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ABSTRACT

We construct de Sitter branes in a flat bulk of massive gravity in 5D. We find two branches
of solutions, reminiscent of the normal and self-accelerating branches in DGP, but with
rather different properties. Neither branch has a self-accelerating limit: the background
geometry requires having a nonvanishing tension. On the other hand, on both branches
there are sub-branches where the leading order contributions of the tension to the curvature
cancel. In these cases it turns out that larger tensions curve the background less. Further,
both branches support a localized 4D massless graviton for a special choice of bulk mass
terms. This choice may be protected by enhanced gauge symmetry. Finally, we generalize
the solutions to the case of bigravity in a flat 5D bulk.
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1 Introduction

Changing gravity in the far infrared emerged as an alternative for addressing the Universe’s
missing mass problem, which in General Relativity (GR) is modeled as either dark energy
or dark matter. This program is fraught with difficulties1 with predictivity of the theory in
the regime between the cosmological and short-distance scales, which are particularly acute
when the modifications break or alter diffeomorphism invariance of GR, which is really a
gauge redundancy of the theory. New degrees of freedom may appear lending to all kinds
of trouble. A notorious problem are the ghost modes—the excitations with negative kinetic
terms—that are commonly encountered on generic backgrounds [1, 2, 3]. It now appears that
the ghosts are not a showstopper. Frameworks were found where the gauge redundancies
are relaxed to allow full massive spin-2 multiplets, yet without propagating ghosts [4, 5].

These models have been applied as approximations to GR in the hope that interesting
alternatives to missing mass can be found. If the gravitational field is massive but very light,
one might hope that the modifications of the gravitational dynamics, be it at the level of
the background or perturbations, could feature new phenomena that can alter cosmological
dynamics and compact object fields in interesting ways [6, 7, 8, 9]. However these applications
run into a problem: the helicity-0 mode of the massive graviton tends to be strongly coupled
and its sector runs out of control at very low scales. For example, one may take the mass
of the graviton to be m ∼ H0 ∼ 10−33 eV, in order to defer the deviations from GR to
horizon scales, where the dark energy component of the missing mass kicks in. In this case,
in vacuum the breakdown happens at typically ∼ 1000 km [10]. In denser backgrounds, this
scale can be shorter, as has been noted in [11], but it is still very low. These arguments have
subsequently been refined and confirmed2 by various authors [12, 13, 14].

In response it has been proposed that the theory can be improved by embedding mas-
sive gravity in warped extra dimensions. It is well known that some of the problems with
perturbativity of massive spin-2 modes are relieved in AdS spaces [15, 16, 17]. Therefore it
is fathomable to entreat that similar setups can improve massive gravity too [13]. In turn,
if such frameworks are to be used in phenomenological applications, the extra dimensions
either need to be compactified, or a theory of matter needs to be confined to a brane that
floats in the higher-dimensional bulk. In the latter case the brane theory needs to be properly
covariantized in the massive gravity bulk. This means that terms which add to the usual
Gibbons-Hawking action on the boundary are required to ensure that the theory has a well
defined action principle and Hamiltonian evolution. In the case of flat bulks this has been
considered in an interesting article [18], which summarizes with a call for deployment of the
“machinery” of [19] to study cosmology of such braneworlds and in particular their vacua,
given by the geodesic worldvolumes of an empty, but possibly tensional brane in the bulk.

This “machinery”, i.e. the formalism of the Gauss-Codazzi-Weingarten equations that
yield the tool for determining the intrinsic geometry of a hypersurface in the bulk, is fortu-
nately not necessary when the vacua are maximally symmetric subspaces. Their large sym-
metry translates into relatively simple embedding equations [20], that provide a shortcut for

1The modifications which never encounter such difficulties seem to be merely different gauges of scalar-
tensor gravity, possibly with irrelevant operator corrections. At this point these are clearly less interesting.

2There is an increasing effort underway to address some cosmological problems in massive gravity cos-
mology by bigravity models.
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constructing solutions. Such methods have been employed in the case of bent braneworlds in
flat and curved bulks [21, 22]. In the case of massive gravity the same shortcut remains avail-
able, with the generalizations of the boundary conditions (a.k.a. Israel junction conditions)
outlined in [18].

Following this route, in this paper we construct the vacua of an orbifold brane in a flat
bulk of massive gravity [4] and bigravity [5], where the intrinsic geometry on the brane is
de Sitter. We work with a 5D bulk and 4D brane for simplicity. We impose orbifolding, i.e.
identification of the different sides of the brane which serves as a Z2 mirror. We then compute
the relationship between the expansion rate, the tension and the graviton mass with both
finite and infinite bulk boundary conditions, the two branches of solutions corresponding to
the so called normal and self-accelerating branches in DGP gravity [23] (see, e.g. [24, 25]
for a review). We find interesting differences between these solutions and the vacua found
by similar means in the DGP braneworlds [26]. In particular, the vacua on both branches
never feature the self-accelerating limits: the tension can never be zero.

However, both branches feature a completely novel behavior for large tension. On the
branch where the bulk extends to infinity, when tension is negative, there is a sub-branch
where the larger the tension, the smaller the expansion rate on the brane! On the other
branch the same happens for positive tension. In other words, the leading order effects of
the tension cancel out from the induced curvature. This is reminiscent of degravitation [27]
and the mechanism of vacuum energy sequester [28].

We also find that on both branches of solutions there exists a normalizable 4D graviton
localized on the brane. This occurs for a very special selection of the bulk mass parameters.
The reason is that due to the degeneracy of the bulk mass contributions, the mass of this
mode can be tuned to zero, similarly to [29, 30]. These cases cannot be realized as a
continuous limit of a massive theory, because of the Higuchi bound [2].

