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A detailed stability analysis is presented for the de Sitter solution with a homogeneous magnetic
field that was recently found in the context of a U(1) gauge theory nonminimally coupled to scalar-
tensor gravity. The magnetic field is “stealth” in the sense that the corresponding stress-energy
tensor is of the form of an effective cosmological constant and thus is isotropic despite the fact that
the magnetic field has a preferred spatial direction. We study the stability of the solution against
linear perturbations in the subhorizon and superhorizon limits. We then present some explicit
examples that satisfy all stability conditions. The stable de Sitter solution with a homogeneous
magnetic field opens up a new possibility for inflationary magnetogenesis, in which magnetic fields
in the Universe at all scales may originate from a classical, homogeneous magnetic field sustained
during inflation.

I. INTRODUCTION

The origin of magnetic fields in the Universe at vari-
ous scales is one of the mysteries in modern cosmology.
There thus have been a large number of attempts to find
a theoretical framework in which magnetic fields in the
Universe are generated in the course of the cosmic his-
tory (see [1–4] for reviews). The author recently pro-
posed a new scenario of inflationary magnetogenesis in
which magnetic fields in the Universe at all scales may
originate from a classical, homogeneous magnetic field
sustained during inflation [5]. It was found that a U(1)
gauge theory nonminimally coupled to scalar-tensor grav-
ity admits a cosmological attractor solution that repre-
sents a de Sitter universe with a homogeneous magnetic
field, fully taking into account the backreaction of the
magnetic field on the geometry.
In the standard Einstein-Maxwell theory, a homoge-

neous magnetic field would introduce anisotropies in the
geometry through the stress-energy tensor, making it im-
possible to admit a de Sitter solution. One thus needs
to modify the standard Einstein-Maxwell theory one way
or another to make a homogeneous magnetic field and an
isotropic expansion of the universe consistent with each
other. In the solution found in [5], a homogeneous mag-
netic field has a preferred spatial direction but its stress-
energy tensor is isotropic and is of the form of an effective
cosmological constant. In this sense the magnetic field in
the solution is “stealth”.
The basic idea behind the model of [5] is as follows.

For simplicity let us first consider an action for a U(1)
gauge field Aµ of the form

Iw =

∫

d4x
√−g f(w) , w = −1

4
FµνF

µν , (1.1)

where Fµν = ∂µAν − ∂νAµ is the field strength and gµν
is the spacetime metric. By taking the variation of the
action with respect to gµν , one obtains the corresponding

stress-energy tensor as

T µν
w =

2√−g
δIw
δgµν

= f ′(w)Fµ
ρF

νρ + f(w)gµν . (1.2)

If f ′(w) = 0 then the stress-energy tensor is proportional
to gµν and thus admits an exact de Sitter solution. For
example, this would be the case if f(w) = f0+f2(w−w0)

2

with f0, f2 and w0 constant and if w = w0. How-
ever, in Friedmann-Lemâıtre-Robertson-Walker (FLRW)
backgrounds (including the de Sitter spacetime), w for a
homogeneous magnetic field decays as 1/a4, where a is
the scale factor, and thus the only constant value of w
that is consistent with the expansion of the universe is
zero. For this reason, this simple action does not work.
Let us next consider an action of the form

IW =

∫

d4x
√−g f(W ) , W = −1

4
e2φFµνF

µν , (1.3)

where φ is a scalar field and it is understood that some
kinetic terms for φ are also added to the action. In this
case the corresponding stress-energy tensor is again pro-
portional to gµν if f ′(W ) = 0. The main difference from
the previous case is that W for a homogeneous magnetic
field is proportional to e2φ/a4 in FLRW backgrounds and
thus is constant if eφ ∝ a2. This is the basic idea behind
the model of [5].
The model action of [5] however includes not only a

nonlinear function of W but also other terms such as the
Horndeski’s nonminimal vector coupling and the Horn-
deski scalar terms. This is because, while the simple ac-
tion (1.3) supplemented by kinetic terms for φ in principle
admits a de Sitter solution with a homogeneous magnetic
field, the stability of such a solution requires inclusion of
additional terms in the action.
The purpose of the present paper is to show a detailed

stability analysis for the solution representing a de Sitter
spacetime with a stealth homogeneous magnetic field. In
particular we study the stability of the solution against
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linear perturbations in the subhorizon and superhorizon
limits. We show that the stability of the solution requires
inclusion of the Horndeski’s nonminimal vector coupling
as well as the Horndeski scalar terms. We then present
some explicit examples that satisfy all stability condi-
tions.
The rest of the present paper is organized as follows. In

section II we briefly review the model and the solutions
studied in [5], focusing on those without the electric field.
In section III we formulate the linear perturbation anal-
ysis and study the stability of the de Sitter solution with
the stealth magnetic field against subhorizon perturba-
tions. In section IV we then study the stability of the so-
lution against superhorizon perturbations. In section V,
after showing a couple of classes of models that are un-
stable, we present explicit models that satisfy all stability
conditions. Section VI is then devoted to a summary of
the paper and some discussions. Appendices A-D show
explicit expressions of some matrices and coefficients.

II. REVIEW OF THE MODEL

In this section we briefly review the model and the de
Sitter solution with a homogeneous magnetic field stud-
ied in [5].

A. Action

The model consists of a metric gµν , a U(1) gauge field
Aµ and a scalar field φ, described by the action

I =

∫

d4x
√−g [L+ L3 + L4 + L5 + LH] , (2.1)

where L = L(X,W, Y, Z) is an arbitrary function of

X ≡ −1

2
gµν∂µφ∂νφ , W ≡ −1

4
FµνFµν ,

Y ≡ FµνF̃µν , Z ≡ FρµF ν
ρ ∂µφ∂νφ ; (2.2)

Fµν and F̃µν are defined by

Fµν ≡ eφFµν , F̃µν ≡ eφF̃µν ,

Fµν ≡ ∂µAν − ∂νAµ , F̃µν ≡ 1

2
ǫµνρσFρσ , (2.3)

and ǫ0123 = −1/
√−g;

L3 =−G3(X)�φ ,

L4 =G4(X)R+G4X(X)
[

(�φ)2 − (∇µ∇νφ)(∇ν∇µφ)
]

,

L5 =G5(X)Gµν∇µ∇νφ− 1

6
G5X(X)

[

(�φ)3

− 3(�φ)(∇µ∇νφ)(∇ν∇µφ)

+2(∇µ∇νφ)(∇ν∇ρφ)(∇ρ∇µφ)] , (2.4)

are shift-symmetric Horndeski scalar terms [6, 7]; and

LH = ξF̃µνF̃ρσRµνρσ , (2.5)

is a simple modification (F̃µν → F̃µν) of the Horndeski’s
nonminimal coupling of the U(1) gauge field to the Rie-
mann tensor Rµ

νρσ of the metric gµν [8]. Here, the scalar
field φ is normalized so that its mass dimension is zero,
G3,4,5(X) are arbitrary functions of X , the subscript X
denotes derivative with respect to X , and ξ is an arbi-
trary constant.
The action is diffeomorphism invariant and enjoys the

U(1) gauge symmetry

Aµ → Aµ + ∂µλ , (2.6)

where λ is an arbitrary function. Furthermore, the action
respects the global symmetry

φ→ φ+ φ0 , Aµ → e−φ0Aµ , (2.7)

where φ0 is an arbitrary constant. We assume that the
function L(X,W, Y, Z) is even with respect to Y

L(X,W, Y, Z) = L(X,W,−Y, Z) . (2.8)

This assumption ensures that the equations of motion
admit a solution without the electric field [5].

