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Abstract: The singularity structure of the Coulomb and Higgs branches of good 3d

N = 4 circular quiver gauge theories (CQGTs) with unitary gauge groups is studied.

The central method employed is the Kraft-Procesi transition. CQGTs are described as a

generalisation of a class of linear quivers. This class degenerates into the familiar class

T σ
ρ (SU(N)) in the linear case, however the circular case does not have the degeneracy

and so the class of CQGTs contains many more theories and much more structure. We

describe a collection of good, unitary, CQGTs from which the entire class can be found using

Kraft-Procesi transitions. The singularity structure of a general member of this collection

is fully determined, encompassing the singularity structure of a generic CQGT. Higher-

level Hasse diagrams are introduced in order to write the results compactly. In higher-level

Hasse diagrams, single nodes represent lattices of nilpotent orbit Hasse diagrams and edges

represent traversing structure between lattices. The results generalise the case of linear

quiver moduli spaces which are known to be nilpotent varieties of sln.
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1 Introduction

The sets of zero energy configurations, or moduli spaces of vacua, of supersymmetric quan-

tum field theories possess rich algebro-geometric structure. Three dimensional theories

with varying amounts of supersymmetry have garnered much interest in the past couple

of decades. The moduli spaces of vacua of theories with at least eight supercharges are

known to be hyperKähler algebraic varieties and a precise understanding in the case of

three dimensions has proved a bountiful avenue for research. In recent years numerous

tools for investigating these moduli spaces have been developed, see [1] for a review. An

important and recent tool for the present discussion is the Kraft-Procesi transition, [2] [3].

The Kraft-Procesi transition is a realisation of geometric features of the algebraic varieties

in the physics from which these varieties arise. More specifically, Kraft-Procesi transitions

identify and remove transverse slices from the moduli space branches.

The moduli spaces of 3d N = 4 quiver gauge theories have two distinct branches, the

Coulomb branch, where the vectormultiplet scalars are allowed nonzero vacuum expectation

values, and the Higgs branch, where the hypermultiplet scalars are allowed nonzero vevs.

Both branches are singular hyperKähler varieties which meet at their most singular point,

the point where the vevs for all the scalars in the theory are zero. For the class T σ
ρ (SU(N))

of linear quiver gauge theories, these branches are nilpotent varieties of the sln algebra.

These varieties have a well understood inclusion relation structure and singularity structure

thanks to the work of Brieskorn, Kraft, Procesi and others, [4]–[8], and it was in the context

of these varieties that the Kraft-Procesi transition was first developed in [2].

In this work, Kraft-Procesi transitions are used to explore the singularity and inclusion

relation structure of a much larger class of quiver gauge theories, namely good quiver

gauge theories with circular quiver topology and unitary gauge and flavour nodes. This

class depends on five pieces of data to uniquely define a theory: two integer partitions

ρ and σ, of magnitude M , with ρt > σ, two integers N1 and N2 with Ni ≥ 2, and a

non-negative integer L. We denote this class of CQGTs πσ
ρ (M,N1, N2, L). Both this

class and T σ
ρ (SU(N)) theories can be realised as the low energy dynamics of type IIB

brane configurations [9]. By identifying brane subsystems in these configurations whose

moduli spaces are transverse slices in the nilpotent varieties, a detailed understanding of

the singularity structure and transverse slice structure of the moduli spaces of the theories

can be developed. This approach does not rely on a priori knowledge of the global structure

of these moduli spaces. The results are compactly displayed using Hasse diagrams. Linear

theories arise as a subclass of the circular theories where L = 0 and M = N1 = N2 = N so

that, as classes, T σ
ρ (SU(N)) = πσ

ρ (N,N,N, 0). The singularity structure of circular quiver

gauge theories generalises the known structure of the linear theories.

In Section 2, we discuss nilpotent varieties and singularities in sln in order to set-up the

main discussion. In Section 3 we review the Kraft-Procesi transition as it relates to linear

quiver gauge theories. In order to generalise more smoothly to the case of circular quivers,

we describe a broader class of linear quivers and show that this class and T σ
ρ (SU(N)) are

in fact the same. We also provide a description of the Kraft-Procesi transition at the level

of the field theory in an explicit way. Finally we illustrate the technique’s effectiveness
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by presenting tables of linear quiver gauge theories with moduli space branches which are

nilpotent varieties in slN for all the described varieties up to N = 7.

Section 4 contains the main results of this work. We use Kraft-Procesi transitions on

circular quiver gauge theories to uncover the singularity structure of their moduli space

branches. We begin by describing the full class, πσ
ρ (M,N1, N2, L), of good circular quiver

gauge theories, showing that all five pieces of data are necessary in order to uniquely

define a theory in the class. The manner in which the well known linear quivers, and

previously discussed subsets of circular quivers, emerge under certain constraints placed on

this class is explored. The effects of Kraft-Procesi transitions on the brane configurations

whose low energy dynamics are described by the CQGTs are investigated. This allows the

identification of a set of theories whose moduli space branches contain the branches of any

CQGT as subvarieties. The singularity structure of this minimal set of maximal theories

encompasses the singularity structure for any πσ
ρ (M,N1, N2, L) CQGT. The minimal set

consists of the theories π
(1k)

(1k)
(k,N1, N2, L) = π(k,N1, N2, L) where k ∈ {0, ..., [gcd(N1,N2)

2 ]}.

We then construct the Hasse diagram for a generic member of this minimal set. Since Kraft-

Procesi transitions remove transverse slices from the moduli space varieties, the singularity

structure of every circular quiver in the class πσ
ρ (M,N1, N2, L) can be found inside that

of an appropriately formulated maximal theory through the application of Kraft-Procesi

transitions.

The singularity structure for quiver gauge theory moduli space branches is written

compactly in a Hasse diagram. However explicit Hasse diagrams become cumbersome very

quickly when used to present the singularity structure of CQGTs. In order to perform

the analysis we introduce higher-level Hasse diagrams. Higher-level Hasse diagrams take

advantage of large, repeating structure in the explicit Hasse diagrams in order to present

the full structure in a compact manner. Structures whose explicit Hasse diagrams look like

a lattice of the familiar nilpotent orbit closures are denoted by star-shaped nodes. Edges

connecting these nodes represent traversing structure between the lattices.

We present the general higher-level Hasse diagram for a generic member of the minimal

set of maximal theories. This diagram encompasses the singularity structure of any CQGT

in the class πσ
ρ (M,N1, N2, L). This work is the first time Kraft-Procesi transitions have

been used in this manner to explore the unknown singularity structure of a class of quiver

gauge theories. The technique proves a powerful one, allowing detailed analysis of the

singularities without depending on a full description of the global structure.

Section 5 contains some concluding remarks and discussion of directions of interest.

There are several directions in which to progress. A clear direction is the expansion from

circularising theories whose moduli space branches are nilpotent varieties of sln to doing so

for the other classical algebras, son and sp2n. Beyond that, establishing the linear systems,

let alone possible subsequent circular systems, corresponding the nilpotent varieties in

exceptional algebras, g2, f4, e6, e7 and e8, has yet to be performed in the majority of cases.

The brane systems we discuss have dual M-theory descriptions as full and fractional M2

branes probing products of Asymptotically Locally Euclidean spaces. Exploring what the

structure and ordering discussed herein implies for this dual M-theory description is yet
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another possible direction of inquiry. Finally, linking the discussion here to a formulation

of the global nature of the moduli space branches for these theories, or even using the

discussion here in order to inform such a formulation, would provide intriguing insights

into the viability of a ’bottom-up’ approach to moduli space investigation. Kraft-Procesi

transitions are powerful tools for performing a local analysis of the moduli spaces, being

able to use their results to inform a global analysis would provide a new method for

investigations into global moduli space structures.

2 Nilpotent varieties in sln

Kraft-Procesi transitions are a physical realisation of the transverse slice structure of the

moduli space branches of quiver gauge theories. We review the necessary preliminaries for

the study of this structure.

The moduli space branches for linear quivers of the class T σ
ρ (SU(N)) are nilpotent

varieties in slN . These can be neatly classified by appealing to their relationship with

integer partitions. Much of the transverse slice structure in the nilpotent varieties for all

classical algebras has an interpretation in terms of integer partitions.

2.1 Integer partitions

A partition, ρ, of magnitudeN , is a weakly decreasing tuple of non-negative integers (parts)

ρ = (ρ1, . . . , ρj) such that
∑j

i=1 ρi = N . Partitions are usually written using exponential

notation where each part is labelled with its multiplicity within the partition. A general

partition of N , in exponential notation, is written

ρ = (NkN , (N − 1)kN−1 , . . . , 3k3 , 2k2 , 1k1 , 0k0), (2.1)

where
∑N

i=0 iki = N . The length of a partition is the number of non-zero parts it has,

counted with multiplicity, so length(ρ) =
∑N

i=1 ki := l(ρ). The value of k0 ∈ Z≥0 can be

changed without changing the magnitude of ρ, partitions are usually written with k0 = 0,

however it will also prove useful to take k0 = N−l(ρ). This is called ‘padding the partition’

with zeroes.

Partitions can be represented by Young tableaux, which are left-justified rows of boxes

where the number of boxes in row i is ρi. The transpose of a partition, ρt, is found by

reflecting the corresponding Young tableau in the NE-SW diagonal. Alternatively the

transpose can be found by considering the tableau column-wise, or, without appealing to

tableaux at all, by taking the difference between the ith and (i+ 1)th parts of ρ to be the

multiplicity of i in ρt.

The set of partitions of N , P(N), is a partially ordered set with ordering defined by

the dominance relation for the partitions. A partition µ dominates a partition ν if

m∑

i=1

µi ≥
m∑

i=1

νi, (2.2)
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. . .

︷ ︸︸ ︷d

︷ ︸︸ ︷d

. . .

Figure 1. The two procedures in the Young tableaux that move from one partition to an adjacent
partition in the dominance ordering. The two possibilities are labelled ad and Ad in anticipation
of their relationship with the transverse slices in nilpotent varieties for slN . The only time the two
procedures coincide is a1 = A1.

for all 1 ≤ m ≤ N . µ > ν in this case. If there is no ρ such that µ > ρ > ν the partitions

µ and ν are said to be adjacent in the ordering. Adjacent partitions are related by one of

two procedures at the level of the Young tableaux, [5].

(1) A single block is moved down one row and left at least one column.

(2) A single block is moved down at least one row and left one column.

Tableaux demonstrating these two procedures are given in Figure 1. The partial or-

dering can be represented in a Hasse diagram in which the nodes are partitions, more

dominant nodes are placed higher, and nodes are connected by edges if the partitions are

adjacent. An edge is labelled Ad if its two nodes are related by procedure (1) and ad if the

nodes are related by procedure (2). Given a magnitude N , there is a unique most dominant

partition, (N). This will always be at the top of the Hasse diagram. There is also a unique

lowest partition, (1N ), which will always be at the bottom of the diagram. Moreover, when

considering all possible partitions of an integer, there are unique partitions (2, 1N−2), one

above the lowest partition, and (22, 1N−4), two above the lowest partition. There are also

unique partitions (N − 1, 1), one below the highest partition and (N − 2, 2), two below the

highest partition. An example Hasse diagram for N = 6 is given in Figure 2.

Transposition of the partitions is an involution on P(n) where each partition gets

mapped uniquely to a partition (perhaps itself). This involution reflects the Hasse diagram

top-bottom. It is clear that if µ > ν then µt < νt. Ad and ad get mapped into one another

under transposition.

2.2 Nilpotent orbit closures and singularities

The standard text for nilpotent orbits in Lie algebras is [12]. An element, X, of a complex

semi-simple Lie algebra g is called nilpotent if R(X)p = 0 for some faithful representation

R and positive integer p. These nilpotent elements form an algebraic variety called the

nilpotent cone, N . The orbit, OX , of X, is the conjugacy class of X under the natural

action of the associated Lie group, G. All of the nilpotent elements of slN are conjugate to
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(6)

(5, 1)

(4, 2)

(4, 12)(32)

(3, 2, 1)

(23) (3, 13)

(22, 12)

(2, 14)

(16)

a5

a3

A1A1

a2a2

A2A2

A1A1

A3

A5

Figure 2. The Hasse diagram for the partitions of N = 6 with edges labelled with the moves in
the Young tableaux needed to move from one partition to the adjacent partition below it.

one in Jordan block form. The nilpotent orbits of slN can therefore be placed in one-to-one

correspondence with the partitions of N . The nilpotent orbit associated with the partition

µ is denoted Oµ.

The closure of a nilpotent orbit Oµ is defined as

Ōµ =
⋃

ν≤µ

Oν , (2.3)

and is a hyperKähler singular variety of dimension

dimH(Ōµ) =
1

2

(
N2 −

∑

i

(µt
i)
2
)
. (2.4)

The set of nilpotent orbit closures in slN has the same partial ordering as the partitions

of N , with the dominance relations taken as the inclusion relations between the orbit

closures. Associating nilpotent orbits to the nodes in the Hasse diagram corresponding to

their partitions, we may consider that the closure of the nilpotent orbit Oµ involves all

of the orbits in a Hasse diagram from µ down to (1N ). Given Ōµ and Ōν which form a

degeneration, Ōν ⊂ Ōµ, we call the degeneration minimal if there is no orbit closure Ōρ

such that Ōν ⊂ Ōρ ⊂ Ōµ. Minimal degenerations correspond to adjacent partitions.

The singularity of the closure of the subregular orbit, Ō(N−1,1), inside the closure of
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the maximal (or regular) orbit, Ō(N), is, [4],

Sing(Ō(N), Ō(N−1,1)) = AN−1 =
C
2

ZN
. (2.5)

There is a similar result concerning the zero orbit closure Ō(1N ) = 0, and minimal orbit

closure, Ō(2,1N−2). In this case, the type of singularity that zero is within the minimal

orbit of slN can be taken as a definition and is denoted aN−1,

Sing(Ō(2,1N−2), Ō(1N )) := aN−1. (2.6)

Kraft and Procesi generalised these results in order to write down the type of singularity

equivalent to any minimal degeneration in slN in [7]. Given a minimal degeneration Ōν ⊂

Ōµ,

Sing(Ōµ, Ōν) =

{
Am for some m < N if dimH(Ōµ)− dimH(Ōν) = 1

am for some m < N if dimH(Ōµ)− dimH(Ōν) = m.
(2.7)

Moreover if Sing(Ōµ, Ōν) = Am then Sing(Ōνt , Ōµt) = am and vice versa.

This makes apparent the choice of label for the tableaux moves corresponding to ad-

jacent partitions. The minimal singularities of orbit closures for slN can be matched with

block moves in the Young tableaux associated with the partitions for those orbits.

2.3 Slodowy slices and intersections

Now consider a transverse slice, called the Slodowy slice, to an element of slN . Given an

element X ∈ Oλ, we can define this transverse slice to X by

SX := X + ker(ad(Y )), (2.8)

where Y is a nilpotent element associated to X inside an sl2 triple ([12], 3.2.2). This triple

is unique up to conjugacy so this defines a transverse slice to the orbit Oλ. We can label

each slice with the partition associated to the conjugacy class of the X from which it is

formed. Sλ meets all Oσ for σ > λ transversely.

The intersection of a Slodowy slice with the nilpotent cone, Sλ ∩ N = Sλ ∩ Ō(N), is a

hyperKähler singular variety of dimension

dimH(Sλ ∩ Ō(N)) =
1

2

(∑

i

(λt
i)
2 −N

)
. (2.9)

On a Hasse diagram we may consider that Sλ ∩ Ō(N) involves all of the orbits from λ up

to (N). Finally we can consider the intersection of a given slice with a given orbit closure.

