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Four-dimensional tomographic reconstruction by
time domain decomposition

Viktor V. Nikitin, Marcus Carlsson, Fredrik Andersson, and Rajmund Mokso

Abstract—Since the beginnings of tomography, the require-
ment that the sample does not change during the acquisition
of one tomographic rotation is unchanged. We derived and
successfully implemented a tomographic reconstruction method
which relaxes this decades-old requirement of static samples.
In the presented method, dynamic tomographic data sets are
decomposed in the temporal domain using basis functions and
deploying an L1 regularization technique where the penalty fac-
tor is taken for spatial and temporal derivatives. We implemented
the iterative algorithm for solving the regularization problem on
modern GPU systems to demonstrate its practical use.

Index Terms—Tomographic reconstruction, motion artifacts,
function decomposition, Total Variation

I. INTRODUCTION

T IME resolved four-dimensional X-ray computed tomog-
raphy is widely used in medicine and material sciences

where the inner structure of the sample under study is dy-
namically changing in time. The conventional approach to the
dynamic tomography is to acquire measurement data during
rotation with a constant angular step size. Then, the reconstruc-
tion is performed for each 180 degrees rotation cycle by using
reconstruction methods such as Filtered Back-projection (FBP)
or Algebraic Reconstruction Technique (ART). The obtained
series of recovered objects then form temporal samples repre-
senting the object evolution in time. This scheme, however,
assumes that the object is static during each 180 degrees
interval. Any significant change in the object’s structure during
a single rotation cycle introduces motion artifacts apparent
as blurred and corrupted reconstructions. There is therefore
a constant race between the speed of sample rotation and
the sample dynamics. Shorter scan times may be achieved
by decreasing the detector exposure time or by reducing the
number of projections for each 180 degrees. However, in
practice, the reduced detector exposure time leads to a lower
signal to noise ratio, so as the limited number of projections
gives specific incompleteness artifacts.

Algorithms for four-dimensional tomographic reconstruc-
tion became of great interest especially with the development
of fast detector systems in the last years. With brilliant
synchrotron light sources, it is possible to perform contin-
uous data acquisition with more than 8GB/s rate [1] and
produce terabytes of acquired three-dimensional data sets and
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corresponding four-dimensional reconstructions in a single
experiment. Processing of such a big data requires fast and
optimized reconstruction algorithms and powerful software-
hardware systems.

Various methods have been proposed for reconstructing
tomography data for continuous dynamic acquisition. The first
class of methods is based on estimating a prior information
about the actual motion. For instance, space-time Gibbs priors
define relationships among neighboring points in space and
time by using information about the motion, see [2], [3],
[4]. The algorithms proposed in [5], [6] in turn operate with
estimated deformation vector fields (DVFs) between different
time frames [7]. With a prior information, it is possible
to keep reconstruction quality by decreasing the number of
projection for a 180 degrees interval. Half-circle intervals
representing different time frames can thus be scanned faster,
that results in the suppression of motion artifacts. In the
method proposed in [8], the authors generalize the usual back-
projection along straight lines to dynamically curved paths
constructed according to the motion model obtained from
projections. Dynamically curved paths are then utilized for
compensating deformations.

The second class of methods for suppressing motion arti-
facts takes into account the regularization in a non-local fash-
ion. The methods analyze similarity between corresponding
patches at different time steps, even if the patches have moved
to another location. In [9] the non-local regularization penalty
is an unweighted sum of distances between patch pairs in the
three-dimensional object. Temporal Non-local Means (TNLM)
method proposed in [10] utilizes weighting factors defined
according to the ground truth objects. Another recent research
was carried out by Kazantsev et. al [11], [12]. The authors
estimate local structural correlations over multiple time frames
in order to find the edges inside the object which remain
constant in time, then the patched-based regularization (analog
of the non-local regularization) is performed according to the
obtained object structure. The authors also propose a sparsity
seeking approach that operates with a non-local penalty for
collecting only relevant information in the spatial and temporal
spaces, see [13]. This approach sufficiently decreases the
amount of computations.

The third class of methods for the four-dimensional to-
mographic reconstruction is built upon the concept of com-
pressed sensing. Compressed sensing employs sparsity pro-
moting algorithms with using the L1 norm minimization.
The spatial-temporal total variation regularization (STTVR)
introduced by Wu et. al [14] operates with L1 penalty factors
for the gradient in spatial variables (Total Variation penalty)
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and for the temporal variable, independently. The method
proposed by Ritschl et.al [15] extends the Total Variation
penalty to the temporal dimension by taking the gradient
in four variables. Corresponding iterative scheme for solving
regularization problem consists of two steps. The first step is
fidelity term minimization by ART or CGLS, and the second is
Total Variation minimization by the gradient-descent method.
Authors note that such a separate minimization is caused by
data dimensionality and high computational costs. There also
exist methods where the penalty factor is represented by Lp
norm with p ∈ (0, 1), see [16], [17]. It is shown that in some
cases the norm Lp is more effective than L1 norm because it
is closer to L0 - a direct measure of sparsity.