B. Bianchi I solution with magnetic field

We first consider a Bianchi I spacetime

gµνdx
µdxν =−N(t)2dt2 + a(t)2

[

e4σ(t)dx2

+e−2σ(t)(dy2 + dz2)
]

, (2.9)

with

ȧ

Na
= const. ≡ H0 ,

σ̇

N
= const. ≡ Σ0 , (2.10)

where an over-dot represents derivative with respect to t.
We further assume that the scalar field is homogeneous,
φ = φ(t), and has a constant “velocity” as

φ̇

N
= const. , (2.11)

and that the U(1) gauge field represents a homogeneous
magnetic field as

At = Ax = 0 , Ay =
1

2
Bz , Az = −1

2
By , (2.12)

where B is a constant.
Assuming that not only H0, Σ0, B and φ̇/N but also

χ ≡ eφ/a2 are constant (see the sentences just after (1.3)
for the motivation for this extra assumption) and rescal-
ing the spatial coordinates so that χ = 1, the equations
of motion are reduced to

0 = bLY , (2.13)
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and

0 =16(1− s)6H6
0G5X − 6G4(1− s)2H2

0 − L

+ 4
[

4ξb2 + 6(1− s)2G4X

]

(1− s)2H4
0 ,

0 =8G5XX(1 + 2s)(1− s)6H6
0

+ 6(1− s)4 [4(1 + s)G4XX + (1 + 4s)G5X ]H4
0

+ 2
{

−(1− 4s)ξb2 + 3(1− s)2[G3X

+(1 + 3s)G4X ]}H2
0 − 3sG4 + (1 − s)LX ,

0 =4
[

18s(1− s)2G4X − ξ(5− 4s+ 8s2)b2
]

H2
0

+ 72G5X(1 − s)4sH4
0 − b2LW − 18sG4 , (2.14)

where b ≡ B/H0 and s ≡ Σ0/H0. Hereafter, subscripts
W , Y and Z represent derivatives with respect to them.
Since Y = 0 for the ansatz (2.12) and we have assumed
(2.8), the first equation (2.13) is automatically satisfied.
Therefore we have three algebraic equations (2.14) to be
solved with respect to the three parameters (H0, b, s) of
the ansatz. Generically they admit a solution (or a set
of solutions).

C. de Sitter solution with magnetic field

By fine-tuning one of parameters in the action, one can
then take the limit s→ 0 so that the spacetime becomes
a de Sitter,

gµνdx
µdxν = −N(t)2dt2+a(t)2(dx2+dy2+dz2) . (2.15)

Then, under the assumption (2.8), the independent equa-
tions of motion are

0 =16G5XH
6
0 + 8(2ξb2 + 3G4X)H4

0 − 6G4H
2
0 − L ,

0 =8G5XXH
6
0 + 6(4G4XX +G5X)H4

0

+ 2
[

−ξb2 + 3(G3X +G4X)
]

H2
0 + LX ,

0 =20ξH2
0 + LW . (2.16)

These are three algebraic equations. One of the three
equations (or one combination of them) simply represents
the fine-tuning of one of parameters in the action and the
remaining two equations can generically be solved with
respect to the two parameters (H0, b) of the ansatz.
If we relax the fine-tuning without abandoning the dis-

crete symmetry (2.8) then the solution goes back to the
Bianchi I solution with the three parameters (H0, b, s)
described in the previous subsection.

D. Attractor condition

Ref. [5] found the necessary and sufficient condition
under which the de Sitter solution with a homogeneous
magnetic field introduced in subsection II C is stable
against homogeneous linear perturbations, under the as-
sumption (2.8). The stability condition, or the attractor

condition, is A/N > 0, where

N =2ζ3gh(ζ3 − 8ζ1)b
2 + ζ1(ζ1ζ2 + 3ζ23 ) ,

A =56b6g3h − 4(9ζ1 + ζ2 + 15ζ3)g
2
hb

4 − 2ghζ4(ζ1 − ζ3)b
3

+
[

6(−ζ21 + ζ1ζ2 + 2ζ1ζ3 + 2ζ23 )gh

+ζ5(ζ1 − ζ3)
2
]

b2 +
3

2
ζ1ζ4(ζ1 − ζ3)b , (2.17)

gh and ζi (i = 1, · · · 5) are constants defined by

gh =ξH2
0/M

2
Pl , ζ1 = 2b2gh + g4 − 4g4x − 4g5x ,

ζ2 =2b2gh + 6g3x + 24g3xx + 72g4xx + 96g4xxx

+ 6g5x + 48g5xx + 32g5xxx + 4lxx ,

ζ3 =4b2gh + 2g3x + 4g4x + 16g4xx + 6g5x + 8g5xx ,

ζ4 =− 4(gh + lxw)b , ζ5 = −12gh − b2lww , (2.18)

and

LXX = lxx
M2

Pl

H2
0

, LXW = lxw
M2

Pl

H2
0

, LWW = lww
M2

Pl

H2
0

,

G3X = g3x
M2

Pl

H2
0

, G3XX = g3xx
M2

Pl

H4
0

,

G4 = g4M
2
Pl , G4X = g4x

M2
Pl

H2
0

, G4XX = g4xx
M2

Pl

H4
0

,

G4XXX = g4xxx
M2

Pl

H6
0

, G5X = g5x
M2

Pl

H4
0

,

G5XX = g5xx
M2

Pl

H6
0

, G5XXX = g5xxx
M2

Pl

H8
0

. (2.19)

It is understood that the left hand sides of (2.19) are
evaluated at the de Sitter solution with a homogeneous
magnetic field and thus are constant.
We shall later see that the absence of ghosts implies

that N > 0. Therefore the attractor condition is

A > 0 . (2.20)

III. LINEAR PERTURBATION

In this section we consider inhomogeneous linear per-
turbations around the de Sitter attractor solution with a
homogeneous magnetic field (H0 > 0, s = 0, b 6= 0) and
seek the no-ghost conditions and the sound speeds in the
subhorizon limit.

A. Decomposition of linear perturbation

Around the general background introduced in subsec-
tion II B we introduce the components Φ, Vi and hij
(i, j = 1, 2, 3) of the metric perturbation δgµν , the com-
ponents δAa (a = 0, · · · , 3) of the perturbation of the
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vector field δAµ and the perturbation π of the scalar field
φ as

δgµνdx
µdxν = −2Φ e0e0 + Vi e

0ei + Vi e
ie0 + hij e

iej ,

δAµdx
µ = δAae

a , δφ = π , (3.1)

where

e0 = N(t)dt , e1 = a(t)e2σ(t)dx ,

e2 = a(t)e−σ(t)dy , e3 = a(t)e−σ(t)dz , (3.2)

and the Einstein’s summation rule is employed. We then
decompose each component of the perturbation into spa-
tial Fourier modes. For this purpose, we first introduce
scalar harmonics Yn (n = cc, cs, sc, ss) as

Ycc =cos(kxx) cos(kyy + kzz) ,

Ycs =cos(kxx) sin(kyy + kzz) ,

Ysc =sin(kxx) cos(kyy + kzz) ,

Yss =sin(kxx) sin(kyy + kzz) , (3.3)

and then define odd and even vector harmonics Y
odd/even
n,p

(n = cc, cs, sc, ss; p, q = 2, 3) as

Y odd
n,p = ǫpq

∂

∂xq
Yn , Y even

n,p =
∂

∂xp
Yn , (3.4)

where x2 = y, x3 = z, and ǫpq is the two-dimensional
Levi-Civita symbol (ǫ23 = −ǫ32 = 1 and ǫ22 = ǫ33 =

0), and odd and even tensor harmonics Y
odd/even
n,pq (n =

cc, cs, sc, ss; p, q = 2, 3) as

Y odd/even
n,pq =

1

2

(

∂

∂xp
Y odd/even
n,q +

∂

∂xq
Y odd/even
n,p

)

.

(3.5)
The components of the perturbations are then decom-
posed as

π =

∫

d3k

(2π)3
πn Yn , Φ =

∫

d3k

(2π)3
Φn Yn ,

V1 =

∫

d3k

(2π)3
χn Yn , h11 =

∫

d3k

(2π)3
ψn Yn ,

δA0 =

∫

d3k

(2π)3
A0,n Yn , δA1 =

∫

d3k

(2π)3
A1,n Yn ,

Vp =

∫

d3k

(2π)3
(V odd

n Y odd
n,p + V even

n Y even
n,p ) ,

h1p = hp1 =

∫

d3k

(2π)3
(hodd1,n Y

odd
n,p + βnY

even
n,p ) ,

δAp =

∫

d3k

(2π)3
(Aodd

n Y odd
n,p +Aeven

n Y even
n,p ) ,

hpq =

∫

d3k

(2π)3
(hoddn Y odd

n,pq + EnY
even
n,pq + τnYnδpq) , (3.6)

where p, q = 2, 3 and the Einstein’s summation rule for
n = cc, cs, sc, ss is understood.
We fix gauge freedom associated with the spacetime

coordinate transformation and the U(1) gauge transfor-
mation as

βn = hoddn = En = τn = 0 , Aeven
n = 0 . (3.7)

B. General quadratic action

Substituting the decomposition of perturbations to the
action, imposing the gauge condition and expanding the
action up to the quadratic order in perturbations, we
obtain the quadratic action for the linear perturbations
around a general background introduced in subsection
II B as

I(2) =
1

2

∫

d3k

(2π)3

∫

Na3dt

[

1

N2
Ẏ

⊺

nKẎn +
1

N

(

Ẏ
⊺

nMYn

+Y
⊺

nM
⊺
Ẏn

)