This is a hyperKähler variety of dimension

dimH(Sλ ∩ Ōµ) =
1

2

(∑

i

(λt
i)
2 −

∑

i

(µt
i)
2
)
. (2.10)
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Ō(32)

a5

a3

A1A1

a2a2

A2A2

A1A1

A3

A5

a5

a3

A1A1

a2a2

A2A2

A1A1

A3

A5

Ō(6) ∩ S(3,13)

a5

a3

A1A1

a2

Ō(32) ∩ S(3,13)

a2

A2A2

A1A1

A3

A5

(6)

(5, 1)

(4, 2)

(4, 12)(32)

(3, 2, 1)

(23) (3, 13)

(22, 12)

(2, 14)

(16)

Figure 3. A demonstration in the Hasse diagrams of the minimal degenerations (edges) and orbits
(nodes) involved in the varieties Ō(32) (the closure of the (32) orbit), Ō(6) ∩ S(3,13) (the transverse
slice to the (3, 13) orbit intersected with the nilpotent cone) and their intersection Ō(32) ∩ S(3,13).
It can be seen immediately that sl6 ⊃ Ō(32) ∩ S(3,13) ∼ Ō(3) ⊂ sl3.

This corresponds to a run on the Hasse diagram from the partition λ up to the partition

µ. Viewing the singularities above as dimH(Ōµ) − dimH(Ōν) dimensional varieties, we

interpret the work of Brieskorn as the realisation that S(N−1,1) ∩ Ō(N) =
C2

ZN
and the work

of Kraft and Procesi as the generalisation that Sν ∩ Ōµ is given by the right hand side of

(2.7) when µ and ν are adjacent partitions.

For every variety Sλ∩Ōµ for µ, λ ∈ P(N) and µ > λ, we can associate a pair of Young

tableaux corresponding to those same partitions. The condition µ > λ guarantees that

there is a (not necessarily unique) sequence of moves of type (1) or (2) which takes us from

the tableau for µ to the tableau for λ. Taking the association of these moves with the

minimal singularities in (2.7), we can build up exactly the labelling of the edges between

µ and λ on the Hasse diagram. The moves of type (1) or (2) allow us to navigate the

set of varieties Sλ ∩ Ōµ. Given the starting pair µ = (N) and λ = (1N ), corresponding

to the variety S(1N ) ∩ Ō(N) = Ō(N) = N , we can manufacture the tableaux for any other

variety Sλ ∩ Ōµ by performing moves on the tableau for (N) and reversals of the moves on

the tableau for (1N ) until the tableaux correspond to the appropriate partitions. On the

level of the Hasse diagram, this is the same as starting with a variety corresponding to the

entire diagram and removing edges and nodes from our consideration by performing the

appropriate moves in the Young tableaux. From the point of view of the varieties these

moves correspond to the removal of transverse slices of the type found in (2.7) from the
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varieties.

Kraft-Procesi transitions are the physical realisation of the process of navigating these

varieties. By performing certain manoeuvres in type IIB brane embeddings whose low-

energy descriptions are field theories which have moduli space branches which are these

nilpotent varieties, one can give ordering and structure to the class of such theories. Alter-

natively, as we shall do in Section 4, by identifying which brane manoeuvres can be made

given a configuration with low energy dynamics described by a field theory with unknown

moduli space structure, we can build a local picture of the singularity structure of the

moduli space without relying on global information.

3 Linear quivers

The field content of the classes of theories considered in this work can be encapsulated in a

quiver. A circular node in the quiver with label k, denotes a vectormultiplet transforming

in the adjoint of U(k). Square nodes labelled k represent a U(k) flavour symmetry. Edges

connecting two circular nodes correspond to hypermultiplets transforming in the bifunda-

mental of the groups given by those nodes. Edges connecting a circular node and a square

node represent hypermultiplets transforming in the fundamental representation. A linear

quiver is one where the gauge nodes are connected in sequence such that the gauge group

for the theory is U(k1)× U(k2)× · · · × U(kN−1).

T ν
µt(SU(N)) theories arise as the low energy dynamics of type IIB superstring em-

beddings involving D3, D5 and NS5 branes in a standard Hanany-Witten configuration,

[9].

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × × - - - -

D5 × × × - - - - × × ×

D3 × × × - - - × - - -

In these configurations the partitions are related to the linking numbers of the five branes.

The linking number of a five brane can be defined as the net number D3 branes ending on

the five brane from the right plus the number of the opposite type of five brane to the left.

The linking numbers for each type of five brane are written as a tuple, ls for NS5 branes

and ld for D5 branes. The ith part of the tuple is the linking number of the ith 5-brane of

a given type from the left. Set ld = (NN ) − ν and ls =
←→
µt padding the partitions with

zeroes if necessary. When all D3 branes are suspended between NS5 branes, the branes

are in Coulomb brane configuration and when all the D3 branes are suspended between D5

branes the branes are in Higgs brane configuration. To find the brane system in the Higgs

brane configuration we can place all of the NS5 branes in the appropriate gaps between

D5 branes then realise the D5 linking number by adding D3 branes suspended between D5

branes. The Coulomb brane configuration for a given theory can be found by performing

a complete Higgsing on the Higgs brane configuration. The quiver for the theory can be

read from the Coulomb brane configuration. Each circular gauge node labelled ni entails
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a stack of ni D3 branes suspended between two NS5 branes. Each square flavour node

labelled mi entails mi D5 branes in the same gap as the gauge node to which it attaches.

The Higgs and Coulomb branches of these theories are therefore also related to the

partition data, [11]. For a theory in the class T ν
µt(SU(N)), the Higgs branch is given by

H(T ν
µt(SU(N))) = Ōµ ∩ Sν , (3.1)

and the Coulomb branch by

C(T ν
µt(SU(N))) = Sµt ∩ Ōνt . (3.2)

A convenient visual intuition for these branches can be found by marking the orbits on

the Hasse diagram for nilpotent orbits of slN which correspond to the Higgs and Coulomb

branch varieties respectively. In this sense we may discuss how a given theory corresponds

to a run of nodes and edges on a Hasse diagram. T ν
µt(SU(N)) corresponds to a run from

a node labelled ν up to a node labelled µ. A number of aspects of these theories can now

be realised in the manipulation of the Hasse diagram and associated visualisations.

For example, the mirror dual of T ν
µt(SU(N)) is T µt

ν (SU(N)). The mirror theory is

a theory in which the Higgs branch and Coulomb branch varieties have been exchanged.

Mirror symmetry is realised as S-duality in these brane configurations, NS5 branes turn

to D5 branes and vice versa while D3 branes remain the same. At the level of the Hasse

diagram, mirror symmetry is therefore realised as the involution on P(N) which flips the

diagram top-bottom, that is, transposition of the partitions. The naming of the mirror

class matches this. At the level of the Young tableaux, mirror symmetry is realised as the

reflection in the NE-SW diagonal of both of the tableaux. The brane systems corresponding

to the theories whose moduli space branches are the Am and am minimal singularities must

therefore be S-dual (mirror dual) to one another. Removal of an Am minimal singularity

from the Higgs branch means the removal of an am minimal singularity from the Coulomb

branch and vice versa.

3.1 An alternative class of linear theories

A theory in the class T ν
µt(SU(N)) requires two pieces of data to fully specify: two partitions,

µ and ν, of equal magnitude, N . This formulation does not generalise in manner which

captures the entire class of circular quivers. To prepare the ground for our discussion of

circular quivers we will define a broader class of linear quiver gauge theories. In the linear

case this broader class degenerates to the class T ν
µt(SU(N)), however this degeneration

doesn’t hold for circular quivers so the broader class of linear quivers generalises more

naturally to the circular case.

To define the broader class, we require that the two partitions µ and ν are of the same

magnitude, now M , and that their Young tableaux may be contained within a frame N1

blocks wide and N2 blocks tall. The partitions of M can clearly be placed within an M×M

frame and so this restriction subsumes the traditional one. We temporarily call the class

of theories attainable under these looser conditions τν
µt(M,N1, N2) and will show that this
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⊗ ⊗ ⊗ ⊗ ⊗
1 1 2 2 4

2 3 3 3 4

1 2 3 1

1 3 1

Figure 4. An example theory, τ
(3,23,1)
(4,22,12)(10, 5, 5). The Young tableaux and frames for each partition

are given on the left. The Higgs brane configuration is given in the center along with the linking
number of each of the five branes in the system. When drawing the Higgs brane configuration,
the vertical direction parallel to the page is (x7, x8, x9) and the dashed lines are D5 branes. The
horizontal direction parallel to the page is the x6 direction and the horizontal solid lines are D3
branes. The direction perpendicular to the page is (x3, x4, x5) and the ⊗ are NS5 branes. For
the Coulomb brane configuration the perspective is rotated such that (x3, x4, x5) is vertical and
(x7, x8, x9) is perpendicular to the page, x6 remains in place. Then the NS5 brane are drawn as
solid vertical lines and the D5 branes using the symbol ×. In both configurations the (x1, x2)
directions are common to all branes and so are suppressed. Finally the quiver itself is given, recall
that the quiver must be read from the Coulomb brane configuration, so we have to fully Higgs the
brane system displayed in order to read the quiver.

class contains exactly the same theories as T ν
µt(SU(M))). These tableaux restrictions may

be realised as the following for the partitions: µ must have no part that is larger than N1

and the partition ν has no more than N2 parts. Since µ is the highest partition, it will

contain the (perhaps joint) largest part of those partitions bounded by µ and ν, and since

ν is the lowest, it will be the (perhaps joint) longest partition. The bounds imposed on

the largest part of µ and length of ν are therefore bounds for these values for all of the

partitions between µ and ν. The requirements also impose that 0 ≤M ≤ N1N2 since the

partitions must be contained in the N1 ×N2 frame.

The new requirements on the partitions have consequences in the brane configuration.

The linking numbers of the five branes are now assigned as ld = (NN2
1 ) − ν and ls =

←→
µt .

Limiting the largest part of µ to be no larger than N1 means that the length of µt is no

larger than N1. The number of NS5 branes that receive non-zero linking number is exactly

the length of µt. As such, no more than N1 NS5 branes receive non-zero linking number.

The number of D5 branes that receive a linking number other than N1 is exactly the length

of the partition ν, which is no more than N2. Therefore restricting ν to be no longer than

N2 means no more than N2 D5 branes receive non-N1 linking number. The only way for

a D5 brane to have a linking number of N1, given we assign linking numbers from left

to right, is if it lies to the right of all NS5 branes and isn’t attached to any D3 branes.

Likewise the only way for an NS5 brane to have a linking number of zero is if it is to the

left of all the D5 branes. Therefore, for the linear case, NS5 branes with a linking number

of 0 and D5 branes with a linking number of N1 do not play a role in the infrared physics

as they don’t meet D3 branes in the appropriate manner.
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The effect this has on the class τν
µt(M,N1, N2) is diagrammed in Figure 5. Given

µ, ν ∈ P(M), the linear quiver is independent of N1 and N2 providing they form a frame

large enough to contain the partitions. The choice M = N1 = N2 is the smallest for which

this is guaranteed. This choice recovers T ν
µt(SU(M)). For circular quiver gauge theories,

there are no possible linking numbers for the five branes which make them irrelevant for

the infrared physics. Therefore we are not free to choose the frame size arbitrarily as every

different size of frame gives a different theory. The class of circular theories is therefore

much larger than the class of linear theories.

The theories in the class T ν
µt(SU(M)) can be matched to the nilpotent varieties via

consideration of their moduli space branches. There are diagrammatic techniques for navi-

gating these varieties by manipulating the Young tableaux. These moves, as they changed

the tableaux, changed the partitions. There is a prescription for writing the brane sys-

tem with the appropriate low energy dynamics in terms of partitions by appealing to the

linking number of the five branes. The Kraft-Procesi transition is a manipulation in the

brane system which gives the appropriate change in linking number such that the change

in partitions realises the transverse slice structure from Section 2.

3.2 Kraft-Procesi transitions in brane configurations

A Kraft-Procesi transition involves two steps. The first step is the identification of a brane

subsystem with a moduli space branch that is a transverse slice. The second is removing

this subsystem via the Higgs mechanism in order to move to a different theory. The minimal

singularities in sln come in two types, Am and am, and thus only two types of Kraft-Procesi

transition need to be developed corresponding to brane subsystems whose moduli space

branches are these varieties. The theories with these varieties as moduli space branches

are 3d N = 4 SQED with m+1 flavours and its mirror dual. The brane configurations for

the corresponding subsystems are given in Figure 6.

To perform step two of a Kraft-Procesi transition, align the D3 branes for the sub-

system corresponding to a minimal singularity with the five branes between which the D3

branes are not suspended given the configuration. For example, in the Higgs brane con-

figuration, D3 branes are suspended between D5 branes so the initial process is to slide

the D3 branes so they align with the NS5 branes. Then push the sections of D3 brane

suspended between the five branes with which the D3 branes have been aligned to infinity

along these branes, that is, into the other brane configuration. This removes them from the

system. Starting in the Higgs brane configuration and pushing D3 branes to infinity in the

Coulomb configuration removes the corresponding minimal singularity from the top of the

Higgs branch Hasse diagram and bottom of the Coulomb branch Hasse diagram. Start-

ing in the Coulomb configuration and pushing D3 branes to infinity in the Higgs brane

configuration removes the corresponding minimal singularity from the top of the Coulomb

branch Hasse diagram and bottom of the Higgs branch Hasse diagram. To complete the

transition, perform Hanany-Witten transitions to remove the frozen sections of D3 brane

that remain between the D5 and NS5 branes. Figure 7 shows the process starting in the

Higgs brane configuration.
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µ ν

⊗ ⊗ ⊗
1 2 2

1 1 2

⊗ ⊗ ⊗ ⊗ ⊗
0 0 1 2 2

3 3 4 5 5

⊗ ⊗ ⊗ ⊗ ⊗ ⊗
0 0 0 1 2 2

4 4 5 6 6 6 6 6

⊗ ⊗ ⊗ ⊗ ⊗︸ ︷︷ ︸
N1 − 3

. . .
. . .

︷ ︸︸ ︷
N2 − 3

0 0 1 2 2

N1 − 2 N1 − 2 N1 − 1 N1 N1

...
...

. . .

. . .

... N1 ×N2
...

...

. . .

. . .

... N1 ×N2

1 1

2 1

Figure 5. An explicit demonstration of the independence of the infrared physics in the class

τνµt(M,N1, N2) from N1 or N2. The brane system and linking numbers for the theory τ
(22,1)
(22,1) (5, 3, 3)

along with the tableaux for both µ and ν is given first. Then the tableaux and the brane system for

τ
(22,1)
(22,1) (5, 5, 5) and then τ

(22,1)
(22,1) (5, 6, 8) and finally for τ

(22,1)
(22,1) (5, N1, N2) for any N1 ≥ 3 and N2 ≥ 3.

The quiver encapsulating the infrared physics of all of these brane constructions in given, which is
the same for all of the brane set-ups.

Mirror symmetry, realised as S-duality in the brane configurations, swaps the Higgs

and Coulomb branch varieties. Removal of an Am (am) minimal singularity in one branch

is therefore the removal the same minimal singularity in the other branch of the mirror

theory. Kraft-Procesi transitions remove minimal singularities from one branch starting

at the top of the Hasse diagram, working down, and also remove minimal singularities
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⊗⊗⊗⊗

m+1︷ ︸︸ ︷
. . .⊗⊗

m−1︷ ︸︸ ︷

. . .

× × × ×

m+1︷ ︸︸ ︷
. . . × ×

m−1︷ ︸︸ ︷

. . .

. . .
︸ ︷︷ ︸

m
1

m+ 1 1 1

11
11

Figure 6. The quiver, Coulomb brane configuration and Higgs brane configuration for 3d N = 4
SQED with m + 1 flavours (left) and its mirror dual (right). The moduli space branches for 3d
N = 4 SQED areMC = Am andMH = am and vice versa for the mirror theory.

⊗⊗⊗⊗

m+1︷ ︸︸ ︷
. . .

⊗⊗⊗⊗
m+1︷ ︸︸ ︷
. . .

⊗⊗⊗⊗
m+1︷ ︸︸ ︷
. . .

⊗⊗⊗⊗
m−1︷ ︸︸ ︷
. . .

⊗⊗

m−1︷ ︸︸ ︷

. . .

