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ABSTRACT

Currently there is intense interest in the properties of the Quark-Gluon Plasma pro-
duced in peripheral collisions of heavy ions at various facilities, such as the RHIC. In

particular, it is essential to understand the difference between such plasmas and their
more readily understood counterparts produced in nearly central collisions. The differ-

ences arise primarily from the intense magnetic and vorticity fields generated in the QGP
in the peripheral case. It has been argued that the magnetic fields might have a profound

effect on QGP thermodynamics. Here we will argue, using a gauge-gravity model incorpo-
rating the recently proposed holographic vorticity bound, that vorticity also has important

consequences for the plasma thermodynamics, in particular, for the entropy density at a
given impact energy. A crucial point in our analysis is the need to determine the fate of

bulk gravitational parameters when the duality translates them to the boundary.

http://arxiv.org/abs/1808.00648v1


1. The Thermodynamics of “Peripheral Plasmas”

It is well known that, in its earliest stages of development, the Quark-Gluon Plasma
produced in peripheral heavy-ion collisions is permeated by huge magnetic fields [1–7].

Whether these fields can persist into later stages is much debated: for example, see
[8] for a recent, very relevant discussion. If they can, then they are expected to have

several very important consequences: in particular, they can affect many aspects of the
thermodynamics of the plasma: see [9] for a thorough discussion.

The recent confirmation [10, 11] by the STAR collaboration [12] at RHIC that, as
expected on general theoretical grounds [13–15], these same “peripheral plasmas” are

characterized by very large vorticities, prompts a question: does this vorticity likewise
modify the plasma thermodynamics? This is a particularly natural question in view of

the many analogies and indeed interactions between magnetic and vorticity fields: see for

example [16, 17]).
In order to approach this question, we need to know the location, in the quark mat-

ter phase diagram, of these “highly vortical” plasmas. The experimental answer to this
question [10, 11] is quite surprising and suggestive.

Perhaps the most remarkable aspect of the new experimental findings on QGP vor-
ticity is that it is observed to be very small for plasmas produced in high impact energy

collisions. It is not observed at all in peripheral collisions studied at the LHC ALICE fa-
cility [18], and at first it was not seen [19] in collisions at impact energies

√
sNN = 62.4 and

200 GeV studied by the STAR collaboration; only very recently has it been detected, using
a far larger data set, at such impact energies [11]; the observed vorticities for

√
sNN = 200

GeV are so small that observing them was a technical tour de force. Conversely, con-
siderably larger vorticities are clearly in evidence [10] in collisions at much lower impact

energies, for example around
√
sNN = 19.6, 27, 39 GeV. A precise formulation of the

observations is that vorticity decreases as the ratio α/ε of the angular momentum and

energy densities increases (this ratio increases with impact energy).

The fact that QGP vorticity is most readily investigated at relatively low impact
energies has an important implication: the study of vorticity takes us away from the

extremely high impact energies of the LHC, and into the domain of the Beam Energy

Scans [20] being conducted at RHIC and elsewhere. From a theoretical point of view, it

therefore takes us firmly into the domain of large values of the baryonic chemical potential
µB, and of strong coupling, where one has few analytical techniques.

This, then, is the region of the quark matter phase diagram in which vorticity might
play a decisive role in the behaviour of the QGP: relatively low temperatures, and rel-

atively high values of µB. This is the domain in which the methods of gauge-gravity
duality [21–23] (“holography”) may be helpful. Here, the thermal properties of the QGP

are modelled using a dual black hole in an asymptotically AdS “ ‘bulk”. In order to con-
struct a holographic model of vorticity, we need the black hole to have a non-zero angular

momentum [24]; since the baryonic chemical potential (and possibly the magnetic field)
are large, this black hole must be given electric and magnetic charges [25].

