheds further light on the dual CFT side. We argued earlier that what ensures
a weak 3d energy-momentum leakage is the scarcity of the bulk-CFT, degrees freedom as compared to
those on the 3d defect. A measure of CF'T degrees of freedom for even dimensions is the familiar Weyl-
anomaly coefficient a, which for N' = 4 super Yang Mills with gauge group U(n) is equal to n? [in the
normalization in which the contribution of a scalar to a is 1/90]. The analog of a in three dimensions
is (minus) the free energy on S3, which is related to the vacuum entanglement entropy across a
spatial circle [57] - [60]. These measures have been unified by Giombi and Klebanov in a generalized
free energy [46] defined (via dimensional regularization) for arbitrary d, F; = sin(rd/2)log Z(S%).
For even dimensions F; = (—)d/ 2am /2, while in three dimensions a holographic calculation gives

Fy = 472(L3) /K3 (see for example section 4.2 of [61]). Combining everything we find
defect CFT : 3(Ag —3)~m2L3 = 6”;F L % J(cosh 6¢) (25)

3

where A, is the anomalous dimension of the almost conserved 3d energy-momentum tensor. This way
of expressing the result makes it clear that the expansion parameter is the ratio of generalized free
energies between the bulk and the defect CFT.

LIf there are more than one throats, one adds up their contributions on the right-hand-side.
2The CFT calculation has been performed using localization in refs. [62][63].
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6. Bimetric and double-trace models

In ref. [I] we analyzed solutions with a highly-curved AdSsxS® throatH capped-off at both of its
ends by bags of much larger size. The low-energy theory is in this case a two-graviton theory. This
is a concrete realization of the idea of “Weakly Coupled Worlds’ [64] in which two or more Universes
endowed with separate metrics are coupled through the mixing of their gravitational fields. It is well
known that massive gravity can be obtained from bigravity in a decoupling limit, and this is also true
for our solutions. Before exhibiting this decoupling limit, we will first generalize the analysis of [I]
from AdSsxS® to Janus throats.

The manifold Mg now consists of a Janus throat capped-off on both sides by two bags, Mg and

MGI. For economy of notation we introduce the parameters
U::/ Vo L3 and v’ ::/ ValLi.
M M,

Note that v is just a short-hand for the parameter Vs(L3)pag = 1/1b_alg/ 2

the inner product (¢ |te) = st \/§Lﬁ i1 one finds easily two orthogonal, low-lying spin-2 states.

of the previous section. Using

A massless state with constant wavefunction throughout Mg (which is normalizable because Mg is

now compact), and a massive state whose wavefunction is approximately constant in the bags,

Vv /v in Mg,
—y/v/v" in Mé.

Since the throat makes a subleading contribution to the inner product, the above wavefunction is

Yolz) ~ (v+v") 712 x (26)

clearly orthogonal to the constant one, i.e. to the wavefunction of the massless graviton. This second
mode is necessarily massive because 1)y is forced to vary inside the Janus throat in order to extrapolate
between the above values at the exits.

One can now repeat almost verbatim the calculation of the previous section. The wavefunction in

the Janus throat with the new boundary conditions reads

! )= (Vv +w
wo_v,)[w )~ (0 +0)

I(z,a)
2/vv' (v — } ’ 27

I(c0,a)

where I(x,a) has been defined in eq. (17). Inserting the above wavefunction in ([19)), and reexpressing
v and v’ in terms of radii and effective couplings gives
3n? [ K3 k3!

1672 | (L2vag | <LZ>bag,] x J(cosh69) . (28)

272 _
mg Ly =

This agrees with the result derived in [I] for pure AdS5xS® throats for which J = 1.|E| It also reduces
to our formula of the previous section in the decoupling limit v — oo, i.e. &) — 0 or equivalently
(L3)bag’ — oc. In this limit the massless graviton has vanishing wavefunction and decouples, whereas
1 is concentrated entirely in the (unprimed) bag Mg and in the throat.

From the perspective of the dual field theory, these bigravity solutions are not 4d defect CFTs,
but rather 3d CFTs of a special kind. They are superconformal gauge theories based on linear quivers
with a low-rank ‘weak’ node [I]. Removing this node breaks the quiver into two disjoint quivers. One

could in principle integrate out the scarce messenger fields, thereby generating multitrace couplings

13The restriction to AdSsxS® throats is valid for identical bags, or more generally for bags with the same value of

the dilaton at the two throat entries. This was implicitly assumed in ref. [1].
14 In this reference we worked in units of Ly = 1 and absorbed (L2) in the definition of x2. We thank Thibault
Damour for suggesting that we reestablish explicitly all units.
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between disjoint theories in the spirit of [33][34]. In contrast with these references, the couplings are
however non-local (they are generated by massless messengers) and exactly scale invariant (the AdSy
symmetry is manifest). Conversely, integrating back in the messenger fields restores the interpretation
of the multitrace couplings in terms of a classical supergravity background, and resolves the conflicts
with string-theory locality discussed in refs. [36] [37].