The regularization problem that arises with employing the
concept of compressed sensing for four-dimensional tomo-
graphic data reconstruction is non-smooth, therefore standard
methods such as least-squares, conjugate gradients are not
applied directly. For most non-smooth problems, a global
optimum cannot be found with a given precision and in a rea-
sonable time. The quality of solutions often entirely depends
on the model, initial values, and optimization algorithms. The
most common way for solving the regularization problem in
four-dimensional tomography is by splitting the minimization
function by parts and working with each part independently.
Solutions from different parts are combined only after a
particular number of iterations. Concerning the compressed
sensing in tomography, the minimization is firstly performed
for the fidelity term that includes the projection operator,
then the contribution from the sparseness terms is taken into
account. The primal-dual algorithm proposed by Chambolle et
al. [18] allows solving the non-smooth minimization problem
directly, i.e. by minimizing the resulting function for all terms
together within one iteration. The authors proved that the
algorithm has O( 1

N ) convergence rate in finite dimensions, and
O( 1

N2 ) if the primal or the dual objective function is uniformly
convex. The algorithm is presented as a general framework
with established connections to other known algorithms such
as Arrow-Hurwicz method [19], Douglas-Rachford splitting
algorithm [20], [21], and preconditioned ADMM [22], [23].

An alternative regularization technique successfully used for
the static tomography is a sparse data representation by using
appropriate functions. In [24] the function set of wavelets is
proposed for decomposition of the projection operator. The
reconstruction is then based on thresholding of the noisy
wavelet coefficients. Similar procedure of the tomographic
data inversion is performed by using other types of functions:
curvelets [25], shearlets [26], Gabor frames [27].

In this work, we use the concept of compressed sensing in
the way that data in the temporal direction is represented by
a linear combination of appropriate basis functions, and the
L1 norm minimization is performed for the gradient in both
spatial and temporal variables. The choice of basis functions
depends on the motion structure inside the object and can
be determined according to the measured data. For solving
obtained non-smooth regularization problem, we adopt the
primal-dual Chambolle-Pock algorithm [18].

There are two main advantages of the proposed method
compared to the methods mentioned above. First, in contrast to

other approaches, we address the cases where rapid motions
happen during 180 degrees interval. Other methods operate
with different strategies for decreasing the number of projec-
tions to represent this interval, and, in that way, require small
amplitude of structural changes inside the interval. Second,
the proposed method allows operating with big real four-
dimensional data that has many samples in the temporal direc-
tion. This is achieved by the time-domain data decomposition
that sufficiently decreases data sizes. Reconstruction, in this
case, are reasonably fast, whereas the existing methods are
time-consuming to an extension that impairs their practical
use for standard-sized data volumes.

The paper is organized as follows. In Section 2, we intro-
duce the projection operator in 4D, and explain the regulariza-
tion strategy. Section 3 shows how the minimization problem
for recovering objects can be solved by the Chambolle-
Pock algorithm. How to decrease the number of computation
by representing data as a linear combination of appropriate
basis functions is discussed in Section 4. In section 5 we
validate our approach on synthetic data, while in section 6
we process two experimental data sets. Details for technical
algorithm acceleration by utilizing high-performance facilities
with CPUs and GPUs are given in Section 7. Conclusions and
outlook are given in Section 8.

II. REGULARIZATION PROBLEM

Let f(x, y, z, t) be function which represents a three-
dimensional object dynamically changing in time t. The object
is rotated continuously and projection data is measured for
angles θ and for radial direction s. The projection operator
in this case is described by integration over the lines through
the object state at time t, which is connected to the rotation
angle θ. We assume a linear connection between the angle θ
and time t, i.e. θ = αt, where the parameter α in practice is
related to the speed of rotation and the detector exposure time.
The projection operator Rα : R3 × [0, T ] → R2 × S 1 where
S 1 denotes the unit circle, is defined by

Rαf(s, z, θ) =∫∫∫
f(x, y, z, t)δ(x cos θ+y sin θ−s)δ(θ − αt)dx dy dt

(1)
The corresponding adjoint operator R∗α : R2 × S 1 → R3 ×
[0, T ] is defined as follows

R∗αg(x, y,z, t) =∫∫
g(θ, s, z)δ(x cos θ+y sin θ−s)δ(θ − αt)ds dθ

(2)
The inverse problem of recovering the function f from the

measurements g = Rαf has plenty of possible solutions. The
non-uniqueness is caused by the fact that at each particular
time frame t there exist only one projection related to the
angle θ = αt, which is surely not enough to recover the
unique object structure. In this case, regularization can be
used to introduce assumptions on the solution. The traditional
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approach to finding a unique solution is by minimizing the
data fidelity term as

f̂ = argminf

{
1

2
‖Rαf − g‖22

}
(3)

This term is commonly used in static tomography where the
object does not change during 180 degrees rotation. Since the
cost function is quadratic, one can use gradient-based methods
such as the standard least-squares iteration scheme, or the
conjugate gradient least-squares scheme with a faster rate of
convergence. It is also common to use tomography specific
methods. Indeed, recovering the object structure from a limited
number of the measured projection angles can be done by
algebraic reconstruction methods [28], [29], [30], suppressing
the Poisson noise in reconstruction is typically done by the
EM algorithm [31], [32].