The observed inverse relation between α/ε and angular velocity can be formulated, in

this language, in terms of a question: is it possible for a massive particle orbiting such
a black hole to have a large angular momentum (per unit mass) and yet a small angular
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velocity?
The answer is that this is indeed possible: the relation between angular momentum

and angular velocity for particles orbiting a rotating black hole is not simple [26]). For
example, one often studies particles or observers with zero angular momentum near such a

black hole, and these certainly need not have zero angular velocity: this is frame-dragging.
In [27,28] we showed that such considerations impose, through the gauge-gravity duality,

an upper bound on the possible values of the vorticity ω for a given plasma energy density
ε and angular momentum density α. When the bound is (nearly) saturated, as is often the

case according to the observational data, the relationship between ω and α/ε is an inverse
one, explaining the extreme smallness of the vorticity produced in collisions generating

large angular momentum densities, such as those studied in [11]. In short, we can expect
the vorticity bound to be relevant to understanding the physics of these particular plasmas.

As we have explained, if we wish to pursue the theoretical study of vorticity in the
relatively low-energy domain in which it is most readily observed, we need a full account

of the holography of the baryonic chemical potential (and perhaps of the magnetic field).
We will see that this is not so straightforward as might be thought; there are crucial

parameters which need to be fixed if the theory is to be predictive. We will argue that the

holographic vorticity bound can be used to yield plausible estimates for these quantities;
the holographic model of the QGP can then be used to predict the effect of vorticity on

various properties of the QGP.
In particular, we will argue that vorticity has a significant effect on the thermodynam-

ics of the QGP, just as (extremely) strong magnetic fields do in principle [9]. (In fact,
using the latest data, we will argue that vorticity has in practice a far stronger effect

than the magnetic fields likely to be encountered in the relatively low-energy domain.)
This has potentially major consequences for the interpretation of data currently being

collected (pertaining, for example, to jet quenching, which is thought to be related to
aspects of QGP thermodynamics). In order to show this, we will need to compare situa-

tions without vorticity with those in which the vorticity is measurable: that is, we need a
holographic model in which plasmas generated in central collisions can be compared with

their counterparts produced in peripheral collisions.
We begin by constructing the “holographic dictionary” with this objective in view.

2. Holography Including Vorticity, µB, and Magnetic Fields

The global polarization of Λ and Λ hyperons [29] in heavy ion collisions is an observable

that permits the QGP vorticity to be measured; and the STAR collaboration has reported
the discovery and measurement of this important property, with ever-increasing precision

[19, 10, 11].
We now review the holographic “dictionary” relevant to this vorticity, in the context

of non-negligible values of the baryonic chemical potential and the magnetic field. Some
aspects of this are familiar, but we argue that others have not previously received sufficient

attention.
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2.1. Holographic Basics: Temperature and Entropy

The four-dimensional1 dyonic AdS-Kerr-Newman metric [30] has the form

g(AdSdyKN) =− ∆r

ρ2

[

dt − a

Ξ
sin2θ dφ

]2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 (1)

+
sin2θ∆θ

ρ2

[

a dt − r2 + a2

Ξ
dφ

]2

,

where

ρ2 = r2 + a2cos2θ,

∆r = (r2 + a2)
(

1 +
r2

L2

)

− 2Mr +
Q2 + P 2

4π
,

∆θ = 1− a2

L2
cos2θ,

Ξ = 1− a2

L2
. (2)

Here L is the AdS length scale, a is the angular momentum per unit physical mass, and
M,Q, and P are parameters (with units of length in natural units) related [31] to the

physical mass m, the electric charge q, and the magnetic charge p, by

m = M/(ℓ2BΞ
2), q = Q/(ℓBΞ), p = P/(ℓBΞ), (3)

where ℓB is the gravitational length scale in the bulk, to be discussed in detail below.

Notice that L, whatever meaning it may have on the boundary, is constrained in the bulk
by the value of a: for the geometry to make sense (that is, if the metric is to have a

consistent signature), we must have
L > a. (4)

We will discuss this inequality in more detail later.