⊗⊗

m−1︷ ︸︸ ︷

. . .

⊗⊗

m−1︷ ︸︸ ︷

. . .

⊗⊗

m+1︷ ︸︸ ︷

. . .

Figure 7. The Higgs brane configuration brane manipulation for an Am Kraft-Procesi transition
(right) and an am Kraft-Procesi transition (left). In both cases, the D3 branes are aligned with
the NS5 branes and the centre parts are pushed to infinity. Hanany-Witten transitions are then
performed to remove the frozen D3 segments.

from the other branch variety of that same theory, starting at the bottom of the Hasse

diagram, working up. In order to find a T ν
µt(SU(M)) theory from T (SU(M)), for example,

perform Kraft-Procesi transitions in the Higgs brane configuration down to the orbit µ
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and Kraft-Procesi transitions in the Coulomb brane configuration down to the orbit νt. A

worked example is given in Figure 8 in which Kraft-Procesi transitions are used to find

T
(2,13)
(22,1)

(SU(5)) starting from T (SU(5)).

A descendant theory for a given theory T is another theory, U , which can be found by

performing Kraft-Procesi transitions on T . We denote the collection of descendant theories

of T as K(T ). For this class of linear quivers

K(T ν
µt(SU(M))) = {T σ

ρt(SU(M)) | ρ ≤ µ, σ ≥ ν}. (3.3)

3.3 Kraft-Procesi transitions in field theory

Kraft-Procesi transitions can be interpreted in the field theory without reference to the

brane configurations used in the previous section.

Consider a field theory with the gauge group U(n1) × U(n2) with nf fundamental

flavours Qi where i = 1, . . . , nf , and their complex conjugate, for the group U(n1), and

bifundamental fields Aã
a, B

a
ã with a = 1, . . . , n1; ã = 1, . . . , n2 in the (n1, n̄2) and (n̄1, n2)

representations of the gauge group. This set up corresponds to the 3d N = 4 quiver:

n1 n2.

nf

A general discussion of moduli spaces for four dimensional N = 1 theories with product

group U(n1)×U(n2) and fundamental flavours has been developed in [28]. Their starting

point was a four dimensional N = 2 theory with mass terms for the chiral adjoint fields and

for fundamental fields. They also considered various limits for the masses of the adjoint

field and the fundamental flavours. Here, N = 4 theories in three dimensions (which

descend from N = 2 theories in four dimensions by dimensional reduction) are considered,

when the masses of the adjoint fields and the masses of fundamental flavours are taken to

zero. The field theory superpotential is, [28],

Tr
( nf∑

i=1

QiΦ1Q̃i +AΦ1B +BΦ2A
)
, (3.4)

where the trace is over the gauge group. The F-term equations from derivatives with the

fields Φi imply

nf∑

i=1

Qa
i Q̃ib +

∑

ã

Aa
ã Bã

b = 0 and
∑

ã

Aa
ã Bã

b = 0. (3.5)

The D-term equations for a supersymmetric vacuum are

[Φ1,Φ
†
1] = [Φ2,Φ

†
2] = 0, (3.6)
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⊗ ⊗ ⊗ ⊗ ⊗

× × × × ×1 2 3 4

5

T (SU(5))

⊗ ⊗ ⊗ ⊗ ⊗

× × × × ×1 2 3 3

31

T (2,13)(SU(5))

⊗ ⊗ ⊗ ⊗ ⊗

×××××1 2

31

T
(2,13)
(22,1)

(SU(5))

Figure 8. Demonstration of the use of Kraft-Procesi transitions to find T
(2,13)
(22,1) (SU(5)) within

T (SU(5)). The tableaux for the partitions defining the theories are given with corresponding block
movements indicated. Then the quiver for each of the theories. Finally, on the right, the Higgs
brane configuration (top) and Coulomb brane configuration (bottom) for the theories.

A A† +

nf∑

i=1

Qi(Q†)i −

nf∑

i=1

(Q̃†)iQ̃i −B† B = 0. (3.7)
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The vanishing of the terms in equation (3.6) was explained in [29].

The difference between our case and the one of [28] concerns the moduli space. In [28]

the authors considered the vacua with Q = 0 when the bifundamental fields A,B could

be simultaneously diagonalized by a colour rotation and have N = min(n1, n2) diagonal

entries. The only solution appears when A = B = 0 and the Coulomb branch is a product

of Abelian factors.

For our case, consider the Higgs branch when some or all of the expectation values for

fields Q, Q̃ are non zero and the fields A,B cannot be fully diagonalised. With Q, Q̃ as

n1×nf matrices, consider first the case when the nonzero entry of Q is Q1
1 = k1 and for Q̃,

Q̃3
1 = k1 as in [29]. This breaks the flavour group to U(nf − 2) and the first gauge group

to U(n1 − 1).

The bifundamental field A is an n1×n2 matrix whereas B is an n2×n1 matrix. When

the fundamental fields have zero expectation values they can both be diagonalised by a

U(n1)×U(n2) gauge transformation. When Q1
1 = k1 and Q̃3

1 = k1, equation (3.7) becomes

A A† −B† B = 0. (3.8)

What about the diagonalisation of A and B? The surviving U(n1 − 1) × U(n2) gauge

transformation can only partially diagonalise A and B and does not fix the values of the

first row in A (A1
1, · · · , A

1
n2
) and the first column in B(B1

1 , · · · , B
n2
1 ). If we define

qã = A1
ã, q̃ã = Bã

1 , ã = 1, · · · , n2, (3.9)

the equation (3.8) implies that a D-term equation for q is satisfied. q and q̃ represent

matter in the fundamental representation of U(n2).

The conclusion is that when the product group U(n1) × U(n2) with nf fundamental

flavours is broken to U(n1 − 1) × U(n2) by a vacuum expectation value for a field in the

fundamental representation of U(n1), there are nf − 2 fundamental flavours for U(n1 − 1)

and one for U(n2). This is exactly the result of an Anf−1 Coulomb brane configuration

Kraft-Procesi transition in the brane interval corresponding to the U(n1) gauge group.

n1 n2

nf Anf−1

n1 − 1 n2.

nf − 2 1

When more Q and Q̃ fields have a nonzero expectation value,

Q1
1 = k1 = Q̃3

1, Q2
2 = k1 = Q̃4

2, (3.10)

the gauge group is broken to U(n1− 2)×U(n2) and the gauge transformations leave more

components of A and B unfixed. The first two rows in A and first two columns in B are not

fixed and they correspond to an SU(2) fundamental flavour group for U(n2) gauge group.

The resulting theory is U(n1 − 2)×U(n2) with nf − 4 fundamental flavours for U(n1 − 2)
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and two for U(n2). This is exactly what is obtained by a succession of an Anf−1 and an

Anf−3 Kraft-Procesi transition:

n1 n2

nf Anf−1

n1 − 1 n2

nf − 2 1 Anf−3

n1 − 2 n2.

nf − 4 2

When there are an even number of fundamental flavours for U(n1), nf = 2r, r < n1, the

case when all the fieldsQ, Q̃ have an expectation value breaks the gauge group to U(n1−r)×

U(n2). Now r rows of A and r rows of B are not fixed which correspond to r fundamental

flavours for U(n2). This could be obtained by a sequence of Anf−1, Anf−3, . . . , Anf−2r+1

Kraft-Procesi transitions.

n1 n2

nf Anf−1

n1 − 1 n2

nf − 2 1 Anf−3

n1 − 2 n2

nf − 4 2 Anf−5
...
Anf−2r+1

n1 − r n2.

nf − 2r r

Now consider the case of an odd number of flavours for U(n1), nf = 2r + 1. First

consider r = 1, nf = 3. A vev for one Q, Q̃ leads us to U(n1 − 1) × U(n2) with one

remaining flavour Q3 for U(n1 − 1) and one flavour q for U(n2). This step is familiar as

the Anf−1 transition just discussed. The fields A and B are (n1−1)×n2 and n2× (n1−1)

matrices respectively, Q3 is a vector with n1 − 1 components and q a vector with n2

components. The D-term and F-term equations are satisfied if the first components of Q3,

Q̃3, q , q̃ and the elements A1
1, B

1
1 of the matrices A, B are nonzero. This breaks the gauge

group to U(n1 − 2)× U(n2 − 1) with no fundamental flavours for any of the groups. This

is the same as the result of an a2 Coulomb brane configuration Kraft Procesi transition.

We have thus considered an A2 transition followed by an a2 transition.

n1 n2

3
A2

n1 − 1 n2

1 1 a2

n1 − 2 n2 − 1

This can be generalised to any initial theory with product of gauge groups
∏m

k=1 U(nk)

and nf flavours for the first gauge group U(n1). There are m − 1 sets of bifundamental

fields Ak, Bk in the (nk, n̄k+1) and (n̄k, nk+1) representations. As before, a vev for two

fundamental and two antifundamental flavours will change the theory into one with U(n1−

2)×
∏m

k=2 U(nk) with nf − 4 flavours for U(n1− 2) and two for U(n2). The bifundamental

fields A
(1)
1 , B

(1)
1 are now in the (n1−1, n̄2) representation and its conjugate. What happens

when the U(n2) flavours get a vacuum expectation value and break the second group to

U(n2−1)? The first row of A(1) corresponds to a new fundamental flavour for U(n1−1) and

the first column of B(1) to a new antifundamental flavour of U(n1−1). On the other hand,

the same change should be applied to A2, B2, the bifundamental fields between U(n2) ×

U(n3) . Their first row (column) will become the components of an (anti) fundamental

field of U(n3):
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n1 n2 n3 nm−1nm

nf

...

Anf−1

n1 − 1 n2 n3 nm−1nm

nf − 2 1

...

Anf−3

n1 − 2 n2 n3 nm−1nm

nf − 4 2

...

Anf
−5

A
1

n1 − 3 n2 n3 nm−1nm

nf − 6 3

...

n1 − 2n2 − 1n3 nm−1nm

nf − 3 1

...

The result is a theory with gauge group U(n1 − 2) × U(n2 − 1) ×
∏m

k=3 U(nk) with

nf − 3 flavours for U(n1 − 2) and one flavour for U(n3).

When nf = 4, m = 3 there is a U(n1 − 2) × U(n2 − 1) × U(n3) with one flavour Q

for U(n1 − 2) and one flavour q for U(n3). Making the products QA1A2q and q̃B2B1Q̃

nonzero, the surviving group is U(n1 − 3) × U(n1 − 2) × U(n3 − 1). This is just an a3
Kraft-Procesi transition:

n1 n2 n3

4
A3

n1 − 1 n2 n3

2 1
A1

n1 − 2 n2 n3

2
A1

n1 − 2 n2 − 1 n3

1 1 a3

n1 − 3

n2 − 2

n3 − 1

All the possible Kraft-Procesi transitions can be understood by looking at the various

bifundamental fields in the theory. An Ak Kraft-Procesi transition occurs when one bifun-

damental field between two adjacent groups in the product group loses a row or a column

which becomes a fundamental flavour for one of the adjacent groups. An ak Kraft-Procesi

transition occurs when several successive bifundamental fields have a nonzero entry such

that their products with two fundamental fields are nonzero.

3.4 Tables of descendant theories

Starting with the theories T (SU(M)) and finding descendant theories should uncover the

entire class T ν
µt(SU(M)). Descendant theories were defined in (3.3). Every run on the

Hasse diagram between nodes where one dominates the other corresponds to a theory ‘in’

that Hasse diagram. The number of (non trivial) descendant theories at a given M is given

by

|K(T (SU(M)))| =
∑

µ∈P(M)

#{ν|ν < µ}. (3.11)

Including the trivial theories replaces the requirement on ν with ν ≤ µ. The number

of descendant theories when M ≥ 4 is bounded from below by the partition function,

|K(T (SU(M)))| ≥ |P(M)| = p(M). As p(M) is asymptotically equivalent, ([12], 3.5.4), to
1

4
√
3M

exp(π
√

2M
3 ), the number of theories in the class T ν

µt(SU(M)) for a given M quickly

becomes large. Results are tabulated up to M = 7 which contains 101 theories.
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In order to rapidly perform the Kraft-Procesi transitions, we encapsulate the brane

diagrams using the matrix method as developed in [2]. A brane configuration is written as

a 2× (Ni + 1) matrix with integer elements. The bottom row is the number of D3 branes

in the 0th through to N th
i gap and the top row is the number of the other type of five brane

in that gap, such that the brane configuration for, say, T (SU(4)), is written

(
0 4 0 0 0
0 3 2 1 0

)
. (3.12)

The two types of Kraft-Procesi transition then correspond to

(
... f1 m+ 1 f2 ...
... g1 g2 g3 ...

)
Am−−→

(
... f1 + 1 m− 1 f2 + 1 ...
... g1 g2 − 1 g3 ...

)
(3.13)

(
... f1 1 0 ... 0 1 f2 ...
... g0 g1 g2 ... gm−1 gm gm+1 ...

)

am−−→
(
... f1 + 1 0 0 ... 0 0 f2 + 1 ...
... g0 g1 − 1 g2 − 1 ... gm−1 − 1 gm − 1 gm+1 ...

)
.

(3.14)

Tables are arranged with µt labelling columns and ν labelling rows. All the theories

in the tables are descendants of T (SU(M)), which appears in the top left corner. Theories

whose Higgs branches are the closures of a nilpotent orbit (Coulomb branches are Slodowy

slices) make up the top row of each table. Theories whose Coulomb branches are nilpotent

orbit closures (Higgs branches are Slodowy slices) make up the left hand column of each

table. Theories in the body of each table are those whose moduli space branches are

other nilpotent varieties. The trivial theories have been left blank. Boxes corresponding

to pairs of partitions where neither dominate have been crossed out. For M < 6 mirror

symmetric theories occupy boxes which are reflections of each other in the NW-SE diagonal.

Larger Hasse diagrams branch in ways which obscure this. Performing a Higgs brane

configuration Kraft-Procesi transition moves right through the table. For branching Hasse

diagrams this is not necessarily the box immediately to the right. Performing Coulomb

brane configuration Kraft-Procesi transitions moves down through the table, again not

necessarily to the box immediately below for branching Hasse diagrams.

The goal for circular quivers will be to write down the general form for a collection

of Hasse diagrams whose corresponding gauge theories’ descendants encompass every good

circular quiver gauge theory. In this way, the singularity structure of the general form will

include the Hasse diagram for any circular theory.
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(2)

(12)

(12) (2)ν
µt

1

2

(3)

(2, 1)

(13)

(13) (2, 1) (3)ν
µt

3 3

1 1

12 1

1 1

Figure 9. K(T (SU(2))) and K(T (SU(3)). The tables of non-trivial descendant theories of
T (SU(2)) and T (SU(3)). For K(T (SU(2)) there is only one non trivial theory, T (SU(2)) itself.
Since C(T (SU(2))) = H(T (SU(2))) = Ō(2) = A1, the theory is simply 3d SQED with 2 flavours.
For T (SU(3)) there are three non trivial theories, T (SU(3)) and the theories with the two minimal
singularities as moduli space branches.

