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Abstract: We perform a double quotient of global AdS4 and study its thermal properties.

We find that a double quotient yields a spacetime with an expanding compact dimension.

Studying the entanglement of the dual CFT we find that, at early times, the spacetime has

thermal properties which disappear after a critical time. For slow expansion, this critical

time depends on the expansion rate as expected, but becomes much more sensitive with

more rapid expansion rates.
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1 Introduction

Over two decades ago, a new solution to Einstein’s equations in 2 + 1 dimensions with a

negative cosmological constant was discovered by Bañados et al [5]. This solution, known

as the BTZ black hole, is an eternal black hole spacetime which is locally identical to

Anti-de Sitter (AdS) space. It was also shown that this spacetime could be obtained from

a quotient of global AdS [5, 12].

The BTZ black hole has proven to be an invaluable tool for studying quantum gravity,

especially in regards to the AdS/CFT correspondence due its exhibiting interesting global

properties, while remaining locally trivial [2, 3, 4]. While the BTZ black hole has been

generalized to higher dimensions, calculations in these higher-dimensional generalizations

are made more complicated due to time-dependences in the spacetimes.

Of interest to this paper is the case of a double quotient of global AdS in 3 + 1

dimensions. In 2 + 1 dimensions, it has been shown that, depending on the identification

chosen, the second quotient either produces a third exterior region and creates a multi-

boundary wormhole, or identifies the two asymptotic boundaries of the BTZ black hole to

create a single-exterior black hole [10, 16, 17]. The implications of this in terms of multi-

partite entanglement of (1 + 1)-dimensional CFTs has also been discussed [11]. Where a

single quotient of (3+1)-dimensional global AdS yields an exotic single-exterior black hole,

we find that a double quotient results in a four-exterior black hole spacetime reminiscent

of a big bang. This is not a typical big bang, however, in the sense that the entire universe

spawns from a single point. Instead, we see that only a single, compact dimension is created

which then expands to become macroscopic.

We begin by reviewing the single quotient of global AdS in 3 + 1 dimensions. We go

on to study the thermodynamics of this spacetime using holographic methods. Then we
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perform the second quotient which yields a new spacetime whose thermodynamic behavior

we study. We assign a Hartle-Hawking state to show that the dual CFTs are initially in

an entangled thermofield double state. We then apply Ryu and Takayanagi’s Holographic

Entanglement Entropy (HEE) to the double-quotient spacetime to find the time-dependent

behavior of the entanglement and discuss its implications on the thermodynamics of the

spacetime. We end with our conclusions about the work.

2 Single Quotient of Global AdS4

This section serves as an overview of the process used to obtain the (3+1)-dimensional

topological black hole in [7] as well introduce different coordinate systems which will be

useful later on. To perform the first quotient, we begin with global (3 + 1)-dimensional

AdS (AdS4), defined as the surface

− T 2
1 − T 2

2 +X2
1 +X2

2 +X2
3 = −l2 (2.1)

embedded in R2,3 with metric

ds2 = −dT 2
1 − dT 2

2 + dX2
1 + dX2

2 + dX2
3 (2.2)

where l is the AdS radius. We will consider the boost-like isometry given by

ξ = −X1∂T1 − T1∂X1 , ξ2 = −X2
1 + T 2

1 (2.3)

to generate the quotient. To avoid closed timelike curves, we remove regions of the space-

time where ξ2 < 0 after the quotient [9, 10]. This creates a singularity in the causal

structure where timelike geodesics can end at

−X2
1 + T 2

1 = 0 (2.4)

or equivalently, by using (2.1),

− T 2
2 +X2

2 +X2
3 = −l2. (2.5)

This singularity asymptotes to the null cone given by

T 2
2 = X2

2 +X2
3 ⇒ X2

1 − T 2
1 = −l2 (2.6)

which we identify as the event horizon of the black hole. These surfaces are plotted in

Figure 1.