The localized graviton is the zero mode of the bulk equation, which means that the tensor
sector of the theory does not contain ghosts. In fact, since our starting point is ghost-free
massive gravity, this is not surprising: the only possible source of a ghost would be the brane
boundary, which might introduce it via the coupling of the brane bending mode with gravity
[23, 24] in the scalar sector, just like in DGP. While we did not check this explicitly it is likely
that since there are two branches of background solutions, the scalar ghost could be absent
on at least one of them because its bulk wavefunction is not normalizable. In this case the full
nonlinear theory would be ghost-free, and since it contains the massless 4D graviton, there
would be an enhanced gauge symmetry protecting the special values of the parameters. This
is just the usual 4D diffeomorphism invariance of GR. A small deviation of the parameters
from the special value yields a ghost, which suggests that the perturbation theory will not
correct the special value, in order to maintain unitarity. In this case the additional helicities
of the localized graviton decouple, since their couplings to matter sources are ∝ m = 0.
Finally we extend the construction of the background to the case of bigravity.

The solutions which we provide look very interesting, since the cancellation of the tension
contributions from the brane intrinsic curvature may be helpful to attempts for addressing
the cosmological constant problem in this setup. At the same time, finding the localized
massless 4D graviton, and raising the bulk graviton mass ought to improve the range of
validity of the low energy theory. However, before these appealing features can be put to a
good use, it is necessary to verify that the theory can accommodate consistent low energy
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dynamics, including 4D cosmology. We leave these important questions for the future.

2 Boundary Terms in Massive Gravity

We begin by briefly reviewing the emergence of the brane terms required to covariantize
the bulk masses in spacetimes with a boundary. As [18] we use the same form of the
bulk action, concentrating on doubly flat bulks. The boundary terms which one obtains
now come both from the Einstein-Hilbert action and from the graviton mass terms. The
variation of the Einstein-Hilbert action yields total derivatives which vanish in the absence of
the brane, but in its presence leave a non-zero projection on the brane given by the extrinsic
curvature, which needs to be cancelled to ensure correct Hamiltonian evolution. This yields
the Gibbons-Hawking extrinsic curvature term.

In the presence of the bulk graviton mass terms additional terms are necessary. The
reason is that when the fiducial metric is fixed by the background, covariantizing the theory
requires introduction of Stückelberg fields, whose variation formally changes the mass terms.
Now, these changes can be undone by coordinate transformations in the bulk, and thus
they are symmetries. Since the theory is covariant, thanks to the presence of Stückelberg
fields, this means that the variation of Stückelberg fields alone, or the diffeomorphisms
which compensate them, must add up to gauge transformations: they must sum up to total
derivatives, which do not alter the action. This happens thanks to the determinant form of
the mass terms, such as in the flat space example like∫

M

dDx
1

(D − n)!
εµ1···µnλ1···λD−nεν1···νnλ1···λD−n

∂ν1∂µ1π · · · ∂νn∂µnπ , (1)

where π is really absorbed into the helicity-0 mode of the massive graviton in the axial
gauge. While this is a total derivative in the bulk, a boundary at a finite location will
change this since this term mixes with the brane bending mode, and yields a brane-localized
contribution. To preserve the original invariance, it is this term that needs to be cancelled
by adding brane-localized terms which absorb it away.

In the case of a 5D bulk and a codimension-1 orbifold brane, the appropriate action
which includes the boundary terms3 is [18]

S =
M3

5

2

∫
M

d5X
√
−g

[
R− m2

4

5∑
n=2

αnεε
(

1−
√
g−1f

)n
15−n

]

+ M3
5

∫
∂M

d4x
√
−γ

[
K +

m2

4
Σ(Φ)

4∑
n=1

αn+1ε
(4)ε(4)

(
1−

√
γ−1φ

)n
14−n

]
+ · · · . (2)

The ellipsis denotes brane-localized matter contributions, including the tension. We use the
shorthand notation

εεAnBD−n = εµ1···µnρ1···ρD−nεν1···νnλ1···λD−n
Aν1µ1 · · ·A

νn
µnB

λ1
ρ1
· · ·BλD−n

ρD−n
.

3When the brane is a Z2 orbifold, the boundary action should be divided by 2 when we neglect the mirror
image of the bulk. We will assume this wherever necessary.
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Our convention for the Levi-Civita’s4 is the standard 4D Poincare algebra convention, re-
flecting the sign flip due to raising indices with ηµν . The signs in (2), with the condition that
α2 > 0, guarantee that the graviton mass squared is nonnegative. Here ε(4) is the pullback
of ε to boundary. The induced metric on the boundary is γµν and its extrinsic curvature is
Kµν . The term Σ(Φ) is what we now need to determine.

The auxiliary metric in arbitrary coordinates is fAB = ∂AΦI∂BΦJηIJ , where ΦI are the
Cartesian Stückelberg fields and their pullback to the brane is φµν = ∂µΦI∂νΦ

JPK
IP

L
JηKL.5

The brane coordinates xµ are independent combinations of the bulk coordinates XA con-
strained by the brane worldvolume equation Ω(Φ) = 0. The projection matrix acting on the
auxiliary metric is given by P I

J = δIJ −nInJ , where the normal to the brane nA is defined by
dΩ = ∂AΩdXA = nAdX

A. This follows since a displacement of a point on the brane XA to
a nearby point X̃A defines a parallel transport along the brane that must be orthogonal to
the normal, which therefore must be proportional to the gradient of Ω at Ω = 0. Note that
the projection matrix has one zero eigenvalue, directed along the normal nI , which follows
due to the brane location constraint Ω(Φ) = 0. Similar equations can be written relating
the dynamical metrics gAB and γµν . Note that this implies that we will be employing the
ansätz fAB = gAB in the construction of the background metric.6

We are interested in embedding a bent de Sitter brane in a 5D Minkowski bulk which for
simplicity we can describe with flat Cartesian coordinates ZI , and the Cartesian Minkowski
metric

ds2
5 = ηIJdZ

IdZJ . (3)

Now we can embed the brane by using a standard construction explained in [20], which
amounts to imposing a constraint