(4)

(3, 1)

(22)

(2, 12)

(14)

(14) (2, 12) (22) (3, 1) (4)
ν

µt

3 2 1 2 1 2 1

2 2 1 1 1 1

1 2 1 1

1 1 1

4 4 4 4

2 2 21 1

2 2

1 1

Figure 10. K(T (SU(4))). The descendants of T (SU(4)) contain the first quiver theory that
is not in the classes Tρ(SU(M)) or T ρ(SU(M)), nor a minimal singularity. Namely the theory

T
(2,12)
(2,12) (SU(4)) with the quiver [2]− (1)− (1)− [1] and the moduli space • −A1 − • −A1 − •.
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(5)

(4, 1)

(3, 2)

(3, 12)

(22, 1)

(2, 13)

(15)

(15) (2, 13) (22, 1) (3, 12) (3, 2) (4, 1) (5)
ν

µt

5 5 5 5 5 5

3 3 3 3 31 1 1 1

1 1 12 2 2 2

1 12 2 2

1 1 1 1

1 1

1 1 1 1

1 2 2 1

2 2 2 1

2 3 2 1

3 3 2 1

4 3 2 1 3 2 1

2 2 1

1 2 1

1 1 1

1 1

3 1

2 1

1 1

1

2 1

1 1

1

1

2 1

Figure 11. K(T (SU(5))). Table for the descendants of T (SU(5)).
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(6)

(5, 1)

(4, 2)

(4, 12)

(32)

(3, 2, 1)

(23)

(3, 13)

(22, 12)

(2, 14)

(16)

(16) (2, 14) (22, 12) (3, 13) (23) (3, 2, 1) (32) (4, 12) (4, 2) (5, 1) (6)
ν

µt

1 1 1 1 1

1 1

1 2 2 2 1

1 1

1

1

1 1

1

2 2 2 2 1

2 1

1 1 1 1

2 1

1

2

1 2 3 2 1

2

1 2 1

2

1

2

1 1 1

2 3 3 2 1

1 1 1

1 2 2 1 1 1 1

1 1 1

1 1

11

1 1

11

2 4 3 2 1

3

1 2 2 1 1

3

1 3 2 1 1 2 1

2 1 1

3

3 3 3 2 1

3 1

2 2 2 1 1 1 12 1 1

3 4 3 2 1

2 2

2 2 1 1 1 12 3 2 1 1 2 12 2 1
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Figure 12. K(T (SU(6))). Table for the descendants of T (SU(6)).
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Figure 13. K(T (SU(7))). Table for the descendants of T (SU(7)).
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4 Circular quivers

Application of Kraft-Procesi transitions in the case of circular quiver gauge theories will

be the subject of the reminder of this work. Circular quivers should be thought of as

linear quivers with an extra U(k0) gauge node which connects to the first and last nodes

of a linear quiver. The field content of circular quiver gauge theories is read in the same

way as for linear quivers. There are now bifundamental hypermultiplets transforming in

under U(k1) × U(k0) and under U(kN−1) × U(k0) and an extra U(k0) vectormultiplet

corresponding to the additional node. The extra node can also be attached to a square

node representing flavour for U(k0).

Circular quivers can once again be realised as the low energy dynamics of a type IIB

superstring embedding. This time the x6 direction is taken to be a circle. The extra node

in the quiver corresponds to the ‘zeroth’ gap which can now have D3 segments which are

finite in the x6 direction. We wish to relate this embedding, via linking numbers, to some

data as we saw in the linear case, however there are some immediately apparent differences

that need to be addressed. The first is that the linking number for the five branes depended

on a notion of ‘left of’ and ‘right of’ in the x6 direction, which breaks down when x6 is

periodic. In order to define linking number a gap between five branes from which we will

count needs to be chosen, this will be the zeroth gap.

Counting from the 0th gap for linking numbers means this gap will always have the

(perhaps joint) minimum number of D3 branes in its stack [20]. Correspondingly, the extra

gauge node will always have (perhaps joint) minimal rank, that is, k0 ≤ ki for i 6= 0. An

equivalent statement to there being L D3 branes in the stack for the 0th gap is that there

are L D3 branes that completely wrap the x6 direction. Starting with a good circular

quiver and uniformly changing the rank of all the gauge nodes results in another good

quiver. Note also that the fully wrapped D3 branes have no effect on the linking number of

the five branes. An arbitrary number of fully wrapped D3 branes can be added to a good

quiver brane configuration and it will never become bad or ugly.

4.1 The full class of good circular quiver gauge theories

The brane configuration for circular quiver gauge theories can be thought of as consisting

of a linear part and a wrapped part. The linear part is defined using the broader class

definition discussed in Chapter 3. The wrapped part is captured by the non-negative

integer L which counts the number of fully wrapped D3 branes.

For linear quivers there were places in the brane configuration where five branes could

exist without entering into the infrared physics. NS5 branes with a linking number of zero

or D5 branes with a linking number of N2 could not effect the quiver. For circular quivers

this is no longer the case. The D3 branes wrapping the entire circle mean there are no

gaps in which five branes can live where they do not effect the infrared physics and hence

quiver. In the linear case the degeneracy led to the canonical identification N1 = N2 = M ,

for circular quivers with L ≥ 1 this is not possible.
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Figure 14. The theory π
(3,23,1)
(4,22,12)(10, 7, 7, 3). The Higgs brane configuration (center) is drawn so

the 1st gap is the one directly clockwise from the horizontal (as drawn) D5 brane. The 0th gap is
therefore the one immediately anticlockwise from the horizontal D5 brane. This is the gap from
which we start counting with regards to linking number. The quiver for the theory can be read from
the Coulomb brane configuration after fully Higgsing the system. This quiver is the N1 = N2 = 7,
L = 3 circular generalisation of the example in Figure 4.

We call the class of circular quiver gauge theories πν
µt(M,N1, N2, L)

1. Once again

when one of the partitions is of the form (1M ) it is dropped from the notation so that

π
(1M )

(1M )
(M,N1, N2, L) = π(M,N1, N2, L). This includes when M = 0. The degeneracy that

was observed in the broader class of linear quivers is broken by the presence of L ≥ 1 fully

wrapped D3 branes. In the Higgs brane configuration, a linking number for an NS5 brane

of 0 or N2 means the brane resides in the 0th gap between the D5 branes (and vice versa for

Coulomb brane configuration and N1), however for L ≥ 1 this still effects the low energy

dynamics. When L = 0 the rank of the extra gauge node, k0, is zero, and circular quivers

degenerate to linear quivers. Figure 15 demonstrates that the same partitions and same L

but different N1 and N2 result in markedly different circular quiver gauge theories, whereas

analogous data for the linear case gave the same theory.

Mirror symmetry can once again be realised as S-duality, exchanging D5 branes and

NS5 branes whilst leaving the D3 branes alone. Recall that, in the linear case, mirror sym-

metry corresponded to a involution on the Hasse diagram or equivalently a transposition

of the partitions such that the mirror of T ν
µt(SU(N)) was T µt

ν (SU(N)). In the circular case

we can again interpret mirror symmetry as a transposition of the partitions, however the

tableaux frame must also be transposed. Transposition on this frame exchanges N1 and

N2. The mirror dual to the theory πν
µt(M,N1, N2, L) is therefore πµt

ν (M,N2, N1, L).

Throughout our discussion we will work with theories where the D3 branes can be

moved between brane configurations using Kraft-Procesi transitions. This is only impossi-

ble when N1 and N2 are both very small. The criterion were first explored in [22] in the case

of moving from the Coulomb to the Higgs branch, although the reverse is analogous. The

1In [20], the class Cν
µt(SU(N), L) is discussed. This class can be found by setting M = N1 = N2 = N in

the class πν
µt(M,N1, N2, L). It is the most direct generalisation of the traditional linear quiver discussion,

but does not include all of the possible good circular quivers.
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Figure 15. An explicit example of the breaking of degeneracy in the class of circular quivers when

L 6= 0. The Higgs brane configuration for π
(3,13)
(22,12)(6, 4, 4, 2) is on the left, π

(3,13)
(22,12)(6, 6, 6, 2) is in the

center and π
(3,13)
(22,12)(6, 4, 8, 2) is on the right. They do not yield the same quiver despite having the

same partition data. N1 and N2 remain important parameters for defining a specific circular quiver
gauge theory.

⊗

⊗

L
1 1

L L

Figure 16. The Higgs brane configuration and quiver for the theories π(1, 2, 2, L) and π(3, 2, 2, L).
These theories are pathological from a Kraft-Procesi perspective because the D3 brane segments
cannot be moved between brane configurations using the identified Kraft-Procesi transitions.

requirement (3.4) in [22] translates to the requirements Ni ≥ 2. When N1 = N2 = 2 there

are two further sets of pathological theories from a Kraft-Procesi point of view, these are

π(1, 2, 2, L) and π(3, 2, 2, L), their Higgs brane configuration and quiver are the same and

given in Figure 16. Since the D3 branes here cannot be Higgsed in the manner necessary

for Kraft-Procesi transitions, they fall outside of this analysis.

4.2 Moduli space dimension

The quaternionic dimension of the moduli space branches is found by counting D3 segments

in the appropriate brane configuration. Since circular theories can be considered as a linear

– 27 –



part and a wrapped part, the dimension of the Higgs and Coulomb branches are given by

dimH(H(π
ν
µt(M,N1, N2, L))) =

Linear Part︷ ︸︸ ︷
1

2

(∑

i

(νti )
2 −

∑

i

(µt
i)
2
)
+

Wrapped Part︷︸︸︷
N2L

dimH(C(π
ν
µt(M,N1, N2, L))) =

1

2

(∑

i

(µi)
2 −

∑

i

(νi)
2
)
+ N1L.

(4.1)

Checking that the dimensions for the Hasse diagrams constructed using Kraft-Procesi tran-

sitions are equal to these expectations is a simple and useful test. A generic path from

the top to the bottom of the Hasse diagram should pass through transverse slices whose

dimensions sum to (4.1).

4.3 Performing transitions

Performing Kraft-Procesi transitions in the brane configuration means identifying brane

subsystems with A or a type transverse slices as moduli space branches and Higgsing them

out of the system. These subsystems are precisely the same subsystems identified in the

linear case. One can also identify the appropriate operation that can be performed in the

field theory. Consider the following example.

Example: N1 = N2 = 3 Consider two models for N1 = N2 = 3, π(0, 3, 3, L)

and π(1, 3, 3, L). Both have the gauge group U(L)1×U(L)2×U(L)3 but the first has three

flavours Q1, Q2, Q3 for U(L)1 and the second has two flavours for U(L)1 and one for U(L)2.

There are three bifundamental fields A12, A23, A31 and their conjugates. For both models,

we first give expectation values to the flavours Q1, Q2. They break U(L)1 to U(L − 1)1,

the fields A12 and the conjugate of A31 lose one row which become fundamental flavours

for U(L)2 and U(L)3
This is an A2 Kraft-Procesi transition for the first model and the result is U(L −

1)1 × U(L)2 × U(L)3 with one fundamental flavour for each gauge group q1, q2, q3. The

second step is a Kraft-Procesi a2 transition. We can choose this to correspond to a nonzero

value of the product q2A23q3 which can be reached when the first components of q2 and

q3, together with the 11 entry of A23 are all nonzero. The gauge group is broken to

U(L−1)1×U(L−1)2×U(L−1)3 Both A12 and A31 lose one row which become fundamentals

for U(L− 1)1. We can continue with a succession of A2 and a2 transitions until the whole

gauge group is broken, as demonstrated in Figure 17.

For the second model the first step is an A1 Kraft-Procesi transition which provides a

U(L−1)1×U(L)2×U(L)3 with two fundamental flavour for U(N2) and one for U(N3). The

second fundamental flavour for U(N2) and the fundamental flavour for U(N3) come from

the lost rows of the bifundamentals A12, A31. All subsequent steps until complete gauge

breaking are A1 Kraft-Procesi transitions and involve giving vevs to flavours charged under

the same gauge group, as demonstrated in Figure 17.
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Figure 17. Quiver demonstrations for the start of the assessment of the Coulomb branch singu-
larities for π(0, 3, 3, L) (top) and π(1, 3, 3, L) (bottom).

4.4 A minimal set of maximal theories

Investigation of the moduli space singularities for any class of theories requires a starting

point from which to perform the Kraft-Procesi transitions. The starting points for tran-

sitions in the linear case were the theories T (SU(N)) whose moduli space branches were

closures of the maximal nilpotent orbits. This choice was obvious since the global struc-

ture of the moduli space branches of the class T ν
µt(SU(N)) was well known to be that of

nilpotent varieties. Analogous global structure is less well understood for circular theories.

A maximal theory can be thought of as one for which there is no larger theory from

which the maximal theory can be recovered using Kraft-Procesi transitions. It is informa-

tive to consider a method by which the set T (SU(N)) can be established to be maximal in

the linear case without appealing to the global structure. At the level of the tableaux, for

a theory to be maximal means that there are no procedures which one could perform on

the dominant partition or reverse procedures on the dominated partition to arrive at the

partitions for the maximal theory. For linear quivers the arbitrary resizing of the frame

becomes essential. The capacity for frame resizing means that the only possible pair of

partitions (µ, ν) fulfilling the criteria is (µ, ν) = ((N), (1N )). This corresponds exactly to

T (SU(N)).

For circular quivers each pair of partitions for a given N1 and N2 give a different theory.

The effects of changing L are considered momentarily. Resizing of the frame is not allowed.

The tableaux procedures so far discussed cannot destroy or create boxes, therefore there
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Figure 18. The Young tableaux for the partitions that correspond to a possible set of maximal
theories. These partitions are the highest and lowest (with respect to the dominance ordering)
partitions of M it is possible to put into an N1 × N2 frame. In exponential notation they are
given by (4.2). These maximal theories don’t account for Kraft-Procesi transitions which remove
D3 branes from the zeroth gap and so the set isn’t minimal.

are N1N2 + 1 seemingly non-equivalent possibilities for the value of M , 0 ≤ M ≤ N1N2.

For every N1, N2 there are N1N2 +1 apparent maximal theories, one for each value of M .

These theories will have µ given by the partition of M with the largest possible parts no

larger than N1 and ν the partition of M with the smallest possible parts but no more than

N2 of them. Theories fulfilling these criteria take the form πλ2
λ1
(M,N1, N2, L) where

λi =
(([M

Ni

]
+ 1

)(M mod Ni)
,
[M
Ni

](Ni−(M mod Ni)))
, (4.2)

where [·] means the integer part, Figure 18. It is easy to confirm that this is a partition

of M . Any circular quiver gauge theory can be found via Kraft-Procesi transitions from a

theory of this form. However this set of maximal theories is not minimal and there is much

scope for reducing the number of theories whose Hasse diagrams need to be found in order

to encompass all circular quiver gauge theories.

Given a partition pair in a frame defining a theory, we get precisely the same quiver

by considering the complement to the tableaux inside the framing box, Figure 19. The

complement is the partition formed by those boxes inside the frame that are not part of

the original partition. In the brane configurations, taking the complement of the partitions

and assigning linking numbers from the left of the zeroth gap is equivalent to assigning the

linking number from the right, or reversing the x6 direction. This is true in circular and

linear quivers. There is an equivalence in the class of circular quiver gauge theories where,

all other things being equal, taking

M → N1N2 −M, µ→ µc, ν → νc, (4.3)
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Figure 19. A demonstration that assigning linking numbers using complementary tableaux results
in the same quiver gauge theory.

gives the same theory. That is

πν
µt(M,N1, N2, L) = πνc

(µc)t(N1N2 −M,N1, N2, L). (4.4)

In the linear case T ν
µt(SU(N)) = T νc

(µc)t(SU(N2 − N)). This arises naturally in the study

of the singularities of nilpotent varieties as the isomorphism Sν ∩ Ōµ
∼= Sνc ∩ Ōµc . The

natural interpretation of this physically observable equivalence in terms of the singularity

theory of the moduli space varieties for the linear case suggests a similar such isomorphism

in the circular case. Applying this equivalence to the initial set of maximal theories reduces

the number of different theories from N1N2 + 1 to [N1N2
2 ] + 1. However this set is still not

minimal.

Due to the periodicity of x6, it is possible for Kraft-Procesi transitions to push five

branes from the 0th gap to the Ni − 1th gap. In the brane picture this is the same as

any other transition, only it involves moving branes ‘round the back’ of the circle. The

interpretation in the tableaux is simple but fiddly and doesn’t provide any further insight

to proceedings.

Kraft-Procesi transitions in the linear case always increase the linking number of one

five brane by one whilst decreasing another by one. The total linking number (and hence

the magnitude of the defining partitions) is unaffected by the transitions. At the level

of the tableaux this is realised by the procedures not creating or destroying blocks and

by procedures always making one row and one column one block shorter whilst making

another row and column one longer. Transitions that move five branes ‘round the back’,

however, change the linking number of one five brane by Ni − 1 (depending on which

branch we perform the transition in) and change the linking number of another five brane
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by 1. This means some transitions change the total linking number, M , by Ni. Theories

with M = M ′ and theories with M = M ′ + sN1 + rN2 (with r and s integers such that

0 ≤M ′ + sN1 + rN2 ≤ N1N2) can be related using Kraft-Procesi transitions.