The electromagnetic potential form here is given (see [30, 16]) by

A =

(

− Qr + aP cosθ

4πℓBρ2
+

Qrh + aP

4πℓB (r2h + a2)

)

dt (5)

+

(

1

4πℓBρ2
[

Qar sin2θ + P cosθ
{

r2 + a2
}]

− P

4πℓB

)

dφ,

where rh is the value of the radial coordinate at the event horizon, which is of course

related to the other parameters by

∆r(rh) = (r2h + a2)
(

1 +
r2h
L2

)

− 2Mrh +
Q2 + P 2

4π
= 0. (6)

1It is customary in collision physics to focus on a two-dimensional section through the system, the
reaction plane or “x − z plane”. This is particularly appropriate when studying systems with large
magnetic fields or angular momenta, the magnetic field vector or angular momentum vector being taken
parallel to the y - axis perpendicular to the reaction plane. In effect, the system can be treated as
inhabiting a three-dimensional spacetime, in which the physics is dual to a four-dimensional bulk.
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The constant terms in equation (5) are important: see [16] for the derivation2.
The Hawking temperature of the black hole is given [30] by

T =
rh

(

1 + a2/L2 + 3r2h/L
2 − a2 + {Q2+P 2}/4π

r2
h

)

4π(a2 + r2h)
. (7)

The entropy of the black hole is proportional to the area of its event horizon, which is

equal to 4π(r2h + a2)/Ξ, so we have

S =
π (r2h + a2)

ℓ2BΞ
. (8)

For holographic purposes it is actually more useful to consider the ratio of the black hole’s
entropy to its physical mass, given (see the first member of equations (3)) by

S

m
=

πΞ (r2h + a2)

M
. (9)

The “holographic dictionary” in this case begins as follows.
As always, the Hawking temperature given by (7) will be identified with the temper-

ature of the plasma-like matter in the boundary theory, T∞:

T∞ =
rh

(

1 + a2/L2 + 3r2h/L
2 − a2 + {Q2+P 2}/4π

r2
h

)

4π(a2 + r2h)
. (10)

We can identify the entropy per unit mass of the bulk black hole (equation (9)) with
the ratio of the entropy density s to the energy density ε of the boundary plasma:

s

ε
=

πΞ (r2h + a2)

M
. (11)

Note that ℓB does not appear here, just as it does not appear in the expression for the

temperature; though it does appear in the expressions for the entropy and the mass of
the black hole separately.

We now turn to some less familiar entries in the holographic dictionary.

2.2. Angular Momentum Density and Effective Radius of Gyration

The parameter a is interpreted on the boundary as the ratio of the angular momentum
density of the plasma to its energy density3. These densities can be estimated (using for

2As a check that the various constants here are correctly placed, one can integrate (for example) the
electric field, given here (from equation (5)) by

E =
−1

4πℓBρ4
[

Q
(

r2 − a2cos2θ
)

+ 2Pra cos θ
]

,

against the element of area in this case, r
2
+a

2

Ξ
sin θ dθ dφ (for any surface defined by a fixed r), obtaining

finally Q/(ℓBΞ) = q (equations (3)), so the physical charge q (and not the geometric black hole parameter
Q) does emerge correctly in Gauss’ law.

3In natural units, the two densities have dimensions respectively of fm−3 and fm−4, so a has units of
fm.
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example [32]) and so, for a given collision of heavy ions, we can assign a definite numerical
value to a. For example, we will later be considering collisions of gold nuclei, observed

by the STAR collaboration, at impact energy 200 GeV and centrality around 20%. Using
the estimates given in [32], we find that, in this case, a ≈ 82.5 fm.

We belabour this point a little because we wish to stress that the AdS length scale
parameter L, while initially defined in the bulk, must have some interpretation, and

therefore some definite value, determined by the physics of the boundary theory. This is
a simple consequence of the fact that the duality translates all aspects of the bulk theory to

the (precisely equivalent) boundary theory. More specifically, consider the inequality (4)
given above, which is essential for the mathematical consistency of the bulk theory. From

what we have just said, it is clear that, when discussing the QGP produced in collisions of
gold nuclei at 200 GeV impact energy and centrality around 20%, this inequality implies

that L must be some definite number of femtometres, larger than 82.5. Certainly, we
cannot simply assign L some value “for convenience”: we have to determine its value in a

physical way4.
Another lesson we learn from the inequality (4) is that we should expect L to vary

from case to case, since a surely will do so; that is, we cannot expect to describe all of

the boundary theories in which we are interested by using a single AdS spacetime. (This
is not entirely surprising, because, in the AdS/CFT correspondence, L is related to the

fundamental field theory parameters, such as the number of colours, through its ratio with
other quantities having dimensions of length; so it is these ratios that should be fixed, not

