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Abstract 

The paper presents a review of dynamic stabilization mechanisms for plasma instabilities. 

One of the dynamic stabilization mechanisms for plasma instability was proposed in the 

papers [Phys. Plasmas 19, 024503(2012) and references therein], based on a perturbation 

phase control. In general, instabilities emerge from the perturbations of the physical 

quantity. Normally the perturbation phase is unknown so that the instability growth rate 

is discussed. However, if the perturbation phase is known, the instability growth can be 

controlled by a superimposition of perturbations imposed actively: if the perturbation is 

introduced by, for example, a driving beam axis oscillation or so, the perturbation phase 

can be controlled and the instability growth is mitigated by the superimposition of the 

growing perturbations. Based on this mechanism we present the application results of the 

dynamic stabilization mechanism to the Rayleigh-Taylor (R-T) instability and to the 

filamentation instability as typical examples in this paper. On the other hand, in the paper 

[Comments Plasma Phys. Controlled Fusion 3, 1(1977)] another mechanism was 

proposed to stabilize the R-T instability based on the strong oscillation of acceleration, 

which was realized by the laser intensity modulation in laser inertial fusion [Phys. Rev. 

Lett. 71, 3131(1993)]. In the latter mechanism, the total acceleration strongly oscillates, 

so that the additional oscillating force is added to create a new stable window in the 

system. Originally the latter mechanism was proposed by P. L. Kapitza, and it was applied 

to the stabilization of an inverted pendulum. In this paper we review the two dynamic 

stabilization mechanisms, and present the application results of the former dynamic 

stabilization mechanism.  

 

Key words:  Plasma instability, Stabilization of instability, Rayleigh-Taylor 

instability, Filamentation instability, Dynamic instability stabilization 
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1.! Introduction 

     Dynamic stabilization mechanisms for plasma instabilities are reviewed and 

discussed in this paper. So far, the dynamic stabilization for the Rayleigh-Taylor 

instability (RTI) [1-6] has been proposed and discussed intensively in order to obtain a 

uniform compression [7, 8] of a fusion fuel pellet in inertial confinement fusion. The RTI 

dynamic stabilization was found many years ago [1, 2] and is important in inertial fusion. 

It was implemented that the oscillation amplitude of the driving acceleration should be 

sufficiently large to stabilize RTI [1-6]. In inertial fusion, the fusion fuel compression is 

essentially important to reduce an input driver energy [7, 8], and the implosion uniformity 

is one of critical issues to compress the fusion fuel pellet stably [9, 10]. Therefore, the RTI 

stabilization or mitigation is attractive to minimize the fusion fuel mix.  

     On the other hand, instability grows from a perturbation in general, and normally 

the perturbation phase is unknown. Therefore, it would be difficult to control the 

perturbation phase, and usually the instability growth rate is discussed. However, if the 

perturbation phase is controlled and known, we can find a new way to control the 

instability growth. One of the most typical and well-known mechanisms is the feedback 

control in which the perturbation phase is detected and the perturbation growth is 

controlled or mitigated or stabilized. In plasmas it is difficult to detect the perturbation 

phase and amplitude. However, even in plasmas, if we can actively impose the 

perturbation phase by the driving energy source wobbling or so, and therefore, if we know 

the phase of the perturbations, the perturbation growth can be controlled in a similar way 

as shown in Fig. 1 [11, 12]. In instabilities, one mode of an initial perturbation, from which 

an instability grows, may have the form of , where  is the amplitude, 

 is the wave number,  the wave length and  the growth rate of the 

instability. An example initial perturbation is shown in Fig. 1(a). At t=0 the perturbation 

is imposed. The initial perturbation may grow at instability onset. After ∆t, if the feedback 

control works on the system, another perturbation, which has an inverse phase with the 

detected amplitude at t=0, is actively imposed (see Fig. 1(b)), so that the actual 

perturbation amplitude is very well mitigated as shown in Fig. 1(c). This is an ideal 

example for the instability mitigation. This control mechanism is apparently different 

from the dynamic stabilization mechanism shown in the previous works in Refs. [1-6]. 

