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Abstract

We demonstrate that warped Minkowski space backgrounds, Rn−1,1×wM
d−n, n ≥ 3,

that preserve strictly more than 16 supersymmetries in d = 11 and type II d = 10

supergravities and with fields which may not be smooth everywhere are locally

isometric to the R
d−1,1 Minkowski vacuum. In particular, all such flux compact-

ification vacua of these theories have the same local geometry as the maximally

supersymmetric vacuum R
n−1,1 × T

d−n.
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Recently, all warped anti-de-Sitter (AdS) backgrounds with fluxes that preserve N >
16 supersymmetries in d = 11 and d = 10 supergravities have been classified up to a
local isometry in [1, 2, 3]. In this note, we extend this result to include all warped
R
n−1,1 ×w Md−n backgrounds of these theories. In particular, we demonstrate that all

warped R
n−1,1×wM

d−n, n ≥ 3, solutions with fluxes of d = 11, IIA d = 10 and IIB d = 10
supergravities that preserve N > 16 supersymmetries are locally isometric to the R

d−1,1

maximally supersymmetric vacuum of these theories. Massive IIA supergravity does not
admit such solutions. A consequence of this is that all N > 16 flux compactification vacua,
R
n−1,1 ×w Md−n, of these theories are locally isometric to the maximally supersymmetric

toroidal vacuum R
n−1,1 × T d−n. To prove these results we have made an assumption that

the translation isometries along the R
n−1,1 subspace of these backgrounds commute with

all the odd generators of their Killing superalgebra. The necessity and justification of this
assumption will be made clear below.

To begin, we shall first describe the steps of the proof of our result which are common
to all d = 11 and d = 10 theories and then specialize at the end to present the special
features of the proof for each individual theory. Schematically, the fields of Rn−1,1×wM

d−n

backgrounds are

ds2 = A2ds2(Rn−1,1) + ds2(Md−n) ,
F = W ∧ dvolA(R

n−1,1) + Z , (1)

where A is the warp factor that depends only on the coordinates of the internal space
Md−n, dvolA(R

n−1,1) denotes the volume form of Rn−1,1 evaluated in the warped metric
and F denotes collectively all the k-form fluxes of the supergravity theories. We take
ds2(Rn−1,1) = 2dudv + dz2 + δabdx

adxb, where we have singled out a spatial coordinate
z which will be useful later. W and Z are (k − n)− and k− forms on Md−n which
depend only on the coordinates of Md−n. Clearly if n > k, W = 0. Therefore these
backgrounds are invariant under the Poincaré isometries of the R

n−1,1 subspace. It is
known that there are no smooth compactifications with non-trivial fluxes of d = 10 and
d = 11 supergravities [4, 5], i.e. solutions for which all fields are smooth including the
warp factor and Md−n is compact without boundary. However here we do not make these
assumptions. Md−k is allowed to be non-compact and the fields may not be smooth.

To continue following the description of Rn−1,1×wM
d−n backgrounds in [6, 7, 8], where

one can also find more details about our notation, we introduce a light-cone orthonormal
frame

e+ = du , e− = (dr − 2rA−1dA) , em = Adxm , ei = ei
I
dyI , (2)

on the spacetime with ds2(Md−n) = δije
iej. Then the Killing spinors of the Rn−1,1×wM

d−n

backgrounds can be written as

ǫ = σ+ + uΓ+ΓzΞ
(−)σ− + A

∑

m

xmΓmΓzΞ
(+)σ+

+ σ− + rΓ−ΓzΞ
(+)σ+ + A

∑

m

xmΓmΓzΞ
(−)σ− , (3)

where xm = (z, xa), all the gamma matrices are in the frame basis (2) and the spinors σ±,
Γ±σ± = 0, depend only on the coordinates of Md−n. The remaining independent KSEs
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are a restriction of the gravitino and algebraic KSEs of the supergravity theories on σ±

which schematically can be written as

D
(±)
i σ± = 0 , A(±)σ± = 0 , (4)

respectively, and in addition an integrability condition

(Ξ(±))2σ± = 0 , (5)

where Ξ(±) is a Clifford algebra element that depends on the fields. Ξ(±) will not be given
here and can be found in the references above. The latter arises as a consequence of
integrating the gravitino KSE of the theories along the R

n−1,1 subspace.
Notice that the (spacetime) Killing spinors (3) may depend on the coordinates of the

R
n−1,1 subspace. Such a dependence arises whenever σ± is not in the kernel of Ξ(±). Of

course σ± is required to lie in the kernel of of (Ξ(±))2. To see why this dependence can
arise for Rn−1,1×wM

d−n backgrounds, notice that AdSn+1 in Poincaré coordinates can be
written as a warped product of Rn−1,1 ×w R. Therefore all AdS backgrounds, warped or
otherwise, can be interpreted as warped Minkowski space backgrounds. It is also known
that the former admit Killing spinors that depend on all AdS coordinates including those
of the Minkowski subspace. Therefore R

n−1,1 ×w Md−n may also admit Killing spinors
that depend on the coordinates of Rn−1,1, see also [9] for a more detailed explanation.

