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This paper deals with the study of Bianchi type-I universe in the context of Nash gravity

by using the Noether symmetry approach. We shortly revisit the Nash theory of gravity. We

make a short recap of the Noether symmetry approach and consider the geometry for Bianchi-

type I model. We obtain the exact general solutions of the theory inherently exhibited by

the Noether symmetry. We also examine the cosmological implications of the model by

discussing the two cases of viable scenarios. Surprisingly, we find that the predictions are

nicely compatible with those of the ΛCDM model.
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I. INTRODUCTION

Several cosmological observations show that the observable universe is undergoing a phase

of accelerated expansion [1]. Regarding the late-time cosmic acceleration, there are at least two

promising explanations, to date. The first one is to introduce the dark energy component in the

universe [2]. However, the dark energy sector of the universe remains still unknown. Conversely,

the second popular approach is to interpret this phenomenon by using a purely geometrical

picture. The later is well known as the modified gravity. Modified theories of gravity have

received more attention lately due to numerous motivations ranging from high-energy physics,

cosmology and astrophysics [3].

The modified theories of gravity can be in principle achieved from different contexts. One of

the earlier modifications to Einstein’s general relativity was known as the Brans-Dicke gravity.

In addition to a gravitational sector, this theory introduced a dynamical scalar field to represent
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a variable gravitational constant [4]. Later it was found that the authors of Ref.[5] studied a

scalar-tensor theory of gravity in which the metric is coupled to a scalar field. Regarding the

work of Ref.[5], a ‘missing-mass problem’ can be successfully described. Moreover, this approach

can be applied to the Bianchi cosmological models.

Another simplest modification to the standard general relativity is the f(R) theories of gravity

in which the Lagrangian density f is an arbitrary function of the scalar curvature R [6, 7]. Among

numerous alternatives, these theories include higher order curvature invariants, see reviews on

f(R) theories [8, 9]. In recent years, a new stimulus for this study leads to a number of interesting

results. Notice that the model with f(R) = R + αR2 (α > 0) can lead to the accelerated

expansion of the Universe because of the presence of the αR2 term. This particular case is the

first model that can describe cosmic inflation proposed by Starobinsky [10]. There exists another

different class of the modified gravity theory, called MOG, which can alternatively explain the

flat rotation curve of galaxies without invoking cold dark matter particles [11] (see also recent

examination [12]). Likewise, John Nash has developed an alternative theory to the Einstein’s

theory. The theory has been proven to be formally divergence free and considered to be of

interest in constructing theories of quantum gravity.

In order to quantify the exact solutions, it has been proven that the Noether symmetry tech-

nique proved to be very useful not only to fix physically viable cosmological models with respect

to the conserved quantities, but also to reduce dynamics and achieve exact solutions. Moreover,

the existence of Noether symetries plays crucial roles when studying quantum cosmology [13]. In

addition, the Noether symmetry approach has been employed to various cosmological scenarios

so far including the f(T ) gravity [14], the f(R) gravity [30], the alpha-attractors [24], and others

cosmological scenarios, e.g. [15–23]. Moreover, the Noether symmetry approach has been also

utilized to study the Bianchi models [31, 32] in order to obtain the exact solutions for potential

functions, scalar field and the scale factors.

In this paper, we examine a Bianchi type I spacetime in the framework of Nash Gravity by

using the Noether symmetry approach. The structure of the paper is as follows: In Sec.(II), we

make a short recap of the Nash theory of gravity. Here we display the gravitational equations

of the Nash theory in vacuum. In Sec.(III), we revisit the Noether symmetry approach and

consider the geometry for Bianchi-type I model. In Sec.(IV), we study exact solutions exhibited

from the Noether symmetry. We also examine in Sec.(V) the cosmological implications of the

model by discussing the two cases of viable scenarios. Finally, we conclude our findings in the

last section.
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II. A SHORT RECAP OF NASH’S THEORY FOR GRAVITY

During his lifetime, J. Nash tried once to develop an alternative theory of gravity. The

theory is obtained as a modification of GR and can be considered as an alteranative to make

GR renormalizable [34]. More recent works are presented in [35, 38]. Let us have a look on the

Nash gravity at action level:

S =

∫
d4xL =

∫
d4x
√
−g
(

2RµνRµν −R2
)
. (1)