L itself, if one is considering (say) a set of collisions all at the same impact energy. See
Section 2.3 below.)

Fortunately, it is possible to argue that holography itself supplies an approach to
determining L in each case that concerns us. This works as follows (see [27, 28] for the

technical background).
As mentioned above, the fact that the observed QGP vorticities are unexpectedly

small suggests that there may be a bound on QGP vorticity, and such a bound can indeed
be derived from the gauge-gravity duality. To be precise: the duality furnishes a relation

between the vorticity ω and the ratio a = α/ε of the angular momentum and energy
densities, taking the form

ω =
a

L2

√

1− a2

L2

1 + a2

L2

(

1− a2

L2

) ; (12)

this is derived by studying the relationship between the angular momentum per unit mass

and the angular velocity of particles in orbit around the bulk black hole. As mentioned
in Section 1, one expects a non-trivial relationship between the two when the black hole

4We note that the problem of understanding the role of L on the boundary arises also in the study
of “holographic complexity”. In [33] (see particularly Section 6) the authors find that “the complexity
explicitly depends on the AdS curvature scale L, which has no interpretation in the boundary theory”.
The difficulties involved in attempting to eliminate this additional scale are then discussed; interestingly,
none of the natural choices leads to an acceptable outcome, though there may be ways to circumvent this.
The same issue is also discussed at the end of Section 2.2.1 of [34] and in Section 5 of that work (“ . . . the
AdS scale, which is not a quantity that the boundary CFT should know about. . .”). Our attitude here
is different: it is our task to determine the value of L by elucidating its role in boundary physics, not to
try to eliminate it.
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is rotating, and, as can be seen, this is the case here: ω and a are related linearly only
when a is very small relative to L.

If we fix a (regarding it as being determined by the impact energy and centrality of
a given collision), then ω can be regarded as a function of L, on the domain (a, ∞).

An example of this is shown in Figure 1, for a collision with impact energy 27 GeV and
centrality around 20%.

Figure 1: Angular velocity (units of fm−1) as a function of L, with impact energy
√
sNN =

27 GeV, centrality C = 20%.

One sees that indeed ω is bounded above, whatever the value of L may be. It is
straightforward to show that this maximum is inversely proportional to a, and, with the

holographic interpretation of a as α/ε, this explains why the vorticity is small in collisions
with large impact energies (and therefore large values of α/ε).

Now in fact it turns out that, except at very low impact energies, the observed vor-

ticities not only respect this bound: to a good approximation, they saturate it. This
is the case [27, 28] for nearly all5 of the impact energies considered in [10, 11], namely√
sNN = 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV (at around 20% centrality). In these cases,

then, L must be approximately given by that value, Lωmax
, which corresponds to the max-

imum visible in Figure 1 (and the corresponding graphs for the other impact energies).
One can easily show that Lωmax

is a universal dimensionless multiple (denoted ς) of a:

Lωmax
= ς a ≈ 1.2048 a. (13)

5It is not the case for the lowest impact energy considered in [10], namely 7.7 GeV. However, the
reported data in that case are rather anomalous, in the sense that the reported difference between the
average polarizations of Λ and Λ hyperons is very extreme. This case perhaps requires further attention,
both experimental and theoretical (see in this connection the recent interesting observations in [35]).
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This gives us a way of computing L for given collision parameters, in those cases where
the vorticity bound is attained. In cases where the bound is not attained, we will obtain

L by means of a simple extrapolation: this is needed, for example, to determine L0, the
value of L for central collisions: that is, L0 ≡ L(a = 0).

