
ar
X

iv
:1

80
8.

08
86

1v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
8 

A
ug

 2
01

8

Transverse instability of dark solitons in spin-orbit coupled polariton condensates
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We consider dark solitons and their stability in spin-orbit coupled polariton condensates. The
system supports spinor solitons of two types: conventional (symmetric) dark solitons and asymmetric
half-dark solitons. They demonstrate essentially different behavior upon variation of the strength
of spin-orbit coupling. One-dimensional spin-orbit coupled dark solitons are usually unstable, while
half-dark solitons can be stable. Two-dimensional dark solitons at early stages of the development of
transverse instabilities turn into asymmetric snaking patterns and later into sets of vortex-antivortex
solitons with notably different shapes. Depending on the sign of spin-orbit coupling two distinct
instability scenarios are possible for such solitons, in which vortices in one component correspond to
vortices or antivortices in other component. The decay of two-dimensional half-dark solitons results
in the formation of half-vortex chains.

Introduction. Dark solitons are the fundamental soli-
ton solutions of the nonlinear Schrödinger equation,
which exist when the product of coefficients determining
dispersion and nonlinearity strength is negative [1]. One-
dimensional (1D) dark soliton represents a density dip
residing on the modulationally stable background. Dark
solitons were observed in diverse systems, including opti-
cal fibers [2, 3] and Bose-Einstein condensates [4]. Being
stable entities in the 1D case, dark solitons in 2D usually
suffer from transverse “snake” instabilities [5], leading
to their decay into sets of vortex-antivortex solitons ob-
served experimentally [6, 7], see also reviews [8, 9]. In the
case, when dark solitons are generated in supersonic flows
past localized obstacles, their snake instability turns into
convective one [10]. Such solitons elongate faster than
they are destroyed by the instability, that allowed their
observation in polariton condensates [11].

Polariton condensates forming in planar microcavities
and exhibiting strong nonlinear effects due to repulsive
exciton-exciton interactions, represent an ideal platform
for the exploration of physics of dark and vortex solitons
[12]. Polariton condensates support formation of oblique
dark [11] and bright [13] solitons, nonequilibrium dark
solitons supported by resonant [14, 15] and nonresonant
[16–19] pump, spontaneous formation [20] and nucleation
[21–23] of vortices in the flow past obstacles, etc. Polar-
ization phenomena arising from spin degree of freedom
substantially enrich evolution of condensates [24] leading
to new types of spinor solitons, such as half-dark [25, 26]
and half-vortex solitons [27]. Inclusion of polarization
effects requires taking into account TE-TM splitting of
polariton energy levels, that can be interpreted as an ef-
fective spin-orbit coupling (SOC) [28, 29]. This coupling
dramatically changes properties and the very structure
of polariton solitons [30].

The effect of SOC was discussed upon generation of
oblique half-dark solitons [25], but its influence on sta-
bility of dark polariton solitons remains practically unex-

plored. Thus, in [17] a reduced to usual linear coupling
form of SOC was considered. The only work [19] deal-
ing with decay of two-dimensional dark polariton solitons
did not take into account polarization effects. The im-
pact of SOC on stability of dark solitons was considered
in Bose-Einstein condensates [31, 32] and optical waveg-
uides [33], where this coupling has completely different
form and physical origin than coupling in polaritonic sys-
tems.
The aim of this Letter is to show that even small SOC

drastically affects the development of the transverse in-
stability (TI) of dark polariton solitons, leading to com-
pletely different dynamical patterns from those for scalar
dark solitons. They are composed from vortex-antivortex
pairs, whose disposition depends on the sign of SOC. Due
to SOC, vortices and antivortices in emerging pairs ac-
quire different shapes. Two different regimes are encoun-
tered, when for positive/negative coupling strength the
appearance of vortex in one spin component is followed
by the formation of antivortex/vortex in other compo-
nent. We also found that half-dark solitons split into
half-dark vortex pairs.
The model. We consider spin-orbit coupled polariton

condensate in a 2D microcavity. We are interested in
quasi-conservative dynamics governed by the normalized
equations [30]:

i∂tψ± =
[

− 1

2
∇2 + |ψ±|

2 + σ|ψ∓|
2
]