We can define coordinates on the surface (2.1), which are related to the coordinates of

the embedding space by

T1 = l
1− t2 + y21 + y22
1 + t2 − y21 − y22

cosh
(r+
l
φ
)

, T2 =
2lt

1 + t2 − y21 − y22

X1 = l
1− t2 + y21 + y22
1 + t2 − y21 − y22

sinh
(r+
l
φ
)
, X2 =

2ly1
1 + t2 − y21 − y22

, X3 =
2ly2

1 + t2 − y21 − y22
(2.7)
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Figure 1. Singularity (red) and event horizon (black) created from a quotient by ξ. Here, the T1
and X1 coordinates are suppressed.

where r+ is a constant. In terms of these coordinates the induced metric on the surface

becomes

ds2 =
4l2

(1 + t2 − y21 − y22)2
(−dt2 + dy21 + dy22) + r2+

(
1− t2 + y21 + y22
1 + t2 − y21 − y22

)2

dφ2 (2.8)

and the Killing vector which generates the quotient becomes ξ = ∂φ [7]. The quotient

makes the identification φ = φ+ 2π, and the coordinate ranges after the quotient are given

by t, yi ∈ (−∞,∞) and φ ∈ [0, 2π). In these coordinates the singularity is given by the

surface

ξ2 = l2
(

1− t2 + y21 + y22
1 + t2 − y21 − y22

)2

= 0 → −t2 + y21 + y22 = −1 (2.9)

and the event horizon is given by

T 2
1 −X2

1 = l2
(

1− t2 + y21 + y22
1 + t2 − y21 − y22

)2

= l2 → −t2 + y21 + y22 = 0. (2.10)

We can also see that the embedding coordinates diverge at the surface

1 + t2 − y21 − y22 = 0 (2.11)

which we associate with the boundary of the spacetime. Here we note that, aside from

the singularity, the spacetime in these coordinates is geodesically complete, and therefore

no further maximal extension is necessary [7]. In addition we see that this spacetime has

only a single, connected asymptotic boundary, as opposed to the (2 + 1)-dimensional case,

which has two asymptotically distinct boundaries [5, 7, 12].
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For future reference, it is also helpful to define “Schwarzschild coordinates” which cover

the full exterior of the black hole. These can be defined by

t = χ sinh t′ , y1 = χ cosψ cosh t′ , y1 = χ sinψ cosh t′ (2.12)

giving the metric [7]

ds2 =
4l2

(1− χ2)2
(
−χ2dt′2 + dχ2 + χ2 cosh2 t′ dψ2

)
+ r2+

(
1 + χ2

1− χ2

)2

dφ2. (2.13)

The first quotient of AdS4 is an interesting case to study due to its single asymptotic

boundary. Once we perform the second quotient of the spacetime, this single boundary will

be split into four distinct asymptotic boundaries, and will also exhibit non-trivial thermal

behavior.

3 Particle Modes in the Boundary Theory

It has been shown [1, 2, 3, 4] that the thermodynamics exhibited by asymptotically AdS

spacetimes are mirrored in CFTs defined on the conformal boundary of the spacetime.

We will use this to our advantage to track the thermal behavior of the double-quotient

spacetime in the next section. First, we will define global coordinates on AdS4 in terms of

the embedding coordinates by

T1 = l
1 + r2

1− r2
cos t , T2 = l

1 + r2

1− r2
sin t

X1 =
2lr

1− r2
cosλ , X2 =

2lr

1− r2
cosψ sinλ , X3 =

2lr

1− r2
sinψ sinλ (3.1)

with ranges r ∈ [0, 1), ψ ∈ [0, 2π), λ ∈ [0, π], and t ∈ (−∞,∞) after enforcing a universal

covering to avoid closed timelike curves [6]. The metric becomes

ds2 =
4l2

(1− r2)2

[
−
(
1 + r2

)2
4

dt2 + dr2 + r2dλ2 + r2 cos2 λ dθ2

]
(3.2)

where the boundary is located at r = 1. The Killing vector that generates the quotient to

form the black hole is given by (2.3). There is another Killing vector orthogonal to ξ given

by η = X2∂T2 + T2∂X2 , where the motivation for introducing η will become clear. To get

the metric on the boundary, we multiply (3.2) by the conformal factor

Ω2 =

(
1− r2

)2
4l2

(3.3)

and take r → 1 to obtain
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dσ2 = −dt2 + dλ2 + cos2 λ dψ2. (3.4)