−Y
⊺

nVYn + (Z⊺

nAYn +Y
⊺

nA
⊺
Zn)

+
1

N

(

Z
⊺

nBẎn + Ẏ
⊺

nB
⊺
Zn

)

+ Z
⊺

nCZn

]

, (3.8)

where the superscript ⊺ represents the transpose opera-
tion,

Yn =











k⊥a
2Aodd

n

k⊥h
odd
1,n

a2A1,n

πn
ψn











, (3.9)

represent dynamical degrees of freedom,

Zcc =













k⊥V
odd
sc

k⊥V
even
cc

a2A0,sc

χsc
a
k⊥

H0Φcc













, Zcs =













k⊥V
odd
ss

k⊥V
even
cs

a2A0,ss

χss
a
k⊥

H0Φcs













,

Zsc =













−k⊥V odd
cc

k⊥V
even
sc

−a2A0,cc

−χcc
a
k⊥

H0Φsc













, Zss =













−k⊥V odd
cs

k⊥V
even
ss

−a2A0,cs

−χcs
a
k⊥

H0Φss













, (3.10)

represent non-dynamical degrees of freedom, k⊥ =
√

(ky)2 + (kz)2 and the Einstein’s summation rule for
n = cc, cs, sc, ss is again understood. Important points
are that the matrices K, M, V, A, B and C are common
for all n = cc, cs, sc, ss and that there are no coupling be-
tween (Yn, Zn) and (Yn′ , Zn′) with n 6= n′. In general,
however, even and odd sectors within (Yn, Zn) couple
with each other.
Integrating out the non-dynamical variables Zn, one

obtains the quadratic action for the dynamical variables
Yn as

Ĩ(2) =
1

2

∫

d3k

(2π)3

∫

Na3dt

[

1

N2
Ẏ

⊺

nK̄Ẏn +
1

N

(

Ẏ
⊺

nM̄Yn

+Y
⊺

nM̄
⊺
Ẏn

)

−Y
⊺

nV̄Yn

]

, (3.11)

where

K̄ = K−B
⊺
C

−1
B , M̄ =

1

2
(m̄− m̄

⊺) ,

V̄ = V +A
⊺
C

−1
A+

1

2Na3
∂t

[

a3 (m̄+ m̄
⊺)
]

, (3.12)
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and

m̄ = M−B
⊺
C

−1
A , (3.13)

It is then straightforward to diagonalize the kinetic
matrix K̄ as

K̄ → K̃ = U
⊺
K̄U , U = U1U2U3U4U5 , (3.14)

where

U1 =













1 − K̄12

K̄11

− K̄13

K̄11

− K̄14

K̄11

− K̄15

K̄11

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













,

U2 =













1 0 0 0 0

0 1 − K̄23

K̄22

− K̄24

K̄22

− K̄25

K̄22

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













,

U3 =













1 0 0 0 0
0 1 0 0 0

0 0 1 − K̄34

K̄33

− K̄35

K̄33

0 0 0 1 0
0 0 0 0 1













,

U4 =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 1 − K̄45

K̄44

0 0 0 0 1













, (3.15)

and U5 = diag(1, k/k⊥, k/k⊥, 1, k
2/k2

⊥
). Here k =

√

(kx)2 + (k⊥)2. Correspondingly, the friction matrix M̄

and the mass matrix V̄ transform as

M̄ →M̃ =
1

2
(m̃− m̃

⊺) ,

V̄ →Ṽ = U
⊺
V̄U− 1

N

(

U̇
⊺
M̄U+U

⊺
M̄

⊺
U̇

)

− 1

N2
U̇

⊺
K̄U̇+

1

2Na3
∂t

[

a3 (m̃+ m̃
⊺)
]

, (3.16)

where

m̃ = U
⊺
M̄U+

1

N
U

⊺
K̄U̇ . (3.17)

The quadratic action is now written as

Ĩ(2) =
1

2

∫

d3k

(2π)3

∫

Na3dt

[

1

N2

˙̃
Y

⊺

n
K̃

˙̃
Yn

+
1

N

(

˙̃
Y

⊺

n
M̃Ỹn + Ỹ

⊺

n
M̃

⊺ ˙̃
Yn

)

− Ỹ
⊺

nṼỸn

]

,

(3.18)

where the new variables Ỹn are related to the original
variables Yn via Yn = UỸn.

C. Quadratic action around de Sitter background

with magnetic field

In the de Sitter background with a homogeneous mag-
netic field, the matrices in (3.8) are greatly simplified and
all their components are written in terms of p⊥ ≡ k⊥/a,
px ≡ kx/a, b, gh, g4 and ζα (α = 1, · · · , 7), where gh and
ζα are defined in (2.18) and

ζ6 = 4(−3gh+2lz) , ζ7 = 4(−3gh+2lz+4b2lyy) . (3.19)

Here, lz and lyy are defined as

LZ = lz
M2

Pl

H2
0

, LY Y = lyy
M2

Pl

H2
0

, (3.20)

where it is understood that the left hand sides of (3.20)
are evaluated at the de Sitter solution with a homoge-
neous magnetic field. It is convenient to decompose the
matrices into sub-matrices as

K =

(

Kodd 0

0 Keven

)

, M =

(

0 Mmix

−M
⊺

mix Meven

)

,

V =

(

Vodd Vmix

V
⊺

mix Veven

)

, A =

(

Aodd AmixI

AmixII Aeven

)

,

B =

(

Bodd 0

Bmix Beven

)

, C =

(

Codd Cmix

C
⊺

mix Ceven

)

, (3.21)

where explicit expressions for the sub-matrices are given
in Appendix A.

If b = 0 (we have already set s = 0) then, since L is
assumed to be even with respect to Y in (2.8), the theory
and the background respect the parity invariance and, as
a result, the mixing matrices Mmix, Vmix, AmixI, AmixII,
Bmix and Cmix vanish. In general they do not vanish and
thus the even and odd perturbations do mix.

The quadratic action for the dynamical variables Yn

is then given by the formulas (3.11)-(3.13). After diago-
nalization of the kinetic matrix, one obtains (3.18) with
(3.14)-(3.17).

D. Subhorizon limit

For the theoretical consistency, one needs to analyze
the stability of the background in the UV, i.e. in the
subhorizon limit p2 ≫ H2

0 , where p =
√

p2x + p2
⊥
= k/a.

This ensures the absence of instability whose timescale is
parametrically shorter than the cosmological timescale ∼
1/H0. The stability of the solution against perturbations
with p2 ≪ H2

0 shall be studied in the next section.

In the subhorizon limit p2 ≫ H2
0 , introducing a small

bookkeeping parameter ǫ so that H2
0/p

2 = O(ǫ2), com-
ponents of the matrices in the quadratic action (3.18) are
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simplified as

K̃ =













K̃1 0 0 0 0

0 K̃2 0 0 0

0 0 K̃3 0 0

0 0 0 K̃4 0

0 0 0 0 K̃5













+O(ǫ2) ,

M̃ =













0 0 0 M̃1 M̃2

0 0 M̃3 0 0

0 −M̃3 0 0 0

−M̃1 0 0 0 0

−M̃2 0 0 0 0













+ pO(ǫ2) ,

Ṽ =













Ṽ1 0 0 0 0

0 Ṽ2 0 0 0

0 0 Ṽ3 0 0

0 0 0 Ṽ4 Ṽ6
0 0 0 Ṽ6 Ṽ5













+ p2O(ǫ2) , (3.22)

where

K̃1 =ζ6 ,

K̃2 =

(

p2
⊥

ζ1
+

p2x
ζ1 − 2b2gh

)−1

p2 ,

K̃3 =

(

p2
⊥

ζ7
+
p2x
ζ6

)−1

p2 ,

K̃4 =
c1p

4
⊥
+ 2c2p

2
⊥
p2x +Np4x

[(ζ1 − ζ3)p2 + 3b2ghp2⊥]
2
,

K̃5 =
(ζ1 − 2b2gh)Np4

4(c1p4⊥ + 2c2p2⊥p
2
x +Np4x)

,

M̃1 =
p⊥(c3p

2
⊥
+ c4p

2
x)

(ζ1 − ζ3)p2 + 3b2ghp2⊥
,

M̃2 =
bghp⊥p

2(ζ1 − 2b2gh)(c5p
2
⊥
+ c6p

2
x)

ζ1(c1p4⊥ + 2c2p2⊥p
2
x +Np4x)

,

M̃3 =− 2bghp⊥
ζ1

K̃2 ,

Ṽ1 =ζ5p
2
⊥ + 4gh

(

4b2gh
ζ1

− 3

)

p2x ,

Ṽ2 =g4p
2 ,

Ṽ3 =
4ghp

2[3(2b2gh − ζ1)p
2
⊥
+ (4b2gh − 3ζ1)p

2
x]

(ζ1 − 2b2gh)p2⊥ + ζ1p2x
,

Ṽ4 =
c7p

6
⊥
+ c8p

4
⊥
p2x + c9p

2
⊥
p4x + c10p

6
x

[(ζ1 − ζ3)p2 + 3b2ghp2⊥]
2

,

Ṽ5 =
p4(c11p

6
⊥
+ c12p

4
⊥
p2x + c13p

2
⊥
p4x + c14p

6
x)

[c1p4⊥ + 2c2p2⊥p
2
x +Np4x]

2
,

Ṽ6 =
b2ghp

2
⊥
p2(c15p

4
⊥
+ 2c16p

2
⊥
p2x + c17p

4
x)

[(ζ1 − ζ3)p2 + 3b2ghp2⊥][c1p
4
⊥
+ 2c2p2⊥p

2
x +Np4x]

.