Ω = ηIJZ
IZJ − 1

H2
= 0 . (4)

To understand this intuitively, Wick-rotate the background flat geometry to Euclidean sig-
nature. Since Euclidean de Sitter is a sphere, we need to embed a spherical brane in flat 5D
space. To accomplish this, all we need to do is pick a sphere of a given radius 1/H, cut the
space along it and specify the boundary conditions on the sphere. Since we restrict to a Z2

orbifold, we remove either the interior or exterior, and replace the other side of the sphere
by the mirror image of the side we wish to retain. Clearly, the brane is the boundary of the

4ε0123... = 1, ε0123... = −1. It appears the literature is not uniformized on this.
5Note that all indices, not just the free ones, must be projected onto the brane.
6This is a calculational simplification which does not change the generality of our analysis. The graviton

mass terms in (2) can be rewritten as
∑

n βnεε(
√
g−1f)n15−n where βn are linear combinations of αn,

including the ‘cosmological constant’ terms for g and f . To allow a flat bulk, the former must be tuned
by hand, and the latter can then be selected accordingly to ensure the existence of a flat bulk. Changing
the ansätz to, e.g, fAB = c2gAB merely picks different linear combinations of βn which contribute to αn.
We stress that our choice to pick flat bulks is a tuning. By itself, this doesn’t ‘solve’ or ‘unsolve’ the
cosmological constant problem. Since the only aspect of the cosmological constant problem in quantum field
theory coupled to (semiclassical) gravity is the UV-(in)sensitivity of its terminal value, as discussed in, e.g.,
[28, 31], the choice we make is merely a hidden sector tuning. As long as one is only interested in the effects
of brane-localized sources, such as the brane vacuum energy, this tuning does not matter in the semi-classical
gravity limit [31]. To go beyond this limit one would need the full UV completion of massive gravity, which
is unavailable at present.
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cut and a discontinuity. The discontinuity means that the brane must carry an action, which
includes stress energy, to cause the gravitational field flux lines to jump and to maintain the
diffeomorphism invariance of the underlying theory.

Next, to determine the boundary terms ∼ Σ(Φ), we first determine the normal to the
brane boundary by using the brane worldvolume equation (4). From the definition above
the components of the normal nI are given by

dΩ = nIdZ
I |Ω=0 . (5)

We can normalize the normal to unity, bearing in mind our convention for its direction: the
normal is oriented away from the brane, into the bulk, on either side of the brane, so as to
reflect the Z2 symmetry. We will give the explicit form of the normal shortly after we pick
the explicit form of the intrinsic coordinates to the brane.

Now we consider the diffeomorphism invariance in the presence of the brane. As we
noted, the idea is to transform either the Stückelberg fields or the bulk coordinates, but
not both, to find how the brane terms arise. Since the bulk is flat, and the brane is at a
fixed location, for simplicity we can just translate the bulk coordinates while keeping the
Stückelberg fields fixed. We use the translation

ZI → Z̃I = ZI − ∂Iπ , (6)

which does not change the fiducial metric, but only the dynamical bulk metric. Thus

f̃IJ = fIJ = ηIJ , g̃IJ = gKL
∂ZK

∂Z̃I

∂ZL

∂Z̃J
= ηKL

(
δKI + ∂I∂

Kπ
)(
δLJ + ∂J∂

Lπ
)
. (7)

Thus, inverting the metric g̃IJ ,7 yields

δIJ −
√
g̃IK f̃KJ = ∇I∇Jπ , (8)

where we have trivially replaced the partial derivatives with covariant ones on the right hand
side, since we are using Cartesian coordinates in the bulk. This is a technical trick which
will come in handy shortly.

Finally, substituting (8) in the bulk graviton potential term in (2) and keeping the vari-
ation of the action ∝ ∇∇π yields terms like

−
∫
d5Z
√
−gεI···εJ ···∇J∇Iπ · · · = −

∫
d5Z
√
−g∇J

(
∇Iπε

IK···εJL···∇L∇Kπ · · ·
)

=

∫
∂M

d4x
√
−γnI∇Iπ n

JnKε
KL···εJN ···∇N∇Lπ . (9)

The first step follows from the determinant structure of the mass terms, and the rest from
Gauss’ theorem. The last line follows from the projection of the embedding coordinates
Z onto the boundary brane, whose intrinsic coordinates are x. In the braneless bulk this
term vanishes by Gauss’ law applied to the whole spacetime, with appropriate boundary

7g̃IJ = ηKL
(
δIK − ∂I∂Kπ

)(
δJL − ∂J∂Lπ

)
, notice the sign flip.
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conditions at infinity. All the tensors in the last term should now be restricted to the brane
coordinates xµ which realize a cover of Ω = 0, except for nI∂

Iπ = nI∂Iπ = ∂4π where the
derivative here is with respect to the coordinate running along the unit normal to the brane.
Thus in the presence of the brane, the boundary projection of the bulk term (9) is nonzero,∫

Ω={0+}∪ {0−}
d4x ∂4πε

4µ···ε4ν···∇ν∇µπ · · · . (10)

If left in the theory, this term would break translational symmetry on the brane, and violate
energy conservation. To properly covariantize the theory with a brane, it must be cancelled
by a term on the brane.