From a theoretical point of view, one can understand the physical role of L in this
application by considering the classical radius of gyration, traditionally denoted k, defined

as the square root of the ratio of the angular momentum per unit mass of any steadily
rotating rigid object to its angular velocity. In the present case, we can define an analogous

quantity, which we can call the effective radius of gyration of a plasma vortex, as keff =
√

a/ω. This is no more than a definition: a plasma sample is not a rigid object, in

particular it expands extremely rapidly after the collision, so we do not expect to be able
to compute keff from simple geometric considerations; one should think of it as an average

value over the lifetime of the plasma, meaning that it can be expected to be substantially
larger than the value computed from data on gold nuclei (even for central collisions).

Nevertheless, this way of thinking about the parameters is useful: we have, from equation
(12),

keff = L





1 + a2

L2

(

1− a2

L2

)

1− a2

L2





1/4

, (14)

from which we see at once that L0, the value of L for central collisions, has the following

interpretation: it is the effective radius of gyration for a plasma sample produced in such

a collision (α = a = 0).

In the cases in which the vorticity bound is saturated, one can easily compute keff using
equations (13) and (14), combined with data determining a (see [27] for the details). The

results are shown in Figure 2 for collisions with
√
sNN = 11.5, 14.5, 19.6, 27, 39, 62.4

GeV and 20% centrality. (For clarity, we have omitted the data point (200 GeV, 139.7

fm): it follows the same pattern as seen in the Figure, that is, it lies close to the least-
squares regression line.) The interpretation of Figure 2 is as follows. As the impact

energy increases, for collisions at fixed centrality, the angular momentum density likewise
increases; in fact, α increases approximately linearly6 with the impact energy [32]. Thus

we see that the presence of angular momentum has a strong tendency to increase the
effective radius of gyration of the plasma vortices, and this may help to explain the

smallness of the vorticity in high-energy collisions. A closely related possibility (that
impact energy affects the moment of inertia of the plasma forming vortices) was suggested,

in general terms, in [32, 36].

Because of the approximately linear relation between angular momentum density and
impact energy, we can think of the horizontal axis as a proxy for the angular momentum

density. In view of the fact that the points shown are close to a straight line (as men-
tioned, the point not shown, (200 GeV, 139.7 fm), also lies very close to this line), we can

extrapolate a least-squares regression line to obtain an estimate of keff(α = 0), that is,
L0: we find L0 ≈ 15.7 fm. In view of the discussion above, this is not an unreasonable

order-of-magnitude estimate for the rapidly expanding plasmas generated by collisions of
heavy ions, for which physical length scales are typically in the 1 - 10 fm range.

6The parameter a also increases with impact energy, but not linearly, since the energy density also
increases, though considerably more slowly than α.
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Figure 2: keff (in femtometres) for gold ion collisions at
√
sNN =

11.5, 14.5, 19.6, 27, 39, 62.4 GeV, 20% centrality. The point (200 GeV, 139.7 fm)
has been omitted for clarity; it lies very close to the least-squares regression line
(computed including it) shown.

To summarize: by using the holographic vorticity bound, we have been able to find
interpretations for, and reasonable numerical estimates of, the bulk parameters a and L,

in terms of boundary physics: they are related to the angular momentum density and to
the effective radius of gyration of the system.

2.3 Baryonic Chemical Potential and Magnetic Field

The final two entries in the “dictionary” concern the baryonic chemical potential µB of
the plasma, and the magnetic field at infinity, B∞. They require an extended discussion,

because they differ from T∞, s/ε, a, and L, in a simple yet, for us, crucial way: they are

obtained by means of a limiting process, taking the radial coordinate r to infinity. In this
they are similar to the boundary metric, obtained in the same way; but this means that,

like the boundary metric, they are ambiguous, up to an overall scaling factor 7.