(3.23)

Here, N is defined in (2.17) and c1, · · · , c17 are shown in
Appendix B.

E. No-ghost conditions

All components K̃1,2,3,4,5 of the diagonalized kinetic
matrix in the subhorizon limit are positive for ∀p⊥ and
∀px such that p2 6= 0, if and only ifNa > 0 (a = 1, · · · , 7),
where

N1 = ζ1 , N2 = ζ1 − 2b2gh ,

N3 = ζ6 , N4 = ζ7 , N5 = N , (3.24)

and

N6 = c1 , N7 = c2 +
√

c1N . (3.25)

Here, the positivity of the last three N5,6,7 is necessary
and sufficient for c1p

4
⊥
+ 2c2p

2
⊥
p2x + Np4x to be positive

for ∀p⊥ and ∀px such that p2 6= 0.
One can actually show that

N6 =
N2

4N 2
1

(N1 −N2)
2(4N1 − ζ3)

2 +
N5

4N 2
1

(N1 +N2)
2 ,

N7 =
N5

2N1
(N1 +N2) +

√

N5N6 . (3.26)

Therefore the positivity of N6 and N7 follows from other
conditions and the no-ghost condition is simply

Na > 0 , (a = 1, · · · , 5) . (3.27)

F. Sound speeds

The squared sound speeds c2s of the five modes are
determined by

0 = lim
ǫ→0

det
[

c2sK̃− 2i
√

c2sM̃/p− Ṽ/p2
]

=K̃1K̃2K̃3K̃4K̃5 ×
[

(c2s)
2 − 2α1c

2
s + α2

]

×
[

(c2s)
3 − 3α3(c

2
s)

2 + 3α4c
2
s − α5

]

, (3.28)

where

α1 =
b2N1N3S1 + 2N2(N1 + 2N2)S2

2b2N1N2N3

p2x
p2

+
b2N4S1 + 2(N1 + 2N2)S2

2b2N1N4

p2
⊥

p2
,

α2 =
2[(N1 + 2N2)p

2
x + 3N2p

2
⊥
](N3p

2
⊥
+N4p

2
x)

b2N1N2N3N4p4
S1S2 ,

α3 =
N1S3p

2
x +N2S4p

2
⊥

3b2N 2
1N2N3N5p2

,

α4 =
S5p

4
x + 2(S7 −

√S5S6)p
2
xp

2
⊥
+ S6p

4
⊥

3b2N1N2N3N5p4
,

α5 =
S9p

4
x + 2(S11 −

√S9S10)p
2
xp

2
⊥
+ S10p

4
⊥

b2N1N2N3N5p6

× [2(N1 +N2)S2p
2
x + b2N1S8p

2
⊥] , (3.29)

and S1,··· ,11 are given in Appendix C.
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For the absence of gradient instabilities, it is necessary
and sufficient to impose

α1 > 0 , α2 > 0 , α3 > 0 , α4 > 0 , α5 > 0 ,

for ∀p⊥ and ∀px such that p2 6= 0 , (3.30)

and

α2
1 − α2 > 0 , α2

3 − α4 > 0 ,

− α2
5 + 2(3α4 − 2α2

3)α3α5 + (3α2
3 − 4α4)α

2
4 > 0 ,

for ∀p⊥ and ∀px such that p2 6= 0 . (3.31)

Here, we supposed that the no-ghost condition (3.27) is
satisfied. The condition (3.30) is equivalent to

Sa > 0 , (a = 1, · · · , 11) . (3.32)

IV. LONG WAVELENGTH PERTURBATIONS

In the previous section we studied the stability of the
de Sitter solution with a homogeneous magnetic field in
the UV limit, i.e. the limit where the wavelengths of
perturbations are sufficiently shorter than the size of the
de Sitter horizon. In this section we study the stability
of the solution in the opposite limit, namely the limit
where the wavelengths of perturbations are sufficiently
longer than the size of the horizon.
As argued in [9], instabilities for modes with p2 =

O(H2
0 ) can be as harmless as the standard Jeans instabil-

ity. It is nonetheless necessary to impose the stability for
those modes with p2 ≪ H2

0 if one wants the background
under investigation to realize dynamically as an attractor
of the system. In general relativity, the standard Jeans
instability prevents the matter-dominated FLRW back-
ground from being an attractor of the system, but this is
not a problem since it is not the matter-dominated epoch
but the inflationary epoch that sets the initial condition
of our local patch of the universe. On the other hand,
for the system under investigation in the present paper,
we would like the homogeneous magnetic field to realize
dynamically and to be sustained during a de Sitter phase
representing the inflationary epoch. For this reason, we
require the solution to be an attractor of the system.
Namely, we require the solution to be stable against per-
turbations with p2 ≪ H2

0 .
For this purpose we send p⊥/H0 and px/H0 to zero

after obtaining equations of motion for properly nor-
malized dynamical variables. Since the vector harmon-

ics Y
odd/even
n,p (n = cc, cs, sc, ss; p, q = 2, 3) vanish

in the limit and Y
odd/even
n,p /k⊥ remain finite, we intro-

duce h̃odd1,n ≡ k⊥h
odd
1,n , Ã

odd
n ≡ k⊥A

odd
n and Ṽ

odd/even
n ≡

k⊥V
odd/even
n . The stability of the background solution

against anisotropic perturbations with long wavelengths
can then be analyzed by studying the equations of motion
for the dynamical variables (h̃odd1,n , A1,n, πn, ψn, Ã

odd
n ) in

the limit where p⊥/H0 and px/H0 are sent to zero, after

eliminating non-dynamical variables. For simplicity we
set N(t) = 1 in the rest of this section.

The equation of motion for h̃odd1,n in the long wavelength
limit does not involve other variables and is

¨̃hodd1,n + 3H0
˙̃hodd1,n = 0 , (4.1)

where an over-dot represents derivative with respect to
the time variable t. This gives the solution

h̃odd1,n = C1 + C2e
−3H0t , (4.2)

where C1 and C2 are constants. The first solution, which
is constant in space and time, is actually a pure gauge.
Therefore, h̃odd1,n is stable.
The equation of motion for A1,n in the long wavelength

limit also does not involve other variables and is

Ä1,n + 7H0Ȧ1,n + 6H2
0A1,n = 0 , (4.3)

which gives the solution

A1,n = C3e
−H0t + C4e

−6H0t , (4.4)

where C3 and C4 are constants. Therefore, A1,n is stable.
The equations of motion for πn and ψn in the long

wavelength limit are coupled but can be solved easily by
setting

πn = π0
ne

ΓH0t , ψn = ψ0
ne

ΓH0t , (4.5)

where π0
n and ψ0

n are constants. The general solution is
of course a linear combination of solutions of this form
for all allowed values of Γ. By substituting (4.5) to the
equations of motion for πn and ψn, one obtains

Γ(Γ + 3)

(

Γ2 + 3Γ +
A
N

)

= 0 , (4.6)

where A and N are the same as those defined in (2.17)
and thus in particular N = N5 (see (3.24)). For Γ = 0,
π0
n = 0 and ψn is a pure gauge. Therefore, πn and ψn are

also stable, provided that the attractor condition (2.20)
and the no-ghost condition (3.27) are satisfied.