For example, the growth of the filamentation instability [13-17] driven by a particle beam 

or jet could be controlled by the beam axis oscillation or wobbling. The oscillating and 

a = a
0
e
ikx+!t

a
0

k = 2! / " ! !
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modulated beam induces the initial perturbation and also could define the perturbation 

phase. Therefore, the successive phase-defined perturbations are superimposed, and we 

can use this property to mitigate the instability growth. Another example can be found in 

heavy ion beam inertial fusion; the heavy ion accelerator could have a capability to 

provide a beam axis wobbling with a high frequency [18-20]. The wobbling heavy ion 

beams also define the perturbation phase. This means that the perturbation phase is known, 

and so the successively imposed perturbations are superimposed on plasmas. We can 

again use the capability to reduce the instability growth by the phase-controlled 

superposition of perturbations. In this paper we discuss and clarify the dynamic mitigation 

mechanisms for plasma instabilities. First, we discuss the dynamic stabilization 

mechanism based on Refs. [1-6, 23] to stabilize the RTI by applying the strong and rapid 

acceleration oscillation. Then we present the other dynamic stabilization mechanism 

proposed in Refs. [12, 20-22], which is applied to the RTI and filamentation instabilities 

stabilization.  
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Fig. 1 An example concept of feedback control. (a)At t=0 a perturbation is 

imposed. The initial perturbation may grow at instability onset. (b) After 

∆t, if the feedback control works on the system, another perturbation, 
which has an inverse phase with the detected amplitude at t=0, is actively 

imposed, so that (c) the actual perturbation amplitude is mitigated very well 

after the superposition of the initial and additional perturbations.  
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!"! Dynamic stabilization of plasma instability under strong driving force oscillation#

 

     In Refs. [1-3] one dynamic stabilization mechanism was proposed to stabilize 

the R-T instability based on the strong oscillation of acceleration, which was realized, 

for example, by the picket fence pulse train or the laser intensity modulation in laser 

inertial fusion [4]. In this mechanism, the total acceleration strongly oscillates, so that 

the additional oscillating force is added to create a new stable window in the system. 

Originally this dynamic stabilization mechanism was proposed by P. L. Kapitza [23], 

and it was applied to the stabilization of an inverted pendulum. The inverted 

pendulum is an unstable system, and on the system a strongly and rapidly oscillating 

acceleration is applied in Ref. [23], and 

then the inverted pendulum system has a 

stable window. In this case, the equation 

for the unstable system is modified, and 

has another force term coming from the 

oscillating acceleration. In this 

mechanism, the growth rate is modified by 

the strongly oscillating acceleration.  

When the inverted pendulum shown 

in Fig. 2 is subjected by a strongly 

oscillating acceleration of !" #$% & ' , we 

obtain the following Mathieu-type equation [24] for θ (t): 

()*+,-

(,)
.

/

0
"1+'- 2 !&3"1+'- #$%& '          (1) 

Here l is the length of the pendulum. When A=0, the inverted pendulum becomes 

unstable. However, the second term of the righthand side is added to the system, and 

stable windows appear in the inverted pendulum system [23, 24]. In Eq. (1) the stability 

condition is described as ! 2 456 7 89:+;&3- 7 !3 .[24] The stability condition 

shows that the additional acceleration oscillation at the second term of the righthand 

side of Eq. (1) should be very fast, and the amplitude of A must satisfy the stability 

condition.  

     This dynamic stabilization mechanism works on, for example, the inverted 

!

"

#

#$θ!"#

%

& $%&'ω ()

Fig. 2 Kapitza’s pendulum, which can 

be stabilized by applying an additional 
strong and rapid acceleration of 

! #$%& '.   
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pendulum in Fig. 1. However, it would be difficult to apply this mechanism to our tall 

buildings, bridges or large structures in our society.  