Similar comments apply to the relation of our models with the transparent boundary conditions of
[31][32]. These could conceivably mimic the effects of the semi-infinite throats, but they are obscuring
the issues of locality and scale invariance. It is nevertheless interesting that they lead to the same

parametric dependence of m, on the effective gravitational coupling k4.

7. Final remarks

As these top-down embeddings demonstrate, massive AdS, gravity is part of the string-theory
landscape. String theory is believed to be a consistent theory, so we expect the effective 4d low-energy
gravity to be free of any pathologies. We have seen that the effective theory must break down at the
AdS radius L4, which is comparable to the Kaluza-Klein scale, a feature that is related to the scale
non-separation problem and could be generic. This still leaves a range of energies, my < I < Lzl, in
which to try to compare with effective actions such as those of refs. [7][9]. A technical complication
is that string theory is rarely minimal — the low-energy theory would have extra fields in addition to
the massive graviton.

Massive Minkowski gravity is harder to embedd and could possibly lie in swampland. One way to
see the difficulty is as follows: a key feature of the Karch-Randall model is the existence of a local
minimum of the AdS scale factor Ly. The existence of a minimum seems however to be in tension
with the holographic c-theorem when the AdS, fiber is replaced by Minkowski [65][66][20]. It is an
interesting question whether this obstruction can be somehow relaxed.

In a different direction one can look for massive-gravity and bimetric models in other dimensions
and/or with different amounts of supersymmetry. Many exact AdSp solutions with D > 4 and half-
maximal supersymmetry are known by now, for instance [67] for AdSz7, [68][69][70] for AdSe, and [71]
for AdSs (for a review and more references see also [72]). Some cases can be a priori excluded. A
prime example is 6d N' = 1, where the stress tensor belongs to a protected B-series multiplet [48] and
cannot acquire an anomalous dimension. Thus massive AdS7 supergravity is a priori excluded.E| The
stress tensor multiplet is also absolutely protected for N’ = 1 in 5d, and for more-than-half-maximal
supersymmetry (N > 2 in 4d and N > 4 in 3d). This is consistent with the fact that there exist no
candidate defect CFTs with so many unbroken supersymmetrieS.E A situation with no protection is
N =2 AdSs. Tt would be interesting to search for embeddings of massive AdS supergravity or bigravity
in this case. It would be even more interesting to search for non-supersymmetric embeddings that
allow a Kaluza-Klein cutoff > L, along the lines of [28§].

Aknowledgement: We have benefited from discussions or email exchanges with Laura Bernard,
Ali Chamseddine, Cedric Deffayet, Eric D’Hoker, Gregory Gabadadze, Slava Mukhanov, Alessandro
Tomassielo and Christoph Uhlemann. C.B. aknowledges the hospitality of the Mani L. Bhaumik
Institute of UCLA during the last stage of this work.

15 The solutions of [67] resemble those studied here — they are dual to gauge theories based on linear quivers. Anomaly
cancellation forces however these latter to be balanced quivers. This implies that the gauge-group rank is a concave

function along the quiver, which forbids the low-rank ‘bridge’ nodes of [IJ.
16The relation of anomalous dimensions with charge leakage also implies that whenever the stress-tensor multiplet is

protected, so are all conserved-current multiplets. Indeed in a local QFT no charge can leak out without carrying also
some energy. Inspection of all superconformal representations in [48] confirms the validity of this assertion.
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Appendix

Here we collect some formulae on the exact type-IIB supergravity solutions that we use. For more
extensive descriptions of this class of solutions see refs. [22][23] and refs. [26] [27].

All solutions of type-IIB supergravity preserving N’ = 4 AdS; supersymmetries have the form of

a fibration over a Riemann-surface 3,
dsy = Lids}gs, + f2dsg. + f2dsi, + 4p*dzdz (29)

where the scale factors of the three (pseudo)spheres depend only on the coordinate z = x + it of the
Riemann surface. For us this latter is the infinite strip, 0 < 7 < 7/2. Solutions based on the annulus
do not allow the attachment of semi-infinite Janus throats, and there are no known solutions based
on higher-genus Riemann surfaces. The six-dimensional manifold S? x S2 x ¥ is called Mg in the main
text (or Mg when it is compact).