None of the listed methods operate with data along the time
axis and, consequently, could produce a big number of possible
solutions for (3). Thus, we consider additional penalty factor
J(f) and focus on the following regularization problem

f̂ = argminf

{
1

2
‖Rαf − g‖22 + λJ(f)

}
, (4)

where λ is a regularization parameter establishing a trade-off
between the data fidelity term and the regularization term.

How to solve the minimization problem (4) depends on
the structure of the penalty term J(f). The gradient-based
algorithms can be used for the quadratic penalty J(f) =
‖Kf‖22, where K is a linear operator such as the gradient
∇. With J(f) = ‖Kf‖1 the resulting function becomes
non-differentiable and more complicated methods have to
be used. The methods assume computation of the proximal
operator which is used to make an approximation to a value
while making a compromise between the accuracy of the
approximation and a cost associated to the new value. There
exist proximal splitting methods that are based on the fact
that the functions 1

2‖Rαf − g‖22 and λJ(f) are used indi-
vidually yielding an easily implementable algorithm. These
methods include, for instance, Forward-Backward splitting
[33], DouglasRachford splitting [20], [21], and Alternating-
Direction Method of Multipliers (ADMM) [22], [23]. The
primal-dual algorithm proposed by Chambolle et al. [18] also
operates with proximal operators, however, minimization of
the resulting function is performed for all terms together. Non-
smooth penalties such as J(f) = ‖Kf‖p for p ∈ (0, 1) are
beneficial for even more sparse results, cf. [16], [17]. However,
the developed algorithms are more complicated and additional
assumptions are required to guarantee convergence.

In this work we introduce the regularization term described
with respect to four variables as

λ1
∥∥|∇λ2

f |
∥∥
1

=

λ1

∥∥∥∥∥∥
√(

∂f

∂x

)2

+

(
∂f

∂y

)2

+

(
∂f

∂z

)2

+

(
λ2
∂f

∂t

)2
∥∥∥∥∥∥
1

,

(5)
where constant λ1 denotes a trade-off between data fidelity
and the regularization term, and constant λ2 controls the level

of sparseness in the temporal direction. The inclusion of the
temporal derivative in the regularization term results in pre-
serving rapid data changes and diminishes small data changes
in the temporal direction. This assumes that the object under
study does not rapidly change the whole structure, i.e., most
object parts keep constant between adjacent time frames. The
inclusion of derivatives in spatial directions, in turn, preserve
sharp edges of the object inner structure and minimize noise
components. Moreover, spatial derivatives allow controlling
possible artifacts coming from the temporal derivative since
they penalize rapid temporal data change of adjacent spatial
points.

As a result, with regularization term (5) we establish a
connection between spatial and temporal variables. Alterna-
tively, one can consider spatial and temporal penalty factors
independently. However, in this case the temporal sparseness
may not be controlled by the object inner structure. Finally,
we propose to use the following model for recovering function
f from the measurements g

f̂ = argminf

{
1

2
‖Rαf − g‖22 + λ1

∥∥|∇λ2
f |
∥∥
1

}
(6)

For solving this regularization problem we decided to use the
first-order, primal-dual algorithm of Chambolle and Pock be-
cause of its general formulation. In [18] the authors show that
most popular algorithms, including DouglasRachford splitting
and ADMM, are particular cases of the Chambolle-Pock
algorithm.

III. CHAMBOLLE-POCK ALGORITHM FOR DYNAMIC DATA
RECONSTRUCTION

In this section, we will recapitulate main structure of the
Chambolle-Pock algorithm and show how to apply it to the
regularization scheme (6).

The algorithm operate with proximal operators defined for
a function F (f) as follows

proxσF (h) = argminf

{
F (f) +

1

2σ
‖h− f‖22

}
,

where σ defines a trade-off between two minimization terms.
The proximal operator can be interpreted as an approximation
to a value, while making a compromise between the accuracy
of the approximation ‖h − f‖22 and a cost associated to the
new value (function F (f)). We refer to [34] for more details
about proximal operators and applications. The algorithm is
designed for solving the saddle-point problem described by

f̂ = argminf

{
max
h

(
〈Kf, h〉+G(f) + F ∗(h)

)}
, (7)

which is the dual formulation of the problem f̂ =
argminf {F (Kf) +G(f)}. Here K is a linear map, F ∗, G
are proper, convex, lower-semicontinuous (l.s.c.) functions, F ∗

being itself the convex conjugate of a convex l.s.c. function F .
The algorithm in Figure 1 solves the problem (7) with 1/N
rate of convergence.