It is remarked that the general class of Lagrangians including the one written above has been

considered to be of interest in attempting to develop theories of quantum gravity. Using the

above action, gravitational field equations are directly derived by taking into account the metric

gµν as a dynamical field to yield

2Gµν +Gαβ
(

2R µ
α R

ν
β −

1

2
gµνRαβ

)
= 0, (2)

where 2 is the d’Alembertian operator, and Gµν = Rµν − 1
2g
µνR. It was demonstrated that

all Ricci flat solutions (de Sitter like metrics) in Nash theory coincide to GR solutions in four

dimensions. Stelle showed that such actions were re-normalizable [39]. In the flat FLRW back-

ground, it is still illustrative to study cosmological solutions; see also a previous work [35]. Due

to the issue of stability, it will be motivating to examine cosmological solutions for homogeneous

but anistropic universe.

Recently, Strumia and Salvio extended Stelle’s work to their ”agravity” theory [40]. They

were motivated to consider this action because of a principle of ”classical scale invariance.”

This implies a renormalizable quantum gravity theory where the graviton kinetic term has 4

derivatives, and can be reinterpreted as graviton minus an anti-graviton. In addition, within

agravity, they found that inflation is a generic phenomenon.

III. NOETHER SYMMETRY & BIANCHI-TYPE I UNIVERSE

From the viewpoint of the Noether symmetry approach, exact solutions of dynamical system,

that is a point-like Lagrangian, can be achieved by selecting cyclic variables. In principle, the

corresponding dynamical system can be completely integrated and the potential exhibited by

the symmetry can be exactly obtained. Based on the Noether theorem, if there exists a vector

field X, for which the Lie derivative of a given Lagrangian L vanishes, i.e. LXL = XL = 0,

the Lagrangian admits a Noether symmetry and thus yields a conserved current. Note that the

Noether symmetry dictates a local transformation. A point transformation defined by Qi =



4

Qi(q) can in principle depend on one (or multiple) parameter(s). In this situation, the vector

field X takes the form

X = αi(q)
∂

∂qi
+

(
d

dλ
αi(q)

)
∂

∂q̇i
, with i = 1, 2, 3, ... (3)

and λ being an affine parameter. The dot indicates the differentiation with respect to time, t.

Any function F (q, q̇) is invariant under the transformation X if

LXF
def
= αi(q)

∂F

∂qi
+

(
d

dλ
αi(q)

)
∂F

∂q̇i
= 0 , (4)

where LXF is the Lie derivative of F . Specifically, if LXL = 0, X is a symmetry for the

dynamics derived by L. What we need is to look for a sufficient condition for which LXL = 0.

The immediate consequence is the Noether Theorem which states that If LXL = 0, then the

function

Σ0 = αi
∂L
∂q̇i

, (5)

is a constant of motion. As stated in Ref.[30], the Noether symmetry approach is a useful tool

to select the functions which assign the models and such functions (and then the models) can be

physically relevant. An important question is whether Noether symmetry solutions satisfy the

Euler-Lagrange equations of motion or not?. It was demonstrated that on the condition of non-

trivial solutions, the Euler- Lagrange and Noether equations are equivalent [25]-[28]. By finding

any Noether symmetry generator, we will find one associated first integral of the equations

of the motion. Here it gives us a simpler way to integrate the Euler-Lagrange equations of

motion emerging from point-like Lagrangian. This conserved charge may be physical like total

energy, angular momentum, etc., or a combination of them or just a mathematical expression

without any clear physical meaning. Furthermore, the existence of Noether symmetries reduce

the minisuperspace dimensions and provides a way to make equations of motion integrable [29].

Briefly we have two main motivations in studying Noether symmetry approach: The first one is

to find conserved charges associated to any symmetry generator and the second one is to make

equations of motion integrable and to examine cosmological behaviors of the model. We would

suggest the reader to Ref.[30] for further intuitive details.

A. Geometry for Bianchi-I Universe

The existence of the local anisotropies that we observe today in galaxies, cluster and super

clusters so at early time can be questioned. This may imply that we need something more

general than just the isotropy and homogeneous FLRW geometry. In order to go beyond the
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FLRW universe, we may think of its simplest generalizations. As is well known, the Bianchi

Type I model is one of the simplest ones of the anisotropic universe. Unlike FLRW space-time,

Bianchi Type I space-time has a different scale factor in each direction, thereby introducing an

anisotropy to the system. The Bianchi Type I line-element in coordinates xµ = (t, x, y, z) is

ds2 = −dt2 +A2(t)dx2 +B2(t)dy2 + C2(t)dz2, (6)

where A(t), B(t) and C(t) are the scale factors and they are all functions of the cosmic time t.