The equation of motion for Ãodd
n in the long wavelength

limit does not involve other variables and is

¨̃Aodd
n + 5H0

˙̃Aodd
n + BH2

0 Ã
odd
n = 0 ,

B =
A1k

4
x + 2(A3 −

√
A1A2)k

2
xk

2
⊥
+A2k

4
⊥

[(ζ1 − ζ3)k2x + (3ghb2 + ζ1 − ζ3)k2⊥]
2
, (4.7)

where A1,2,3 are given in Appendix D. Therefore, Ãodd
n

is stable if and only if

Aa > 0 , (a = 1, 2, 3) . (4.8)

V. EXAMPLES

In this section we first show a couple of classes of mod-
els that always violate either (3.27) or (3.32). After
that, we show some concrete examples of stable mod-
els with specific choices of parameters, which satisfy not
only (3.27) and (3.32) but also (3.31), (2.20) and (4.8).
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A. Unstable classes of models

Let us first consider the case without the Horndeski’s
non-minimal vector coupling (ξ = 0). Setting gh = 0, we
obtain S2 = 0. This implies that α2 = 0 and thus one of
the five modes has vanishing sound speed.
Let us next consider the case with the Horndeski’s non-

minimal vector coupling (ξ 6= 0) but without Horndeski
scalar terms. Setting g3x = g3xx = g4x = g4xx = g5x =
g5xx = 0, we obtain S9/S2 = −(2N2 −N1)

2N2, which is
non-positive if we impose the no-ghost condition. There-
fore, either S9 or S2 is non-positive if the no-ghost con-
dition is imposed.
These two unstable examples imply that the stabil-

ity requires both the Horndeski’s nonminimal vector cou-
pling and Horndeski scalar terms.

B. Stable models

Our strategy here is to find a set of parameters that
satisfies (3.27) and (3.32), and then to check if (3.31),
(2.20) and (4.8) are also satisfied.
We have already assumed (2.8). For simplicity, in all

the examples considered in this subsection we further set

0 =g3xx = g4xx = g4xxx = g5x

=g5xx = g5xxx = lyy = lxw = lz . (5.1)

In each of the following examples we specify (gh, g4, g4x,
g3x, b, lxx, lww). We then solve the background equations
of motion (2.16) with respect to (l, lx, lw), where

L = lM2
PlH

2
0 , LX = lxM

2
Pl , LW = lwM

2
Pl , (5.2)

and it is understood that the left hand sides of (5.2) are
evaluated at the de Sitter solution with a homogeneous
magnetic field. After that, we confirm that (3.27) and
(3.32) as well as (3.31), (2.20) and (4.8) are satisfied.
For the set of parameters (gh, g4, g4x, g3x, b, lxx, lww; l,

lx, lw) and the assumptions (2.8) and (5.1), one can easily
reconstruct the Lagrangian assuming a simple ansatz and
noting thatX = 2H2

0 andW = −b2H2
0/2 on the de Sitter

solution parameterized by (H0, b). For example, if we
assume that L is quadratic in X andW and independent
of Y and Z then

L

M2
Pl

=

(

l − 2lx + 2lxx +
1

2
b2lw +

1

8
b4lww

)

H2
0

+ (lx − 2lxx)X +

(

lw +
1

2
b2lww

)

W

+
1

2H2
0

(lxxX
2 + lwwW

2) . (5.3)

The simplest choice of G3,4,5 is

G3 = g3x
M2

Pl

H2
0

X , G4 = g4M
2
Pl + g4x

M2
Pl

H2
0

X , G5 = 0 .

(5.4)

The value of ξ is

ξ = gh
H2

0

M2
Pl

. (5.5)

1. Example 1

Let us consider the following choice of parameters.

gh = −1 , g4 =
1

2
, g4x = 0 , g3x =

1

10
,

b =
1

10
, lxx = − 1

10
, lww = −1 , (5.6)

for which the background equations of motion (2.16) give

l = −79

25
, lx = −31

50
, lw = 20 . (5.7)

In this case we have

N1 =
12

25
, N2 =

1

2
, N3 = 12 ,

N4 = 12 , N5 =
1408

15625
, (5.8)

and

S1 =
1

2
, S2 =

1

50
, S3 =

59456

9765625
,

S4 =
35469972

6103515625
, S5 =

1696

390625
, S6 =

7940769

1953125000
,

S7 =
2060321

488281250
+
√

S5S6 , S8 =
1201

100
, S9 =

224

15625
,

S10 =
29

2500
, S11 =

823

62500
+
√

S9S10 . (5.9)

Thus (3.27) and (3.32) are satisfied.
The conditions (2.20) and (4.8) are also satisfied as

A =
5979

390625
, A1 =

256

625
, A2 =

87451

250000
,

A3 =
47493

125000
+
√

A1A2 . (5.10)

After substituting (5.9) into (3.29) to obtain explicit
expressions of α1,··· ,5, it is straightforward to compute
the three expressions on the left hand sides of the in-
equalities in (3.31) and to show that they all have the
form A/B, where A and B are polynomials of p2

⊥
and p2x

with positive coefficients. Therefore, (3.31) is also satis-
fied.

2. Example 2

Let us consider the following choice of parameters.

gh = −1 , g4 =
1

2
, g4x = 0 , g3x =

1

10
,

b =
1

10
, lxx = − 1

10
, lww = 0 , (5.11)
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for which the background equations of motion (2.16) give
the same values of l, lx and lw as shown in (5.7).

In this case we have

N1 =
12

25
, N2 =

1

2
, N3 = 12 ,

N4 = 12 , N5 =
1408

15625
, (5.12)

and

S1 =
1

2
, S2 =

1

50
, S3 =

59456

9765625
,

S4 =
1418292

244140625
, S5 =

1696

390625
, S6 =

79353

19531250
,

S7 =
16477

3906250
+
√

S5S6 , S8 = 12 , S9 =
224

15625
,

S10 =
29

2500
, S11 =

823

62500
+
√

S9S10 . (5.13)

Thus (3.27) and (3.32) are satisfied.

The conditions (2.20) and (4.8) are also satisfied as

A =
239

15625
, A1 =

256

625
, A2 =

1749

5000
,

A3 =
5699

15000
+
√

A1A2 . (5.14)

After substituting (5.18) into (3.29) to obtain explicit
expressions of α1,··· ,5, it is straightforward to compute
the three expressions on the left hand sides of the in-
equalities in (3.31) and to show that they all have the
form A/B, where A and B are polynomials of p2

⊥
and p2x

with positive coefficients. Therefore, (3.31) is also satis-
fied.

3. Example 3

Let us consider the following choice of parameters.

gh = − 1

20
, g4 =

1

2
, g4x = 0 , g3x =

1

10
,

b =
1

10
, lxx = − 1

10
, lww = 0 , (5.15)

for which the background equations of motion (2.16) give

l = −376

125
, lx = − 601

1000
, lw = 1 . (5.16)

In this case we have

N1 =
499

1000
, N2 =

1

2
, N3 =

3

5
,

N4 =
3

5
, N5 =

108990799

1000000000
, (5.17)

and

S1 =
1

2
, S2 =

1

1000
, S3 =

371370384707

1000000000000000
,

S4 =
92615485451247

250000000000000000
, S5 =

50621001581

200000000000000
,

S6 =
252272242903

1000000000000000
,

S7 =
50538124821

200000000000000
+

√

S5S6 , S8 =
3

5
,

S9 =
29949199

2000000000
, S10 =

59301

4000000
,

S11 =
59601699

4000000000
+
√

S9S10 . (5.18)

Thus (3.27) and (3.32) are satisfied.

The conditions (2.20) and (4.8) are also satisfied as

A =
304101

500000000
, A1 =

90601

250000
, A2 =

718809

2000000
,

A3 =
90045653

249500000
+
√

A1A2 . (5.19)

After substituting (5.13) into (3.29) to obtain explicit
expressions of α1,··· ,5, it is straightforward to compute
the three expressions on the left hand sides of the in-
equalities in (3.31) and to show that they all have the
form A/B, where A and B are polynomials of p2

⊥
and p2x

with positive coefficients. Therefore, (3.31) is also satis-
fied.