The algorithm can be adapted for solving (6) with F (Kf) =
F1(K1f) + F2(K2f) (G(f) = 0), where linear operator K1
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1: Initialize: θ ∈ [0, 1], τσ‖K‖2 < 1, (f0, h0) is some initial
guess, f̃0 = f0

2: repeat
3: hn+1 = proxσF∗(h

n + σKf̃n)
4: fn+1 = proxτG(fn − τK∗hn+1)
5: f̃n+1 = fn+1 − θ(fn − fn+1)
6: until convergence criteria met

Fig. 1. Chambolle-Pock algorithm. General formulation.

acting on f produce functions p1 which then are used as input
for functional F1,

p1 = K1f = Rαf, F1(p1) =
1

2
‖p1 − g‖22,

and where linear operator K2 acting on f produces a spatial
vector field ~p2 that is used as an input for functional F2,

~p2 = K2f = ∇λ2
f, F2(~p2) = λ2

∥∥|~p2|∥∥1.
The corresponding dual problem is obtained by adding three
dual variables (h1,~h2) with respect to (p1, ~p2). It has the
following form

f̂=argminfmax
h1,~h2

{
〈K1f, h1〉+〈K2f,~h2〉+F ∗1 (h1)+F ∗2 (~h2)

}
Corresponding convex conjugate functions for F1, F2 and
adjoint operators for K1,K2 are computed as follows

K∗1 (p1) = R∗αp1, K∗2 (~p2) = −divα2
~p2,

F ∗1 (h1) = max
h′1

{〈h1, h′1〉 −
1

2
‖h′1 − g‖22} = 〈h1, g〉+

‖h1‖22
2

,

F ∗2 (~h2) = max
~h′2

{〈~h2,~h′2〉 − λ1
∥∥|~h′2|∥∥1} = κ(~h2),

where −divλ2
is the adjoint operator to −∇λ2

, and κ(~h2) = 0
if λ
∥∥|~h2|∥∥1 ≤ 1, otherwise κ(~h2) =∞. Now it is straightfor-

ward to compute corresponding proximal operators:

proxσF∗1 (h1)=argminh′1
{
〈h′1, g〉+

‖h′1‖22
2

+
1

2σ
‖h1−h′1‖22

}
= (h1 − σg)/(1 + σ),

proxσF∗2 (~h2)=argmin~h′2
{
κ(~h′2)+

1

2σ
‖~h2−~h′2‖22

}
= ~h2/max(1,

∥∥|~h2|∥∥1/λ1),

proxτG(f)=argminf ′
{

0 +
1

2τ
‖f−f ′‖22

}
= f.

We result in the algorithm shown in Figure 2 that summa-
rizes main steps for solving (6).

IV. PROBLEM OPTIMIZATION

The regularization problem (6) becomes computation and
memory intensive if one aims to work with the object repre-
sented by several hundred or thousands of samples in each
spatial and temporal variables. The most computationally
intensive parts in the algorithm involve evaluating the projec-
tion operator Rα and the corresponding adjoint operator R∗α

1: Initialize: θ ∈ [0, 1], τσ < 1∗, f0, h01,~h
0
2 is some initial

guess, f̃0 = f0

2: repeat //description
3: hn+1

1 =
hn1 +σRαf̃

n−σg
1+σ ,

//hn+1
1 = proxσF∗1 (h

n
1 + σK1f̃

n)

4: ~hn+1
2 =

~hn2 +σ∇λ2 f̃
n

max(1,‖|~hn2 +σ∇λ2 f̃n|‖1/λ1)
,

//~hn+1
2 = proxσF∗2 (

~hn2 + σK2f̃
n)

5: fn+1 = fn − τR∗αhn+1
1 + τdivλ2

~hn+1
2 ,

//fn+1 = proxτG(f
n − τK∗

1h
n+1
1 − τK∗

2
~hn+1
2 ))

6: f̃n+1 = fn+1 + θ(fn+1 − fn).
7: until convergence criteria met

* linear operators ∇λ2 , Rα are normalized after a constant
multiplication.

Fig. 2. Chambolle-Pock algorithm for dynamic tomography.

operator many times. If we assume that the number of samples
in each spatial and in the temporal (or angular) direction is
of the order of N , then the complexity of computing the
operators Rα and R∗α by directly discretizing the integrals in
formulas (1) and (2) isO(N4). In static tomography there exist
several approaches how to decrease computational complexity
to O(N3 logN), where all angles are used for reconstruction
simultaneously. The methods include Fourier-based methods
[35], [36], the log-polar-based method [37], [38], hierarchical
decomposition [39], [40]. These methods are not directly used
in the dynamic tomography problem since each projection is
related to a particular object state in time. However, in what
follows we will show that the methods are still in use for
dynamic tomography.

One way of how to reduce resources for computations is by
introducing an additional assumption on the object movement.
Let us assume the motion at each concrete space sample
(x, y, z) can be approximated by a linear combination of basis
functions {ϕj(t)}M−1j=0 , i.e.,

f(x, y, z, t) ≈
M−1∑
j=0

fj(x, y, z)ϕj(t), (8)

where {fj(x, y, z)}M−1j=0 are decomposition coefficients.
Choice of basis functions ϕj for better approximation de-
pends on the motion structure. As a straightforward example,
one can choose the Fourier basis with a low number of
coefficients to represent slow motions, and a high number
of coefficients to represent rapid motions. Other possible
functions for representation include Haar wavelets, Heaviside
step functions, as well as their smooth approximations (Gram-
Schmidt Orthonormalization [41] can be used to make an
orthonormal basis if necessary). It should be also noted that
typically the object needs to be reconstructed only with some
particular step in time so that the total number of time frames
is sufficiently smaller than the total number of angles. This
fact potentially allows decreasing the number of coefficients
for representation.
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Now by making use of representation (8) and exploiting the
linearity property of the projection operator we have