Note that some exact models based on such metrics have been investigated so far [36]. Notice

that the above metric is just a generalization of a flat FLRW space-time. In the case of the

isotropic universe, these variables satisfy A(t) = B(t) = C(t). In other words, the Bianchi

Type I model becomes isotropic if the ratio of each directional expansion factor A(t), B(t)

and C(t) and the expansion factor of the total volume a(t) tends to be a constant value with

a(t) = (ABC)1/3 = V 1/3. Here the mean of the three directional Hubble parameters in the

Bianchi Type I universe is given by H = 1
3

∑
Hi where Hi = d ln(Ai)

dt , Ai = {A,B,C}. In

this paper we are interested in investigating the anisotropic models in which the cosmology is

described by the metric (6) with A 6= B 6= C. The Bianchi type I model features spatially

homogeneous, non-isotropic and non-rotating space-time. In an appropriate coordinate system,

they display the diagonal, spatially-Euclidean metric.

B. Point-like Lagrangian and Noether equations

In this section, we will first write the original Lagrangian in terms of the point-like parameters

characterized by the configuration space, i.e. L = L(A,B,C,H1, H2, H3, Ḣ1, Ḣ2, Ḣ3). To begin

with, we consider the metric (6) and plug into the action (1). We then perform integrating by

parts to eliminate the terms Äi, and we obtain the following point-like Lagrangian, which is

suitable for investigation of the symmetry properties of the system:

L =
−4

ABC

(
H3

1H2 +H3
1H3 +H2

1H
2
2 + 3H2

1H2H3 +H2
1H

2
3 +H1H

3
2 (7)

+3H1H
2
2H3 + 3H1H2H

2
3 +H1H

3
3 +H3

2H3 +H2
2H

2
3

+H2H
3
3 +H2

1 Ḣ2 +H2
1 Ḣ3 +H1H2Ḣ1 +H1H2Ḣ2 + 2H1H2Ḣ3

+H1H3Ḣ1 + 2H1H3Ḣ2 +H1H3Ḣ3 +H2
2 Ḣ1 +H2

2 Ḣ3 + 2H2H3Ḣ1

+H2H3Ḣ2 +H2H3Ḣ3 +H2
3 Ḣ1 +H2

3 Ḣ2 + Ḣ2Ḣ1 + Ḣ3Ḣ1 + Ḣ3Ḣ2

)
,

where we have defined new parameters:

H1 =
Ȧ

A
=
d ln(A(t))

dt
, H2 =

Ḃ

B
=
d ln(B(t))

dt
, H3 =

Ċ

C
=
d ln(C(t))

dt
. (8)
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Since Nash theory like any other type of the modified theories for gravity designed as a

purely geometric model, the role of any type of ordinary or exotic matter is given to the higher-

order correction terms in the action and the non trivial (linear) evolution for the corresponding

density functions are given in the equations of motion (EoMs) of the model. In our study we just

concentrated on the vacuum solutions and studied the role of nonlinear terms in the cosmological

evolution. In order to insert the matter field, we can just simply add the matter Lagrangian to

the total action and perform metric variation. Note that because still Nash theory is a metric-

based theory, the matter energy momentum tensor will be derived as a standard form like other

theories.

Note that the unknown functions which must be obtained by this symmetry methods are

{H1, H2, H3}. We are going to discuss the Nash cosmology, as a specific case, as follows. As

already mentioned, the configuration space is Q = {H1, H2, H3} while the tangent space for the

related tangent bundle is T Q = {H1, Ḣ1, H2, Ḣ2, H3, Ḣ3}. The Lagrangian is an application

L : T Q −→ < , (9)

where < is the set of real numbers. We metion here that because Nash gravity is a higher-

order derivative theory with respect to the scale factors A,B,C, we reduced the difficulty by

defining an alternative configuration coordinates set Hi instead of the scale factors. This type

of reduction of the configuration coordinastes appeared before in styding Gauss-Bonnet gravity

via Noether symmetry as well as many other examples [37].

The generator of symmetry in this model reads

X = f
∂

∂H1
+ g

∂

∂H2
+ h

∂

∂H3
+ ḟ

∂

∂Ḣ1

+ ġ
∂

∂Ḣ2

+ ḣ
∂

∂Ḣ3

, . (10)

As discussed above, a symmetry exists if the equation LXL = 0 has solutions. Then there will

be a constant of motion on shell, i.e. for the solutions of the Euler equations, as aforementioned.