Since we take the translation (6) to move both the bulk and the brane, in the active
sense, this means that in the new coordinates the brane is inserted at

ηIJ Z̃
IZ̃J =

1

H2
. (11)

We define the translations in this way in order to ensure that the intrinsic geometry of the
brane remains unaffected by a bulk translation. Thus the location of the brane is changed
by the Cartesian vector Z̃I − ZI = ∂Iπ projected onto the normal nI . Rewriting this as

nIZ̃
I − nIZI = nIδZ

I = −nI∂Iπ = −∂4π (12)

we can interpret the coefficient of the brane variation nI∂
Iπ as the variation of −nIZI . To

cancel the bulk variation (9), we add to the action the brane term as displayed in (2) with
a function

Σ = nIZ
I . (13)

Let’s demonstrate this. First to define the brane action we project the induced fiducial
metric on the brane. Since before the translation we have φµν = γµν , projecting the shifted
fiducial bulk metric onto the brane we find

φ̃µν = ∇µZ̃
I∇νZ̃

JPK
IP

L
JηKL = γµλ

(
δλρ −∇λ∇ρπ

)
(δρν −∇ρ∇νπ) , (14)

which immediately implies

δµν −
√
γµλφ̃λν = ∇µ∇νπ . (15)

Thus we can rewrite the variation of the bulk action projected on the brane, with our signs
convention from (2), as ∫

∂M
d4z ∂4πε

ν···εµ···

(
δµν −

√
γµλφ̃λν

)
· · · . (16)

Therefore we need to add to the brane a term whose variation is the exact opposite, so the
two cancel out. From our conventions in (2) and the discussion above, this clearly means
that we should choose Σ as given in Eq. (13). Note that we can formally covariantize this
term by recalling that the Cartesian Stückelberg fields are ΦI = ZI and so [18]

Σ(Φ) = nIΦ
I = Φ4 . (17)
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In fact our calculations above could all have been carried out using Stückelberg fields and
their variations, which is a more convenient method for general backgrounds.

At this point we are ready to write down the full set of the metric field equations. The
metric field equations coming from (2) in the bulk and on the boundary are

GAB − TAB/M3
5 = (18)

− m2

8

5∑
n=2

αn

(
εε
(

1−
√
g−1f

)n−1

15−n
)C

D

×
(
n δD(AgB)E

√
g−1f

E

C +
(

1−
√
g−1f

)D
C
gAB

)
,

and

Kµν −Kγµν − Sµν/M3
5 = (19)

m2

4
Σ(Φ)

4∑
n=1

αn+1

(
ε(4)ε(4)

(
1−

√
γ−1φ

)n−1

14−n
)λ

ρ

×
(
n δρ(µγν)σ

√
γ−1φ

σ

λ +
(

1−
√
γ−1φ

)ρ
λ
γµν

)
,

where Sµν is the brane borne stress energy. The boundary term Σ is given by (17).
With all this set in place, we can now turn to determining the vacuum solutions. We set

the brane stress-energy to be pure tension σ and set any other matter sources to zero. This
gives us a very useful shortcut to determining the solution. We do not need to solve the
equations directly; we know that the bulk equations are trivially solved. All that remains is
to write down the explicit relationship of the embedding coordinates of 4D de Sitter in flat
5D bulk [20], which satisfy (4), and interpret the 5D coordinates of the embedding as the
Stückelberg fields. This will yield the relationship between the intrinsic curvature length H,
the tension σ and the bulk graviton mass m.

3 de Sitter branes

An explicit coordinate realization of the constraint (4) which transforms the Cartesian
Minkowski coordinates to the brane-intrinsic coordinates xµ and the orthogonal coordinate
x4 = w is [20]

Z0 = (1− εHw)

(
e−Ht

4H

(
−1 + e2HtH2|x|2

)
+
eHt

H

)
,

Zi = (1− εHw)xi eHt , (20)

Z4 = (1− εHw)

(
e−Ht

4H

(
−1 + e2HtH2|x|2

)
− eHt

H

)
.

The constraint equation (4) which fixes the location of the brane becomes

w = 0 . (21)
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Substituting the coordinate transformations (20) into the bulk metric ds2
5 = ηIJdZ

IdZJ

yields the metric describing the bulk ending on the Z2 brane at w = 0,

ds2 =
(

1− εH|w|
)2(
−dt2 + e2Htdx2

)
+ dw2 . (22)

Here H is the intrinsic curvature radius of the brane geometry, and ε = ±1 controls ‘which
side’ of the brane at w = 0 is retained (for a positive H). Away from the cut hypersurface
w = 0 the geometry (22) is just flat space. The Penrose diagram of the geometry of this
embedding is given in Fig. (1).

J+ 

- J

de Sitter  
brane 

ε = +1

ε = -1

Figure 1: dS brane in flat bulk. We pick the unshaded interior when εH > 0, and the shaded
exterior when εH < 0. These choices define two different branches of solutions.

What remains to determine is the relationship between the curvature radius 1/H, brane
tension σ, and the scale which controls the IR modification of gravity, in this case the bulk
graviton mass m. To this end we can turn to the equation (19), since the bulk equation (18) is
trivially satisfied away from the brane cut. Since on the background solution 1−

√
γ−1φ = 0

and Sµν = −σγµν/2, the extrinsic curvature equation (19) reduces to

Kµν −Kγµν = − σ

2M3
5

γµν −
3

2
α2m

2Σγµν . (23)

We recall that α2 is degenerate with the overall normalization of the graviton mass terms.
Thus we can absorb it away, choosing α2 = 2

3
from now onwards, which ensures that m sets

the numerical value of the graviton mass. Since the normal to the brane in any of the cases
is ∂w as can be checked from the embedding map (20), using (17) for Σ we have

Σ =
1

2
∂wZ

IηIJZ
J
∣∣
w=0+

=
1

2
∂w
(
(H−1 − εw)2

) ∣∣
w=0+

= − 1

εH
, (24)

and correspondingly for its mirror image on the other side of the brane. Finally for the
metric (22), the extrinsic curvature of the w = 0+ hypersurface is Kµν = nAΓAµν = εHγµν ,
and correspondingly for 0−. Therefore the junction condition (23) yields

3εH =
σ

2M3
5

− m2

εH
. (25)
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Curiously, this equation falls in the class of phenomenological suggestions for background
curvature radii equations in which IR modifications of gravity might affect our determination
of dark energy [32].