The assumption we have made that the commutator of the translations P along R
n−1,1

and the odd generators Q of the Killing superalgebra [10, 11] must vanish, [P,Q] = 0, is
required for Killing spinors ǫ not to exhibit a dependence on the coordinates of Rn−1,1.
Indeed, if the Killing spinors have a dependence on the Minkowski subspace coordinates,
then the commutator [P,Q] of the Killing superalgebra will not vanish. This can be
verified with an explicit computation of the spinorial Lie derivative of ǫ in (3) along the
translations of Rn−1,1. Although this may seem as a technical assumption, it also has a
physical significance in the context of flux compactifications. Typically the reduced theory
is invariant under the Killing superalgebra of the compactification vacuum. So for the
reduced theory to exhibit at most super-Poincaré invariance, one must set [P,Q] = 0 for all
P and Q generators. This physical justification applies only to compactification vacua but
we shall take it to be valid for all backgrounds that we shall investigate below. Of course
such an assumption excludes all AdS solutions of supergravity theories re-interpreted as
warped Minkowski backgrounds. Therefore from now on we shall take Ξ(±)σ± = 0 and so
all Killing spinors ǫ will not depend on the coordinates of the R

n−1,1 subspace.
Before we proceed further, let us describe the Killing spinors of Rn−1,1 ×w Md−n back-

grounds in more detail. It turns out that if σ+ is a Killing spinor, then σ−
..= AΓ−zσ+ is

also a Killing spinor. Similarly if σ− is a Killing spinor, then σ+
..= A−1Γ+zσ− is also a

Killing spinor. Furthermore if σ+ is a Killing spinor, then σ′

+
..= Γmnσ+ are also Killing

spinors for every m,n. Therefore the Killing spinors form multiplets under these Clifford
algebra operations. The counting of Killing spinors of a background proceeds with iden-
tifying the linearly independent Killing spinors in each multiplet and then counting the
number of different multiplets that can occur [6, 7, 8]. As all Killing spinors are generated
from σ+ Killing spinors, we shall express all key formulae in terms of the latter.
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The 1-form bilinears that are associated with spacetime Killing vectors ǫr, r = 1, . . . , N ,
that also leave all other fields invariant are

X(ǫr, ǫs) ..= 〈(Γ+ − Γ−)ǫ
r,ΓAǫ

s〉s e
A , (6)

where in d = 11 and IIA supergravity theories 〈(Γ+ − Γ−)·, ·〉s is the Dirac inner product
restricted on the Majorana representation of Spin(10, 1) and Spin(9, 1), respectively, while
in IIB it is the real part of the Dirac inner product. Note that X(ǫr, ǫs) = X(ǫs, ǫr). In
particular, one finds that

X(σr
−
, σs

−
) = 2A2〈σr

+,ΓzΓAΓ−Γzσ
s
+〉se

A ,
X(σr

−
, σs

+) = 2A〈σr
+,ΓzΓAσ

s
+〉se

A ,
X(σr

+, σ
s
+) = −〈σr

+,Γ+ΓAσ
s
+〉se

A . (7)

Clearly the last 1-form bilinear is X(σr
+, σ

s
+) = −2〈σr

+, σ
s
+〉se

−. The requirement that
X(σr

+, σ
s
+) is Killing implies that 〈σr

+, σ
s
+〉s are constants. In particular, one can choose

without loss of generality that 〈σr
+, σ

s
+〉s = (1/2)δrs. Then first 1-form bilinear in (7) is

X(σr
−
, σs

−
) = 2A2δrse+.

Next consider the middle 1-form bilinear in (7). If σr
+ is in the same multiplet as

σs
+, i.e. σs

+ = Γzaσ
r
+, then X(σr

−
, σs

+) = −δrsA ea. On the other hand if σs
+ = σr

+, then
X(σr

−
, σr

+) = A ez. Thus all these bilinears generate the translations in R
n−1,1. However,

if σr
+ and σs

+ are not in the same multiplet, then the bilinear

X̃rs
..= X(σr

−
, σs

+) = 2A〈σr
+,ΓzΓiσ

s
+〉s e

i , (8)

will generate the isometries of the internal space. The Killing condition of X̃ implies that

X̃ i
rs∂iA = 0 . (9)

As the X̃ isometries commute with the translations, the even part, g0, of the Killing
superalgebra decomposes as g0 = p0 ⊕ t0, where p0 is the Lie algebra of translations in
R
n−1,1 and t0 is the Lie algebra of isometries in the internal space Md−n.
So far we have not used the assumption that the backgrounds preserve N > 16 su-

persymmetries. If this is the case, the Killing vectors generated by g0 span the tangent
space of the spacetime at each point. This is a consequence of the homogeneity theorem
proven for d = 11 and d = 10 supergravity backgrounds in [12, 13]. This states that all
solutions of these theories that preserve more than 16 supersymmetries must be locally
homogeneous. In this particular case because of the decomposition of g0, the Killing vec-
tor fields generated by t0 span the tangent space of Md−n at every point. As a result the
condition (9) implies that A is constant. The main result of this note then follows as a
consequence of the field equation of the warp factor and those of the rest of the scalar
fields of these theories. So to complete the proof we shall state the relevant equations on
a case by case basis.