     In laser inertial fusion, this dynamic stabilization mechanism was proposed and 

applied to stabilize the R-T instability based on the strong oscillation of acceleration 

[3, 4], which was realized by the picket fence pulse train or the laser intensity 

modulation in laser inertial fusion [4]. In this mechanism, the total acceleration 

strongly oscillates, so that the additional oscillating force is added to create a new 

stable window in the fuel pellet implosion in laser inertial fusion. In inertial fusion, 

the spherical fuel pellet should be compressed to a high density, for example, a 

thousand times of the solid density [8-10]. The fusion fuel is imploded spherically by a 

large inward acceleration. The typical implosion acceleration is about 1013m/s2, and 

lasts for about ns~10ns. During the implosion time, the driver input energy, introduced 

by the laser-pulse train series, would induce the strong implosion acceleration 

oscillation, which contributes to stabilize the RTI during the fuel pellet implosion [3, 

4, 25, 26].  

     In Ref. [27], this dynamic stabilization mechanism is applied to the two-stream 

instability stabilization, in which the classical two-stream instability driven by a 

constant relative drift velocity is modified by the additional oscillation on the relative 

velocity. The time-dependent drift velocity opens a new stable window in the two-

stream instability.  
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3.! Dynamic stabilization of plasma instability under a phase control  

     In plasmas the perturbation phase and amplitude cannot be measured dynamically. 

However, by using a wobbling beam or an oscillating beam or a rotating beam or so18, 19, 

the initial perturbation is actively imposed so that the initial perturbation phase and 

amplitude are defined actively. In this case, the amplitude and phase of the unstable 

perturbation cannot be detected, but can be defined by the input driver beam wobbling at 

least in the linear phase. In plasmas it would be difficult to realize a perfect feedback 

control, but a part of it can be adapted to the instability mitigation in plasmas. Actually, 

heavy ion beam accelerators would provide a controlled wobbling or oscillating beam 

with a high frequency [18-20, 28]. An intense electron beam axis can be also wobbled in its 

controlled way, and thus provides defined phase and amplitude of perturbations.  

     If the energy driver beam wobbles uniformly in time, the imposed perturbation 

for a physical quantity of ! at " # $ may be written as  

          ! # %!&'()&*+,-)./'012342 5                         (2) 

Here %! is the amplitude, 6 the wobbling or oscillation frequency, and 6$ the phase 

shift of superimposed perturbations. At each time " # $, the wobbler provides a new 

perturbation with the controlled phase shifted and amplitude defined by the driving 

wobbler itself. After the superposition of the perturbations, the overall perturbation is 

described as  

          7 8$99%!&'()&*+,-)./'012342
,

:
; 9

*/'(

*</(<
%!&*,&'012342.       (3) 
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At each time of ! " # the driving wobbler provides a new perturbation with the shifted 

phase. Then each perturbation grows with the factor of $%&. At ! ' # the superimposed 

overall perturbation growth is modified as shown above. When ( ) *, the perturbation 

amplitude is reduced by the factor of 
*
(+ , compared with the pure instability growth 

(( " ,- based on the energy deposition nonuniformity [12, 21, 22, 29]. 

     Figure 3 shows the superimposed perturbations decomposed, and at each time the 

phase-defined perturbation is imposed actively by the driving wobbler. The perturbations 

are superimposed at the time t. The wobbling trajectory is under control by for example 

!"#$"%$!&'$"()$2!/"!
"!

#!

!$%!

!$2!/"!

!*#$"%$!$!/"&"()$2!/"!
"!

#!

!!
!+#$"%$!$0.5!/"&&

&&&&&&"()$2!/"!
"!

#!

!$2!/"!

!!

!"
#"
#"
#!

!$2!/"!

Fig. 3 Superposition of perturbations defined by the wobbling driver beam. At each time the 

wobbler provides a perturbation, whose amplitude and phase are defined by the wobbler itself. 
If the system is unstable, each perturbation is a source of instability. At a certain time the 

overall perturbation is the superposition of the growing perturbations. The superimposed 

perturbation growth is mitigated by the beam wobbling motion.  



 9 

a beam accelerator or so, and the superimposed perturbation phase and amplitude are 

controlled so that the overall perturbation growth is also controlled.  