One interesting feature of this equation is that the last term obstructs taking the limit
H → 0, which would not happen if m = 0. Indeed, if one takes a de Sitter brane in a flat
bulk of 5D Einstein gravity [21], one can readily take the limit H → 0 by sending σ to zero.
It is interesting to understand the physical reason for this obstruction. Without the graviton
mass, the embedding (20) requires the rescaling of zI coordinates to keep them regular.

This of course corresponds to the standard picture of how one flattens a sphere: pick a
point, say the North Pole, take a disk around it of some fixed radius smaller than the radius
of the sphere, and then simultaneously send both radii to infinity. Mathematically, this
corresponds to the Wigner-Inonu contraction of the de Sitter group to Poincare. However
in the presence of the graviton mass the scaling symmetry is broken at H = 0—e.g. by
the dimensional Stückelberg fields, which on the background are equal to the embedding
coordinates. Hence the singular behavior as H → 0.

To determine the explicit form of the branches of solutions, we rewrite (25) as a standard
quadratic equation, which since ε2 = 1 is

H2 − εσ

6M3
5

H +
m2

3
= 0 . (26)

The roots of this equation are

H =
εσ

12M3
5

±

√
σ2

144M6
5

− m2

3
, (27)

where ε = ±1 shows which region of the bulk is retained with the brane as per Fig. (1).
For ε = +1, where in the bulk we retain the interior of the “hourglass” surface in (1), the
solution yields H which is strictly positive for positive tension:

H =
σ

12M3
5

±

√
σ2

144M6
5

− m2

3
. (28)

If we start with the sub-branch with the positive sign of the root, H starts very large for
large positive tension and reaches the minimum value for σ∗ = 48M3

5m where the square
root vanishes, and so H = σ∗/12M3

5 . There, the solution transitions to another sub-branch
where the sign in front of the root flips, and H decreases to zero, which again resides in the
limit σ → ∞. Throughout H and σ remain non-negative. Moreover σ ≥ σ∗ = 48M3

5m is
gapped from zero, since the term in the square root ∝ m2 is negative.

On the other branch of solutions, where ε = −1 we keep the exterior of the “hourglass”
surface in (1). Since this requires H ≥ 0 (this can be viewed as a ‘gauge fixing’ since the
solutions with H < 0 are readily mapped to these by w ↔ −w, t↔ −t), when ε = −1, the
tension is negative, σ < 0. Again, H starts from large values when σ → −∞ on the sub-
branch with positive square root, decreases to |σ∗|/12M3

5 which occurs when σ = −|σ∗| =
−48M3

5m and continues to decrease as σ rebounds back to −∞.
It is now interesting to highlight some features of the solutions and differences relative

to the previous examples such as dS branes in flat Einstein bulks and DGP (for reviews see
[21] and [24]):
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• in (27) the roles of the tension and the IR modification scale (here the graviton mass)
are interchanged relative to the example of DGP, and the sign of the term outside of
the square root is flipped;

• as noted, once the sign of ε is picked, H varies continuously from infinity to zero on
each branch, as a function of the tension; however, for each value of tension there are
two values of H;

• the ε = +1 branch, where the interior in Fig (1) is retained, with finite volume,
consistently reproduces the geometry of an inflating wall in flat Einstein bulk when
m = 0, H = σ

6M3
5

[21]; on the branch ε = −1, this happens when the tension is negative;

• however, the sign of the ∝ m2 term is negative; the graviton mass term cancels against
the tension’s contribution to the intrinsic curvature on the brane, similarly to the
negative cosmological constant in cutoff AdS braneworlds [22];

• as a result, on both branches there is no “self-acceleration”: the tension σ is gapped
from zero, and thus “self-acceleration”—positive intrinsic curvature even when tension
is zero—is impossible;

• however there is now a completely novel feature, which is very interesting, and which
appears on both branches: when ε = +1, on the sub-branch with negative square root,
in the limit of large positive tension, σ � mM3

5 , the tension cancels to leading order

from H; expanding the square root we find H ' σ
12M3

5
− σ

12M3
5

(
1− 24m2M6

5

σ2

)
' 2

m2M3
5

σ
;

on the other branch, ε = −1, the same happens for negative tension.

This last limit of the solutions yields the equation

H ' 2
m2M3

5

|σ|
, (29)

which is unusual. It shows features of degravitation [27] and vacuum energy sequester [28].
Here, the larger the tension of the brane, the less it curves the space! The curvature of the
vacuum is see-sawed from the vacuum energy of the field theory which inhabits the brane
(as measured by the tension) by a ‘pivot scale’ ∼ m2M3

5 . Given how curious this is, it makes
sense to look at just how much this might help with the cosmological constant problem in this
setup—i.e. how large a hierarchy could be reliably induced between the vacuum curvature
H and the vacuum energy σ in a controllable regime of field theory.

The cutoff of the theory is given by the lowest strong coupling scale in the theory, which
is set by the helicity-0 bulk graviton, and is given by Λ7/2 ∼ (M

3/2
5 m2)2/7 [13]. For the

cancellation which led to (29) to make sense all terms should be within the range of the
effective field theory, i.e. below the cutoff. This means that the largest magnitude of the
tension, which radiative corrections would saturate, and the calculation would not be outside
of the regime of validity of perturbation theory, would be |σ∗| ∼ 12M3

5 Λ7/2. Thus the natural
vacuum value of H would be

H∗ ∼
1

6

m2

Λ7/2

∼ 1

6

( m
M5

)3/7

m. (30)
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Taking the bulk graviton mass to be e.g. m ∼ 10−3 eV, which could yield interesting correc-
tions to sub-millimeter gravitational forces, and taking M5 to be as low as it could be for
bulks which behave as sub-millimeter compact spaces, M5 ∼ 1017 eV, one gets H ∼ 10−13 eV.

