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Abstract

We study the extended thermodynamical properties of the charged black hole in Horndeski

model with the k-essence sector. Then we define a holographic heat engine via the black hole.

We compute the engine efficiency in the large temperature limit and compare the results with

the exact ones. With the given specified parameters in the rectangular engine, the higher order

coupling suppresses the engine efficiencies.
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I. INTRODUCTION

Thermodynamics of the anti de Sitter (AdS) black holes are important fields for us to

understand the nature of quantum gravity and it has been attracting much attention in the

development of holographic gauge/gravity duality [1–3]. Recently, one of the most significant

progress in the study of black hole thermodynamic is extending the study into a more general

case by treating the cosmological constant, Λ, as the pressure of the thermal black hole

system[4–7]. In this synopsis, the thermodynamical volume is defined as the conjugation of

the pressure or Λ, and it usually satisfies the Reverse Isoperimetric Inequality[6, 8] with a

counterexample proposed in [9]. And the standard smarr formula also has to be modified

such that the mass of the black hole plays the role of the enthalpy of the thermodynamical

system[4]. Phenomena in the extended thermodynamic of black hole including Van der

Waals like phase transition, triple points and reentrant phase transition and so on have been

investigated. Readers can refer to the review paper [10] and therein for references.

Besides, based on the extended thermodynamic of AdS black hole, the author of [11]

proposed to define a traditional heat engine via an AdS black hole, which is realized by

a circle in the pressure-volume phase space of the black hole. The defined engine is also

called holographic heat engine because the engine circle represents a process defined on the

space of the dual field theory living in one dimension lower than the bulk. In this engine,

the input of heat, the exhaust of heat and the mechanical work all can be determined from

the gravitational system, so the engine efficient can directly be evaluated in the bulk. The

studies of holographic engine were soon extended in other modified gravitational model, such

as with Gauss-Bonnet correction[12], in Born-Infeld corrected black hole[13], in rotational

black hole[14, 15], in three dimensional black hole[16] and so on[17–21], and many remarkable

properties of engine efficiency were observed. More recently, it was addressed in [22] that

the holographic heat engines defined via AdS black hole can be seen as a working substance

correspond to specific combinations of conform field theory flows and deformations.

Since our world is far from being ideal, so it is more realistic to study the heat engine

defined via black holes with momentum relaxation. The engine efficiency modified by mass of

graviton, which breaks the diffimophism system in the bulk and so introduces the momentum

relaxation in the dual theory[23], has been carefully studied in [24, 25]. One of us studied

the heat engine in the Einstein-Maxwell-Axions theory[26], where the momentum relaxation
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is introduced by the linear massless axion fields[27].

The aim of this paper is to continue to construct holographic heat engine with momentum

relaxation. We will work in the Horndeski gravity with the k-essence sector proposed in [28].

In this theory, besides the minimal coupling of axions term, X = 1
2∇µφi∇µφi, the authors

included nonlinear terms in the form of an arbitrary power of X and got the exact black

hole solution. So this paper can be treated as the extension of our previous work [26]. Note

that with the use of holography, it is found in [28] that the nonlinear terms modifies the dc

conductivities. So we also expect that the terms will enrich the properties of the dual heat

engine.

Following is the plan of this paper. We briefly review the AdS black hole solution in

Horndeski model with the k-essence sector in section II and then study the extended ther-

modynamics in section III. In section IV, we define the holographic engine and get its general

efficiency while in section V, we compute the engine efficiency in large temperature limit

and then compare the results with the exact results. Section VI is our conclusions and

discussions. In this paper, we will work in the units with G = c = h̵ = kB = 1.

II. HORNDESKI MODEL WITH THE k-ESSENCE SECTOR

We shall briefly review the four-dimensional Horndeski gravity with the k-essence sector

proposed in [28]. The action was given by

S = 1

16π ∫
√−g (R − 2Λ − 1

4
FµνF

µν −
2

∑
i=1

(Xi + γXk
i ))d4x , (1)

where the cosmological constant is Λ = −3`−2 with ` the AdS radius and Xi = 1
2∇µφi∇µφi

with i = 1,2. φi are massless scalar field and Fµν is the field strength of Maxwell field. The

above action goes back to that for the minimally coupled Einstein-Maxwell-axions gravity

studied in [27, 29]. The equations of motions derived from the action are the Klein-Gordon

equation

((1 + γkXk−1
i )gµν + γk(k − 1)Xk−2

i ∇µφi∇νφi)∇µ∇νφi = 0, (2)

the Maxwell equation

∇µF
µν = 0, (3)
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and the Einstein equation