7Recall that, for example, the magnetic field is extracted from the field strength tensor by expressing
the latter in terms of an orthonormal basis. But, to the extent that one has a scaling ambiguity in the
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Essentially this same point was made, in a somewhat more physical way, in [25]: see
the discussion of “the relative normalization of the gauge and gravity kinetic terms” in

Section 2.1 of that work (and also its Section 2.3). The point made there is that, with
the gravitational/gauge Lagrangian usually employed in the bulk, the electromagnetic

potential form has the “wrong” units: the timelike component must have units of energy
or reciprocal length, but this can only be achieved by introducing an additional length

scale, denoted in [25] as L∗.
To relate this to the scaling ambiguity mentioned above, note one has (from [25])

L∗ ∝ ℓ
3/2
B in the five-dimensional case; in the four-dimensional case with which we are

concerned in this work, L∗ and ℓB are related by simple proportionality. The dimensionless
quantity L∗/L is therefore (in four dimensions) proportional to ℓB/L, which, in holography

[21], has a definite meaning and a fixed value: one has ℓ2B/L
2 = 3/(2Nc)

3/2, where Nc is
the number of colours in the boundary field theory8. Thus it makes sense to define a

dimensionless quantity ̟ ≡ L∗/L, since this quantity is determined for a boundary field
theory with a given number of colours and gauge coupling.

We will assume that all plasmas produced in heavy-ion collisions at a given impact
energy are described by a single boundary theory with some fixed number of colours and

gauge coupling: that is, all such plasmas are described by the same value of ̟, which is

fixed in this sense. (Myers et al. also fix L∗/L at a definite value, but they do not attempt
to determine what this value might be, selecting L∗/L = π (their equation 2.23) simply

for convenience.) Here we will take a different point of view: we regard ̟ as a physical
parameter which must have a numerical value fixed by data9.

With this understood, we have, taking the limit in equation (5) (and in the corre-
sponding field strength 2-form),

B∞ =
ΞP

̟L3
(15)

and

µB =
3 (Qrh + aP )

4π̟L (r2h + a2)
. (16)

Notice that ̟ appears only in these two equations. If one is dealing with a plasma

with an extremely high temperature, so that µB can be neglected, and if one is interested

in plasmas produced in very central collisions, or in phases of the evolution of the plasma
in which the magnetic field has attenuated to such an extent that it can be neglected,

or if one is simply concerned with issues unrelated to these parameters (as for example
in [27,28]), then the precise value of ̟ is not needed. In the situations to be considered in

this work, however, the case is very different, since µB certainly, and B∞ possibly, are not
negligible if one wishes to investigate the effect of vorticity on thermodynamic variables.

Physical data pertaining to the boundary plasma produced in central collisions allow
us to specify T∞, s/ε, and µB (as well as, of course, a = 0, B∞ = 0): see for example

the discussions in [38,39]. Since we know L0, we have now five equations ((6), (10), (11),

boundary metric, so also orthonormal bases are ambiguous.
8In this case the bulk dual involves Nc M2-branes (see [37]). This replaces the more familiar relation

ℓ3
B
/L3 = π/(2N2

c
) for a five-dimensional bulk.

9As we will see, in every case we consider, ̟ does in fact turn out to be of the same order of magnitude
as π; so there is no great disagreement with [25].
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(15), and (16)), which can be solved for the black hole geometric parameters Q,P,M, rh,
and also ̟.

For example, let us consider central collisions at
√
sNN = 200 GeV. For consistency, we

take the values of T∞, s/ε, and µB in this case from the same source, [39] (where the values

of these parameters are indeed given only for central collisions): we have T∞ ≈ 190 MeV,
s/ε ≈ 1.284 fm (see also [38]), and µB ≈ 30 MeV. Using L0 ≈ 15.7 fm and a = B∞ = 0,

we solve (6), (10), (11), (15), and (16) in this case, and find that ̟(
√
sNN = 200 GeV)

≈ 9.177. (Collisions at lower impact energies lead to smaller values of ̟ (for reasons

explained below), but, in all cases we consider, ̟ lies between 1 and 10.)
In short, we now have estimates of L and ̟ for given physical conditions, and so we

are finally in a position to make some predictions. Our main example is as follows.