While remarkable, this reduction of the vacuum curvature falls short of the mark by
nearly twenty orders of magnitude, setting the radius of the universe to be of the size of
the Solar system, roughly. Nevertheless, the reduction from the naively expected ‘natural’
value of σ/M3

5 ∼ Λ7/2 ∼ MeV, a reduction of some 19 orders of magnitude, is quite curious.
This feature of the solutions might warrant more scrutiny. Of course, in order for it to have
any aspiration to help with the real world, the theory would need to produce another spin-2
mode to start with, much lighter than 10−3 eV, to have a working chance to approximate
GR. Further, in such a setup one would need to verify that as the tension is varied the
curvature of the universe H retains the scaling with tension as in (30) for degravitation to
work. Note that this is the physical observable which determines the background geometry
of the vacuum, irrespective of the Planck mass which physically only controls the mutual
interaction of probes of this geometry, such as, e.g., the deflection of their trajectories.

In the next section we will outline a very simple realization of such a scenario, where the
bulk localizes an exactly massless 4D graviton on the brane, which may be able to support
the 4D FRW cosmology with corrections due to the massive bulk modes. We will determine
the ‘local’ Planck mass due to the zero mode and find that it is independent of the brane
tension in the degravitating limit.

4 Localization of 4D gravity on the brane

In light of the discussion above, a theory with a de Sitter brane in a flat bulk might improve
the chances of massive gravity to address the cosmological constant problem if it had an
additional light spin-2 field. This field could approximate GR at large distances, while
the massive graviton might control the background and remove the brane-localized vacuum
energy from the brane intrinsic curvature. A natural way to realize an extra light mode is
to have it emerge from the bulk by localizing it to the brane, as for example in the RS2
case [33]. It could happen that the localized spin-2 could turn out to be much lighter, even
massless, for a special set of graviton mass parameters and given brane boundary conditions,
as in [29, 30].

We will show that similar phenomena occur here. We will work from the start with
spin-2 4D metric fluctuations, which are traceless, transverse and massless in the 4D sense,
propagating with a pole at p2 = 0. Thus we use the perturbation of (22)

ds2 =
(

1− εH|w|
)2

ds2
4 dS + hµνdx

µdxν + dw2 , (31)

where the metric perturbation satisfies traceless-transverse conditions, h = Dµhµν = 0 and
is 4D massless, (D2 − 2H2)hµν = 0, where Dµ are 4D de Sitter covariant derivatives.

Off the brane the field equations are just given by (18). Linearizing them in hµν and
using our gauge conditions, with our choice α2 = 2/3,

∇A∇Ahµν − 2∇A∇(µhν)A −m2hµν = 0 . (32)

11



Commuting the covariant derivatives in the second term in (32), separating out the w-
derivatives and extracting the warp factor dependence yields ∇A∇Ahµν − 2∇A∇(µhν)A =
∂2
whµν + (DµDµ − 2H2)hµν/(1 − εHw)2 = ∂2

whµν , since the last two terms after the second
equality cancel due to hµν having zero 4D mass. Separating now the bulk wavefunction from
the 4D de Sitter helicity tensor for a traceless transverse spin 2 mode, hµν = Ψεµν ,(

∂2
w −m2

)
Ψ = 0 . (33)

The bulk wavefunctions of the graviton zero modes are linear combinations of decaying and
growing exponentials, modulated by the bulk graviton mass:

Ψ = Aemw +Be−mw , (34)

as long as these modes can satisfy the boundary conditions on and off the brane.
To find the boundary condition on the brane we follow the procedure outlined in [24],

and perturb the junction conditions (19). After straightforward algebra we find (see, for
example, [24, 34] for the general procedure)

δ
(
Kµν −Kγµν

)
= −1

2
∂whµν − 4εHhµν ,

δ
(Sµν
M3

5

)
= − σ

2M3
5

hµν , (35)

δθµν =
m2

2εH

(
1− α3

)
hµν ,

where we have used θµν to denote the right hand side of Eq. (19) and as before set α2 = 2/3.
Combining these terms, eliminating the brane tension using the background equation (25),
and factoring out the 4D helicity tensor yields the boundary condition for the localized wave
function,

∂wΨ(0) = −2εH
[
1− m2

2H2

(
1 + α3

)]
Ψ(0) . (36)

Now, on the ε = −1 branch, w ∈ [0,∞). Thus for the graviton bulk wavefunction to be
normalizable, it should be

Ψ = e−mw , (37)

and so ∂wΨ(0) = −mΨ(0). Substituting into (36) along with ε = −1 gives an equation
which determines the value of α3 required to have the localized normalizable 4D graviton
zero-mode:

α3 = −
(

1 +
H

m
− 2

H2

m2

)
. (38)

WhenH/m� 1, this means that the parameter α3 is just slightly smaller than−1. Note that
in this case the tension is negative, and hence the brane bending mode may have a negative
kinetic term. By itself this is not a definitive sign of the presence of a ghost, however one
would have to check the full spectrum of perturbations, not only traceless transverse tensors,
to ensure the theory remains healthy.

On the other hand, in the case ε = +1, the variable w is in a compact interval. It satisfies
w ∈ [0, 1/H]. Because of this, in general both exp(±mw) can contribute, and in addition

12



to the boundary condition on the brane (36) we need another boundary condition on the
horizon. There, we take the Dirichlet boundary condition, Ψ(1/H) = 0. This generalizes
the boundary condition for the normalizable mode on the de Sitter brane in 5D flat bulk of
Einstein gravity. It takes into account that the horizon is not the end of space, but merely
a causal boundary, and that wavepackets can cross it without any reflection (in infinite
proper time of a distant observer). In contrast any other boundary condition, for example
Neumann or mixed, would produce nonzero reflection, obstructing traversability of horizons,
and implying presence of hard null boundaries bearing localized and highly blue-shifted
energy density.