ψ± + β(∂x ∓ i∂y)
2ψ∓,

In the experiment, the unavoidable losses are expected to
affect the polariton dynamics only quantitatively (see e.g.
[34]), e.g. one may expect gradual shrinkage of instabil-
ity band due to decrease of peak amplitude. According
to the recent experiments [35], the polariton lifetime can
be increased to hundreds of picoseconds in high-quality
microcavity samples that substantially exceeds time in-
tervals considered below. ψ(x, y, t) = (ψ+, ψ−)

T is the
spinor wavefunction in circular polarization basis; ∂t,x,y
are the partial derivatives; ∇2 = ∂2x+∂

2
y is the Laplacian;
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FIG. 1. Modification of the shape of u+ (a) and u− (b) com-
ponents of halfdark soliton and of u± components (c) of dark
soliton upon variation of SOC strength β. Here and in figures
below µ = 1 and σ = −0.05.

time t and spatial coordinates x, y are measured in units
which ensure ~ = 1 and m∗ = 1, where m∗ is the ef-
fective polariton mass. The model accounts for repulsive
interactions of polaritons with the same spin, while small
σ < 0 characterizes the attraction of polaritons with op-
posite spins (we set σ = −0.05, that is the experimentally
relevant value); β is the SOC strength proportional to the
difference of effective masses of TE and TM polaritons.
Soliton solutions. We look for stationary quasi-one-

dimensional solutions that depend only on one spatial
coordinate x and are uniform in y. Using the substi-
tution ψ± = e−iµtu±(x), where µ is the chemical po-
tential, and solving the resulting system for u±(x), we
have encountered solutions of two types. Solution of the
first type is obtained using simple reduction in the form
u−(x) = ±u+(x), i.e., it represents either symmetric (up-
per sign) or antisymmetric (lower sign) state, where u+
is the conventional tanh-shaped dark soliton:

u+(x) =

√

µ

1 + σ
tanh

(
√

µ

1∓ 2β
x

)

, (1)

where sign in the denominator should be chosen accord-
ing to type of solution. The properties (including stabil-
ity) of symmetric and antisymmetric modes are similar
(the properties of one family are obtained from those
of other family by the inversion of β sign), so we fo-

FIG. 2. Maximal instability increment as a function of mod-
ulation frequency ky and SOC strength β for dark (a) and
halfdark (b) solitons.

cus on symmetric modes. The solution (1) immediately
shows that the increase of β from negative to positive
values leads to soliton steepening, while in the limit
β → 1/2 (which however may not be practically reach-
able) the soliton becomes infinitely narrow for a fixed µ,
see Fig. 1(c).
Besides conventional dark solitons, the system also

supports asymmetric half-dark solitons with significantly
different shapes of the two components. The latter can
be found numerically and their transformation with β is
illustrated in Figs. 1(a,b). For small β values half-dark
solitons feature a prominent density dip only in the u+
component, with u− component being nearly uniform.
The increase of SOC strength to larger positive or nega-
tive values leads to steepening of the u+ component and
development of a dip surrounded by two maxima in the
u− component. Remarkably, for half-dark solitons inver-
sion of the sign of β does not change the shape of solution.
This is in clear contrast to usual dark solitons that have
different widths for positive and negative β values, see
Fig. 1(c). This suggests that stability properties of half-
dark solitons depend on |β| only, while for dark solitons
the sign of β is important too.
Transverse instability. First, we address the spec-

tral instability of dark solitons with respect to small-
amplitude two-dimensional perturbations. We consider
perturbed solutions in the form ψ± = e−iµt[u±(x) +
p±(x)e

ikyy+λt+q∗±(x)e
−ikyy+λ∗t], where p±(x) and q±(x)

are small perturbations localized in x, ky is the spa-
tial frequency of perturbation in the y direction, and
λ = λre + iλim is a complex eigenvalue, whose real part
λre determines the instability growth rate. Lineariza-
tion around stationary solution u± leads to the eigen-
value problem for λ, which can be solved numerically for
different values of SOC strength β and frequency ky.
It is well known [5] for β = σ = 0 that usual dark soli-

tons are unstable for the modulation frequencies within
the interval 0 < |ky|

2 < 1. This situation changes signif-
icantly when SOC strength becomes nonzero, and weak
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FIG. 3. Decay of the dark soliton at β = 0. |ψ+| and |ψ−|
components are shown in the left and right columns, respec-
tively. For t = 27 we also show phases argψ±. All distri-
butions are shown within (x, y) ∈ [−15, 15] × [−33.4, 33.4]
windows. See detailed dynamics in Visualization 1.