4. Example 4

Let us consider the following choice of parameters.

gh = − 1

20
, g4 =

1

2
, g4x = − 1

10
, g3x = 0 ,

b =
1

10
, lxx = − 1

10
, lww = 0 , (5.20)

for which the background equations of motion (2.16) give

l = −676

125
, lx =

599

1000
, lw = 1 . (5.21)

In this case we have

N1 =
899

1000
, N2 =

9

10
, N3 =

3

5
,

N4 =
3

5
, N5 =

108704599

1000000000
, (5.22)
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and

S1 =
1

2
, S2 =

1

1000
, S3 =

9143271446151

5000000000000000
,

S4 =
456009833453647

250000000000000000
, S5 =

9305798288929

5000000000000000
,

S6 =
9284212649127

5000000000000000
,

S7 =
9295017384133

5000000000000000
+
√

S5S6 , S8 =
3

5
,

S9 =
207508199

2000000000
, S10 =

10351541

100000000
,

S11 =
414541899

4000000000
+

√

S9S10 . (5.23)

Thus (3.27) and (3.32) are satisfied.
The conditions (2.20) and (4.8) are also satisfied as

A =
9185101

500000000
, A1 =

1692601

250000
, A2 =

13530009

2000000
,

A3 =
3042086553

449500000
+
√

A1A2 . (5.24)

After substituting (5.23) into (3.29) to obtain explicit
expressions of α1,··· ,5, it is straightforward to compute
the three expressions on the left hand sides of the in-
equalities in (3.31) and to show that they all have the
form A/B, where A and B are polynomials of p2

⊥
and p2x

with positive coefficients. Therefore, (3.31) is also satis-
fied.

VI. SUMMARY AND DISCUSSION

We have presented a detailed stability analysis for the
de Sitter solution with a homogeneous magnetic field
that was recently found in [5] in the context of a U(1)
gauge theory nonminimally coupled to scalar-tensor grav-
ity. The magnetic field is “stealth” in the sense that the
corresponding stress-energy tensor is of the form of an ef-
fective cosmological constant and thus is isotropic despite
the fact that the magnetic field has a preferred spatial
direction. We have studied the stability of the solution
against linear perturbations in the subhorizon and super-
horizon limits and have shown some explicit examples
that satisfy all stability conditions. Stable models in-
clude both Horndeski’s nonminimal vector coupling and
Horndeski scalar terms.
The stable de Sitter solution with a homogeneous mag-

netic field opens up a new possibility for inflationary mag-
netogenesis, in which magnetic fields in the Universe at
all scales may originate from a classical, homogeneous
magnetic field sustained during inflation. Towards such
a new scenario of inflationary magnetogenesis, an im-
portant step forward is to show a graceful exit from
the de Sitter solution with constant values of (X , W ,
Y , Z, χ). In particular, the scalar field φ should be
stabilized around a local minimum of its potential with
a sufficiently large mass at late time after inflation in

order to recover the standard Einstein-Maxwell theory.
(To be more precise, what is recovered is the Einstein-
Maxwell theory with the Horndeski’s nonminimal vector
coupling.) Also, as already pointed out in [5], a field
other than φ needs to be introduced as the main source
of curvature perturbation, i.e. either an inflaton or a cur-
vaton, in order to avoid too large statistical anisotropies
and non-Gaussianities. One eventually needs to estab-
lish the stability of the whole system all the way from
the inflationary epoch to the standard expansion history
at late time through the graceful exit. The present paper
has established the stability of the inflationary epoch and
thus can be considered as the first step towards the new
inflationary magnetogenesis scenario based on a classical,
homogeneous magnetic field sustained during inflation.
The recent multi-messenger detection of binary neu-

tron stars put a strong constraint on the deviation of
the propagation speed of gravitational waves from that
of light at the present [10, 11]. If the Horndeski scalar-
tensor theory is used as a model of the late-time acceler-
ation of the universe then the functions G4 and G5 are
strongly constrained. On the other hand, the propaga-
tion speed of gravitational waves in the early universe
such as the inflationary epoch is not constrained at all
by such observations. Therefore, the model considered
in [5] and in the present paper is consistent with the
multi-messenger detection of binary neutron stars as far
as the scalar field is stabilized around a local minimum
of its potential with a sufficiently large mass at late time
after inflation, as required anyway for the recovery of the
Einstein-Maxwell theory (with the Horndeski’s nonmini-
mal vector coupling).
After inflation and the stabilization of φ around a lo-

cal minimum of its potential, the homogeneous magnetic
field is no longer stealth and thus the background space-
time is then described by a Bianchi I geometry (instead
of FLRW one). It is therefore important to investigate
phenomenology of the Bianchi I universe with a homoge-
neous magnetic field and the standard content of the uni-
verse (radiation, matter and the cosmological constant)
in the context of the Einstein-Maxwell theory with the
Horndeski’s nonminimal vector coupling [12].
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Appendix A: Explicit expressions of sub-matrices

The sub-matrices in (3.21) are

Kodd =

(

ζ6 0
0 ζ1

)

, (A1)

Keven =





ζ7 0 0
0 ζ2 ζ3
0 ζ3 0



 , (A2)

Meven =H0





0 0 0
0 0 −b2gh
0 b2gh 0



 , (A3)

Mmix =p⊥

(

0 w1 2bgh
−2bgh 0 0

)

, (A4)

Vodd =p2
⊥

(

ζ5 0
0 g4

)

+ p2x

(

−12gh 0
0 0

)

+H2
0

(

−4ζ6 0
0 0

)

, (A5)

Veven =p2
⊥





−12gh 0 0
0 w2 w3

0 w3 0



+ p2x





0 0 0
0 w4 0
0 0 0





+H2
0





−4ζ7 0 0
0 w5 3b2gh
0 3b2gh 0



 , (A6)

Vmix =p⊥H0

(

0 w6 2bgh
8bgh 0 0

)

, (A7)

Aodd =pxH0

(

0 −4b2gh
)

, (A8)

Aeven =
p3
⊥

H0







0 0 0
0 0 0
0 0 0
0 8b2gh − 2ζ3 ζ1







+
p⊥p

2
x

H0







0 0 0
0 0 0
0 0 0
0 −2ζ3 0







+ p⊥H0







0 b2
(

2gh + 1
2ζ6

)

−2b2gh
0 0 0
0 0 0
0 −bζ4 0







+ pxH0







0 0 0
−ζ7 0 0
0 −4b2gh 0
0 0 0






, (A9)

AmixI =p⊥px
(

4bgh 0 0
)

, (A10)

AmixII =p
2
⊥







0 0
0 0
0 0
ζ4 0






+ p⊥px







0 0
0 0

4bgh 0
0 0







+ p2x







4bgh 0
0 0
0 0
0 0






+H2

0







bζ6 0
0 0
0 0
0 0






, (A11)

Bodd =px
(

0 −ζ1
)

, (A12)

Beven =p⊥







0 −8b2gh + 2ζ3 −ζ1
0 0 0
0 0 0
0 w7 2(ζ1 − ζ3)







+ px







0 0 0
ζ7 0 0
0 −2ζ3 0
0 0 0






, (A13)

Bmix =H0







−bζ6 0
0 0
0 0
0 0






, (A14)

Codd =p2⊥
(

−2b2gh + ζ1
)

+ p2x
(

ζ1
)

+H2
0

(

b2ζ6
)

,

(A15)

Ceven =p2
⊥







0 0 0 w8

0 ζ6 0 0
0 0 ζ1 0
w8 0 0 w9







+ p⊥px







0 0 ζ1 0
0 0 0 0
ζ1 0 0 4(ζ3 − ζ1)
0 0 4(ζ3 − ζ1) 0







+ p2x







ζ1 0 0 0
0 ζ7 0 0
0 0 0 0
0 0 0 0






+H2

0







b2ζ6 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,

(A16)

Cmix =p⊥H0

(

0 bζ6 0 0
)

, (A17)

where

w1 =− b

(

2gh +
1

4
ζ6

)

+
1

4
ζ4 ,

w2 =− b2
(

7gh +
1

4
ζ6

)

+ ζ1 + ζ3 − g4 ,

w3 =b2gh − 1

2
ζ1 +

1

2
g4 ,

w4 =− 4b2gh + ζ1 + ζ3 − g4 ,

w5 =(−6gh + ζ5)b
2 +

3

2
bζ4 ,

w6 =− b(2gh + ζ5 + ζ6)−
1

2
ζ4 ,

w7 =16b2gh − 2(ζ2 + 3ζ3) ,

w8 =12b2gh + 4(ζ1 − ζ3) ,

w9 =− 56b2gh + 4(−3ζ1 + ζ2 + 6ζ3) . (A18)
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Appendix B: Coefficients of matrix components

The coefficients c1, · · · , c17 in (3.23) are as follows.

c1 =ζ1(ζ1ζ2 + 3ζ23 )− 2b2gh(ζ1ζ2 + 8ζ1ζ3 + 2ζ23 )

+ b4g2h(16ζ1 + ζ2 + 24ζ3)− 32b6g3h , (B1)

c2 =ζ1(ζ1ζ2 + 3ζ23 )− b2gh(ζ1ζ2 + 16ζ1ζ3 + ζ23 )