3. Case Study: The Effect of Vorticity on Entropy Density

We have seen that, in central collisions with impact energy 200 GeV, the ratio s/ε(a =
0, B∞ = 0) of the entropy density to the energy density of the QGP is around 1.284 fm.

One expects, on general grounds, that this quantity (unlike the temperature or µB) could
be substantially different for plasmas produced in peripheral collisions: for the strong

magnetic fields permeating these “peripheral plasmas” might constrict the relevant phase
space [9], with a consequent strong effect on the entropy density. The question we wish

to ask is whether vorticity might have a similar effect, and which of the two is more
significant in this sense.

In the 200 GeV impact energy case, we consider centralities C in the 20 − 50% range
studied in [10]. For reasons explained in [27], the parameter a varies very little in this

domain, so we use its value at C = 20%, which (from [27]) is approximately 82.5 fm.
Since the vorticity bound is saturated here [11, 28], L can be computed from equation

(13). Since we now know ̟, all that remains is to discuss B∞.
As we have stated, there is no doubt that the magnetic field is enormous at the very

beginning of the plasma lifetime: for collisions at impact energy 200 GeV and centrality

ranging between 20% and 50%, this initial value probably ranges between 5.2 and 7.7
fm−2 (with a strong dependence on centrality) [2]. The question is whether, as a naive

estimate based on the departure of the spectator nucleons would suggest, this magnetic
field attenuates very rapidly, and so might not have much effect over the lifetime of the

plasma.
The most recent observational evidence related to this question comes, very interest-

ingly, from the same observations [10] that uncovered the existence of vorticity resulting
from the collisions we have been discussing: Müller and Schäfer observe [8] that, while

the sum of the global polarization fractions of Λ and Λ hyperons is sensitive to the vor-
ticity [29], their difference puts a bound on the magnetic field late in the lifetime of the

plasma. This bound proves to be very small, suggesting clearly that, in this case at any
rate, the magnetic field does attenuate rapidly.

Rather than take a stand on this, we will consider three possible scenarios: we take
B∞ to have its maximal possible value in these circumstances, B∞ = Bmax = 7.68 fm−2

(which, in view of [8], must now be considered rather unlikely); then, more plausibly,

B∞ = Bmax/10; and, finally, B∞ = 0.
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Having fixed all of these parameters, we have now only four unknowns (Q,P,M, rh),
and they can be found by solving the four equations (6), (10), (15), and (16). We can

then use equation (11) to compute the value of s/ε for collisions at this impact energy
and centrality.

Our results in this case (
√
sNN = 200 GeV) are as follows.

[1] Leaving aside, for the moment, the effect of the magnetic field, the effect of vorticity

is to reduce the entropy density to energy density ratio, by a very substantial factor: the
value drops from s/ε(a = 0, B∞ = 0) ≈ 1.284 fm to s/ε(a = 82.5, B∞ = 0) ≈ 0.399

fm. Note that, in the case of magnetic fields [9], ε is reduced (only to a small extent,
however, for the field values encountered here); if the analogy between vorticity and

magnetic fields continues to hold here, then the reduction of s/ε means that vorticity
induces a still larger decrease in the entropy density s itself. Even allowing for the fact

that holographic numerical predictions are not always very precise, it is clear that we are
entitled to assert that the holographic model predicts that the vorticity induced in the

QGP in peripheral collisions has a very strong effect on the entropy density and therefore

on plasma thermodynamics more generally.

[2] If we now include a magnetic field of the maximal possible strength here, we

find that s/ε declines still more drastically, to s/ε(a = 82.5, B∞ = Bmax) ≈ 0.111 fm,
confirming the claim [9] that such extremely intense magnetic fields arising in peripheral

collisions, were they realistic, would also have a very strong effect on the entropy density.
This may also indicate that the mechanism of the reduction is similar in the two cases.