In other words, a symmetry exists if at least one of the functions f, g or h in Eq.(10) is different

from zero. As a byproduct, the form of Hi can be determined in correspondence to such a

symmetry. The generalized phase space for our system spans on a a six dimensional manifold

with coordinates (Ha, Ḣa) where 1 ≤ a ≤ 3, where f, g, h are functions of (H1, H2, H3) and

ḟ =
∑3

a=1 Ḣa
∂f
∂Ha

. The Noether symmetry condition follows

X [1]L = 0,
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which yields the following system of linear PDEs:

f

(
H2

2A
′

A
+
H2

3A
′

A
− H2 +

H1H2 A
′

A
− H3 +

H1H3 A
′

A
+ 2

H2H3 A
′

A

)
(11)

+g

(
−2H2 +

H2
2B
′

B
+
H2

3B
′

B
− H1 +

H1H2 B
′

B
+
H1H3 B

′

B
− 2H3 + 2

H2H3 B
′

B

)

+h

(
H2

2C
′

C
− 2H3 +

H2
3C
′

C
+
H1H2 C

′

C
− H1 +

H1H3 C
′

C
− 2H2 + 2

H2H3 C
′

C

)

+
∂f

∂H1

(
−H1H2 − H1H3 − H2

2 − 2H2H3 − H2
3

)
+
∂g

∂H1

(
−H2

1 − H1H2 − 2H1H3 − H2H3 − H2
3

)
+
∂h

∂H1

(
−H2

1 − 2H1H2 − H1H3 − H2
2 − H2H3

)
= 0 ,

fA′

A
+
gB ′

B
+
hC ′

C
− ∂f

∂H1
− ∂g

∂H2
− ∂h

∂H1
− ∂h

∂H2
= 0 , (12)

fA′

A
+
gB ′

B
+
hC ′

C
− ∂f

∂H1
− ∂g

∂H1
− ∂g

∂H3
− ∂h

∂H3
= 0 , (13)

fA′

A
+
gB ′

B
+
hC ′

C
− ∂f

∂H2
− ∂f

∂H3
− ∂g

∂H2
− ∂h

∂H3
= 0 , (14)

f

(
−2H1 +

H2
1A
′

A
+
H2

3A
′

A
− H2 +

H1H2A
′

A
− 2H3 + 2

H1H3A
′

A
+
H2H3A

′

A

)
(15)

+g

(
H2

1B
′

B
+
H2

3B
′

B
− H1 +

H1H2B
′

B
+ 2

H1H3B
′

B
− H3 +

H2H3 B
′

B

)

+h

(
H2

1C
′

C
− 2H3 +

H2
3C
′

C
+
H1H2C

′

C
− 2H1 + 2

H1H3C
′

C
− H2 +

H2H3C
′

C

)

+

(
∂f

∂H2

)(
−H1H2 − H1H3 − H2

2 − 2H2H3 − H2
3

)
+

(
∂g

∂H2

)(
−H2

1 − H1H2 − 2H1H3 − H2H3 − H2
3

)
+

(
∂h

∂H2

)(
−H2

1 − 2H1H2 − H1H3 − H2
2 − H2H3

)
= 0 ,
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f

(
H2

2A
′

A
− 2H1 +

H2
1A
′

A
− 2H2 + 2

H1H2A
′

A
− H3 +

H1H3A
′

A
+
H2H3A

′

A

)
(16)

+g

(
−2H2 +

H2
2B
′

B
+
H2

1B
′

B
− 2H1 + 2

H1H2B
′

B
+
H1H3B

′

B
− H3 +

H2H3B
′

B

)

+h

(
H2

2C
′

C
+
H2

1C
′

C
+ 2

H1H2C
′

C
− H1 +

H1H3C
′

C
− H2 +

H2H3C
′

C

)

+

(
∂f

∂H3

)(
−H1H2 − H1H3 − H2

2 − 2H2H3 − H2
3

)
+

(
∂g

∂H3

)(
−H2

1 − H1H2 − 2H1H3 − H2H3 − H2
3

)
+

(
∂h

∂H3

)(
−H2

1 − 2H1H2 − H1H3 − H2
2 − H2H3

)
= 0 ,

∂

∂H1
(g + h) = 0 , (17)

and

∂

∂H2
(f + h) = 0 , (18)

as well as

∂

∂H3
(f + g) = 0. (19)

In following section, we are going to figure out particular solutions for the functions f, g, h.