Gµν +Λgµν =
1

2
∑
i

(∂µφi∂νφi − gµνXi + γ(kXk−1
i ∂µφi∂νφi − gµνXk

i ) −
gµν
4
F ρσFρσ + FµρF ρ

ν ) .(4)

The above equations of motion admit the following exact black hole solution

ds2 = −f(r)dt2 + dr2

f(r) + r
2(dx21 + dx22) (5)

with f(r) = r2

`2
− 2m

r
− λ

2

2
+ γ λ2k

2k(2k − 3)r
2(1−k) + q2

4r2
, (6)

and the matter fields

φ1 = λx1, φ2 = λx2 , (7)

A = (µ − q
r
)dt , (8)

where m,q are integral constants which are connected with the physical quantities of the

black hole and the integral constant µ is to guarantee the regular condition of Maxwell field

at the horizon. So this solution is not exactly the one presented in [28] where they had the

Coulomb form At = − qr . We note that as pointed out in [28], the coupling parameter γ is

required to be positive to avoid phantom contributions. And the null energy condition, finite

ADM mass and asymptotically matching the GR black hole solution requires the restriction

k > 3/2 in the solution.

III. THE EXTENDED THERMODYNAMICS

The usual thermodynamical analysis has been achieved via the Euclidean approach in

[28]. Here, we will analyze the extended thermodynamical properties of the black hole

solution (5)-(8). To this end, we connect the cosmological constant and the pressure of the

system via [4–7]

P = − Λ

8π
= 3

8π`2
, (9)

where the thermodynamic quantity conjugate to the pressure is defined as the thermody-

namic volume of black holes.

Defining the location of horizon, rh, which satisfies f(rh) = 0 in (6), the integral constant

m is solved as

m = γ2−k−1λ2kr
2(1−k)+1
h

2k − 3
+ 4

3
πPr3h +

q2

8rh
− λ

2rh
4

, (10)
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where we have used (9). The Hawking temperature of the black hole is given by,

T = f
′(r) ∣r→rh

4π
= 2Prh −

q2

16πr3h
− λ2

8πrh
− γ2−k−2λ2kr1−2kh

π
, (11)

and the entropy is

S = V2r2h
4

. (12)

The mass and charge of the black hole are connected with the parameters as[30]

M = 4mV2

16π
= V2

16π

⎛
⎝
γ21−kλ2kr

2(1−k)+1
h

2k − 3
+ 16

3
πPr3h +

q2

2rh
− λ2rh

⎞
⎠
, Q = V2

16π
q (13)

where V2 is the volume of the two dimensional flat space. Subsequently, the thermodynamical

volume as the conjugation of the pressure is

V = (∂M
∂P
)
S,Q

= V2

3
r3h (14)

and the electric potential of the black hole is[31, 32]

Φ = Atχµ ∣r→∞ −Atχµ ∣r=rh= µ = q

rh
= (∂M

∂Q
)
S,P

. (15)

It is straightforward to verify that the first law of thermodynamics

dM = TdS +ΦdQ + V dP (16)

is satisfied.

According to the dimensional analysis[4], we obtain that the modified Smarr relation for

the black hole is1

M = 2TS +ΦQ − 2PV + (2k − 2)ϕγ, (17)

where ϕ is the conjugation of γ with dimension 2k − 2

ϕ = (∂M
∂γ
)
S,P,Q

= V2λ2kr3−2kh

(2k − 3)2k+3π . (18)

It is obvious that without the higher order coupling, i.e, γ = 0 or k = 1, the Smarr formula

is standard which goes back to the result found in [26]. The above Smarr like relation leads

us to consider the role of the mass from internal energy to enthalpy, and so the first law of

black hole thermodynamics (16) should be modified as

dM = dH = TdS +ΦdQ + V dP + ϕdγ. (19)

1 We thank Yen Chin Ong for the helpful discussion on the Smarr formula.
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From the expression of temperature, we get the state equation

P = T

2rh
+ q2

32πr4h
+ λ2

16πr2h
+ γ2−k−3λ2kr−2kh

π
. (20)

In the right hand side of (20), all terms are positive since γ can only be positive, so we can

not observe the P − V criticality in the extended phase space proposed in [33–35]. This is

not necessary to construct dual heat engine to the black hole, which we will study in next

sections.