Incorporating the effects of changing L requires us to change our view of what it means

to be a maximal theory. Any theory of the form πλ2
λ1
(M,N1, N2, L1) can always be found

in the descendants of the theory πλ2
λ1
(M,N1, N2, L2) with L2 > L1. Instead, two circular

quiver gauge theories, πν
µt(M1, N1, N2, L1) and πσ

ρt
(M2, N1, N2, L2) are said to be in the

same family under Kraft-Procesi transitions, if for every L1 there exists a L2 such that

πν
µt(M1, N1, N2, L1) ∈ K(π

σ
ρt(M2, N1, N2, L2)), (4.5)

and vice versa. In essence, two theories are in the same family if we could rearrange the 5

branes using Kraft-Procesi transitions such that the partition data becomes the same.

The theories that belong to the same family will have moduli space varieties which

appear as subvarieties of one another for sufficiently large Li. This is what it is to be

findable via Kraft-Procesi transitions. Theories that are not in the same family have

moduli space varieties that have no such containment relationship, they will therefore form

entirely separate Hasse diagrams. Given N1 and N2, finding the Hasse diagram for a

representative theory from each family for general L will capture the singularity structure

of all theories with those N1 and N2 values.

Recall that every circular quiver theory can be found as a descendant of one of the

N1N2 + 1 ‘maximal’ theories so far considered. Classifying these into families is sufficient

to classify all circular theories. Once classified, picking a representative theory from each

family gives a minimal set of maximal theories.

Proposition Two sets of theories πλ2
λ1
(M,N1, N2, L) and π

λ′

2

λ′

1
(M ′, N1, N2, L

′) are

in the same family iff M ′ −M ≡ 0 mod gcd(N1, N2).

Corollary For a given N1 and N2, there are [gcd(N1,N2)
2 ] + 1 families of circular

quiver gauge theories under Kraft-Procesi transitions. One set of representatives for these

families are the theories π(k,N1, N2, L) for k ∈ {0, . . . , [
gcd(N1,N2)

2 ]}.

Proving the proposition is straight-forward. Kraft-Procesi transitions can only change

M by multiples of N1 or N2, hence if M ′ −M 6≡ 0 mod gcd(N1, N2) we have no method

of moving from a theory with M to one with M ′. If they are in the same family we must

have M ′ −M ≡ 0 mod gcd(N1, N2). The proposition also asserts that if M2 −M1 ≡ 0

mod gcd(N1, N2) then the two sets of naive starters must belong to the same family.

Consider that given sufficient L there is always a sequence of the Kraft-Procesi transitions

in the Higgs brane configuration which can end with a transition that changes total linking

number by exactly N2 or transitions in the Coulomb brane configuration that change

the total by N1. Given a starting point and sufficient L, all values for M of the form

0 ≤M + sN1 + rN2 ≤ N1N2 can be found.

To prove the corollary consider that every theory can be found by performing Kraft-

Procesi transitions on the theories πλ2
λ1
(M,N1, N2, L). For each (N1, N2) there are N1N2+1

such theories corresponding to values for M in the range {0, 1, . . . , N1N2−1, N1N2}. There

are three circumstances under which these theories are in the same family. These can be
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modelled as the equivalence relations on values in this range. Conjugate theories can be

modelled by M ∼ N1N2 − M . Kraft-Procesi transitions that change the total linking

number can be modelled by M ∼ M + N1 and M ∼ M + N2 which combine to give

M ∼ M + gcd(N1, N2). Under these equivalence relations, values in this range form

[gcd(N1,N2)
2 ] + 1 equivalence classes. These classes are those equivalent to values in the

range {0, . . . , [gcd(N1,N2)
2 ]}. Some examples demonstrating this are provided next.

4.4.1 Examples

N1 = N2 = 4 For N1 = N2 = 4, gcd(N1, N2) = 4. There are 3 families with

representatives π(k, 4, 4, L) for k ∈ {0, 1, 2}. To see this explicitly, first consider those

values of M in the same family as 0. All of these theories are labelled on a diagram

whereby all the values of M in the same family have the same symbol. Recalling that

0 ≤M ≤ N1N2,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16M =

⋆ ⋆ ⋆ ⋆ ⋆

are in the same family as zero. Considering the family with representative k = 1,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16M =

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣⋆ ⋆ ⋆ ⋆ ⋆

and finally those values of M corresponding to theories in the same family as k = 2

complete our considerations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16M =

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣⋆ ⋆ ⋆ ⋆ ⋆△ △ △ △

The families of the three representatives cover all the possible theories. Choosing a

theory with M = 5, say, π
(2,13)
(3,2) (5, 4, 4, L1), this theory ought to be findable from the theory

π(1, 4, 4, L2) for some L2 ≥ L1. The Higgs brane configurations are given in Figure 20.

An A2 followed by an A1 transition yields the theory and reveals that we require that

L2 = L1 + 1 at minimum.

N1 = 3 N2 = 5 For N1 = 3 and N2 = 5, gcdN1, N2 = 1 and so all theories

with these values of N1 and N2 appear in the descendants of π(0, 3, 5, L) for sufficient L.

The Higgs brane configurations for finding π
(22,12)
(3,2,1)

(6, 3, 5, L1) by performing Kraft-Procesi

transitions on π(0, 3, 5, L2) are given in Figure 21. The removal of the a4 and a2 from the

bottom of the Higgs branch and the A2 from the top of the Higgs branch reveals that we

require L2 ≥ L1 + 2 .

4.5 Hasse diagrams for family representatives

Calculating the Hasse diagrams for the moduli space branches of a set of family represen-

tatives will encompass the diagrams for all good circular quiver gauge theories. Theories
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Figure 20. The Higgs brane configurations for the explicit demonstration of finding

π
(2,13)
(3,2) (5, 4, 4, L1) ∈ K(π(1, 4, 4, L2)). One has to perform an A2 transition followed by an A1

transition in the Higgs brane configuration. We require L2 ≥ L1 + 1 in order to perform the
appropriate transitions.
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Figure 21. The Higgs and Coulomb brane configurations for the explicit demonstration of finding

π
(22,12)
(3,2,1) (6, 3, 5, L1) ∈ K(π(0, 3, 5, L2)). Starting with a Coulomb branch A4 transition (so a removal

of an a4 singularity from the bottom of the Higgs branch) then a Coulomb branch A2 transition,
followed by an A2 Higgs branch transition. L2 ≥ L1 + 2 is required to perform the transitions.

π(k,N1, N2, L) for k ∈ {0, . . . , [gcd(N1,N2)
2 ]} have a general Higgs brane configuration and

quiver given in Figure 22. The Hasse diagrams will be written for the Coulomb branch, once

again mirror symmetry can be viewed as an involution on the Hasse diagram top-bottom

along with an exchange of An for an. The dimension of the starting theories can be used as

a check for the Hasse diagrams. Any single path from the top to the bottom of the Hasse

diagram should have a dimension given by (4.1). As the starting theories’ partitions are

always in the form ν = (1k), µ = (k), application of (4.1) gives dimH(H) =
1
2(k

2−k)+N2L

and dimH(C) =
1
2(k

2−k)+N1L. Recall also that dimH(Az) = 1 for any z and dimH(az) = z

for any z.
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Figure 22. The general form for the Higgs brane configuration and quiver for our choice of a

minimal set of maximal theories, π(k,N1, N2, L). k takes values in the range {0, ..., [ gcd(N1,N2)
2 ]}.

The system has N1 NS5 branes and N2 D5 branes and hence the quiver has N1 gauge nodes and
the sum of the flavour nodes is N2. The mirror theories can be found by exchanging the labels 1
and 2. In the case that N1 = N2 the theory is self-mirror dual. All good circular quiver theories
can be found by performing Kraft-Procesi transitions on a theory of this form for some L.

4.5.1 The linear case: L = 0

Setting L = 0 gives rise to the linear quiver case. In Figure 22, setting L = 0 leaves only

the linear quiver for T (SU(k)) remaining. The independence of this theory from N1 and

N2 is also evident. The only different maximal theories which arise when L = 0 are those

pertaining to different values of k, as expected.

4.5.2 A single wrapped brane: L = 1

Writing down the Hasse diagram for the Coulomb branch of the L = 1 case requires

assessing all of the different manners by which all the D3 branes may be removed from the

Coulomb brane configuration using Kraft-Procesi transitions. Consider Figure 22 when

L = 1, the D3 branes in the Coulomb brane configuration can be considered as a linear

part and a wrapped part. Initially the linear part takes the form of the theory T (SU(k)).

The Coulomb branch of these theories and their descendants are nilpotent varieties of sln,

which are subvarieties of the closure of the maximal nilpotent orbit. Brane subsystems

with moduli space branches that are maximal nilpotent orbit closures will be referred to

as orbit subsystems and the section of the Hasse diagram corresponding the transitions

performed in these subsystems will be referred to as orbit subdiagrams.

The D3 branes in this system can be removed in many different orders, however there

are two sequences of brane removals that stand out immediately. Removal of the entire Ō(k)

orbit subsystem followed by the wrapped brane, or removal of the entire wrapped brane

followed by the orbit subsystem. The wrapped D3 branes do not contribute to the linking

number of either type of five brane, therefore completely removing an entire wrapped brane
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Figure 23. The Hasse subdiagrams for the removal of one fully wrapped D3 brane either entirely
before (left) or entirely after (right) the removal of the Ō(k) subsystem. On the right, removal of
the orbit subsystem first has resulted in D5 branes being moved in the manner discussed. The two
diagrams are mirror-duals of one another indicating that they exist at opposite ends of the full
Hasse diagram such that they are mapped into one another under mirror symmetry.

using Kraft-Procesi transitions does not move any of the five branes’ positions relative to

one another in the end. Removal of a maximal orbit subsystem moves k−1 D5 branes into

the gap adjacent to their starting gap away from the D3 brane tail, and one D5 brane to

the other end of the subsystem.

There is a third order of removing the D3 branes which will prove useful to consider.

By initially performing an AN2−k−1 transition in the zeroth gap, the single D3 brane in that

gap is removed. This procedure moves one D5 brane into the gaps either side. This results

in there being k+1 D5 branes in the first gap. There is now an Ō(k+1) orbit subsystem in

the brane configuration. After removing this, a final aN1−k−1 transition removes the final

D3 branes. These three orders of D3 brane removal form the backbone of a Hasse diagram

schematic for L = 1 theories.

To begin to construct the Hasse diagram it is useful to consider the subdiagrams for

the different parts of the three removal orderings discussed above. The orbit subdiagrams

are known to be the Hasse diagrams for nilpotent orbit closures. The subdiagrams corre-

sponding to the removal of the wrapped brane either before or after the Ō(k) subsystem are

given in Figure 23. These subdiagrams will exist at the very top and very bottom of the

full Hasse diagram as they correspond to some of the first or last transitions it is possible

to make.

The schematic for the full Hasse diagram for the L = 1 case is given in Figure 24. The

three orbit subdiagrams and the subdiagrams for the removal of the wrapped brane are

all evident. This is not a complete Hasse diagram however, there are many edges which

link between orbit subdiagrams which are yet to be filled in. These edges will be referred

to as traversing structure as they traverse from one orbit subdiagram to another. From

here on the Hasse diagrams that are constructed will be formulated in terms of an orbital

subdiagram skeleton which has been fleshed out with traversing structure.

There are two ‘regions’ of traversing structure in the L = 1 Hasse diagram. The

structure between the higher Ō(k) orbit subdiagram and the Ō(k+1) subdiagram, and the

structure between the Ō(k+1) orbit subdiagram and the lower Ō(k) subdiagram. Three of

the edges in each of these regions have been found already when considering the removal

of the wrapped brane. These two regions of traversing structure go into one another under
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Ō(k+1)∼

Figure 24. The schematic for the general Hasse diagram for π(k,N1, N2, 1). The orbit subdiagrams
are indicated using grey boxes. The subdiagrams corresponding to the removal of the wrapped
brane before or after the orbit subsystems are evident. The edges which connect between orbit
subdiagrams are mostly omitted in this schematic for simplicity (see discussion). The three orderings
in the discussion correspond to moving down the first Ō(k) subdiagram then down to the bottom
(this is removing the orbit subsystem first, then the wrapped brane). Moving across to the top of
the lower Ō(k) subdiagram then down to the bottom (that is removing the wrapped brane first then
the orbit subsystem). Or moving across to the Ō(k+1) subsystem, down, then across to the bottom
(this is performing an initial zeroth gap transition, removing the now larger orbit subsystem, then
removing the final part of the wrapped brane).

mirror symmetry, therefore assessing one of them gives the other with simple adjustment.

Consider the traversing structure between the higher Ō(k) orbit subdiagram and the

Ō(k+1) subdiagram. These edges can be found in general by considering the Coulomb

brane configuration carefully. The upper Ō(k) orbit subdiagram corresponds to removing

the Ō(k) orbit subsystem before removing any of the wrapped brane. However at any point

during the process of removing the orbit subsystem, it is possible to start to remove the

wrapped brane. There are always D5 branes in the zeroth gap2 and the only D3 segment

in the zeroth gap is part of the wrapped brane. Therefore at any point during the removal

of the orbit subdiagram, there is the option to perform the zeroth gap transition and this

option is never part of the orbit subsystem removal. This option forms the upper traversing

2This is a temporary simplifying assumption about the size of N2, what happens when it doesn’t hold
will be dealt with later.
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structure in the Hasse diagram.

The nodes within an Ō(k) orbital subdiagram can be labelled with partitions of k

in the normal way. In order to write down a general form for the edges in the upper

traversing structure it is useful to consider the nodes in the Ō(k) subdiagram to be labelled

as such. The option to perform a zeroth gap transition exists at all times during the Ō(k)

subsystem removal. Therefore every node in the upper Ō(k) subdiagram has a traversing

edge coming from it. This traversing edge corresponds to performing a zeroth gap transition

after having removed some amount of the orbit subsystem. To fully characterise the edge

requires two calculations, one to determine the label which the edge should carry and

another to determine which node in Ō(k+1) the edge should attach to.

Label Consider the traversing edge connecting the node in the upper Ō(k) sub-

diagram labelled with a partition κ of k. The label this edge carries is determined by the

number of D5 branes in the zeroth gap when the transition is performed. The process

of removing the orbit subdiagram moves D5 branes into the zeroth gap. The number of

D5 brane which have been moved into the zeroth gap by removing the orbit subsystem

down to the node κ can be determined by considering the relationship between κ and the

subsystem linking number of the D5 branes. Consider the linking number of five branes

as considered just within the orbit subsystem. D5 branes that have been moved into the

zeroth gap correspond to those with linking number zero. The number of D5 branes in the

ith subsystem gap is given by κti. The number of D5 branes that have been moved into

the zeroth gap by descending to a node κ is therefore κt0 = k− l(κt). Before removing any

of the orbit subsystem there were N2 − k D5 branes in the zeroth gap. The label for the

traversing edge connecting to the Ō(k) node κ is therefore AN2−k−1+k−l(κt) = AN2−l(κt)−1.

Ō(k+1) node Performing this transition will move a D5 brane into gaps either

side of the zeroth gap. The D5 brane moved into the N1−1
th gap will not be involved in the

orbit subsystem3. However the D5 brane moved into the first gap will be involved in the

orbit subsystem. Moving this D5 brane from the zeroth to the first gap increases its orbit

subsystem linking number by one without decreasing the linking number of another D5 in

the orbit subsystem. The magnitude of the total linking number, and hence magnitude

of the partitions labelling orbit subdiagram nodes, has increased by one. This confirms

that the edge traverses to the Ō(k+1) subdiagram. The Ō(k+1) to which it connects can be

determined by considering the change of the partition induced by the moving of the D5

brane. The partition corresponding to the linking number of the D5 branes in the orbit

subsystem has had a zero turn into a one. The edge traversing from a node κ in the Ō(k)

subsystem therefore connects to a node (κt, 1)t in the Ō(k+1) subsystem.