IV. GENERAL SOLUTIONS

In the following, we are going to solve the system of coupled partial differential equations

given in Eqs.(11-19). Consider, next, Eqs.(17-19). We deduce that:

f + g = s(H1, H2), f + h = w(H1, H3), g + h = r(H2, H3). (20)

where s, w, r are arbitrary functions. From the above expressions, we can obtain

f =
1

2

(
−r(H2, H3) + s(H1, H2) + w(H1, H3)

)
, (21)

g =
1

2

(
(r(H2, H3) + s(H1, H2)− w(H1, H3)

)
, (22)

h =
1

2

(
(r(H2, H3)− s(H1, H2) + w(H1, H3)

)
. (23)

Now we are going to solve the above systems (11)-(19) of linear PDEs. To this end, we take

derivative of Eqs.(17-19) and the results can be used to further simplify the last three expressions
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(17)-(19). Here we find

∂(f + h)

∂H1
+

∂

∂H2
(g + h) = 0 , (24)

∂(f + g)

∂H1
+

∂

∂H3
(g + h) = 0 , (25)

∂(f + g)

∂H2
+

∂

∂H3
(f + h) = 0. (26)

We can simply show that the following equations can be obtained:

∂

∂H1
(g + h) = 0 ,

∂

∂H2
(f + h) = 0 ,

∂

∂H3
(f + g) = 0. (27)

Consequently we observe that

∂2

∂H2
1

(f + g) +
∂

∂H3

∂

∂H1
(f + g) =

∂2

∂H2
1

(f + g) = 0. (28)

Using the above constraints, after performing an integration on Eq.(28), we come up with the

following solutions:

f + g = α(H2)H1 + β(H2), (29)

where α and β are functions of H2. Similarly we can do the same implementation which allows

us to simplify the other equations. Here we find

∂

∂H1

∂

∂H2
(f + h) +

∂2

∂H2
2

(g + h) =
∂2

∂H2
2

(g + h) = 0 . (30)

Again after performing an integration, it yields

g + h = γ(H3)H2 + δ(H3), (31)

where γ and δ are functions of H3. Similarly, we can also obtain the following expression:

∂

∂H3

∂

∂H2
(f + g) +

∂2

∂H2
3

(f + h) =
∂2

∂H2
3

(f + h) = 0 , (32)

for which the solutions read

f + h = θ(H1)H3 + ε(H1), (33)

where θ and ε are functions of H1. Using Eqs.(29), (31) and (33) we finally obtain:

f =
1

2

(
β(H2)− δ(H3) + ε(H1) +H1α(H2)−H2γ(H3) +H3θ(H1)

)
, (34)

g =
1

2

(
β(H2) + δ(H3)− ε(H1) +H1α(H2) +H2γ(H3)−H3θ(H1)

)
, (35)

h =
1

2

(
− β(H2) + δ(H3) + ε(H1)−H1α(H2) +H2γ(H3) +H3θ(H1)

)
. (36)

Notice from Eqs.(34)-(36) that we discover two classes of trivial solutions which can be explicitly

written as follows:
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• Class I: We first consider α = γ = θ = 1 & β = δ = ε = 0. In this case, the solutions

reads

f =
1

2

(
H1 −H2 +H3

)
, (37)

g =
1

2

(
H1 +H2 −H3

)
, (38)

h =
1

2

(
−H1 +H2 +H3

)
. (39)

• Class II: The second set of the solutions can be obtained by opting α = γ = θ = 0 & β =

δ = ε = 1. In this case, we find

f =
1

2

(
H1 +H2 −H3

)
, (40)

g =
1

2

(
−H1 +H2 +H3)

)
, (41)

h =
1

2

(
H1 −H2 +H3

)
. (42)

Notice that in both classes we discover that 2(f + g+ h) = H1 +H2 +H3. In order to write the

general solutions similar to those of Eqs.(29)-(33), we start rewriting Eqs.(11)-(16) as follows:

fS1(H1, H2, H3) + gP1(H1, H2, H3) + hQ1(H1, H2, H3) + (43)

+
∂f

∂H1
a(H1, H2, H3) +

∂g

∂H1
b(H1, H2, H3) +

∂h

∂H1
c(H1, H2, H3) = 0 ,

and

fS2(H1, H2, H3) + gP2(H1, H2, H3) + hQ2(H1, H2, H3) + (44)

+
∂f

∂H2
a(H1, H2, H3) +

∂g

∂H2
b(H1, H2, H3) +

∂h

∂H2
c(H1, H2, H3) = 0 ,

as well as

fS3(H1, H2, H3) + gP3(H1, H2, H3) + hQ3(H1, H2, H3) + (45)

+
∂f

∂H3
a(H1, H2, H3) +

∂g

∂H3
b(H1, H2, H3) +

∂h

∂H3
c(H1, H2, H3) = 0 .