Rαf(s, z, θ) =

M−1∑
j=0

Rfj(θ, s, z)ϕj
(
θ

α

)
, (9)

where the operator Rf(θ, s, z) =
∫∫

f(x, y, z)δ(x cos θ +
y sin θ−s)dx dy denotes the standard Radon transform com-
puted for the whole set of angles θ. For the constructed
algorithm (Figure 2) we also need the representation of the
adjoint operator R∗α. It can be found through the adjoint
equality

〈Rαf, g〉 ≈

〈
M−1∑
j=0

Rfj(θ, s, z)ϕj
(
θ

α

)
, g(θ, s, z)

〉
=

M−1∑
j=0

〈fj(θ, s, z),R∗ (gϕ̂j) (x, y, z)〉 =〈
f,

M−1∑
j=0

ϕj(t)R∗ (gϕ̂j) (x, y, z)

〉
,

which gives the following approximation for the adjoint oper-
ator

R∗αg(x, y, z, t) ≈
M−1∑
j=0

ϕj(t)R∗ (gϕ̂j) (x, y, z) (10)

Computing the projection operator Rα and its adjoint R∗α
with respect to formulas (9) and (10) can sufficiently decrease
the number of computations and allocated memory because of
two facts. First, as mentioned above, the number of needed
coefficients M is typically much smaller than the number
of samples in time. Second, the Radon transform for each
coefficient, Rfj in formula (9), as well as the adjoint operator
R∗(gϕ̂j) in formula (10), are computed independently on the
temporal variable. With this fact, Rfj becomes periodic with
a period 2π. Also, the Radon transform for the interval [π, 2π)
is the same as the Radon transform for the interval [0, π)
after changing the sign of variable s. So instead of computing
the Radon transform Rfj for the whole set of angles θ it is
enough to compute the transform only for the interval [0, π)
and simply distribute the result to other angles. In what follows
we give a detailed description of how it works, as well as how
this idea is adapted for computing R∗(gϕ̂j).

For simplicity we can assume that the object rotation
includes exactly Nπ angular intervals of size π, i.e. θ ∈
[0, πNπ). In other cases, one can subtract this interval from
the whole set of angles, and work with the remaining part
separately. For the chosen interval we have θ = kπ + θ0,
where θ0 ∈ [0, π) and k is an integer value. Then we have
the following expression for the Radon transform Rfj(θ, s, z)
from formula (9),

Rfj(θ, s, z) = Rfj(kπ + θ0, s, z) = Rfj(θ0, (−1)ks, z)

In turn, the adjoint operator R∗(gϕ̂j) from formula (10) can
be rewritten as follows

R∗ (g(θ, s, z)ϕ̂j(θ, s, z)) =
Nπ−1∑
k=0

R∗
(
g(kπ + θ0, (−1)ks, z)ϕ̂j(kπ + θ0, (−1)ks, z)

)
=

R∗
(
Nπ−1∑
k=0

g(kπ + θ0, (−1)ks, z)ϕ̂j(kπ + θ0, (−1)ks, z)

)
=

R∗ (g̃j(θ0, s, z))

where g̃j(θ0, s, z) =
∑Nπ−1
k=0 g(kπ+θ0, (−1)ks, z)ϕ̂j(kπ+

θ0, (−1)ks, z). Here instead of computing the adjoint Radon
transform for the whole set of angles it is enough to sum up
data over angular intervals of size π and then compute the
adjoint operator only for the angular interval [0, π).

It is straightforward to adapt steps of the algorithm in Figure
(2) with corresponding decompositions (9-10) for discrete
spatial variables, discretization in temporal variable in turn
needs to be explained. In what follows for simplicity we
ignore discretization with respect to spatial variables x, y, z
by introducing the following simplified notation

f(t) = f(x, y, z, t),

Rf(θ) = Rf(θ, s, z).

Now let us assume that the total number of samples in the
angular direction is Nθ, and the total number of reconstructed
time frames is Nt, where in practice we are interested in
Nt � Nθ. For instance, the first time frame is associated
with projection angle 0◦, the second - to 180◦, the third - to
360◦, etc. We let m be the amount of angles per time frame,
i.e. we connect samples in the temporal direction {t}Nt−1k=0 to
the angular samples {θk}Nθ−1k=0 in the following way

θk = k∆θ, k = 0 . . . Nθ − 1

tk =
θkm
α

=
km∆θ

α
, k = 0, . . . Nt − 1

(11)

where the parameter α shows a linear connection between
temporal and angular samples as in the definition (1) of the
projection operator. With discretization (11) the derivative
operator ∂f∂t in the algorithm from Figure 2 at discrete samples
reads as
f(tk+1)− f(tk)

∆t
=
α(f(θkm+m)− f(θkm))

∆θ
, k=0 . . . Nt−1

The discrete version of the projection operator Rα having the
approximation (9) is written as

Rαf(θk) =

M−1∑
j=0

Rfj(θk)ϕj

(
θk
α

)
, k=0 . . . Nθ−1

where the coefficients fj are computed as follows

fj =

Nt−1∑
k=0

f(tk)ϕj(tk) =

Nt−1∑
k=0

f

(
θkm
α

)
ϕj

(
θkm
α

)
,

j=0, . . .M−1
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V. VALIDATION

In this section we validate our approach through simula-
tions.