IV. HOLOGRAPHIC HEAT ENGINE AND ITS GENERAL EFFICIENCY

We will study the holographic heat engine built via the black hole solution described in

previous section. Before the construction, we have to exact two important thermodynamical

physical quantities, the specific heat with the constant volume, CV , and the specific heat

with constant pressure, CP , of the black hole. The general specific heat is defined as C =
T (∂S/∂T ), so we can treat both T and S as functions of the horizon rh to achieve the

calculation.

Differentiation of (12) gives us
∂S

∂rh
= V2

2
rh (21)

The differentiation to the expression of temperature (11) is

dT = (2P + 3q2

16πr4h
+ λ2

8πr2h
+ γ2−k−2(2k − 1)λ2kr−2kh

π
)drh + 2rhdP (22)

from which we obtain

∂T

∂rh
=

2P + 3q2

16πr4
h
+ λ2

8πr2
h
+ γ2−k−2(2k−1)λ2kr−2kh

π

1 − 2rh
∂P
∂T

. (23)

Then the general formula of the specific heat is

C = T
∂S

∂T
= T
( ∂S
∂rh
)

( ∂T
∂rh
)
= (1 − 2rh

∂P

∂T
)

2πPr6h − 1
16q

2r2h − 1
8λ

2r4h − γ2−k−2λ2kr6−2kh

4πPr4h + 1
4λ

2r2h +
3q2

8 + γ2−k−1(2k − 1)λ2kr4−2kh

. (24)

In the case with constant volume which means also constant rh via (14), the state equa-

tion (20) gives us (∂P /∂T )V = 1
2rh

. Thus, the specific heat at constant volume is reduced to

CV = T ∂S
∂T
∣
V
= 0. (25)
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which implies that adiabats and isochores are equivalent. We will see soon that this is a

helpful property in the construction of the cycle of the holographic heat engine.

In the case with constant pressure, we have ∂P /∂T = 0, so the specific heat at constant

pressure, CP , is

CP = T
∂S

∂T
∣
P
=

2πPr6h − 1
16q

2r2h − 1
8λ

2r4h − γ2−k−2λ2kr6−2kh

4πPr4h + 1
4λ

2r2h +
3q2

8 + γ2−k−1(2k − 1)λ2kr4−2kh

. (26)

1

1 2

4 3

V

P

FIG. 1: Cartoon of the engine.

Now, we are ready to define a heat engine dual to the black hole. Following [13–19],we

consider a rectangle cycle in the P − V plane. The cycle is consisted by two isobars and

two isochores as shown in figure 1 where 1,2,3,4 are four corners in the thermal flow cycle.

We will express the relevant quantities evaluated with the use the subscripts 1,2,3,4 at the

related corners. The engine efficiency is computed by

η = W

QH

= (V2 − V1)(P1 − P4)
∫
T2
T1
CP (P1, T )dT

(27)

where W is the work done by the engine and QH is the input of the heat due to the

equivalence of adiabats and isochores in the circle, respectively. It is noticed that in P − V
plane, the isotherms at temperatures Th and Tl with Th > Tl give the Carnot efficiency ηC

and for our engine, it is

ηC = 1 − Tl
Th

= 1 − T4
T2
. (28)

The effect of the momentum λ on the engine efficiency has been studied by one of us in

[26]. So here we will mainly study the engine efficiency η modified by the higher terms of

the axions field . We will set q = 0.1 and the volume V2 = 1 without loss of generality.
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V. ENGINE EFFICIENCY IN LARGE TEMPERATURE LIMIT

To evaluate the efficiency, in general, we can cancel rh in (26) using (11) to rewrite CP

as a function of (P,T ) and then applying the definition (27). However, the integration is

difficult to proceed. So in order to study the efficiency directly from the definition. We

consider the large temperature limit, i.e., T ≫ λ, q, γ, which means that 1/T can be treated

as a small quantity. Solving rh in term of large T from (11), we obtain

rh = T

2P
+ λ2

8πT
+ 8πP 2q2 − λ4P

32π2T 3
+ λ

6P 2 − 16πλ2P 3q2

64π3T 5
+⋯

+ γ (2k−4λ2kP 2k−2

πT 2k−1
− 2k−5kλ2k+2P 2k−1

π2T 2k+1
+⋯) . (29)