Here we have defined new parameters as follows:

S1(H1, H2, H3) = (H2
2 +H2

3 +H1H2 +H1H3 + 2H2H3)
A′

A
− (H2 + H3), (46)

P1(H1, H2, H3) = −(H1 + 2H2 + 2H3) + (H2
2 +H2

3 +H1H2 +H1H3 + 2H2H3)
B′

B
, (47)

Q1(H1, H2, H3) = −(H1 + 2H2 + 2H3) + (H2
2 +H2

3 +H1H2 +H1H3 + 2H2H3)
C ′

C
, (48)

S2(H1, H2, H3) = −(2H1 +H2 + 2H3) + (H2
1 +H2

3 +H1H2 +H2H3 + 2H1H3)
A′

A
, (49)
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P2(H1, H2, H3) = (H2
1 +H2

3 +H1H2 +H2H3 + 2H1H3)
B′

B
− (H1 + H3), (50)

Q2(H1, H2, H3) = −(2H1 +H2 + 2H3) + (H2
1 +H2

3 +H1H2 +H2H3 + 2H1H3)
C ′

C
, (51)

S3(H1, H2, H3) = −(2H1 + 2H2 +H3) + (H2
1 +H2

2 + 2H1H2 +H1H3 +H2H3)
A′

A
, (52)

P3(H1, H2, H3) = −(2H1 + 2H2 +H3) + (H2
1 +H2

2 + 2H1H2 +H1H3 +H2H3)
B′

B
, (53)

Q3(H1, H2, H3) = (H2
1 +H2

2 + 2H1H2 +H1H3 +H2H3)
C ′

C
− (H1 + H2), (54)

a(H1, H2, H3) = −H1H2 − H1H3 − H2
2 − 2H2H3 − H2

3 , (55)

b(H1, H2, H3) = −H2
1 − H1H2 − 2H1H3 − H2H3 − H2

3 , (56)

c(H1, H2, H3) = −H2
1 − 2H1H2 − H1H3 − H2

2 − H2H3. (57)

Using the above differential equations, we can mimic the exact solutions. Therefore, they can

be generally written as.

f(H1, H2, H3) =
3∑
i=1

fiHi = f1H1 + f2H2 + f3H3, (58)

g(H1, H2, H3) =

3∑
i=1

giHi = g1H1 + g2H2 + g3H3, (59)

h(H1, H2, H3) =
3∑
i=1

hiHi = h1H1 + h2H2 + h3H3, (60)

where the functions {fi, gi, hi} are arbitrary constants (coefficients). In addition, we can also

determine the conserved charge, Σ0, and is given by

Σ0 =
3∑
i=1

(
fiHi

∂L
∂Ḣ1

+ giHi
∂L
∂Ḣ2

+ hiHi
∂L
∂Ḣ3

)
, (61)

where the point-like Lagrangian, L, is given in Eq.(7). To be more concrete, we will consider

general solutions for two cases of viable scenarios and explicitly determine f, g, h for each sce-

nario. The implementation can be directly done by using Eqs.(43-45). We will investigate the

cosmological predictions of these cases in Sec.(V)

Scenario I: The first solutions can be simply achieved by adopting H3 = 0, Ḣ3 = 0, H2 =

cont. = m, Ḣ2 = 0, A = a(t), B = emt, C = cont. with m being a constant. After substituting



12

all variables into Eqs.(43-45), we come up with the following solutions:

f (H1) =

√
H1 (3H1 + 2m)C(

H1
2 −H1m−m2

)5/4
exp

(
3

10

√
5 arctanh

(
2H1 −m
m
√

5

))
, (62)

g (H1) = − C
√
H1

(
H1

2 −H1m−m2
)5/4

exp

(
3

10

√
5 arctanh

(
2H1 −m
m
√

5

))
, (63)

h (H1) = −
√
H1 (H1 + m)C(

H1
2 −H1m−m2

)5/4
exp

(
3

10

√
5 arctanh

(
2H1 −m
m
√

5

))
, (64)

where H1 is already given in Eq.(70). Moreover, by consider the second conditions of parameter

space, we can display the following second solutions.