The conformal Killing vectors on the boundary corresponding to ξ and η are given by

ξb = cosλ sin t ∂t + cos t sinλ∂λ

ηb = cos t sinλ cosψ ∂t+ sin t cosλ cosψ∂λ − sin t cscλ sinψ ∂ψ (3.5)

respectively [15]. To find the region of the boundary that will survive the quotient, we

must find the region where ξ2b > 0. This region corresponds to the single diamond

0 < λ < π, |t| < π

2
−
∣∣∣λ− π

2

∣∣∣ (3.6)

in contrast to the BTZ black hole, which gives two separate diamonds [16, 17]. This is

a reflection of the fact that the (3 + 1)-dimensional topological black hole has a single,

connected boundary.

To better understand the action of ξb on the boundary, we define the coordinates

(inspired by those used in [16])

α = − log

[
tan

(
λ− t

2

)]
β = log

[
tan

(
λ+ t

2

)]
(3.7)

giving the metric

dσ2 =
dαdβ + cosh2 [(α+ β)/2] dψ2

coshα coshβ
(3.8)

where the conformal Killing vectors are now given by

ξb = −∂α + ∂β

ηb = cosψ (∂α + ∂β)− sin θ tanh

(
α+ β

2

)
∂ψ. (3.9)

The vector ξb maps the point

(α, β, ψ)→ (α− c, β + c, ψ) (3.10)

where c is a constant. Unfortunately, the metric (3.8) is not invariant under an action

generated by ξb, but the conformally related metric

dσ2 = −dα dβ + cosh2

(
α+ β

2

)
dψ2 (3.11)

is. Finally, defining α = t′ − r+φ and β = t′ + r+φ where τ, φ ∈ (−∞,∞), we obtain the

metric
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dσ2 = −dt′ 2 + cosh2 t′ dψ2 + r2+dφ
2 (3.12)

and the conformal Killing vectors take the form

ξb = ∂φ

ηb = cosψ ∂t′ − sinψ tanh t′ ∂ψ. (3.13)

A quotient by ξb makes the identification φ = φ+ 2π and we see that the metric (3.12) is

the conformal boundary of the topological black hole in the coordinates (2.13).

Near t′ = 0, we find ηb = cosψ ∂t′ is purely timelike, except for the points ψ = ±π/2.

Moreover, for the region

Df
.
=
{
ψ ∈

(
−π

2
,
π

2

)}
(3.14)

ηb is future-directed, while for the region

Dp
.
=

{
ψ ∈

(
π

2
,
3π

2

)}
(3.15)

ηb is past-directed. Therefore, we naturally associate ηb with particle modes in the bound-

ary theory, where positive energy modes are associated with ηb in Df and negative energy

modes are associated with ηb in Dp.

As the system evolves away from t′ = 0, we find that ηb is no longer timelike over

the full boundary and thus ηb will only generate particles on the region of the spacetime

corresponding to

cosh2 t′ cos2 ψ − sinh2 t′ > 0. (3.16)

Looking at the form of (2.12), we can see that this is just the region of the boundary

y21 − t2 > 0.

We would now like to show that the regions Df and Dp are in pure states. Since

these regions have a global timelike Killing vector associated with them, we can use the

Ryu-Takayanagi minimal-area holographic entanglement entropy proposal to find the en-

tanglement entropy of these regions [3, 14].