The complete L = 1 Hasse diagram is given by Figure 24 with the addition of the

traversing edges

3This is part of a temporary simplifying assumption about the size of N1, the breaking of which will be
discussed later.
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AN2
−l(

κ
t )−1 κ

(κt, 1)t

from every node in the top Ō(k) subdiagram to the appropriate nodes in Ō(k+1), and adding

the appropriate mirror dual edges from every node in the lower Ō(k) up to the appropriate

nodes in Ō(k+1);

aN1
−l(

κ
′ )−1

κ′

(κ′, 1).

These edges could also have been derived from brane configuration considerations.

Dimensional Check To perform a dimensional check on the construction, choose

a general route R from the top to the bottom of the Hasse diagram. Such a route can be

found by starting at the top, descending to a node of the upper Ō(k) subdiagram labelled

with a partition κ, traversing into the Ō(k+1) subdiagram, descending further to the node

labelled (κ′, 1), traversing again to the lower Ō(k) at the node κ′, and from there to the

bottom. The dimension of this general route is given by

dimH(R) = dimH(Ō(k) ∩ Sκ) + dimH(AN2−l(κt
i)−1) + dimH(Ō(κt,1)t ∩ S(κ′,1))

+ dimH(aN1−l(κ′)−1) + dimH(Ō(κ′))

=
1

2

(∑

i

(κti)
2 − k + 2 +

∑

j

((κ′, 1)tj)
2 −

∑

j

((κt, 1)j)
2

+ 2N1 − 2l(κ′)− 2 + k2 −
∑

i

(κ′ti)
2
)
.

(4.6)

Note that
∑

j((κ
t, 1)j)

2 =
∑

i(κ
t
i)
2+1 and

∑
j((κ

′, 1)tj)
2 = 1+2l(κ′)+

∑
i(κ

′t
i)
2. The second

equality takes a little work, to see it consider the following, writing κ′ = (kpk , . . . , 1p1) means

←−−→
(κ′, 1)t =

(( k∑

m=k

pm

)
,
( k∑

m=k−1

pm

)
, . . . ,

( k∑

m=2

pm

)
,
( k∑

m=1

pm

)
+ 1

)
, (4.7)

and so,

∑

j

((κ′, 1)tj)
2 =

(( k∑

m=1

pm

)
+ 1

)2
+

k∑

q=2

( k∑

m=q

pm

)2

= 1 + 2

k∑

m=1

pm +

k∑

q=1

( k∑

m=q

pm

)2

= 1 + 2l(κ′) +
∑

i

(κ′ti)
2.

(4.8)
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Figure 25. Coulomb (left) and Higgs (right) branch Hasse diagrams for π(0, N1, N2, 1).

Applying these simplifications to (4.6) gives

dimH(R) =
1

2
(k2 − k) +N1. (4.9)

This is exactly the result expected both from previous dimensional discussion and from a

simple counting of the D3 branes in the Coulomb brane configuration.

4.5.3 L = 1 examples

k = 0 The moduli space branches for these quivers have been calculated before, [23],

and found to be MH = AN1−1 × aN2−1 and hence MC = AN2−1 × aN1−1 as reiterated

in [19]. This can easily be reproduced using Kraft-Procesi transitions directly or from

the general construction above. Reading from the general construction, the three orbit

subdiagrams all consist of a single node. The upper and lower Ō(k) subdiagram nodes

both carry the partition (0) and the center Ō(k+1) subdiagram the partition (1). Note that

l((0)) = 0. The traversing structure is then easily filled in. The result is given in Figure

25.

k = 1,2,3,4 The results for small values of k when L = 1 are given in Figure 26.

4.5.4 The schematic for L = 2 and orbit lattices

The schematic for L = 2 can be constructed using similar considerations to the L = 1

case. A skeleton can be found by considering some simple orderings of D3 removal, then

traversing structure can be added to account for more complicated orderings.

Two simplest orders for D3 brane removal are analogous to the simplest cases in L = 1.

Remove the entire orbit subsystem first, then both wrapped branes, or vice versa. The

subdiagram for removal of two wrapped branes in much more complicated than removal

of one brane. One method of removing two wrapped branes is to remove one at a time, so

the subdiagram for two wrapped branes should contain a subdiagram which looks like two

of the single-brane removal subdiagrams strung end to end. However any sequence which

begins removing the second wrapped brane before the first has been fully removed will give

extra structure not seen in L = 1 case. Furthermore there is the option to remove one

wrapped brane, the orbit subsystem, then the other wrapped brane. The Hasse diagram

for L = 2 therefore ought to contain two copies of the L = 1 Hasse diagram with the lower

Ō(k) subdiagram of one being the upper Ō(k) subdiagram of the next.

In the L = 1 case, performing the transition in the zeroth gap moved a D5 brane into

the first gap. This resulted in the Ō(k) subsystem being promoted to a Ō(k+1) subsystem.
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Figure 26. Coulomb branch Hasse diagrams for π(k,N1, N2, 1) for k ∈ {1, 2, 3, 4}.

In the L = 2 case a second zeroth gap transition can be performed. This will promote the

Ō(k+1) subsystem to a Ō(k+2) subsystem. However this second zeroth gap transition also

moves a second D5 brane into the N1 − 1th gap. This means that an A1 Kraft-Procesi

transition is now possible in this gap. This transition is free to be performed at any

point during the removal of the Ō(k+2) subsystem. Therefore the L = 2 Hasse diagram

should contain a structure that looks like a slanted ladder, where two copies of the Ō(k+2)

subdiagram are present and every node in one is connected via an A1 transition to the

– 41 –



N2 − k
k

N1

2
2

k + 1
k

2 3

C ∼

Ak−1

Ak−3

A1

AN2−k−1

AN2
−
k−

3

AN2
−
k−

2

AN2
−
k−

1

AN2
−
k−

1

Ak

Ak−2

A1

AN2
−
k

AN2
−
k+

1

AN2
−
k+

1

aN1
−
3

aN
1
−
2

A1

A1

A1

A1

Ak+1

Ak−
1

A1

Ak−1

Ak−3

Ak+1

Ak−
1

A1

aN
1
−
3

aN1
−4

AN2
−
k−

1

AN2
−
k

AN2
−
k+

1

Ak

Ak−2

aN1
−2

aN1
−3Ak−1

ak−1

ak−3

A1

aN1−k−1

aN1
−
k−

3

aN1
−
k−

2

aN1
−
k−

1

aN1
−
k−

1

ak

ak−2

A1

aN1
−
k

aN1
−
k+

1

aN1
−
k+

1

AN2
−
3

AN2
−
2

A1

A1

A1

A1

ak+1

ak−
1

A1

ak−1

ak−3

ak+1

ak−
1

A1

AN
2
−
3

AN2
−4

aN1
−
k−

1
aN1

−
k

aN1
−
k+

1

ak

ak−2

AN2
−2

AN2
−3 ak−1

Ō
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Ō
(k
+
2
)

Ō
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Figure 27. Schematic Hasse diagram for L = 2. Once again the orbit skeleton has been indicated
and the majority of the traversing edges omitted for brevity. Note that orbit subdiagrams branch
at the third node from the top and the bottom but only one of these branches (labelled A1) has
been indicated here. This schematic works under the assumption that Ni > k + 3 such that all of
the edge’s labels are well defined. What happens when this is not the case is discussed later.

equivalent node in the other.

Putting all of these considerations together, the schematic for the L = 2 case is given

in Figure 27.

The traversing structure between Ō(k) and Ō(k+1) subdiagrams follows exactly from

the L = 1 case. The traversing structure between the Ō(k+1) and Ō(k+2) subdiagrams is

complicated by the presence of two copies of the Ō(k+2) subdiagram.

The two copies of the Ō(k+2) subdiagram arose because performing two zeroth gap

Kraft-Procesi transitions moved D5 branes into the adjacent gaps. This not only promoted

the orbit subdiagram to Ō(k+2), but also moved two D5 branes into theN1−1th gap, causing
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the ladder-like structure. This structure will be called a lattice of orbit subdiagrams. A

lattice denoted (Ō(p); Ō(q)) for p ≥ q will consist of |P(p)| copies of Ō(q) and |P(q)| copies of

Ō(p) arranged such that every node of an Ō(p) subdiagram labelled with the same partition

of p is also in the same Ō(q) subdiagram, and vice versa, in the obvious manner. In this

case the two copies of Ō(k+2) are part of a (Ō(k+2); Ō(2)) lattice. Also, each copy of Ō(k+1)

(resp. Ō(k)) can be considered to be part of the lattices (Ō(k+1); Ō(1)) (resp. (Ō(k); Ō(0))).

In these cases the lattices have degenerated into single orbit subdiagrams because Ō(1)

(resp. Ō(0)) both consist of only one node, that is |P(1)| = 1 = |P(0)|.

These lattices arise as the Hasse subdiagrams associated to two disjoint orbit subsys-

tems in the brane configuration. Kraft-Procesi transitions may be performed in one orbit

subsystem or the other in any order, hence the lattice. Both of the orbit subsystems in

the brane configuration are adjacent to the zeroth gap, with tails which point away from

the zeroth gap and so in opposite directions around the circle. It is assumed during this

discussion that N1 and N2 are sufficiently large that these two orbit subsystems remain

disjoint in both brane configurations. The consequences of this not being the case are

discussed later.

The traversing edges now need to be considered to be between lattice subdiagrams

rather than orbit subdiagrams. The generalisation is exactly analogous to the set-up in

the L = 1 case only there are now two orbit subsystems to contend with. We forgo this

generalisation until the case of general L.

4.5.5 Arbitrary L and higher-level Hasse diagrams

The case of general L may be treated in the same manner as for specific low values

of L. Consider the brane configuration for π(k,N1, N2, L) given in Figure 22. Because

π(k,N1, N2, L) is self mirror dual up to exchange of N1 and N2, replacing the D5 branes

with NS5 branes and vice versa, and swapping N1 and N2 in the Higgs brane configuration

in Figure 22 gives the Coulomb brane configuration for the theory.

Consider performing initial Kraft-Procesi transitions in the zeroth gap. The edges

representing these transitions are the highest traversing edges in the Hasse diagram. By

definition there are exactly L D3 branes in the zeroth gap. Assuming for now that N2 is

sufficiently large, this sequence of transitions forms a line of L nodes at the top of the Hasse

diagram. The edges between these nodes are labelled AN2−k−1, AN2−k−3, AN2−k−5, . . . ,

AN2−k−2L−1. Consider a node in this line corresponding to having performed k′ transitions

in the zeroth gap. At this point, the transitions have moved k′ D5 branes into both of the

adjacent gaps. This has promoted the orbit subsystem from Ō(k) to Ō(k+k′), and created

a Ō(k′) subsystem. Assuming for now that N1 is sufficiently large, these subsystems are

disjoint and the Hasse subdiagram for these two subsystems is the lattice (Ō(k+k′); Ō(k′)).

Performing one more zeroth gap transition would push one more D5 brane into each adja-

cent gap. The lattice subdiagram would then be (Ō(k+k′+1); Ō(k′+1)). This is demonstrated

in Figure 28.

For arbitrary L, part of the Hasse diagram will consist of this sequence of lattices of

increasing size. The traversing structure between lattices therefore needs to be investigated.
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Ō(k+k′)

Ō(k+k′)

Ō(k′)

Ō(k′)

Ō(k′)

(Ō(k+k′); Ō(k′))

(Ō(k+k′+1); Ō(k′+1))

. .
.

. .
.

. .
.

...

...

...

...
Ō(k+k′+1)

Ō(k+k′+1)

Ō(k+k′+1)

Ō(k+k′+1)

Ō(k′+1)

Ō(k′+1)

Ō(k′+1)

AN2−k−2k
′−1

Figure 28. k′ initial zeroth gap Kraft-Procesi transitions moves to a node from which descends
a (Ō(k+k′); Ō(k′)) lattice. Performing one more transition in the zeroth gap moves to a node from
which descends a (Ō(k+k′+1); Ō(k′+1)) lattice. Every node in the (Ō(k+k′); Ō(k′)) lattice has a
traversing edge which attaches to an appropriate node in the (Ō(k+k′+1); Ō(k′+1)) lattice depending
on the partition data related to the Ō(k+k′) and Ō(k′) orbits. These edges have been omitted for
clarity here.

Doing so is similar to the L = 1 case, only there are now two orbit subsystems with which

to contend.

In the same way that nodes in an orbit subdiagram were labelled with a partition κ

in the L = 1 case, nodes in a lattice may be labelled with a pair of partitions, (κ;ρ) ∈

(Ō(k+k′); Ō(k′)) one for each of the orbit diagrams which make up the lattice.

After k′ zeroth gap transitions there is always the option to start removing from the

orbit subsystems. This corresponds to moving from the line of traversing structure, dis-

cussed above, to moving down a lattice. At any point during the lattice removal there is

the option to continue performing transitions in the zeroth gap. Deciding to go back to

the zeroth gap is what it is to have the traversing structure between the lattices. Since

the option to perform the zeroth gap transition exists at any point during the lattice re-

moval, every node in the higher lattice will have a traversing edge coming from it. Consider

performing k′ initial zeroth gap transitions, followed by removal from the (Ō(k+k′); Ō(k′))

lattice down to a node labelled by the pair (κ;ρ). The traversing edge from this node to the

(Ō(k+k′+1); Ō(k′+1)) lattice will be labelled with Ax−1 where x is given by the number of D5
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branes in the zeroth gap at that point. Since the removal of part of the orbit subsystems

shifts D5 branes back into the zeroth gap, this will be

x =

Initial D5s︷ ︸︸ ︷
N2 − k −

First Removals︷︸︸︷
2k′ +

From Ō(k+k′)︷ ︸︸ ︷
(k + k′ − l(κt))+

From Ō(k′)︷ ︸︸ ︷
(k′ − l(ρt))

= N2 − l(κt)− l(ρt).

(4.10)

The considerations are precisely the same as those in the label paragraph of the L = 1

section, only this time two orbits have to be considered.

A transition in the zeroth gap will move one D5 brane into each of the orbit subsys-

tems. This again entails appending a one to both of the transpose partitions. The total

traversing structure between the (Ō(k+k′); Ō(k′)) grid and the (Ō(k+k′+1); Ō(k′+1)) grid can

be summarised in the edge diagram:

AN2−l
(κ

t )−l(
ρ
t )−1

(κ;ρ).

((κt, 1)t; (ρt, 1)t)

Along with these edges, there are their mirror counterparts which descend from a

(Ō(k+k′+1); Ō(k′+1)) lattice to a (Ō(k+k′); Ō(k′)) lattice. These can be summarised in the

edge diagram:

aN2−l
(κ

′ )−l(
ρ
′ )−1

((κ′, 1); (ρ′, 1)).

(κ′;ρ′)

Example: L = 2 In the L = 2 case, the traversing edges from the (Ō(k+1); Ō(1))

lattice to the (Ō(k+2); Ō(2)) lattice can now be established. Here k′ = 1 and for the

Ō(1) orbit, ρ = (1), because the Hasse diagram for the partitions of one contains one

node. Therefore l(ρt) = 1 for all cases. The transition from the κ = (k + 1) node has

l(κt) = l((1k+1)) = k + 1 and so should be labelled with AN2−1−(k+1)−1 = AN2−k−3. This

is exactly as was found. The node it attaches to is ((κt, 1)t; (ρt, 1)t) = ((1k+1, 1)t; (1, 1)t) =

((k + 2); (2)) which is also as expected from previous calculations.