For the validation we use a synthetic model considering only
two spatial variables x, y and consisting of circles with varying
spatial distribution in time (see Figure 3). The displacement
of the spheres is captured in 8 intervals of each consisting
by angular views across π. The two upper panels of the
left column show two sequential time frames 3 and 4. The
plots also contain circle border marks of the next object
state. For instance, the circle border masks of time frame
3 correspond to circle borders of the time frame 4. Note
that the displacement of circles between time frames 3 and
4 is smaller than between time frames 4 and 5. The model
has sizes (N,N,Nt) = (256, 256, 8), and the projection data
has sizes (Nθ, N) = (128 × 8, 256) = (1024, 256), where
128 is the number of projections for covering the interval
[0, π). Two upper panels of the middle column in Figure 3
show reconstruction by using standard FBP method where the
Shepp-Logan filter is utilized for suppressing high frequencies
in projections. Reconstruction of time frames 3,4 is performed
by using projections from the intervals [3π, 4π) and [4π, 5π),
respectively. Motion artifacts in the recovered time frame 3 are
relatively small since the object inner structure has not rapid
changes between time frames 3 and 4, whereas the recovered
time frame 4 has clearly visible motion artifacts due to fast
movement of circles between time frames 4 and 5. The same
behavior demonstrates the regularized algebraic reconstruction
(two upper panels in the right column of Figure 3) where the
penalty factor is taken only for spatial derivatives in x and y,
without any penalty for the temporal derivative. This method
suppressed the noise in data and diminished limited angles
artifacts, however, it does not deal with motion artifacts.

The bottom six panels in Figure 3 demonstrate results of the
proposed method, with a different number of basis function
used for data representation in the temporal direction. In this
example, we consider the Fourier basis with M = 8, 16, 32
elements defined by

ϕj(t) = e2πit(j−M/2), j = 0 . . .M − 1.

Recall that the Fourier basis with a higher number of coef-
ficients is used to recover more rapid motions. The results
show that some motion artifacts are suppressed with M = 8
basis functions, and almost all artifacts are suppressed for the
cases M = 32 basis functions. Selecting the number of basis
functions is the main free parameter that the user have to adjust
in the proposed method.

VI. APPLICATIONS TO EXPERIMENTAL DATA

In the following we show the reconstruction of experimental
data. We investigate the rheology of liquid foams by fast
synchrotron X-ray tomographic microscopy [42]. Foams are
complex cellular systems which require artifact free tomo-
graphic reconstruction for a reliable quantification of their
time-dependent properties such as deformation fields of bub-
bles. In our example we acquire X-ray projections of the
liquid foam flowing through a constriction and being rotated

around the tomographic axis at a rate of 840 deg/s. Each X-ray
exposure takes 0.7 ms and in total we acquire 130 tomographic
data sets.

The experiment was performed at the TOMCAT beamline
of the Swiss Light Source using the fast acquisition setup
[1]. The data size is (N,Nθ, Nz) = (2016, 300× 130, 1800),
where 300 is the number of projection inside the interval
[0, π), and 130 is the total number of time frames. Prior to
tomographic reconstruction the raw projections were by phase
retrieval algorithm to account for the interference occuring due
to the partial coherence properties of the synchrotron beam
[43], [44]. As an example of reconstruction we considered
the data that corresponds to vertical slices z ∈ [1200, 1328).
Two time frames recovered by using static FBP method are
shown in Figure 4, left. The tomogram at time frame 94
does not contain motion artifacts because the amplitude of
the sample motion during the acquisition of this time-frame
is small enough to meet the static sample assumption. The
tomogram at time frame 95 shows motion artifacts due to
the rapid movement of bubbles between time frames 95 and
96. As seen in Figure 4, right, by applying our new method
(algorithm in Figure 2) we overcome the motion artifacts in
time frame 95, but also maintain the image quality in the
static case (frame 94). For reconstruction we use M = 16
basis functions, parameters λ1, λ2 showing trade-off between
data fidelity and the derivative parts (see formulation (6))
have been experimentally chosen as 2−12 and 22, respectively.
The iterative scheme in the algorithm is performed for 512
iterations, the result of reconstruction by the FBP is chosen as
an initial guess.