Scenario II: In this second choice, we assume H3 = cont. = n, Ḣ3 = 0, H2 = cont. = m, Ḣ2 =

0, A = a(t), B = emt, C = ent with m, n being constants. After substituting all variables into

Eqs.(43-45), we end up with the following solutions:

f (H1) = CH1 (2n+ 2m+ 3H1)

× exp

1

2

∑
i

ln(H1 −Ri)(−6R2
i + 2(m+ n)Ri +m2 + n(6m+ n))

(3R2
i − 2Rim− 2Rin−m2 − 4mn− n2)

 , (65)

g (H1) = CH1

(
−H2

1 + (m− n)H1 +m(m+ n)
)

× exp

1

2

∑
i

ln(H1 −Ri)(−6R2
i + 2(m+ n)Ri +m2 + n(6m+ n))

(3R2
i − 2Rim− 2Rin−m2 − 4mn− n2)

 , (66)

g (H1) = CH1

(
−H2

1 − (m− n)H1 +m(m+ n)
)

× exp

1

2

∑
i

ln(H1 −Ri)(−6R2
i + 2(m+ n)Ri +m2 + n(6m+ n))

(3R2
i − 2Rim− 2Rin−m2 − 4mn− n2)

 , (67)

where Ri’s satisfy the following cubic equation:

R3
i + (m+ n)R2

i + (m2 + 4mn+ n2)Ri +mn(m+ n) = 0, (68)

It is possible to make integration using EoM and find H1(t) . In the next section we will

investigate the cosmological aspects of these two exact viable models.

V. COSMOLOGICAL IMPLICATIONS

In this section, we will examine the cosmological implications of the model. Using the above

Noether symmetries and the corresponding integral of motions, we can solve Euler-Lagrange
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equations of motion for Hubble parameters Hi(t). Here the reduction method of superspace

using Noether symmetry presented in the Ref.[29] is somehow intractable. The reason is that

the point-like Lagrangian L given in Eq.(7) cannot define a simple Kinetic metric. Consequently

we devote our study to make integration directly using point-like Lagrangian and will study

cosmological parameters based on it.

In doing that, we start by considering the point-like action given in Eq.(7). To be more

concrete, the cosmological implications of the models will be separately discussed in two-case

scenarios. Both of these scenarios are based on the general solutions for the Noether symmetry

generators {f, g, h} given in the Eqs.(34-36). We mention here that the system of Noether

equations have many non trivial solutions based on a freedom in functions given in the general

forms of the solutions in the Eqs.(34-36). We only choice two scenarios among all the possible

solutions. In addition, we will show below that each of them predicts cosmological parameters

compatible with observational data.

A. Scenario I

In the first case scenario, we consider the dynamics of H1 and derive the equation of motion.

Using the action in Eq.(7) together with the assumption H3 = 0, Ḣ3 = 0, H2 = cont. = m, Ḣ2 =

0, A = a(t), B = emt, C = cont. = c1 with m being a constant, we find for H1:

Ḣ1(t) +H1(t)2 = 0, with ȧ(t) = H1a(t), (69)

whose solutions take the form

H1(t) =
C ′1
t
, (70)

where C ′1 is an integrating constant. In this case, we can define the effective Hubble parameter

Heff as

Heff(t) ≡ 1

3
(H1 +H2 +H3) = C0 +

C1

t
, (71)

with C0, C1 being constants. The scale factor takes the form a(t) ∝ eC0ttC1 . When t � t0,

in the early Universe and Heff(t) ∼ C1/t, the Universe was basically filled with perfect fluid;

while when t� t0 the Hubble parameter H(t) is constant Heff = C0 implying that the Universe

seems to be de-Sitter. So, this form of Heff(t) provides transition from a matter dominated

to the accelerating phase [46]. The behavior of the obtained effective Hubble parameter can

be displayied in Fig.(1) with various values of C0, C1. We notice that in all cases the Hubble

parameter is positive and becomes constant at the late time. Next the deceleration parameter
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FIG. 1: The behavior of the obtained effective Hubble parameter Heff with various values of C0, C1.

FIG. 2: The behavior of the deceleration parameter qeff(t) with various values of C0, C1 at early time

(left panel) and late time (right panel).

qeff(t) is defined in terms of the effective Hubble one as follows:

qeff(t) ≡ −

(
1 +

Ḣeff(t)

Heff(t)

)
= −1 +

3C1

(C1 + C0t)
2 . (72)

The behavior of the deceleration parameter qeff(t) can be clearly illustated in Figs.(2). Notice

that at very early time the deceleration parameters show positivity for rational values of C1.