The holographic entanglement entropy conjecture of Ryu and Takayanagi states that

the entanglement entropy, SA of a spatial region A of a CFT can be calculated from the area

of the minimal area surface, γ, in the dual spacetime which terminates on the boundary of

A. This relationship is given by

SA =
Area(γ)

4G
(d)
N

(3.17)

where G
(d)
N is the d-dimensional gravitational constant [3, 14].

We can now find the entanglement entropy of the region of the boundary where ηb is

timelike by simply relating coordinates (2.8) to Poincaré coordinates [3, 4, 14]. The metric
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Figure 2. Minimal-area surface, γP , (green) corresponding to the strip, A, (red) at a constant-time

slice of global AdS4.

of global AdS4 in Poincaré coordinates is given by

ds2 =
l2

Z2

(
dW+dW− + dY 2 + dZ2

)
(3.18)

where W±, Y ∈ (−∞,∞) and Z ∈ (0,∞) [8]. Note that this is the null coordinate form

of the Poincaré metric where W± = X ± T with T and X being timelike and spacelike

coordinates, respectively. The boundary of the spacetime is at Z = 0. If we consider a

strip on the boundary at fixed time given by

W+ −W− = const ⇒ ∆W+ −∆W− = 0, (3.19)

the length of the strip will be given by ∆Y = L and the width will be given by

R2 = ∆W+∆W−. (3.20)

If we choose a minimal-area surface, γP , which terminates only on the boundary in

the X = 1/2(W+ +W−) direction as shown in Figure 2, the area of γP will be given by

Area(γP ) = 2l2
(
L

ε

)
− κl2

(
L

R

)
(3.21)

where ε is a cutoff introduced to prevent the expression from diverging and

κ = 4π

(
Γ
(
3
4

)
Γ
(
1
4

))2

(3.22)

is a positive constant [4, 14]. For the expression (3.21) to be consistent, we can see that

the area of the surface γP must vanish when the region, A, on the boundary also vanishes,

i.e. Area(γP )→ 0 as ε, R→ 0.
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Now, we can relate the Poincaré coordinates to those used in (2.8), but to ease the

calculations, we will introduce a polar form of the coordinates with y1 = r cosψ and

y2 = r sinψ. These coordinates are related to the null form of Poincaré coordinates by

W± =
2

1− t2 + r2
(r cosψ ± t) eφ

Y =
2

1− t2 + r2
r sinψ eφ

Z =
1 + t2 − r2

1− t2 + r2
eφ. (3.23)

In these coordinates, the boundary is the surface where Z = 0, which corresponds to

r =
√

1 + t2. If we anchor the minimal-area surface, γ, to the boundary at fixed time t = t0
such that ψ ∈ [ψ1, ψ2] and φ ∈ [φ1, φ2], the cutoff at Z = ε� 1 corresponds to

ε1,2 = aeφ1,2 where 0 < a� 1. (3.24)

For simplicity, we will center the region A on the boundary such that ψ1 = −Ψ and ψ2 = Ψ.

Thus, the length, L, of A is given by

L = ∆Y =
√

1 + t20

(
eφ2 + eφ1

)
sin Ψ (3.25)

and the width, R, is given by (3.20)

R2 =
(
eφ2 − eφ1

)2 [(
1 + t20

)
cos2 Ψ− t20

]
. (3.26)

Using (3.24), (3.25), and (3.26) in (3.21), we find an expression for the area of γ using

ε2 = ε1ε2

Area(γ) = 4l2
(

cosh ∆

a

)√
1 + t20 sin Ψ− κl2

( √
1 + t0 sin Ψ√

(1 + t20) cos2 Ψ− t20

)
coth ∆ (3.27)

where ∆ = (φ2 − φ1) /2. Here, we recall that the area must vanish when both ε, R → 0,

corresponding to

a = 0 ,
(
1 + t20

)
cos2 Ψ− t20 = 0. (3.28)

We notice that the latter of these requirements is equivalent to y21−t2 = 0, which is exactly

the boundary of Df . Since the area of γ vanishes on the boundary of Df , we can conclude

that the CFT on Df is in a pure state. This also holds true for Dp.