Hence the zero mode radial wave function for ε = +1 is

Ψ = sinh
[m
H

(1−Hw)
]
. (39)

Since ∂wΨ(0) = −m cosh(m/H) and Ψ(0) = sinh(m/H), substituting into (36) we find that
now α3 must be

α3 = −
(

1− H

m
coth(

m

H
)− 2

H2

m2

)
. (40)

In the limit where the tension cancels out we again can have H � m, and so α3 is just a
tiny bit larger than −1, since coth(m/H)→ 1.

Note that in both cases, the boundary value problem which the radial wave function
solves is self-adjoint, and that the zero mode wavefunction in each case has no nodes. This
means that the zero mode wavefunction is a minimum energy state of the tower of traceless
transverse tensors, which therefore does not contain any unstable modes. Moreover, since
the lightest traceless transverse tensor is 4D massless, it contains only two helicity-2 modes.
The helicity-0 and helicity-1 modes decouple in this limit, as can be readily verified in
perturbation theory [35].

Further, our initial starting point is ghost-free massive gravity in five dimensions. If any
instabilities were to arise with the inclusion of a brane, they would only arise as instabilities
of the boundary, i.e. IR problems. The one and only new gravitational degree of freedom
which the brane brings in is the brane bending mode, which mixes with gravity. This mode
does not come with a tower of states, and can be a scalar ghost [24]. The same happens in
the usual braneworld models in which the bulk theory is GR, and the dimensionally reduced
effective action contains a tower of massive gravitons. However on some of the branches of
solutions the bulk wavefunction of the ghost is not normalizable, and so the ghost decouples
from the dynamics in the full nonlinear theory. Given that our construction involves two
branches of solutions, one with a finite and the other with an infinite bulk volume, it is very
likely that the same happens here, although we have not checked it directly.

Thus if the brane bending mode is not normalizable, the effective 4D theory on that
branch will be completely ghost-free at the full nonlinear level. The nonlinear terms needed
to complete the linear theory are completely fixed since they all arise by dimensional reduc-
tion from the action (2) which would be ghost free on this branch. Thus this branch would
have the short multiplet of spin 2 as the lightest mode, realizing precisely the 4D diffeomor-
phism invariance of standard General Relativity. The absence of the ghost would therefore
imply that the gauge symmetry of the theory is enhanced in the full nonlinear effective 4D
theory, singling out the special values of α3. This enhanced gauge symmetry would be the
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operational mechanism in 4D, protecting the ghost-free branch from all corrections, pertur-
bative and nonperturbative, which cannot break the symmetry. Note again, that since the
initial bulk theory is ghost free, all it takes to realize this is to make the brane bending mode
non-normalizable. Exciting such modes would require breaking the gauge symmetry with
infinitely strong couplings, completely invalidating the breaking mechanism.

A diagnostic of the protection mechanism in perturbation theory is that if α3 deviates
ever so slightly from the two special values, the lightest mode will be massive, with a very
small mass inside the Higuchi forbidden window [2] (regardless of the sign of m2). This
would bring in a ghost in the lightest mode (helicity-0 or helicity-1). However as long as
there is a ghost-free branch, this mustn’t happen, implying that such deformations cannot
be generated in perturbation theory with the special value of α3 due to a strong coupling
‘barrier’, which a healthy theory can never cross by unitarity.

Thus when the brane bending ghost is not normalizable, including the non-linear inter-
actions of the effective brane graviton cannot—by itself—introduce any fundamental ghosts.
Nonlinearities will not break the gauge symmetries of the tensor sector as they all arise from
the ghost-free gravity in the bulk by dimensional reduction. In fact we expect that in this
case the effective 4D theory would be a structure resembling bigravity, with a zero mode 4D
graviton, a lightest KK state of massive gravity playing the role of the massive graviton in
bigravity, plus an additional tower of heavier KK states. Again, we have not checked this
explicitly. Such a check would be very interesting.

Returning to the special values of α3, it is interesting to also consider what the mass of
the next lightest graviton is. For ε = −1 there will be a continuum of states, with mass gap
m, whereas for ε = +1, there will be a discrete spectrum, and in this case one can deduce
that the mass gap is at least

√
m2 + π2H2, and hence the Higuchi bound is not violated.

Since for both branches the zero mode gravitons are normalizable we can compute the
4D Planck scale controlling their coupling to brane probes. In each case, the coupling of
graviton fluctuations to the brane stress-energy is

1

M
3/2
5

∫
d4xdw

√
−g hµν(x,w) δ(w)Sµν =

N−1/2Ψ(0)

M
3/2
5

∫
d4x
√
−γ εµν(x)Sµν , (41)

and so the effective four dimensional Planck mass is

M2
Pl =

M3
5N

Ψ(0)2
, (42)

where N is the normalization factor of the graviton wavefunction in the bulk.
On the ε = −1 branch the norm of the radial wavefunction Ψ is

N = 2

∫ ∞
0

dw (1 +Hw)4e−2mw =
1

m

(
1 +O

(H
m

))
. (43)

On the ε = +1 branch for H & m and the integral for N yields M2
Pl ' M3

5/H, reproduc-
ing the behavior familiar from the case of de Sitter branes in 4D GR bulks [21]. In the
degravitating limit, H/m� 1 one finds

N = 2

∫ H−1

0

dw (1−Hw)4 sinh2
(m
H

(1−Hw)
)
' e2m/H

2m

(
1 + . . .

)
. (44)
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In this case the exponential contribution to N will cancel against Ψ(0)2 in the denominator
in (42), and so we find that for the localized zero mode gravitons on both branches M2

Pl '
M3

5/m when H � m. In fact, this precisely reproduces the conditions of our numerical
estimate for H∗ from the previous section. This offers opportunities for developing interesting
phenomenology, however one should first verify that the theory admits limits that allow
conventional 4D cosmology to take place.

Moreover, we stress again that here we have only analyzed the traceless-transverse ten-
sors. We have not considered scalar perturbations in the theory, which may also be normal-
izable. In fact it is known that such modes can lead to instabilities, as for example the ghost
on the self-accelerating branch of DGP [36, 24, 37]. A full perturbation analysis including
modes other than just traceless transverse tensors would therefore seem to be warranted.