+ 2b4g2hζ3

(

8− ζ3
ζ1

)

, (B2)

c3 =
1

4
ζ1(ζ4 − bζ6) +

1

4
bgh[−8(ζ1 − ζ3)− bζ4 + b2ζ6]

− 6b3g2h , (B3)

c4 =
1

4
ζ1(ζ4 − bζ6)− 2bgh(ζ1 − ζ3)− 4b3g2h

(

4− ζ3
ζ1

)

,

(B4)

c5 =ζ1

[

(ζ1ζ2 + 3ζ23 )−
b

8
(ζ4 − bζ6)(4ζ1 − ζ3)

]

+ b2ghζ1(4ζ1 − ζ2 − 21ζ3) + 32b4g2hζ1 , (B5)

c6 =ζ1(ζ1ζ2 + 3ζ23 )− 2b2ghζ3(8ζ1 − ζ3) , (B6)

c7 =− 1

4
ζ21ζ6b

2 − (ζ1 − ζ3)
2g4 + (ζ1 − ζ3)ζ

2
1

+

[

b2

2
ζ1ζ6 + 6(ζ3 − ζ1)g4 − ζ1(ζ1 − 4ζ3)

]

b2gh

−
[

1

4
ζ6b

2 + 3(3ζ1 + 3g4 + ζ3)

]

b4g2h + 9b6g3h ,

(B7)

c8 =− b2

2
ζ21 ζ6 − 3(ζ1 − ζ3)

2g4 + 3(ζ1 − ζ3)ζ
2
1

+

[

b2

2
ζ1ζ6 + 12(ζ3 − ζ1)g4 + 6ζ1(2ζ3 − ζ1)

]

b2gh

− (17ζ1 + 7ζ3 + 9g4)b
4g2h + 12b6g3h , (B8)

c9 =− b2

4
ζ21 ζ6 − 3(ζ1 − ζ3)

2g4 + 3(ζ1 − ζ3)ζ
2
1

+ 3 [2(ζ3 − ζ1)g4 + ζ1(4ζ3 − 3ζ1)] b
2gh

− 4(2ζ1 + ζ3)b
4g2h , (B9)

c10 =− (ζ1 − ζ3)
2g4 + ζ1(ζ1 − ζ3)(ζ1 − 4b2gh) , (B10)

c11 =
1

4
ζ21g4(ζ1ζ2 + 3ζ23 )

2

− ζ1(ζ1ζ2 + 3ζ23 )(ζ1ζ2 + 8ζ1ζ3 + 2ζ23 )g4b
2gh

+

[

− 1

16
ζ21 ζ6(4ζ1 − ζ3)

2b2 + (−4ζ41 + 10ζ31ζ2

+10ζ31ζ3 +
5

4
ζ21 ζ

2
2 +

51

2
ζ21 ζ3ζ2 +

343

4
ζ21 ζ

2
3

+
9

2
ζ1ζ

2
3 ζ2 + 63ζ1ζ

3
3 + 3ζ43 )g4 +

1

4
ζ21 (4ζ1 − ζ3)

×(4ζ21 − 2ζ1ζ2 − 5ζ1ζ3 − 5ζ23 )
]

b4g2h

+

[

1

4
ζ1ζ6(4ζ1 − ζ3)

2b2 + (−16ζ31 − 30ζ21ζ2

−144ζ21ζ3 −
41

2
ζ1ζ3ζ2 − 219ζ1ζ

2
3 − 1

2
ζ1ζ

2
2

−ζ23 ζ2 − 30ζ33)g4 −
1

4
ζ1(4ζ1 − ζ3)(12ζ

2
1

−10ζ1ζ2 − 59ζ1ζ3 − 20ζ23 )
]

b6g3h

+

[

−1

4
ζ6(4ζ1 − ζ3)

2b2 + (112ζ21 + 20ζ1ζ2

+296ζ1ζ3 + 3ζ3ζ2 + 95ζ23 )g4 − (4ζ1 − ζ3)

×(16ζ21 + 4ζ1ζ2 + 44ζ1ζ3 + 5ζ23 )
]

b8g4h

+ [−32(4ζ1 + 3ζ3)g4

+(4ζ1 − ζ3)(68ζ1 + 2ζ2 + 39ζ3)] b
10g5h

+ 64(ζ3 − 4ζ1)b
12g6h , (B11)

c12 =
3

4
ζ21g4(ζ1ζ2 + 3ζ23 )

2

− ζ1(ζ1ζ2 + 3ζ23 )(2ζ1ζ2 + 24ζ1ζ3 + 3ζ23 )g4b
2gh

+

[(

−4ζ41 + 10ζ31ζ2 + 10ζ31ζ3 +
5

4
ζ21 ζ

2
2 +

1

2
ζ1ζ

2
3 ζ2

+
115

2
ζ21 ζ3ζ2 +

855

4
ζ21 ζ

2
3 + 127ζ1ζ

3
3 − 7ζ43

)

g4

+
1

4
ζ21 (4ζ1 − ζ3)(4ζ

2
1 − 2ζ1ζ2 − 5ζ1ζ3 − 5ζ23 )

]

b4g2h

+
[(

16ζ31 − 20ζ21ζ2 − 200ζ21ζ3 − 27ζ1ζ3ζ2

−415ζ1ζ
2
3 + 3ζ23ζ2 + 8ζ33 + 4

ζ43
ζ1

)

g4

−ζ1(4ζ1 − ζ3)(8ζ
2
1 − 2ζ1ζ2 − 18ζ1ζ3 − 3ζ23 )

]

b6g3h

+

[(

−16ζ21 + 360ζ1ζ3 + 39ζ23 − 12
ζ33
ζ1

)

g4

+(4ζ1 − ζ3)(20ζ
2
1 − 2ζ1ζ2 − 57ζ1ζ3 + 3ζ23 )

]

b8g4h

− 4

(

4− ζ3
ζ1

)

(4ζ21 − 13ζ1ζ3 + 2ζ23 )b
10g5h , (B12)

c13 =
3

4
ζ21g4(ζ1ζ2 + 3ζ23 )

2

− ζ21 (ζ1ζ2 + 3ζ23 )(ζ2 + 24ζ3)g4b
2gh

+ ζ3(8ζ1 − ζ3)(4ζ1ζ2 + 24ζ1ζ3 + 9ζ23 )g4b
4g2h

− 4
ζ23
ζ1

(8ζ1 − ζ3)
2g4b

6g3h , (B13)

c14 =
1

4
ζ21g4(ζ1ζ2 + 3ζ23 )

2

− ζ1ζ3(ζ1ζ2 + 3ζ23 )(8ζ1 − ζ3)g4b
2gh

+ ζ23 (8ζ1 − ζ3)
2g4b

4g2h , (B14)

c15 =
1

8
ζ21 ζ6(4ζ1 − ζ3)b

2

+
1

2
(4ζ21 − ζ1ζ2 − 5ζ1ζ3 − 2ζ23 )

[

(ζ1 − ζ3)g4 − ζ21
]

+

[

−3

8
ζ1ζ6(4ζ1 − ζ3)b

2

+

(

10ζ21 − ζ1ζ2 −
5

2
ζ1ζ3 −

1

2
ζ3ζ2 − 12ζ23

)

g4



13

+ζ1

(

4ζ21 − 2ζ1ζ2 − 19ζ1ζ3 −
5

2
ζ23

)]

b2gh

+

[

1

4
ζ6(4ζ1 − ζ3)b

2 +

(

−4ζ1 +
3

2
ζ2 + 43ζ3

)

g4

+26ζ21 +
5

2
ζ1ζ2 +

71

2
ζ1ζ3 + ζ23

]

b4g2h

+ (−68ζ1 − 48g4 − ζ2 − 15ζ3)b
6g3h + 32b8g4h ,

(B15)

c16 =
1

16
ζ21ζ6(4ζ1 − ζ3)b

2 +
1

2
(4ζ21 − ζ1ζ2 − 5ζ1ζ3 − 2ζ23 )

× (ζ1 − ζ3)g4 −
1

2
(4ζ21 − ζ1ζ2 − 5ζ1ζ3 − 2ζ23 )ζ

2
1

+

[

−1

8
ζ1ζ6(4ζ1 − ζ3)b

2 +
1

4

(

12ζ21

−2ζ1ζ2 + 29ζ1ζ3 − ζ3ζ2 − 54ζ23 + 4
ζ33
ζ1

)

g4

+
1

4
ζ1(32ζ

2
1 − 6ζ1ζ2 − 84ζ1ζ3 − 3ζ23 )

]

b2gh

+

[

− 1

2ζ1
(28ζ21 − 55ζ1ζ3 + 6ζ23 )g4

+4ζ21 + ζ1ζ2 + 37ζ1ζ3 −
7

2
ζ23

]

b4g2h

− 2

(

12ζ1 + 5ζ3 −
ζ23
ζ1

)

b6g3h , (B16)

c17 =
1

2
(4ζ21 − ζ1ζ2 − 5ζ1ζ3 − 2ζ23 )(ζ1 − ζ3)g4

− 1

2
(4ζ21 − ζ1ζ2 − 5ζ1ζ3 − 2ζ23 )ζ

2
1

+

[

−
(

1− ζ3
ζ1

)

(4ζ21 − 13ζ1ζ3 + 2ζ23 )g4

+ζ1(12ζ
2
1 − ζ1ζ2 − 23ζ1ζ3 + ζ23 )

]

b2gh

+ 2(−8ζ21 + 18ζ1ζ3 − 3ζ23 )b
4g2h . (B17)

Appendix C: Coefficients of dispersion relation

In this appendix we show the coefficients S1,··· ,11 of the
dispersion relation (3.28)-(3.29).