FIG. 4. Decay of the dark soliton at β = −0.1. ψ+ and
ψ− are shown in left and right columns, respectively, within
(x, y) ∈ [−15, 15] × [−33.4, 33.4] windows. For t = 50 both
amplitudes and phases are shown. See Visualization 2.

cross-attraction σ is taken into account. In Fig. 2(a) we
plot the maximal instability increment computed for dark

FIG. 5. Decay of dark soliton at β = 0.1. ψ+ and ψ− are
shown in left and right columns, respectively, within (x, y) ∈
[−15, 15]× [−33.4, 33.4] windows. For t = 27 both amplitudes
and phases are shown. See Visualization 3.

solitons with representative chemical potential µ = 1 on
the plane of parameters (ky, β). Notice that instability
band is asymmetric in β as it was supposed above. It no-
tably expands with increase of |β|. Fig. 2(a) shows that
even weak attraction of cross-polarized polaritons leads
to the 1D instability of dark solitons at ky = 0. More-
over, the increase of SOC strength β to large (positive
or negative) values clearly enhances one-dimensional in-
stability. For |β| > 0.1 the instability associated with
ky = 0 is the strongest one, i.e. the corresponding in-
crement is maximal among all ky. Thus for large |β|, if
instability is seeded by noisy perturbations, the snaking
may not occur and dynamics will be ruled mostly by
the 1D instability. Therefore, proceeding to investigation
of dynamical development of TI, we limit the considera-
tion to relatively small values of β. In Figs. 3, 4 and 5
we illustrate the development of TI seeded by small ini-
tial perturbations with the same frequency ky ≈ 0.5 for
three representative values of β. In the absence of SOC
(β = 0, Fig. 3), TI results in the development of sym-
metric snaking pattern (identical in both components)
from input dark soliton stripe, which then breaks into
alternating vortices and antivortices, i.e., topological de-
fects with winding numbers equal to +1 and −1. For
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nonzero β (Fig. 4 and 5) the emerging snaking patterns
are strongly asymmetric and different in two components,
they break into segments of unequal lengths, such that
longer segments rotate in the (x, y) plane and direction
of rotation is opposite in the ψ+ and ψ− components.
Notice the appearance of elements with three close vor-
tices that alternate with antivortices in Fig. 4 that was
never observed in scalar systems. Strong asymmetry in
shapes of vortices and antivortices in the chain due to
SOC is a distinctive feature of this system. At later
stages of the instability development, one observes the
formation of vortex-antivortex pairs. At the same time,
the comparison of lower panels of Figs. 4 and 5 reveals
qualitative difference of phase patterns for opposite signs
of SOC. Indeed, in Fig. 4 the position of each vortex in
ψ+ component approximately coincides with a vortex in
ψ− component, and each antivortex in ψ+ corresponds
to an antivortex in ψ−. In Fig. 5 one observes completely
different picture where each vortex in ψ+ component cor-
responds to an antivortex in ψ−, and, vice versa, each
antivortex in ψ+ corresponds to a vortex in ψ−. This
phenomenon does not exist in scalar systems.
Now we turn to TI of asymmetric half-dark solitons.

Their instability increments are plotted in Fig. 2(b) on
the (ky, β) plane. The dependence is symmetric in β.
In contrast to dark solitons [Fig. 2(a)], half-dark ones
are most unstable with respect to perturbations with
nonzero modulation frequency ky (except for large val-
ues of β close to ±1/2). Moreover, for small values of
SOC strength |β| < 0.2, 1D half-dark solitons are com-
pletely stable, i.e., λre = 0 at ky = 0. Half-dark soli-
tons demonstrate very unusual TI, dynamics depicted in
Fig. 6, where one again observes the asymmetric snaking
pattern, which however is well-pronounced only in the
ψ+ component, while ψ− component features only rela-
tively weak density modulations, even though the SOC
strength in this case was relatively large (β = 0.4). Re-
spectively, at later stages of TI development one observes
the excitation of the chains of half-vortices (i.e. vortices
appear only in ψ+ component), where nearly circularly
symmetric states alternate with extremely asymmetric
ones.
To conclude, SOC significantly affects stability of 1D

and 2D dimensional dark and half-dark solitons in po-
lariton condensates. SOC leads to unusual asymmetric
snaking pattern at early stages of TI development, and at
later stages solutions break into vortex-antivortex pairs
such that the resulting phase distribution can be distinc-
tively different for opposite signs of SOC.
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