5 Bigravity

Another means to bring GR into the story is to start with bigravity, which contains the
massless graviton from the start [5]. This theory starts with massive gravity [4], and adds
dynamics for the fiducial metric fIJ . For the solutions which shield the tension from curva-
ture, aside from the limit which supports the massless 4D graviton which is normalizable, this
may be the only recourse. Here we produce the solutions, but without a detailed dynamical
analysis.

Having promoted the fiducial metric to a new dynamical metric fIJ , the action (2) is then

modified by adding a bulk kinetic term
M3

f

2

∫
M
d5Z
√
−fR(f), along with the corresponding

Gibbons-Hawking boundary term on the brane, M3
f

∫
∂M

d4x
√
−φK(φ). The induced metric

on the boundary is again φµν = ∂µZ
I∂νZ

JPK
IP

L
JfKL. For completeness we must also

include an f -space brane tension −
∫
∂M

d4x
√
−φσφ. The field equations (18) and (19) are

now supplemented with two additional equations,

G(f)IJ =

√
−g√
−f

m2

8

5∑
n=2

nαn

(
εε
(

1−
√
g−1f

)n−1

15−n
)K

L

√
g−1f

L

Nδ
N
(IfJ)K , (45)

and

K(φ)µν −K(φ)φµν +
σφ

2M3
f

φµν = (46)

−
√
−γ√
−φ

m2

4
Σ(Φ)

4∑
n=1

nαn+1

(
ε(4)ε(4)

(
1−

√
γ−1φ

)n−1

14−n
)λ

ρ

√
γ−1φ

ρ

σδ
σ
(µφν)λ .

Note the opposite sign of the boundary contributions ∝ m2 in Eq. (46) relative to (19), which
follows from the fact that the boundary action depends on γ−1φ. Moreover, the variation
with respect to φµν has a slightly different form than in (19) since the brane action measure
is independent of

√
−φ.

The bulk equation can be solved by fIJ = ηIJ . At the background level on the brane,
our construction is simple with φµν = γµν , which cancels many of the contributions from the
graviton potential terms. Hence K(f)µν = εHφµν . Using Σ = −1

εH
and α2 = 2/3 as before,
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the boundary equation for the φ metric yields

3εH =
σφ

2M3
f

+
m2

εH
. (47)

Note the different sign in front of the term ∝ m2 compared to the equation (25) coming
from varying γµν , Thus in order for these to be consistent with γµν = φµν we must choose
the tension σφ to satisfy

σφ
M3

f

=
σ

M3
5

− 4
m2

εH
= ±ε

√
σ2

M6
5

− 48m2 , (48)

where the sign in front of the square root corresponds to that in (27). This completes the
construction. With this relation between the brane tensions, the expression for the curvature
of the brane in terms of the g-space tension is identical to the massive gravity case; if (48)
fails to hold, then the construction is invalid, and a de Sitter brane cannot be supported in
a flat bulk. The investigation of the full space of bigravity solutions is clearly interesting,
but is beyond the scope of the present work.

6 Summary

Our construction of de Sitter branes in a 5D flat bulk of massive gravity reveals several
unusual and interesting features. Let us outline them here:

• First, the background solutions do not display the phenomenon of self-acceleration:
the brane geometry is de Sitter only for tensions larger in absolute value than a critical
value 48M3

5m; the graviton mass does not drive the ‘repulsion’ required to induce
cosmic acceleration.

• Second, on each branch of solutions there is a sub-branch where the tension σ (which
measures the vacuum energy of a brane-resident QFT) is effectively shielded from
curvature: the leading order contribution cancels, leaving only a correction which gives
H ∼ 1/|σ| and a larger tension gravitates less. For the ε = +1 branch this happens
for positive tensions, and for the other branch this is true of negative tension, though
that may introduce ghost-like instabilities.

• Third, on both branches there is a localized 4D massless graviton mode, with only
helicity-2 excitations. This requires a special choice of the bulk graviton mass, and
may look like fine tuning at first sight. However, the presence of only two propagating
helicities indicates that there may be the enhanced gauge symmetry for this mode
in 4D. Indeed, since the bulk theory is ghost-free, if the brane bending mode does
not introduce a ghost, the full nonlinear 4D effective theory would be ghost free, and
contain the zero mode, implying the presence of the same gauge symmetry as in GR.
This is circumstantially supported by the fact that the special value of the bulk graviton
mass results in the 4D graviton mode right in the middle of the Higuchi window, so
that infinitesimal changes of the bulk mass would immediately yield ghosts and break
gauge symmetry. Radiative corrections don’t do this.
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• Fourth, our analysis is performed only at the linear level, with traceless transverse
spin-2 modes. It may happen that scalars introduce instabilities, which we have not
studied here, that undermine the de Sitter brane stability and obstruct this argument.
A direct check of what happens would be very interesting.

• Fifth, in both cases of localized 4D massless gravitons, when H/m� 1 their coupling
to brane probes is controlled by M2

Pl ∼ M3
5/m. For M5 ∼ 1017 eV and m . 10−3 eV

this might open the road towards a rich gravitational phenomenology if there is a ghost
free sector, with signatures which may be within reach of tabletop searches [38].

• Sixth, it remains to be seen if the constructions which we have found really are good
initial points for developing a new thrust into the phenomenological applications of
modified gravity. It should be checked that our backgrounds are not infected with
scalar ghosts; that they support normal 4D cosmology at low energies and late times;
and that their low energy phenomenology is within bounds.

• Finally, even if some of the problems emerge, there remain two obvious roads for
corrective actions: a) bigravity, and we have provided the de Sitter brane solutions for
this framework as well, and b) warping the bulk, and considering massive gravity in
AdS spaces [13], by importing the bent brane solutions from RS2 [22].

We hope to return to some of these issues shortly.
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