S1 =g4 , (C1)

S2 =N2 −N1 , (C2)

S3 =− b2g4N1N2N3ζ
2
3 −N1N3(N 2

1N2 −N5)b
2g4

+ [2N3N2N 2
1 b

2g4 +N3N2N 2
1 (N1 − 2N2)b

2]ζ3

−N 3
1N2N3(N1 − 2N2)b

2

− 2N2N5(N1 + 2N2)(N1 −N2) , (C3)

S4 =[−N1N3(2N1 −N2)b
2g4 + 4(2N1 −N2)

2(N1 −N2)
2]ζ23

+ [2N 2
1 (2N1 −N2)(N1 −N2)bζ4

+N3N 2
1 (7N1 − 5N2)b

2g4

−N3N 2
1 (3N 2

1 − 3N1N2 +N 2
2 )b

2

− 8N1(2N1 −N2)(5N1 − 4N2)(N1 −N2)
2]ζ3

+ b2N 4
1 ζ

2
4/4

+ [−b3N 4
1N3/2− 2N 3

1 (5N1 − 4N2)(N1 −N2)b]ζ4

+ b2N 2
1N5ζ5 −N1N3(5N 3

1 − 4N 2
1N2 −N5)b

2g4

+N 3
1N3(15N 2

1 − 21N1N2 + 8N 2
2 )b

2/2

+ 4(N1 −N2)
2(25N 4

1 − 40N 3
1N2 + 16N 2

1N 2
2 +N2N5) ,

(C4)

S5 =[−b2N1N3g
2
4 + 2N2(N1 + 2N2)(N1 −N2)g4]ζ

2
3

+ {2N3N 2
1 b

2g24 + [N3N 2
1 (N1 − 2N2)b

2

− 4N1N2(N1 + 2N2)(N1 −N2)]g4

− 2N1N2(N1 + 2N2)(N1 −N2)(N1 − 2N2)}ζ3
− b2g24N 3

1N3 + [−N 3
1N3(N1 − 2N2)b

2

+ 2(N1 + 2N2)(N1 −N2)(N 2
1N2 −N5)]g4

+ 2N 2
1N2(N1 + 2N2)(N1 −N2)(N1 − 2N2) ,

(C5)

S6 =[−N2(2N1 −N2)b
2g4ζ5 − b2N1N3g

2
4]ζ

2
3

+ {2N1N2(N1 −N2)bg4ζ4

+ [N1N2(7N1 − 5N2)b
2g4

+N1N2(N 2
1 − 3N1N2 +N 2

2 )b
2]ζ5

+N1N3(5N1 − 3N2)b
2g24 −N1N2N3(2N1 −N2)b

2g4

− 4N1N 2
2 (N1 −N2)

2}ζ3 + b2g4N 2
1N2ζ

2
4/4

+ {[−b3N 2
1N2N3/2

−N1N2(5N1 − 3N2)(N1 −N2)b]g4

−N1N 2
2 (N1 −N2)

2b}ζ4
+ [−N2(5N 3

1 − 4N 2
1N2 −N5)b

2g4 − b4N 3
1N2N3/4

−N 2
1N2(5N 2

1 − 15N1N2 + 8N 2
2 )b

2/2]ζ5

−N1N3(5N1 − 3N2)
2b2g24/4

+N1N2N3(2N1 −N2)(5N1 − 3N2)b
2g4/2

−N1N 2
2N3(N1 −N2)

2b2/4

+ 2N1N 2
2 (5N1 − 3N2)(N1 −N2)

2 , (C6)

S7 =[−b2g4N1N2ζ5/2− b2N1N3g
2
4

+ (N1 −N2)(−N2 + 4N1)(2N 2
1 − 3N1N2

+ 2N 2
2 )g4/N1]ζ

2
3 + {N1(2N1 −N2)(N1 −N2)bg4ζ4

+ [b2g4N 2
1N2 +N 2

1N2(N1 − 2N2)b
2/2]ζ5

+N3N1(7N1 − 3N2)b
2g24/2

+ [−N3N1(3N 2
1 − 4N1N2 + 3N 2

2 )b
2/2

− (N1 −N2)(40N 3
1 − 85N 2

1N2 + 73N1N 2
2 − 22N 3

2 )]g4

−N2(N1 −N2)(N 3
1 − 3N 2

1N2 +N1N 2
2 − 2N 3

2 )}ζ3
+ b2g4N 3

1 ζ
2
4/8 + [−N 3

1N3b
3/4

−N 2
1 (5N1 − 4N2)(N1 −N2)b]g4ζ4

+ [−N1(N 2
1N2 −N5)b

2g4

−N 3
1N2(N1 − 2N2)b

2]ζ5/2

−N 2
1N3(5N1 − 3N2)b

2g24/2
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+ [N 2
1N3(15N 2

1 − 23N1N2 + 12N 2
2 )b

2/4

+ (N1 −N2)(50N 5
1 − 125N 4

1N2 + 116N 3
1N 2

2

− 38N 2
1N 3

2 −N1N2N5 − 2N 2
2N5)/N1]g4

+N 2
1N2N3(N1 + 2N2)(N1 −N2)b

2/4

+N1N2(N1 −N2)(5N 3
1 − 9N 2

1N2

− 10N1N 2
2 + 8N 3

2 )/2 +
√

S5S6 , (C7)

S8 =ζ5 , (C8)

S9 =− g4(N1 − ζ3)(−ζ3g4 + g4N1 +N 2
1 − 2N1N2) ,

(C9)

S10 =− ζ23g
2
4 + [(5N1 − 3N2)g

2
4 − g4N 2

2 ]ζ3

− (5N1 − 3N2)
2g24/4 + [−b2N1N2N3/4

+N 2
2 (5N1 − 3N2)/2]g4 −N 2

2 (N1 −N2)
2/4 ,

(C10)

S11 ={−ζ23g4 + [(7N1 − 3N2)g4/2 +N 2
1 /2

−N1N2 −N 2
2 /2]ζ3 −N1(5N1 − 3N2)g4/2

−N3N 2
1 b

2/8−N1(5N 2
1 − 13N1N2 + 4N 2

2 )/4}g4
+
√

S9S10 . (C11)

Appendix D: Coefficients of the equation of motion

in the long wavelength limit

The coefficients A1,2,3 in (4.7) are as follows.

A1 =4(−ζ3 + ζ1)
2 , (D1)

A2 =(36gh + 7ζ5/2)ghb
4 + 9b3ζ4gh/4

+ [24(ζ1 − ζ3)gh + (3ζ1 − 6ζ3 − ζ2)ζ5/4− ζ24/16]b
2

+ 3ζ4(−ζ3 + ζ1)b/4 + 4(−ζ3 + ζ1)
2 , (D2)

A3 =28g3hb
6/ζ1 + (3ζ1 − 2ζ2 − 30ζ3)g

2
hb

4/ζ1

− ghζ4(−ζ3 + ζ1)b
3/ζ1

+ [(27ζ21 + (3ζ2 − 30ζ3)ζ1 + 12ζ23 )gh/(2ζ1)

+ (−ζ3 + ζ1)
2ζ5/(2ζ1)]b

2 + 3ζ4(−ζ3 + ζ1)b/8

+ 4(−ζ3 + ζ1)
2 +

√

A1A2 . (D3)
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