The regions Df and Dp will serve as useful tools for analyzing the thermodynamics of

the double-quotient spacetime. This is mainly due to the fact that any CFTs defined on

these regions will be “complete” theories i.e. we do not need any information from the rest

of the boundary to describe the state of these theories.
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Figure 3. The regions excised during second quotient (red) end on null surfaces, running along

the event horizon of the black hole (black). Since these surfaces are null, they are not bounded by

event horizons and therefore, the resulting singularity is naked.

4 Second Quotient of AdS4

To perform a second quotient of AdS4, we first recognize that the metric (2.8) has a boost-

like isometry with Killing vector

ξ′ = y2∂t + t∂y2 . (4.1)

As we will be performing a quotient defined by this Killing vector, we will again need to

excise regions of the spacetime where ξ′2 < 0 to avoid closed timelike curves. These regions

correspond to

y22 − t2 > 0. (4.2)

Since the boundary of these regions are null lines t = ±y2, they are not bounded by event

horizons and therefore are naked. Figure 3 shows these naked singularities. It is also

worthy to note that the introduction of these new singularities separates the spacetime

into four asymptotically distinct regions: two future regions and two past regions.

We now define new coordinates

t = |τ | cosh(α θ) , y2 = |τ | sinh(α θ) (4.3)

where θ ∈ (−∞,∞) and τ ∈ (−∞,∞). This transforms the metric (2.8) to

ds2 =
4l2

(1 + τ2 − y21)2
(
−dτ2 + dy21 + α2τ2dθ2

)
+ r2+

(
1− τ2 + y21
1 + τ2 − y21

)2

dφ2. (4.4)

and the Killing vector (4.1) to

ξ′ =
1

α
∂θ. (4.5)
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This Killing vector maps the points θ → θ + a/α where a is an arbitrary parameter.

Defining α = a/2π, we can see that a quotient by ξ′ will make the θ coordinate periodic,

with range θ ∈ [0, 2π). The black hole singularity is now located at the surface

− τ2 + y21 = −1, (4.6)

the black hole event horizon is given by the surface

− τ2 + y21 = 0, (4.7)

and the boundary of the spacetime is at

− τ2 + y21 = 1. (4.8)

In these coordinates, the naked singularity is located at ξ′2 = 0 or τ = 0.

Since the θ coordinate is scaled by τ , for very early times, the θ dimension will be

microscopic and we may effectively neglect the dθ term in our metric. We are then left

with the metric of the BTZ black hole [2]

ds2 =
4l2

1− y21

(
−dτ2 + dy21

)
+ r2+

(
1 + y21
1− y21

)
dφ2. (4.9)

Therefore, for times near τ = 0, we should expect the black hole to radiate at inverse

temperature [12]

β =
r+
2π
. (4.10)

However, away from τ = 0, the black hole cools to zero temperature. This can be seen

by defining the coordinates

τ = ρ sinh(αζ) , y2 = ρ cosh(αζ) (4.11)

which transform the metric (4.4) to

ds2 =
4l2

(1− ρ2)2
[
−α2ρ2dζ2 + dρ2 + α2ρ2 sinh2(αζ)dθ2

]
+ r2+

(
1 + ρ2

1− ρ2

)2

dφ2. (4.12)

Here, ζ ∈ (−∞,∞) and ρ ∈ [0, 1). These coordinates correspond to an observer living in

one exterior of the black hole, whose event horizon is located at ρ = 0. It is worth noting

that, in these coordinates, the event horizon is 1-dimensional. We can perform a Wick

rotation by taking ζ → −iζE and the metric becomes

ds2 =
4l2

(1− ρ2)2
[
α2ρ2dζ2E + dρ2 + α2ρ2 sin2(αζE)dθ2

]
+ r2+

(
1 + ρ2

1− ρ2

)2

dφ2. (4.13)

The term in square brackets is simply the metric on R3 in spherical coordinates where ζE
is the polar coordinate and is therefore non-periodic. Since imaginary time is non-periodic

after a Wick rotation, this implies that the black hole is not radiating far from τ = 0. We

will see more evidence for the freezing out of radiation in Section 6.
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0

1

2

ψ

t'

Figure 4. Regions of the boundary removed during second quotient (black) overlap the regions

of the boundary in a pure state (red) at early times. However, at later times, this overlap ceases,

reflecting that, at early times, the boundary CFT should be in a mixed state, but should purify at

later times.