However, in all cases, the deceleration parameters are negative and become constants (∼ −1) at

late time. Moreover, we can examine other cosmological parameters – the statefinder parameters

{r, s}. It is worth noting that statefinder parameters {r, s} = {1, 0} represents the point where

the flat ΛCDM model exists in the r − s plane [47]. So, we can use this fixed point to test the

departure of any particular model from the dark energy ones. We also note that in the r − s

plane, a positive value of the parameter s (i.e. s > 0) implies a quintessence-like model of dark
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FIG. 3: The behavior of the deceleration parameter qeff(t) with various values of C0, C1 at early time

(left panel) and late time (right panel).

energy; whilst a negative value of the parameter s (i.e. s < 0) indicates a phantom-like model

of dark energy. So, different cosmological models, like the models with a cosmological constant

Λ, brane-world models, chaplygin gas and quintessence models, have been studied using such

an analysis [48]. In this study, it was argued that {r, s} can be used to differentiate between

different models. Now the parameters can be defined in terms of the effective Hubble parameter

as

r(t) ≡ 1 + 3
Ḣeff(t)

H2
eff(t)

+
Ḧeff(t)

H3
eff(t)

= 1 +
18C1

(C1 + C0t)
3 −

9C1

(C1 + C0t)
2 , (73)

s(t) ≡ −3Ḣeff(t) + Ḧeff(t)/Heff(t)

3
(

2Ḣeff(t) + 3H2
eff(t)

) =
1

C1 + C0t
− C0t

2C1C0t+ (C1 − 2)C1 + C2
0 t

2
. (74)

We can write t = t(r) by solveing Eq.(73) and substitute t(r) back into Eq.(74). Therefore we

can obtain s in terms of r, i.e., s = s(r). This allow us to make plots the statefinder parameters

as displayed in Fig.(3)

B. Scenario II

In the second case scenario, we consider the dynamics of H1 and derive the equation of

motion. Using the action in Eq.(7) together with the assumtion H3 = cont. = n, Ḣ3 = 0, H2 =

cont. = m, Ḣ2 = 0, A = a(t), B = emt, C = ent with m, n being constants, we find for H1:

2 (m+ n)H1(t)2 +
(

2m2 + 5mn+ 2n2
)
H1(t) + (m+ n)3 = 0, (75)

whose solutions take the form

H±1 =
−2m2 − 5mn− 2n2 ±

√
−4m4 − 12mn3 − 15n2m2 − 12n3m− 4n4

4 (m+ n)
= cont. . (76)
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In this case, the effective Hubble parameter Heff takes a constant value, M :

Heff(t) ≡ 1

3
(H1 +H2 +H3) = M, (77)

implying that we have in this case a de-Sitter behavior of the scale factor, i.e. a(t) ∝ eMt.

Next the deceleration parameter qeff = −1, and the the statefinder parameters {r, s} = {1, 0}

responsible for the flat ΛCDM model.

VI. CONCLUSION

Nash theory of gravity marked one of the alternative theories of gravity. The theory can

be viewed as a modification of GR and has been considered to be of interest in attempting to

develop theories of quantum gravity. In this paper, we study of Bianchi type-I universe in the

context of Nash gravity by using the Noether symmetry approach. We also revisit the Nash

theory of gravity. We make a short recap of the Noether symmetry approach and consider the

geometry for Bianchi-type I model and consider the geometry for Bianchi-type I model. We

obtain the exact general solutions of the theory inherently exhibited by the Noether symmetry.

We also examine the cosmological implications of the model by discussing the two cases of

viable scenarios. Surprisingly, we find that the predictions are nicely compatible with those of

the ΛCDM model.

However, the solutions we found in the present work have to be further tested with obser-

vations. In particular, as presented in [49, 50], scalar-tensor gravity and, in general, Horndeski

gravity, can be severely constrained by cosmological and gravitational waves observations. In

addition, the astonishingly simple observation has already placed severe constraints on several

theories of modified gravity: any modified gravity model predicting cT ≈ 1 must now be seriously

reconsidered, and several previously viable theories of gravity are now excluded [51]. Therefore,

it is reasonable to use cosmological observations in order to constrain the parameters of Noether

symmetries in the Nash theory of gravity.
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