When L becomes large, the explicit Hasse diagrams rapidly become cumbersome. How-

ever the essential features may be represented in a higher-Level Hasse diagram. In a higher

level Hasse diagram, each node represents an entire lattice and each edge represents the

whole traversing structure between lattices. Whilst not every node in the higher lattice

strictly dominates every node in the lower lattice, no node in the lower lattice dominates

any node in the higher lattice. To distinguish them from explicit Hasse diagrams, the nodes

in a higher level Hasse diagram will be stars. A node representing the lattice (Ō(k+p); Ō(p))
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will be labelled with the integer p. So for example the Ō(k) = (Ō(k); Ō(0)) lattice will be

represented by a star node with the label 0. In each instance a value of k has to be specified

for the entire diagram. Applying the above considerations in the L = 0, 1 and 2 cases yields

the following:

Example: L = 1 When L = 1 the Hasse diagram, Figure 24, consists of an

(Ō(k+0); Ō(0)) lattice which traverses down to an (Ō(k+1); Ō(1)) lattice and from there to

another (Ō(k+0); Ō(0)) lattice. The higher level Hasse diagram is therefore:

⋆

⋆

⋆0

1

0

(Ō(k); Ō(0))

(Ō(k+1); Ō(1))

(Ō(k); Ō(0))
′

AN2−l(κ0)−l(ρ0)−1

aN1−l(κ′

0)−l(ρ′

0)−1

⋆

⋆

⋆0

1

0

The notation can be condensed considerably to just the integers labelling the nodes.

This is because, once k is specified, all the other information can be extracted from this

label.

The traversing edges from (Ō(k+p); Ō(p)) will always traverse to either (Ō(k+p+1); Ō(p+1))

or (Ō(k+p−1); Ō(p−1)). Therefore every edge in a higher level Hasse diagram may be written

as

⋆

⋆p

p ± 1

For a given k, all of the details of the structure in the explicit Hasse diagram to which these

nodes and edges correspond may be extracted. Taking the + corresponds a (Ō(k+p); Ō(p))

lattice traversing down to a (Ō(k+p+1); Ō(p+1)) lattice. Traversing edges are labelled

AN2−l(κt
p
)−l(ρt

p
)−1. For −, this corresponds to a (Ō(k+p); Ō(p)) lattice traversing down to a

(Ō(k+p−1); Ō(p−1)) lattice, the edge is labelled by aN1−l(κp−1)−l(ρ
p−1)−1. The partitions in

the indices of the edge labels have subscripts indicating which lattice the partitions belong

to.

Example: L = 0 When L = 0 the Hasse diagram is just the orbit diagram for

Ō(k) = (Ō(k+0); Ō(0)). There is no traversing structure. Once k is specified, the higher

level Hasse diagram is therefore a single star labelled with a 0.

⋆0

Example: L = 2 The higher level Hasse diagram for L = 2 is:

⋆

⋆

⋆

⋆

⋆

⋆0

0

0

1

1

2
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Given k, and once the notation is unpackaged, this diagram contains all of the same infor-

mation as Figure 27.

Consider once more the L = 2 case. What does it mean, in the brane configuration,

to choose different routes through the higher level Hasse diagram? The answer concerns

the order and grouping of the removal of fully wrapped D3 branes. In the L = 2 case

there are two possible routes from the top to the bottom of the higher level Hasse diagram,

either 0 → 1 → 0 → 1 → 0 or 0 → 1 → 2 → 1 → 0. Similarly, when L = 2 there

are two manners in which the 2 wrapped branes may be removed. They may be removed

one at a time, where the second wrapped brane only starts being removed once the first

wrapped brane has been fully removed. Or they may be removed concurrently where the

second wrapped brane starts being removed before the first wrapped brane has been fully

removed. The structure associated to removal of the orbit subdiagrams is contained in the

nodes and may be ignored in the following. Consider that one method to reach the 2 node

is to perform two Kraft-Procesi transitions in the zeroth gap immediately. This means we

arrive at the top of the (Ō(k+2); Ō(2)) lattice in the explicit Hasse diagram and at the 2 node

in the higher-level Hasse diagram. After these transitions there are no more D3 branes in

the zeroth gap, the wrapped branes are being removed concurrently. The structure of the

higher level Hasse diagram captures the manner in which the wrapped branes are removed.

Note however that Kraft-Procesi transitions only remove one D3 brane from a gap at a

time. Hence even when two wrapped branes are removed concurrently, one always starts

and finishes being removed before the other. Therefore the first edge and the final edge of

both routes coincide.

To write down the higher level Hasse diagram for π(k,N1, N2, L), it is sufficient to

consider those different manners in which L wrapped branes may be removed that are in

correspondence with the unordered partitions of L. For example, 4 wrapped branes may be

removed as: 4 concurrently, 3 concurrently then 1, 1 then 3 concurrently, two concurrent

pairs, 1 then 1 then 2, 1 then 2 then 1, 2 then 1 then 1 or one at a time. All of these

options constitute a different route through the higher level Hasse diagram. These routes

may be written

0→ 1→ 2→ 3→ 4→ 3→ 2→ 1→ 0

0→ 1→ 2→ 3→ 2→ 1→ 0→ 1→ 0

0→ 1→ 0→ 1→ 2→ 3→ 2→ 1→ 0

0→ 1→ 2→ 1→ 0→ 1→ 2→ 1→ 0

0→ 1→ 2→ 1→ 0→ 1→ 0→ 1→ 0

0→ 1→ 0→ 1→ 2→ 1→ 0→ 1→ 0

0→ 1→ 0→ 1→ 0→ 1→ 2→ 1→ 0

0→ 1→ 0→ 1→ 0→ 1→ 0→ 1→ 0

Consider two routes, if the ith and i + 1th number in the routes are the same, then the

arrow between the numbers in both routes corresponds to the same edge in the higher level

Hasse diagram. Using these considerations for arbitrary L, the higher level Hasse diagram
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⋆
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0

0

0
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1

1

1

1

1

1

2

2

2

2

3

3

3

3

4

4

5

5

L

L − 1

L − 1

L − 2...

. . .

. .
.

L

L
L

L

L
L

k
N1 − k

N2 − k
k

L+ k − 1

L+ k − 2

L+ k − 3

L+ 2
L+ 1

C =

Figure 29. The general structure of the higher-level Hasse diagram for π(k,N1, N2, L) with
compact labelling (see discussion). Given a value for k, a node labelled p represents an entire
(Ō(k+p); Ō(p)) lattice. Each edge corresponds to an entire traversing structure between the lattices
as defined in the discussion. Each route through this higher level digram represents an manner in
which fully wrapped branes can be removed.

for π(k,N1, N2, L) is given in Figure 29.

Each route through Figure 29 is a different manner in which the fully wrapped D3

branes may be removed. Some of these manners correspond to the unordered partitions

of L. For example moving from top to bottom only using the nodes labelled with 0 and

1 corresponds to removing each wrapped brane one at a time. Some of the manners do

not correspond to an unordered partition of L. For example, moving down to the first

node labelled 2, then to the second node labelled 1, then to the second 2, then down to

the bottom following the zeroes and ones corresponds to the following removal sequence:
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beginning to remove a second wrapped brane before finishing the first, then beginning to

remove a third wrapped brane before finishing the second but after finishing the first, then

only beginning removing a fourth wrapped brane having fully removed the first three, and

finally removing the remaining branes one at a time. In this sense, the label of the node

in a route at any given point is the number of fully wrapped D3 branes in the process of

being removed at that point in the route.

Dimensional Check In order to perform a dimensional check on this construc-

tion, a general route R through Figure 29 must be defined. Such a route must pass

through 2L + 1 star nodes and may be defined by a sequence Ri, i = 1, . . . , 2L + 1 with

the requirements that Ri ≥ 0, R1 = 0 = R2L+1 and Ri+1 = Ri ± 1, then

R = R1 → R2 → R3 → · · · → R2L−1 → R2L → R2L+1. (4.11)

dimH(R) will have contributions from edges and nodes,

dimH(R) = dime
H(R) + dim⋆

H
(R). (4.12)

The route must travel through exactly L edges that represent traversing structure carrying

A-type labels and L edges corresponding to traversing structure carrying a-type labels.

Each node represents a lattice in the explicit Hasse diagram. The route will meet exactly

2L + 1 nodes in the higher level Hasse diagram. In each case the route will join the ith

lattice at a node (κi;ρi) and leave it again from a node (σi;γi). The two contributions to

the total dimension of the route can be written

dime
H(R) =

∑

{i|Ri−Ri+1=−1}
1 +

∑

{i|Ri−Ri+1=1}
N1 − l(κi+1)− l(ρi+1)− 1

= N1L−
1

2

2L∑

i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1)),

(4.13)

and

dim⋆

H
(R) =

2L+1∑

i=1

dimH(Ōκi
∩ Sσi

) + dimH(Ōρi
∩ Sγi

)

=
1

2

2L+1∑

i=1

[ l(σt
i)∑

j=1

(σt
i)
2
j −

l(κt
i)∑

j=1

(κt
i)
2
j +

l(γt
i)∑

j=1

(γt
i)
2
j −

l(ρt
i)∑

j=1

(ρt
i)
2
j

]

=
1

2
(k2 − k) +

1

2

2L∑

i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1)),

(4.14)

which means

dimH(R) =
1

2
(k2 − k) +N1L, (4.15)

as expected. Details of these calculations are provided in Appendix A. In essence all

contributions cancel in the same style as (4.6) - (4.9). The only contributions that don’t
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are from the requirement that R starts at the partition ((k); (0)) in the first lattice, ends at

the partition ((1k); (0)) in the final lattice, and passes through precisely L a-type traversing

edges.

4.6 Hasse diagram modifications when Ni ≤ k + 2L− 1

So far, simplifying assumptions about the size of N1 and N2 have been made. In the

Coulomb brane configuration these were: N1 was always large enough that the two orbit

subsystems Ō(k+L) and Ō(L) remained disjoint and N2 was always large enough that per-

forming L initial zeroth gap Kraft-Procesi transitions was possible without having to move

D5 branes back into the zeroth gap by starting to remove the orbit subsystems.

However these two assumptions do not hold in all cases, especially as L becomes large.

The failure of these assumptions to hold is reflected in the explicit Hasse diagrams. When

these assumptions break, the indices carried by the labels for some edges become zero

or negative. The transverse slice which the edge represents is therefore not defined. In

the brane configuration this corresponds to the Kraft-Procesi transition to which the edge

corresponds no longer being possible. The precise values of N1 and N2 at which this

starts to become an issue can be ascertained from considering either brane configuration

constraints or Hasse diagram constraints.

In the Hasse diagram, only traversing edges carry dependence on Ni or L. Consider

the top most traversing edges of A-type. The topmost traversing edge between the k′th and

k′+1th lattices carries the label AN2−k−2k′−1. k
′ can take a maximum value of L−1. The A-

type traversing edge with the smallest index in the whole Hasse diagram is therefore the top

most traversing edge between the upper (Ō(k+L−1); Ō(L−1)) lattice and the (Ō(k+L); Ō(L))

lattice. The edge carries the label AN2−k−2L+1. If this edge is to remain well defined then

N2 > k+2L−1. Seeing as L can become arbitrarily large for any value of N2, increasing L

will always violate this requirement eventually. Consider the interpretation of this bound

in the brane configuration. The top most traversing edges between each lattice correspond

to performing zeroth gap Kraft-Procesi transitions without performing any orbit subsystem

transitions. Each time a zeroth gap transition is performed it moves two D5 branes out of

the zeroth gap. There are L D3 branes in the zeroth gap. To successfully perform the Lth

transition, there needs to be at least 2L D5 branes in the zeroth gap initially. There are

N2 − k D5 branes in the zeroth gap initially. Therefore N2 − k ≥ 2L and so once again

N2 > k + 2L − 1. The constraints on N1 are exactly analogous when performed in the

Higgs brane configuration since π(k,N1, N2, L) is mirror dual to π(k,N2, N1, L). Therefore

N1 > k + 2L − 1 is necessary for the edges to remain well defined. The edges that carry

the smallest indices with N1 dependence are in the position mirror to the top most edges

considered when discussing N2.

When Ni ≤ k + 2L − 1 the explicit Hasse diagram for π(k,N1, N2, L), which can

be unpacked from Figure 29, needs to be modified. These modifications involve either

removing the structure where edges become badly defined or replacing it in a systematic

way. The effects of N1 and N2 being too small are mapped into one another by mirror

symmetry. Assessing the effects of one of them being too small therefore fully uncovers
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the effect of the other being too small. Here the effects of N2 being too small are assessed

using the Coulomb brane configuration.

4.6.1 One bad edge: Ni = k + 2L− 1

When N2 = k + 2L − 1 (and N1 > k + 2L − 1) the only edge in the Hasse diagram

which is undefined is the topmost traversing edge between the upper (Ō(k+L−1); Ō(L−1))

lattice and the (Ō(k+L); Ō(L)) lattice. In the general Hasse diagram prescription from

Figure 29, this edge is now labelled with “A0” which isn’t a defined transverse slice. In the

brane configuration this edge corresponds to an Lth consecutive initial A-type Kraft-Procesi

transition in the zeroth gap. When N2 = k+2L− 1, the L− 1th transition leaves only one

D5 brane left in the zeroth gap and a further transition cannot be performed. Instead the

only options available are to perform the first transition in one of the orbit subsystems.

This will move one D5 brane back into the zeroth gap and allow the A1 transition which

traverses from the two second-highest nodes in the (Ō(k+L−1); Ō(L−1)) lattice. The Hasse

diagram modification in this case is removing the offending edge, the topmost node in the

(Ō(k+L); Ō(L)) lattice, and both the lattice edges which descend from this node, Figure 30.

However in the specific case of N2 = k + 3 (so L = 2) this changes again. This case is

shown in Figure 31. Removal of the offending structure leaves a node in the (Ō(k+2); Ō(k))

lattice without any edge which descends into it. However in assessing the brane configura-

tion it is apparent that the first A2 transition moves one D5 brane into the N1 − 1th gap,

leaves one in the zeroth gap and moves one into the first gap. The second D3 brane in the

zeroth gap can therefore be removed either by performing the first orbit transition, then

an A1, or by performing an a2 transition in the N1 − 1th and zeroth gaps.

4.6.2 A modification prescription

The prescription for modifying the Hasse diagram when N2 becomes too small comes in

two parts. It can be derived from considering what happens in the brane configuration

and which Kraft-Procesi transitions are allowed under the different circumstances. The

prescription is as follows:

(1) Having constructed the general Hasse diagram for the appropriate values of

k, N1, N2 and L, identify all of the edges which carry undefined labels. Remove these

edges, the nodes to which they traversed, the edges which descend from those nodes and

any nodes which are left without edges whatsoever as a result.

(2) For every floating node that remains, that is one which no longer has any

edge descending into it, identify the shortest route in the original general prescription from

this node to a node in the lattice above it. Add an ay edge between these two nodes where

y is the sum of the dimensions of the edges in the original general Hasse diagram which

this edge replaces.

The modifications necessary when N1 is too small can be found by performing the

same prescription under mirror symmetry.

Example: π(0, N1, 3, 2) The case of π(0, N1, 3, 2) is given in Figure 32. Here

the removal of the offending structure leaves two nodes without edges descending into them.

Two a2 edges are therefore added following the prescription. The right-hand Hasse diagram
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((k + L − 1, 1); (L − 1, 1))

((k + L); (L − 1, 1))

((k + L); (L))

((k + L − 1, 1); (L))

(Ō(k+L); Ō(L))

(Ō(k+L−1); Ō(L−1))

((k + L − 1); (L − 1))

((k + L − 2, 1); (L − 1))

((k + L − 2, 1); (L − 2, 1))

((k + L − 1); (L − 2, 1))

AN2
−k−2L+1 =

“A0”

A1

A1

A2

((k + L − 1, 1); (L − 1, 1))

((k + L); (L − 1, 1))

((k + L − 1, 1); (L))

(Ō(k+L); Ō(L))
∗

(Ō(k+L−1); Ō(L−1))

((k + L − 1); (L − 1))

((k + L − 2, 1); (L − 1))

((k + L − 2, 1); (L − 2, 1))

((k + L − 1); (L − 2, 1))A1

A1

A2

Figure 30. When N2 = k + 2L − 1, the topmost traversing edge between the upper
(Ō(k+L−1); Ō(L−1)) lattice and the (Ō(k+L); Ō(L)) lattice carries an undefined label. In the brane
configuration, the Kraft-Procesi transition to which this edge corresponds is no longer possible. The
result is that the edge is deleted. The ((k + L); (L)) node is therefore also deleted, as the brane
configuration to which this node corresponds is no longer possible. Finally the two edges which
descend from this node are also deleted. (Ō(k+L); Ō(L))

∗ is used to indicate the lattice after the
modifying.

of Figure 32 can be confirmed to be correct for C(π(0, N1, 3, 2)) by explicit calculation using

Kraft-Procesi transitions.