5 Action of Quotient on Df and Dp

Now that we have shown how the quotient acts on the spacetime, we would next like to

consider how the boundary theory behaves under this quotient. Specifically, we wish to

look at what regions of the boundary are excised by the quotient. As we have seen, the

quotient removes the portions of the spacetime corresponding to y22 − t2 > 0. We have

already found that Df and Dp are the regions of the boundary y21 − t2 > 0. Since y1 → y2
is the same as taking ψ → ψ + π/2, by (2.12), it is clear that the region of the boundary

removed by the quotient is given by

cosh2 t′ sin2 ψ − sin2 t′ > 0 (5.1)

in coordinates (2.13). These removed regions overlap Df and Dp at early times, as shown

in Figure 4.

The fact that we have removed regions of the boundary which can house CFTs in

pure states tells us that, at early times, the CFT should, in general, be in a mixed state.

However, at some later time, this overlap ceases and the states should purify.
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y2

τ

I

II

Figure 5. Hartle-Hawking initial state of the big bang spacetime. Region I is a 3-dimensional

Euclidean space, where Region II is a (3 + 1)-dimensional Lorentzian spacetime. In Region I, the

φ dimension is suppressed, and in Region II, the φ and θ dimensions are suppressed. Despite the

spaces having different dimensionality, we can smoothly glue them along τ = 0 since the θ dimension

collapses as τ → 0.

6 Entanglement of Boundary CFT

We have shown that the boundary CFT begins in a mixed state, but purifies after some

time. We now consider what state the CFT is initially in and explicity show this purification

through the use of holographic entanglement.

Since the metric (4.4) exhibits a symmetry under τ → −τ , we should be able to assign

a Hartle-Hawking initial condition to the spacetime [18]. However, we cannot obtain a

Euclidean-signature metric from a single Wick rotation, τ → −iτ . Instead, we will utilize

the fact that as τ → 0, the θ coordinate collapses and the metric becomes that of BTZ.

We can therefore smoothly glue the 3-dimensional Euclidean metric of the BTZ spacetime,

given by

ds2E =
4l2(

1− τ2E − y22
)2 (dτ2E + dy22

)
+ r2+

(
1 + τ2E + y22
1− τ2 − y22

)
dφ2, (6.1)

to the metric (4.4) along τ = 0 as shown in Figure 5.

Since the initial condition of the spacetime is identical to that of BTZ, the state of the

CFTs will also be identical very near τ = 0. Namely they will be in a thermofield double

state, given by

|Ψ〉 =
1√
Z(β)

∑
n

e−βEn/2 |En〉Df
⊗ |En〉Dp

(6.2)

where Df and Dp refer to the two CFTs on each region of the boundary, respectively

[2]. We again see that at early times, the CFTs are in a mixed state, and furthermore,
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are entangled with each other. More importantly, this mixed state can be interpreted as

thermal, a direct reflection of the fact that the spacetime is thermal at early times.

To see how the entanglement between the CFTs on Df and Dp evolves, we will use

the same procedure as in Section 3.