In d = 11 supergravity, the 4-form field strength of the theory for R
n−1,1 ×w M11−n,

n ≥ 3, backgrounds can be expressed as

F = dvolA(R
n−1,1) ∧W 4−n + Z , (10)
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with W 4−n = 0 for n > 4, and the warp factor field equation is

∇̃2 logA = −n(∂ logA)2 +
1

3 · (4− n)!
(W 4−n)2 +

1

144
Z2 , (11)

where ∇̃ is the Levi-Civita connection on M11−n. The superscripts on the forms denote
their degree whenever it is required for clarity. Clearly if A is constant, as it has been
demonstrated above for N > 16 backgrounds, then W n−4 = Z = 0. So F = 0 and thus
all the fluxes vanish. In fact, this is also the case for n = 2 provided that A is taken to be
constant. As F = 0 and A is constant, the gravitino KSE in (4) implies that all the Killing
spinors σ± are parallel with respect to the Levi-Civita connection, ∇̃, on M11−n. In turn
this gives that all the Killing vector fields X̃ in (8), which span the tangent space ofM11−n,
are also parallel with respect to ∇̃. Thus M11−n is locally isometric to R

11−n. Therefore
the backgrounds R

n−1,1 ×w M11−n are locally isometric to the maximally supersymmetric
vacuum R

10,1. Notice that the last step of the proof requires the use of the homogeneity
theorem.

In (massive) IIA supergravity, the 4-form F , 3-form H and 2-form G field strengths
of the theory for R

n−1,1 ×w M10−n, n ≥ 3, backgrounds can be written as

F = dvolA(R
n−1,1) ∧W 4−n + Z ,

H = dvolA(R
n−1,1) ∧ P 3−n +Q ,

G = L , (12)

where W 4−n vanishes for n > 4 and similarly P 3−n vanishes for n > 3. The field equations
for the warp factor A and dilaton field Φ, n > 2, are

∇̃2 log A = −n(∂ log A)2 + 2∂i log A∂iΦ+
1

2
(P 3−n)2 +

1

4
S2 +

1

8
L2 +

1

96
Z2 +

1

4
(W 4−n)2 ,

∇̃2Φ = −n∂i logA∂
iΦ + 2(dΦ)2 −

1

12
Q2 +

1

2
(P 3−n)2 +

5

4
S2 +

3

8
L2 +

1

96
Z2

−
1

4
(W 4−n)2 , (13)

where S = eΦm and m is the cosmological constant of (massive) IIA supergravity. Clearly
if both A and Φ are constant, which is the case for all N > 16 backgrounds, then the
above two field equations imply that all the form fluxes will vanish. Significantly, the
cosmological constant must vanish as well. There are no R

n−1,1 ×w M10−n solutions in
massive IIA supergravity that preserve N > 16 supersymmetries. In IIA supergravity, an
argument similar to the one presented above in d = 11 supergravity reveals that M10−n

is locally isometric to R
10−n and so all N > 16 R

n−1,1 ×w M10−n backgrounds are locally
isometric to the maximally supersymmetric vacuum R

10,1. It is not apparent that the
theorem holds for n = 2 even if A and Φ are taken to be constant.

In IIB supergravity the self-dual real 5-form F and complex 3-form H field strengths
of the theory for R

n−1,1 ×w M10−n, n ≥ 3, backgrounds can be expressed as

F = dvolA(R
n−1,1) ∧W 5−n + ⋆W 5−n ,

H = dvolA(R
n−1,1) ∧ P 3−n +Q , (14)
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where W 5−n vanishes for n > 5 and P 3−n vanishes for n > 3. The field equation of the
warp factor is

∇̃2 logA = −n(∂ logA)2 +
3

8
|P 3−n|2 +

1

48
|Q|2 +

4

(5− n)!
(W 5−n)2 . (15)

Clearly if A is constant, which we have demonstrated that it holds forN > 16 backgrounds,
then F = H = 0. Moreover the homogeneity theorem implies that the two scalar fields
of IIB supergravity, the axion and the dilaton, are also constant. A similar argument to
that used in d = 11 supergravity implies that M10−n is locally isometric to R

10−n. Thus
R
n−1,1 ×w M10−n are locally isometric to the R

9,1 maximally supersymmetric vacuum of
the theory. The same conclusion holds for n = 2 as well provided that A is taken to be
constant.
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