The expressions for the metric factors and the dilaton, ¢, depend on a pair of harmonic functions

uu uwz S UW? uuw? u
8 _ qpUU 8 _ 8 8 _ 8 8 49 U
L4_16W2 , f°=16h T fS=16h TR = e = (30)
where h and h are the two harmonic functions, from which one computes
U = 2hh|8.h|)? — h2W | U = 2hh|0.h)*> —h2W , and W = 9,8:(hh) . (31)

The solutions also have 5-form and 3-form fluxes whose explicit form we won’t need.

After imposing regularity conditions, the most general solutions with the strip as base manifold

are given by the following choice for the harmonic functions:

N .
)
h = —iasinh(z — §) = Y 7, log tanh <Z;T - g n 2“) ¥ oce
a=1
. R P
h = d&cosh(z — ) — Z% log tanh (2 - ;) + cc. . (32)
b=1

All parameters in these expressions are real. Furthermore the parameters {«,~v,} and {&, 4} must all
have the same sign which can be chosen positive — the harmonic functions are then positive everywhere
inside the strip. The logarithmic singularities on the upper (lower) boundary of the strip correspond
to D5-brane (NS5-brane) sources wrapping 2-sphere cycles. The regions z — 400, on the other hand,
correspond to semi-infinite D3-brane throats with the geometry of the supersymmetric Janus solution.

The pure Janus solution is found by setting v, = 4, = 0. Its radius is Ly = 2(ad cosh 5(;5)1/4,
where 8¢ = 8 — /3 is the change of the dilaton as z goes from —oo to co. By shifting the origin of the
x axis one may choose f = — B = §¢/2. The combination of scale factors that enters in the expression

for the squared mass is
VaLip™2 = L4 f2f2 =16 h2h2 . (33)

Inserting the Janus harmonic functions gives 16 h2h2 = (L§/16) sin?(27) G(x) where the function G is
the one defined in eq. . Using finally the T-independence of v [24], and integrating over the two
2-spheres and over 7, leads to the expression for the mass.

17 In the previous literature h, h are denoted hi,ho (and similarly for the associated functions L{,LA{, the 2-spheres S2,
§2, and the parameters o, & and 8, B) We think that the benefit of making S-duality (or mirror symmetry) manifest
outweighs the risk of confusion from this change of notation .
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A typical ‘scottish bagpipes’ manifolds Mg has a, & < 74,9, and all other parameters ~ O(1).
The bag Mg is obtained in the limit o, & = 0 which truncates away the asymptotic AdSs/ZxS°
regions of the Janus throats. It can be checked that = +00 become simple coordinate singularities
in this limit, and that Mg is compact [26]. The product a@ that controls the graviton Higgsing is a
continuous parameter in supergravity, but it is quantized in string theory where it is related to the
D3-brane charges of the throats (see below).

The detailed shape of the bag depends on the parameters {74,495, da, 517} which are in one-to-one
corerspondence with the NS5-, D5- and D3-brane charges [26] of the ‘fat Karch-Randall brane’. In
general the bag has many different length scales, but a typical size is Lpag ~ (374 2. 45)/* where
the sum runs over 5-brane singularities in some dz ~ O(1) region of the strip. In order to stabilize the
bag one needs both NS5-brane and D5-brane charges, or else the dilaton runs away and the solution
is singular.

Most of the details of the bag play no role in the calculation of the graviton mass at leading order.
The only relevant parameters are 1,5 defined in eq.7 and the four combinations

N N
Y= vee™tand  Awi=) Apet (34)
a=1 b=1

To see why let us divide the strip in several regions. For z ~ O(1) we may neglect a, & altogether.
This is the bag region (I) of section 5. For z sufficiently large, on the other hand, we can expand the
log tanh functions, and approximate h and h as follows

2h ~ —i(ae* P —dy e )+ cc. 2h ~ (o}ezﬂé +494e77) F+ce. . (35)

This is the throat region (II) of section 5, where the background is the supersymmetric Janus solution.

Expressing in terms of hyperbolic sine and cosine leads to the Janus-parameter identification

R 1/8 A R
LY =2v2 [adwme*(“m cosh? 6+ and 200" = 2F -5 (36)

a4
Similar formulae hold for the parameters L(S_), 8¢(7) of the other throat, in the region # — —oco. The

only thing to retain from this discussion is that for a given bag (i.e. given 7+,%+) we have enough

free parameters to choose the radii and dilaton jumps of the two asymptotic Janus throats at will.
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