The coordinates in (4.4) are related to Poincaré coordinates by

W± =
±2l |τ |

1− τ2 + y22
e

r+
l
φ±αθ , Y =

2ly1
1− τ2 + y21

e
r+
l
φ , Z = l

(
1 + τ2 − y21
1− τ2 + y21

)
e

r+
l
φ. (6.3)

The boundary of the spacetime will be located at Z = 0 or y1 =
√

1 + τ21. We can now

choose to anchor the surface, γ, to the boundary at fixed time τ = τ0, such that θ ∈ [θ1, θ2]

and φ ∈ [φ1, φ2], the cutoff Z = ε� 1 will be given by

ε1,2 = la e
r+
l
φ1,2 (6.4)

where 0 < la� 1 and ε1,2 → 0 corresponds to a→ 0. Similar to above, we will center the

strip such that θ1 = −Θ and θ2 = Θ. Then, the width of the strip is given by

R2 = l
(
e

r+
l
φ2 − e

r+
l
φ1
)2 [

1− τ20 sinh2 (αΘ)
]

(6.5)

and the length is given by

L = l |τ0|
(
e

r+
l
φ2 + e

r+
l
φ1
)

sinh (αΘ) . (6.6)

The width, R, vanishes either when φ1 = φ2 or τ0 sinh(αΘ) = 1.

Using these expressions in (3.21), we obtain an expression for the area of the minimal

area surface in coordinates (4.4)

Area(γ) =4l2
|τ0|
a

sinh (αΘ) cosh ∆− κl2
 |τ0| sinh (αΘ)√

1− τ20 sinh2 (αΘ)

 coth ∆. (6.7)

We can see that, as a → 0 and τ0 sinh (αΘ) → 1, the area goes to zero and the region

on the boundary is pure. This implies that there is a minimum time for a region of the

boundary to reach a pure state

τmin =
1

sinh (αΘ)
. (6.8)

When Θ = π, the region, A, will be one full future asymptotic boundary. Therefore, the

minimum time, τcrit, for the CFT on this copy of the future boundary of the spacetime to

purify will be

τcrit =
1

sinh (απ)
. (6.9)

For τ < τcrit, the boundary of either future exterior is in a mixed state, which we know

from the Hartle-Hawking state to be a thermofield double. For τ > τcrit, the boundaries

1Since the asymptotic boundaries are distinct, the region A can only exist on one of these boundaries,

so we choose the one corresponding to y1, τ > 0.
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of both future exteriors are in pure states. Again, this is a reflection of the fact that, for

early times, the spacetime is thermal but cools after a certain time.

We can also gain information from this about how the thermodynamic phase transition

of the spacetime depends on the scaling parameter α. Näıvely, by the form of the metric

(4.4), we may expect this phase transition to occur when the θ dimension grows from

microscopic to macroscopic at times

τ ∼ 1

α
. (6.10)

For small values of α, (6.9) appears to confirm this scaling relation. However, for α & 1,

the boundary purifies much faster than 1/α, suggesting that the thermodynamics of the

spacetime are much more sensitive to this scaling parameter than the metric would lead

us to believe.

7 Conclusions

We have arrived at a black hole spacetime from a double quotient of global AdS4 which

has a time-dependent, expanding compact dimension. At early times, when this spatial

dimension is small, the black hole emits thermal radiation. During this period, we also

see entanglement between two of the boundary CFTs. After a critical time, the radiation

stops and the entanglement is broken between the CFTs. For slow expansion, the critical

time is inversely proportional to the expansion rate of the compact dimension, a result we

might expect from the form of the metric. However, for rapid expansion, we have found

that the purifcation time is much shorter than this näıve inverse relation.

This work further exemplifies the power of the AdS/CFT correspondence. Using rela-

tivity or quantum mechanics alone, it is only possible to study the early and late time limits

of the spacetime, but not the transition period. However, this is the epoch in which the

spacetime exhibits particularly interesting characteristics. Through the application of the

holographic entanglement entropy calculation, we were able to uncover specific behaviors

of this transition period. We also see from the holographic calculation that the intuition

we may have from just the spacetime metric alone is not necessarily correct. Moreover, this

work further confirms the holographic entanglement entropy conjecture, as the holographic

calculation agreed with both the early and late time limits in the relativistic and quantum

calculations.
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