We have also tested our method for reconstructing dynamic
tomography data recently acquired at 2-BM beamline at
Advanced Photon Source. The sample was prepared as the
slurry of ceramic particles in alcohol. Along with alcohol
evaporation, the ceramic particles aggregated to form clusters.
In total, 12 tomographic data sets were continuously measured
with 6 deg/s rotation rate and 30 ms exposure time. The data
size is (N,Nθ, Nz) = (2560, 900×12, 700), where 900 is the
number of projection inside the interval [0, π). The left part
of Figure 5 shows two time frames corresponding to angles
θ ∈ [7π, 8π] and vertical slices z ∈ (250, 314) recovered
by using static FBP method. Both reconstructed time frames
contain motions artifacts that are mostly seen at the regions
where ceramic particles are moving in the direction of the
vertical central axis. The proposed method substantially sup-
press motion artifacts due to the rapid movement of particles,
see Figure 5, right. It should be noted, that the method also
improves the resolution level since the structure of particles
becomes more reliable for segmentation. For reconstruction
we use M = 24 basis functions, parameters λ1, λ2 have
been experimentally chosen as 2−9 and 22, respectively. The
iterative scheme in the algorithm from Figure 2 is performed
for 512 iterations, the result of reconstruction by FBP is chosen
as an initial guess. Note the noise reduction effect of the
regularized reconstruction as compared to FBP. This is more
apparent in this dataset than in the case of the foam data
because the phase retrieval used in the foam example acts
similar to a low pass filter.
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Fig. 3. Two time frames of the synthetic data and corresponding reconstruction by FBP method and by using the iterative scheme with penalty on the
gradient in spatial variables (two top rows), reconstruction by the proposed iterative scheme with penalty on the gradient in spatial and temporal variables,
for M = 8, 16, 32 basis functions (two bottom rows).
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Fig. 4. Two time frames of the foam in a glass (half-cropped to show vertical slices) reconstructed by FBP method (left) and by the proposed iterative scheme
with penalty on the gradient in spatial and temporal variables (right).

VII. PARALLEL IMPLEMENTATION

The reconstruction problem (6) remains resource intensive
even after considering decomposition techniques described in
Section IV. Besides the mathematical improvement of the
algorithm, we propose its technical acceleration by using
parallel computing on CPUs and GPUs. Parallel computations
on CPUs are typically done with making use of OpenMP and
MPI technologies. NVidia CUDA technology in turn provides
an interface to accelerate computations on GPUs. The main
difference between these two platforms is that the number of
computational cores on GPUs is more than 100 times bigger
than the number of cores on CPU. However, GPU cores are

much slower than CPU cores, moreover, the memory handling
mechanism on GPU is not so advanced as the mechanism
on CPU. Nevertheless, GPUs have shown themselves as a
powerful tool to accelerate algorithms in tomography [38],
[45], [46], [47]. This is because most reconstruction algorithms
contain a lot of small identical operations that can be computed
independently. We will give some details of how the algorithm
from Figure 2 is parallelized for computing on several GPUs,
and compare its parallel implementation to the OpenMP
implementation on CPU.

The most resource intensive parts of the algorithm are
the Radon transform Rα in Step 3, and the corresponding
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FBP reconstruction Iterative, basis size M=24
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Fig. 5. Two time frames of ceramic particles aggregation in alcohol, reconstructed by FBP method (left) and by the proposed iterative scheme with penalty
on the gradient in spatial and temporal variables (right).
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adjoint operator R∗α in Step 5. We have already described
in Section IV how these operators are computed through the
standard Radon transform and the back-projection for the
angular interval of size π, see formulas (9) and (10). There
exist several fast GPU implementations for computing these
standard operators. For the proposed algorithm we decided
to use the log-polar-based method [37] implemented on GPU
since it demonstrates the best performance compared to known
analogs, cf. [38]. We have also constructed fast GPU kernels
for evaluation of gradient and divergence operators in Steps
4 and 5, as well as for evaluation of standard algebraic
operations in Steps 3-6.

The time-resolved reconstruction algorithm must operate
with four-dimensional big data sets, therefore, computations
have to be split by parts so that the processing data fit
into the operating memory, and to the memory on GPU. A
straightforward approach generally used for reconstructing
tomography data is to split computations by slices (in
the z-variable) where all slices are recovered independently.
Typically one GPU is used to recover a set of slices that fit into
the GPU memory. This approach has to be slightly modified
in our case since the algorithm also includes computations of
derivatives in the z direction. To deal with that we transfer
to GPU two extra slices located before and after the current
set of slices processed by one GPU. There are no thread
concurrency errors since the additional data from the two
slices is kept read-only. Suppose that we intend to parallelize
the algorithm by using Nth number of threads denoted by
ith=0 : Nth-1. For simplicity, we assume that the total
number of slices is a multiple of Nth. The procedure is done
for Steps 3..6 located inside the iterative loop repeat..until,
synchronization of parallel threads is done after Step 6.
Parallel computation of Step 3 is done by separating the
whole set of slices by parts associated with the thread number
ith as z = ith*Nz/Nth : (ith+1)*Nz/Nth-1.
Steps 4 and 5 include computation of operators ∇λ2

and
divλ2 that assumes using extra slices in the z direction.
Therefore, in Step 3 for the input read-only function f̃n we
use slices with numbers z = max(0,ith*Nz/Nth-1)
: min((ith+1)*Nz/Nth,Nz-1) and compute the
vector field ~h2 for z = max(0,ith*Nz/Nth-1)
: (ith+1)*Nz/Nth-1. In turn, in Step 4 the
new function fn+1 appears for z = ith*Nz/Nth :
(ith+1)*Nz/Nth-1 by making use of the input vector
field ~h2. Parallel computation of the Step 6 is straightforward
with z = ith*Nz/Nth-1 : (ith+1)*Nz/Nth-1.
Switching to the next iteration n → n+ 1 is performed after
thread synchronization.