This completes the construction for any π(k,N1, N2, L) theory. Since

πν
µt(M,N1, N2, L

′) ∈ K(π(k,N1, N2, L))

for sufficient L given L′, this construction encompasses the Hasse diagram for any good

circular quiver gauge theory.

– 52 –



Ak+1

Ak+1

A1

A1

Ak

Ak−1

“A
0
”

A1

A2

A3

(Ō(k+2); Ō(2))

(Ō(k+1); Ō(1))

(Ō(k); Ō(0))

Ak+1
A1

Ak

Ak−1

a2

A1

A2

A3

(Ō(k+2); Ō(2))

(Ō(k+1); Ō(1))

(Ō(k); Ō(0))

Figure 31. For the theory π(k,N1, k + 3, 2), removing the offending structure leaves the node
((k + 2); (12)) without an edge descending into it. An edge of appropriate dimension is therefore
added, in this case a2. In the general prescription, whenever a node is left ’floating’ like this, extra
structure must be added to the Hasse diagram (see discussion).

aN1−1

aN1−3

A1

A1

“A0”

A2

A1

A1

A2

aN1−1

aN1−1

aN1−3

A1

A2

a2

A1

a2

A2

aN1−1

Figure 32. An example of applying the modifying procedure to a general Hasse diagram for the
theory π(0, N1, 3, 2). On the left, the general Hasse diagram has an edge with a undefined label
“A0”. Removing this edge, the node into which it descends and the edges descending from this node
leaves two nodes floating. These are the ((2); (12)) and the ((12); (2)) nodes. Edges of dimension
two therefore need to be added to the Hasse diagram.
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...
n

Figure 33. The affine Dynkin diagrams for Ãn, for n ≥ 2 (left) and n = 1 (right) which share
topology with the circular quivers discussed in this work, and the pathological quivers mentioned
in Figure 16, respectively.

5 Conclusions and future work

The singularity structure of the moduli space of vacua for good unitary circular quiver

gauge theories has been investigated. The central tools deployed were a realisation of

the theories in question as the low energy dynamics of type IIB superstring embeddings

and the recently developed Kraft-Procesi transition. The general structure has been fully

characterized up to the well known structure of nilpotent orbit closures in sln.

Circular quiver gauge theories were realised as a generalisation of the linear quiver

gauge theories considered in [2]. Viewed like this, linear theories are the subset of circular

theories where the number of wrapped branes, L, has been set to zero. The moduli space

Hasse diagrams of a chosen set of family representatives of circular quiver gauge theories

were found to directly generalise the linear case. The linear case is recoverable from the

general circular Hasse diagram given in Figure 29 by setting L = 0.

Using Kraft-Procesi transitions allowed a local analysis to be made without depending

on knowledge of the global nature of the moduli space of vacua for circular theories. Whilst

the Hasse diagrams of subvarieties and transverse slices fully characterise this structure

from the ‘bottom up’, analysis from the ‘top down’, starting with a description of the

global structure first, is yet to be performed. Establishing the global nature in detail and

relating it to the discussion here is an intriguing prospect.

It has been suggested in [2] that these moduli spaces could be related to a notion of

nilpotent orbits in affine Lie algebras. This has been suggested because certain quivers

whose gauge node topology is that of a finite Dynkin diagram, such as An for the linear

quivers discussed in Section 3, are known to yield Coulomb branches, such as nilpotent

orbit closures, with isometry group of Lie type. In these cases the Lie group which appears

is the one associated to the algebra for the Dynkin diagram off of which the quiver of the

parent theory is based, that is T (SU(N)) for the linear case. Under these considerations

the circular quivers could be seen as being based off of the affine Dynkin diagram, Ãn,

Figure 33. The specialness of Ã1 amongst these algebras may then be related to the

pathological nature of π(1, 2, 2, L) (and its complementary theory π(3, 2, 2, L)), Figure 16,

from a Kraft-Procesi point of view. An alternative generalisation of the discussion here is

the extension to considering quivers with gauge node topology based off of the other affine

Dynkin diagrams.

Investigations into the power of the theory of transverse slices in quiver gauge theories,

and their realisation through Kraft-Procesi transitions and Quiver Arithmetic, are still
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being developed [18], [27], and many avenues are opening for exploration. For example,

the realisation of the theory of transverse slices in the nilpotent cone of the other classical

algebras via more complicated brane configurations and Kraft-Procesi transitions has been

established, [3]. Extending the ideas of the present work to orthosymplectic theories related

to son and spn algebras is an obvious direction for further study.

The theory of transverse slices in the nilpotent cone of the exceptional algebras g2, f4,

e6, e7 and e8 is far more involved. Indeed the study of nilpotent varieties of exceptional

algebras remains a subject of research in algebraic geometry [14]. Whilst orbit closures of

low height have been found to be the moduli space branches of certain 3d N = 4 quiver

gauge theories, [26], the vast majority of nilpotent varieties in these algebras do not have

an associated 3d N = 4 theory at this time. There are also a large number of minimal

singularities which do not appear in the classical algebras and so also have no known

associated quiver.

The brane constructions whose low energy dynamics are the circular quiver gauge the-

ories studied here have dual M-theory descriptions. The fully wrapped D3 branes become

regular M2 branes, the D3 branes from the linear part become fractional M2 branes, and

the D5 and NS5 branes become a product of Asymptotically Locally Euclidean spaces

which the M2 branes probe. A further direction for investigation is the interpretation of

the Kraft-Procesi transition and associated structure and ordering in this M-theory picture.
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A π(k,N1, N2, L) dimensional check: calculations

A.1 dime
H(R)

dime
H(R) =

∑

{i|Ri−Ri+1=−1}
1 +

∑

{i|Ri−Ri+1=1}
N1 − l(κi+1)− l(ρi+1)− 1

=

2L∑

i=1

[( 1

−2

)
(Ri −Ri+1 − 1) +

1

2
(Ri −Ri+1 + 1)(N1 − l(κi+1)− l(ρi+1)− 1)

]

=
2L∑

i=1

(
Ri+1 −Ri +

1

2
−

1

2

)
+

2L∑

i=1

1

2
(Ri −Ri+1 + 1)N1

−
1

2

2L∑

i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1))

= (R2L+1 −R1) +
1

2
2LN1 −

1

2

2L∑

i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1))

= N1L−
1

2

2L∑

i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1))

(A.1)

There is a contribution of 1 to dime
H(R) when an edge is of A-type and a contribution

of N1 − l(κi+1) − l(ρi+1) − 1 when the ith edge is of a-type. In line two the sums are

simplified and combined by multiplying by a factor which picks out the correct values in

each case. Ri−Ri+1−1 = 0 when the ith edge is of a-type and −2 when it’s of A-type and

Ri −Ri+1 + 1 = 0 when the ith edge is of A-type and 2 when it’s of a-type. In line three

the sums are rearranged. In line four the first term from line three is shown to be zero and

the second term in line three is equal to LN1 because the route R must pass through L

edges for which Ri −Ri+1 + 1 = 2. Final simplification yields the result.

A.2 dim⋆

H
(R)

dim⋆

H
(R) =

1

2

2L+1∑

i=1

[ l(σt
i)∑

j=1

(σt
i)
2
j −

l(κt
i)∑

j=1

(κt
i)
2
j +

l(γt
i)∑

j=1

(γt
i)
2
j −

l(ρt
i)∑

j=1

(ρt
i)
2
j

]

=
1

2

∑

{i|Ri−Ri+1=−1}

[
∑

j

(σt
i)
2
j −

∑

j

((σt
i−1, 1))

2
j +

∑

j

(γt
i)
2
j −

∑

j

((γt
i−1, 1))

2
j

]

+
1

2

∑

{i|Ri−Ri+1=1}

[
∑

j

((κi+1, 1)
t)2j −

∑

j

(κt
i)
2
j +

∑

j

((ρi+1, 1)
t)2j −

∑

j

(ρt
i)
2
j

]
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=
1

2

2L+1∑

i=2

[( 1

−2

)
(Ri−1 −Ri − 1)

[∑

j

(σt
i)
2
j −

∑

j

((σt
i−1, 1))

2
j +

∑

j

(γt
i)
2
j −

∑

j

((γt
i−1, 1))

2
j

]]

+
1

2

(∑

j

(σt
1)

2
j −

∑

j

(κt
1)

2
j

)
+

1

2

(∑

j

(γt
1)

2
j −

∑

j

(ρt
1)

2
j

)

+
1

2

2L∑

i=1

[(1
2

)
(Ri −Ri+1 + 1)

[∑

j

((κi+1, 1)
t)2j −

∑

j

(κt
i)
2
j +

∑

j

((ρi+1, 1)
t)2j −

∑

j

(ρt
i)
2
j

]]

+
1

2

(∑

j

(σt
2L+1)

2
j −

∑

j

(κt
2L+1)

2
j

)
+

1

2

(∑

j

(γt
2L+1)

2
j −

∑

j

(ρt
2L+1)

2
j

)

=
1

2

2L+1∑

i=2

[( 1

−2

)
(Ri−1 −Ri − 1)

[∑

j

(σt
i)
2
j − 1 +

∑

j

(σt
i−1)

2
j +

∑

j

(γt
i)
2
j − 1 +

∑

j

(γt
i−1)

2
j

]]

+
1

2

(∑

j

(σt
1)

2
j − k

)
+

1

2

(∑

j

(γt
1)

2
j − 0

)

+
1

2

2L∑

i=1

[(1
2

)
(Ri −Ri+1 + 1)

[
1 + l(κi+1) +

∑

j

(κt
i+1)

2
j −

∑

j

(κt
i)
2
j

+ 1 + l(ρi+1) +
∑

j

(ρt
i+1)

2
j −

∑

j

(ρt
i)
2
j

]]

+
1

2

(
k2 −

∑

j

(κt
2L+1)

2
j

)
+

1

2

(
0−

∑

j

(ρt
2L+1)

2
j

)

=
1

2

( 1

−2

)
(R2L −R2L+1 − 1)

[∑

j

(σt
2L+1)

2
j +

∑

j

(γt
2L+1)

2
j

]
+

1

2

2L+1∑

i=2

(Ri−1 −Ri − 1)−
1

2
k

+
1

2

(1
2

)
(R1 −R2 + 1)

[∑

j

(κt
1)

2
j +

∑

j

(ρt
1)

2
j

]
+

1

2

2L∑

i=1

(Ri −Ri+1 + 1)

+
1

2
k2 +

1

2

2L∑

i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1))

=
1

2
(k2 − k) +

1

2

2L∑

i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1)) +
1

2
(2R1 − 2R2L+1)−

1

2
(2L) +

1

2
(2L)

=
1

2
(k2 − k) +

1

2

2L∑

i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1))

(A.2)

The traversing structure between lattices allows some or all of the partitions for nodes

in one lattice to be written in terms of the partitions for nodes in adjacent lattices. If the

ith edge in R is of A-type then the partitions for the node to which it connects in the i+1th

lattice is known in terms of the partitions of the node from which it traverses in the ith
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lattice. If the ith edge is of a-type then the partitions for the node from which it traverses

in the ith lattice is known in terms of the partitions of the node to which it connects in

the i + 1th lattice. Line two uses this to rewrite the i sum as two sums, one over A-type

edges and one over a-type edges. Doing so allows the substitution into the calculation of

the relations between nodes in adjacent lattices. Throughout the calculation the sum over

j is taken to mean the sum over all non-zero parts of the partition.

In line three the same trick as in the calculation for dime
H(R) is employed to rewrite

the sums with multiplicative factors dependant on Ri. The contribution for the first and

final lattices are separated from the rest. This is because the top partitions in the first

lattice and the bottom partitions in the final lattice have to be the top and bottom of the

diagram so these contributions play a special role. In line four assessing some of the sums

that have been separated off yields k and k2 since κ1 = (k) and σ2L+1 = (1k). Also in line

four the relations
∑

j((λ
t, 1)j)

2 =
∑

i(λ
t
i)
2+1 and

∑
j((λ, 1)

t
j)

2 = 1+2l(λ)+
∑

i(λ
t
i)
2 have

been employed.

In line five the i sum has been assessed for the j sum contributions. Much of these

sums cancel with one another leaving only the i = 2L+ 1 contributions from κ and ρ and

the i = 1 contribution from σ and γ, the remaining i sums have been separated out for

clarity. In line six the first and fourth terms in line five have been assessed to be zero. This

is because R2L −R2L+1 − 1 = 0 = R1 −R2 + 1. Terms two and five in line five mostly

cancel amongst themselves leaving terms three, four and five in line six. These three terms

all cancel to zero yielding the result in line seven.

B Partition Hasse diagrams n = 2, . . . , 9

Hasse
Diagram Partition

sl2

(2)

(12)
A1

Hasse
Diagram Partition

sl3

(3)

(2, 1)

(13)
a2

A2

Hasse
Diagram Partition

sl4

(4)

(3, 1)

(22)

(2, 12)

(14)
a3

A1

A1

A3

Hasse
Diagram Partition

sl5

(5)

(4, 1)

(3, 2)

(3, 12)

(22, 1)

(2, 13)

(15)
a4

a2

A1

A1

A2

A4
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Hasse
Diagram Partitionsl6

(6)

(5, 1)

(4, 2)

(4, 12) (32)

(3, 2, 1)

(3, 13) (23)

(22, 12)

(2, 14)

(16)
a5

a3

A1A1

a2a2

A2A2

A1A1

A3

A5

Hasse
Diagram Partitionsl7

(7)

(6, 1)

(5, 2)

(4, 3) (5, 12)

(4, 2, 1)

(32, 1)

(3, 22)
(4, 13)

(3, 2, 12)

(23, 1) (3, 14)

(22, 13)

(2, 15)

(17)
a6

a4

A1a2

a3a2

A2
A1

a2

A1

A1

A6

A4

A2 A3

A2 A1

Hasse
Diagram Partitionsl8

(8)

(7, 1)

(6, 2)

(5, 3)

(42)

(4, 3, 1)

(4, 22)

(32, 2)

(32, 12)

(3, 22, 1)

(24)

(23, 12)

(6, 12)

(5, 2, 1)

(5, 13)

(4, 2, 12)

(4, 14)

(3, 2, 13)

(3, 15)

(22, 14)

(2, 16)

(18)

A7

A5

a5

a7

A2

A2

A1

A1

a2

a2

a3

A1

a3

A1

A1

A1

A1

A3

A1

A3

A1

a4

A2

a3

A3

a2

A4

A1

Hasse
Diagram Partitionsl9

(9)

(8, 1)

(7, 2)

(6, 3)

(5, 4)

(5, 3, 1)

(42, 1)

(4, 3, 2)

(33)

(32, 2, 1)

(3, 23)

(3, 22, 12)

(24, 1)

(23, 13)

(5, 22)

(4, 3, 12)

(4, 22, 1)

(32, 13)

(7, 12)

(6, 2, 1)

(6, 13)

(5, 2, 12)

(5, 14)

(4, 2, 13)

(4, 15)

(3, 2, 14)

(3, 16)

(22, 15)

(2, 17)

(19)
a8

a6

A1a4

a2
a2

a5

a3
a3

A2

A1 A1

a4

a2
a2 A1

A2 A1 a2
A3

A1

A8

A6

A1A4

A2
A2

A5

A3
A3

a2

A1
A1

A4

A2
A2 A1

a2
A1 A2 a3
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