[3] However, the effect of magnetic fields of more realistic magnitudes is much less
marked: we find that s/ε(a = 82.5, B∞ = Bmax/10) ≈ 0.356 fm, only a little lower than

s/ε(a = 82.5, B∞ = 0). In reality, then, it seems that vorticity is by far the dominant
factor in reducing the entropy density in this case.

We have repeated these computations for the other impact energies and centralities
considered in [10] where the vorticity bound is approximately attained, that is, for

√
sNN =

11.5, 14.5, 19.6, 27, 39, 62.4 GeV, at 20% centrality. The results are shown in the table;
recall that s/ε has units of femtometres (1 fm ≈ (197.327 MeV)−1).

√
sNN (GeV) s/ε(0, 0) s/ε(a, 0) s/ε(a, Bmax/10) s/ε(a, Bmax)
11.5 1.344 0.418 0.418 0.418
14.5 1.341 0.417 0.417 0.417
19.6 1.335 0.415 0.415 0.414
27 1.335 0.415 0.415 0.410
39 1.320 0.411 0.411 0.392
62.4 1.317 0.410 0.408 0.319
200 1.284 0.399 0.356 0.111

The results are similar in these cases — indeed, to three decimal places, the ratio

[s/ε(a, 0)]/[s/ε(0, 0)] has the same value, around 0.311, in every case — except that,

at the lower impact energies, the magnetic field has even less effect than at
√
sNN = 200

GeV. Holographically, this is to be understood as follows: at low impact energies, the

magnetic field is smaller in absolute terms, while µB is very much larger (it increases from
around 30 MeV in

√
sNN = 200 GeV collisions up to around 290 MeV when

√
sNN = 11.5

GeV). This means that the dimensionless quantity B∞/µ2
B is very much smaller for low-

energy collisions than for their high-energy counterparts. However, in the holographic

12



model, B∞/µ2
B is proportional to the parameter ̟, so we expect this parameter to be

smaller for low-energy collisions, and this is certainly the case in all of the examples we

have studied. However, when this ̟ is small, B∞ is, effectively, reduced still further
(as can be seen by transferring ̟ to the left side of equation (15)), and so it has little

influence on the system.
In short, in the domain in which vorticity is most prominent (particularly when√

sNN = 19.6, 27, 39 GeV), the magnetic field has almost no impact on the entropy
density. (Conversely, the magnetic field dominates over vorticity in very high energy

collisions, where, in fact, vorticity is undetectably small; that is, the findings of [9] are
relevant for heavy-ion collisions at the LHC, but not for the RHIC collisions.)

In summary, then, for those collisions in which vorticity is detectable, the holographic
model predicts that the vorticity greatly reduces the ratio s/ε, to around one third of its

value in the corresponding central collisions; this probably means that s is reduced by
about this factor, or perhaps slightly more. The effect is indeed due to the vorticity, not

to the magnetic field.

4. Conclusion

The recent direct observations of QGP vorticity [10, 11] have opened a new line of inves-
tigation. The question is whether “highly vortical” plasmas differ substantially from their

better-known counterparts generated by nearly central collisions.
We have argued here, using a holographic or gauge-gravity model, that the vortical

plasmas do differ very substantially from the non-vortical QGP: in particular, they are
characterised by a far smaller entropy density to energy density ratio. This has many

ramifications.
For example, consider the effect of vorticity on the diffusion of momentum in the QGP.

This is measured by the kinematic viscosity ν, which is the ratio of the dynamic viscosity
η to the energy density: this is the parameter that occurs in the Navier-Stokes equations.

In a holographic model based on Einstein gravity (only), as is the case here, the ratio η/s

is fixed10 [21]; but then since we have

ν =
η

ε
=

η

s
× s

ε
, (17)

this means that ν is significantly smaller in the vortical plasma than in the central case.
Thus the flow of the QGP “liquid” might well be strongly affected by vorticity.

Again, the much-studied jet quenching parameter q̂ is related, in holographic models
[42, 43], to the entropy density, and so jet quenching might also have unusual aspects in

holographic models of the QGP, particularly for collisions at relatively low energies [44].
We will return to this important question elsewhere.
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