The GPU implementation is also optimized by making use
of the technique for overlapping data transfers with computa-
tions. Nvidia CUDA library provides the streams technology
for simultaneous execution of different code parts. One optimal
solution is to create three streams for 1) Host to Device data
migration, 2) Computation on GPU, 3) Device to Host data
migration. While one data part is computed, the next part can
be loaded to GPU memory, as well as the result of the previous
part can be unloaded from GPU memory. This strategy is
especially good with introducing NVLink technology [48] that

allows fast bidirectional copy between CPU and GPU.
We note that the parallelization strategy proposed above can

be also used to accelerate computations by using OpenMP
and MPI technologies. In this case, the whole dataset is split
by parts in order to fit the operating memory. Overlap of
computations and data transfers between operating memory
and hard disks is done by different parallel OpenMP threads.

Performance tests are carried out by making use of the foam
data from the previous section. Recall that, the foam data
with sizes (Nθ, N,Nz) = (130 · 300, 2016, 1800) produces
the object of sizes (N,N,Nz, Nt) = (2016, 2016, 1800, 130).
There is typically no need to recover all time frames by
using the proposed algorithm since only particular time frames
contain motion artifacts. Thus, for the performance test, we
decrease the total number of time frames to a smaller value,
Nt = 8. The linear binning procedure [49] with reducing
data sizes is used to demonstrate scalability and computa-
tional complexity of the algorithm. Bins of sizes 4,2, and
1 (no binning) in each spatial direction produce data sizes
(N,Nz) = (504, 450), (N,Nz) = (1008, 900), (N,Nz) =
(2016, 1800), respectively. Number of basis functions for the
function representation (8) in the temporal direction is chosen
as M = 16 since it demonstrates appropriate quality for
reconstruction, see Figure 4. All computations are carried out
in single precision. Table I shows average time for one iteration
of the algorithm in Figure 2 for different platforms. Graphical
processors Tesla P100 and Tesla V100 demonstrate 7-11
performance gain compared to Intel Xeon E5-2650 processor
with 12 cores and 24 threads with hyper-threading. Tesla P100
has a fast NVLink connection between CPU and GPU. This
type of connection allows bidirectional data transfers with
more than 3 times faster speed compared to PCI Express 3.0.
Such a fast connection gives almost linear performance gain
when utilizing a system with 4 Tesla P100 connected to one
CPU, see the last column in Table I. Computational times for
the system with 4 Tesla V100 connected to one CPU with PCI
Express 3.0 are not presented in the table due to the lack of
time scaling caused by high system bus load.

The last observation from Table I is that computational
complexity of the algorithm corresponds to the complexity
O(NzN

2 logN) of computing the Radon transform with the
log-polar-based method. For GPU systems one can observe
that 2x increase of the binning size gives approximately
8x decrease in computational times (7-9x in reality due to
hardware specific reasons).

VIII. CONCLUSIONS AND OUTLOOK

We derived, validated and applied a new method for re-
construction of four-dimensional tomographic data sets by
time-domain decomposition and this way for the first time
couple directly space and time domains. Our approach works
on continuous acquisition where multiple time frames are
recorded through multiple tomographic rotations of π while
sample motion is not restricted within the individual intervals.
Motion artifacts have been fully suppressed in by selecting the
corresponding number of basis functions. The implementation
on modern GPU systems demonstrates 7-11 performance gain
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TABLE I
AVERAGE TIME (IN SECONDS) FOR 1 ITERATION OF THE PROPOSED ALGORITHM (FIGURE 2) FOR RECONSTRUCTION Nt TIME FRAMES OF SIZES

(N,N,Nz) FROM THE MEASUREMENTS OF SIZES (N,Nθ, Nz) BY USING M BASIS FUNCTIONS. CASE: Nθ = 2400, M = 16, Nt = 8, (N,Nz) ARE
CHOSEN WITH RESPECT TO 4,2,1 BINNING.

N,Nz (binning)
Intel Xeon E5-2650
(12 cores/24 threads)

Tesla V100
(PCI Express 3.0)

Tesla P100
(NVLink)

4x Tesla P100
(NVLink)

504, 450 (4) 1.5e+02 1.2e+01 2.1e+01 6.2e+00
1008, 900 (2) 1.1e+03 9.6e+01 1.5e+02 4.8e+01

2016, 1800 (1) 7.7e+03 8.7e+02 1.2e+03 4.2e+02

compared to one modern CPU with 12 cores and 24 threads.
Computational times results are acceptable for their use in
practice.

The source code is publicly available (https://github.com/
math-vrn/rectv gpu). The foam data with an example script
for reconstruction by the proposed method can be downloaded
via Tomobank [50], see section Datasets - Dynamic - Foam
data.

We assume that the proposed method can be improved
in terms of performance. First, the adapted Chambolle-Pock
algorithm has O(1/N) rate of convergence, where N is the
iteration number. In our opinion, the convergence rate may
probably be increased to O(1/N2) with some assumptions on
the data structure, that will sufficiently accelerate the whole re-
construction process. Second, different types of representation
basis, such as Haar wavelets or Heaviside step functions, may
be considered in order to decrease the number of decomposi-
tion coefficients, and thus increase the performance. Finally,
the parallel implementation on several GPUs may potentially
be faster with utilizing new technologies provided by latest
versions of NVidia CUDA library. We are going to address all
these problems in our further research.
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