Then from (14) and (26), we get the thermodynamic volume and the specific heat at constant

pressure in large T limit as

V = T 3

24P 3
+ λ2T

32πP 2
+ q2

16πT
+ λ

6 − 48πλ2Pq2

1536π3T 3
− 128π2P 3q4 − 48πλ4P 2q2 + λ8P

2048π4T 5
+⋯

+ γ

4π
(2k−5(1 − k)λ2k+2P 2k−3

T 2k−1
+ 2k−4λ2kP 2k−4

T 2k−3
+⋯) , (30)

CP = T 2

8P 2
+ λ

4 − 16πPq2

128π2T 2
+ 24πλ2P 2q2 − λ6P

128π3T 4
+ 960π2P 4q4 − 480πλ4P 3q2 + 15λ8P 2

2048π4T 6
+⋯

+ γ (2k−5(k − 1)λ2kP 2k−3

πT 2k−2
+ 2k−7k(2k − 1)λ2k+2P 2k−2

π2T 2k
+⋯) , (31)

respectively.

Subsequently, we can substitute the above expression of V and CP into (27) to calculate

the efficiency of the engine. Considering the relations of each corner in the circle, we find η

is finally determined by the values of (P1, P4, T1, T2) and we will not write down the detailed

expression due to the complexity.

We now study the affection of higher terms of axions on η. It was addressed in [11]

that one can process by choose different schemes on the given specified quantities. Here, we

will work with given specified (T2, T4, V2, V4) because in this scheme the Carnot efficiency

ηC = T4/T2 will not change with parameters. Recalling the state equation (20), we can

calculate P1 = P2 via (T2, V2) and P4 via and (T4, V4), respectively. Then we can further

calculate T1 via (V1 = V4, P1). The efficiencies η and η/ηC change as γ are shown by dashed

lines in figure 2 which shows that η and η/ηC are both suppressed by increasing the coupling
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parameter. η is always lower than the Carnot efficiency which is expected because Carnot

cycle is the most efficient. We also list the related efficiency for samples of exponent k in

table I. As k increases, η increases slowly, so does η/ηC .

0.5 1. 1.5 2.

g

0.3700234

0.3700235

h

0.5 1. 1.5 2.

g

0.7400468

0.7400470

hêhC

FIG. 2: Engine efficiency effected by γ. We set k = 2.

k η η/ηc
2 0.37002343 0.74004687

5/2 0.37002355 0.74004712

3 0.37002357 0.74004713

TABLE I: Engine efficiency effected by k with γ = 1.

In order to examine whether the above results in large T limit are reliable, we shall double

check them with the exact formula of efficiency

η = 1 − M3 −M4

M2 −M1

(32)

proposed in [36] where M1,M2,M3,M4 denote the related mass of the black hole evaluated

at each corner in the cycle, i.e., the values of (13) computed at each corner. With the

same setup, the results of η and ηc evaluated by (32) are shown by solid lines in figure 2.

Comparing with the dashed and solid lines in the plots, though the results in large T limit

have derivation from the exact results, but the rules are the same. The agreement is also

fulfilled for different power exponent k.

VI. CONCLUSION

In this paper, we focused on the charged AdS black hole in Horndeski gravity with the k-

essence sector proposed in [28] where higher order couplings of axions field were introduced.
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We studied the extended thermodynamics of the black hole and derived the modified smarr

formula as well as the generalized first law of thermodynamic. We found that the coupling

parameter γ should be treated as a thermodynamical quantity to achieve them.

Then based on the extended thermodynamics, we built the holographic heat engine by the

AdS black hole. We especially studied the effect of higher order couplings on the efficiency of

heat engine in large temperature limit. With the given specified (T2, T4, V2, V4), the efficiency

is always lower than the Carnot efficiency as we expect, and it is suppressed by the stronger

coupling parameter. Moreover, as the exponent of higher coupling increases, the efficiency

is enhanced slowly. Finally, we also calculated the exact efficiencies by the method proposed

[36] and it was shown that our results in large temperature somehow is reliable. It is notable

that it is also interesting to study the heat engine with momentum relaxation constructed

via black string or p-brane exactly solved in [37].

In this paper, we have focused on the rectangular engine shown in figure 1, the studies on

how the momentum relaxations terms affect on the engine efficiency in circular engine [38]

and axially symmetric engine as well as riangular type engine[39], can be further extended.

As claimed in [22] that the holographic heat engines can be seen as a working substance

correspond to specific combinations of conform field theory flows and deformations, so it

would be significant to investigate from holography that the role of the higher couplings in

the flows, which may help us understand the deep physic of the phenomena we observed.

We shall study this issue in the near future.
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