     From the analytical expression for the physical quantity F in Eq. (3), the 

mechanism proposed in this paper does not work, when!" # $. Only modes, fulfilling 

the condition of " % $, can experience the instability mitigation through a wobbling 

process. For RTI, the growth rate $ tends to become larger for a short wavelength. If 

" # $ , the modes cannot be mitigated. In addition, if there are other sources of 

perturbations in the physical system and if the perturbation phase and amplitude are not 

controlled, this dynamic mitigation mechanism also does not work. For example, if the 

sphericity of an inertial fusion fuel target is degraded, the dynamic mitigation mechanism 

does not work. In this sense the dynamic mitigation mechanism is not almighty. 

Especially for a uniform compression of an inertial fusion fuel all the instability 

stabilization and mitigation mechanisms would contribute to release the fusion energy.   

 

     Figure 4 shows an example simulation for RTI, which has one mode. In this 

example, two stratified fluids are superimposed under an acceleration of . In 

this example, two stratified fluids are superimposed under an acceleration of . 

The density jump ratio between the two fluids is 10/3. In this specific case the wobbling 

frequency & is $, the amplitude of '( is )*+(,, and the results shown in Figs. 4 are 

those at - . /0$. In Fig. 4(a) '( is constant and drives the RTI as usual, and in Fig. 

4(b) the phase of '( oscillates with the frequency of & as stated above for the dynamic 

g = g
0
+!g

g = g
0
+!g

Fig. 4 Example simulation results for the Rayleigh-Taylor instability (RTI) 

mitigation. δg is 10% of the acceleration g0 and oscillates with the frequency 

of Ω=γ. As shown above and in Eq. (2), the dynamic instability mitigation 

mechanism works well to mitigate the instability growth.  
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instability stabilization in this section. The RTI growth mitigation ratio is 72.9% in Fig. 

4. The growth mitigation ratio is defined by (Η0 - Ηmitigate)/Η0!100%. Here Η is defined 

as shown in Fig. 4(a), Η0 shows the deviation amplitude of the two-fluid interface in the 

case in Fig. 4(a) without the oscillation (" # $), and Ηmitigate presents the deviation for 

the other cases with the oscillation (" % $). The example simulation results support well 

the effect of the dynamic mitigation mechanism. The example simulation results also 

support well the effect of the dynamic mitigation mechanism. Other multi modes RTI 

analyses are found in Ref. [11].  

     In order to check the robustness of the dynamic instability mitigation mechanism 

[29], here we study the effects of the change in the phase, the amplitude and the wavelength 

of the wobbling perturbation δF, that is, δg in Fig. 4 on the dynamic instability mitigation.  

     When the perturbation amplitude &' # &'()*  depends on time or oscillates 

slightly in time, the dynamic mitigation mechanism is examined first. We consider 

&'()* # &'+ ,- . /012
!34 in Eq. (1). Here / 5 -67 In this case, Eq. (3) is modified as 

follows:  

          8 9:77&'012;0<(3=;*>1?@ABCA3
+ D 7 E <>12<F>2F . G

<>1H2>2IJ
<F>(2>2I*FK &'+0

<301?@ABCA   (4) 

When / 5 - in Eq. (4), just a minor effect appears on the dynamic mitigation of the 

instability.  

     We also performed the fluid simulations. In the simulations &L()* # &M(- N
/OPQ"R)*. The RTI is simulated again based on the same parameter values shown in Fig. 

4 except the perturbation amplitude oscillation &'()*. In the simulations we employ 

"!=3 Ω, Ω and Ω/3 in Eq. (4). For /=0.1 and 0.3, and for "!=3 Ω, Ω and Ω/3, the 

RTI growth reduction ratio is 54.9~73.2% at ) # STU. Figure 5 shows the results for 

/=0.3. The results by the fluid simulations and Eq. (4) demonstrate that the perturbation 

amplitude oscillation &' # &'()* is uninfluential as long as / 5 -.    
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     When the oscillation frequency ! of the perturbation δF depends on time (! "
!#$% ), the time-dependent frequency means that !#$%  would consist of multiple 

frequencies: &'() " * +'&'(,)' . In this case Eq. (3) becomes  

- ./0012&'(3&4#)53%6'789:;9)
< = 0* +' 46'(,

4>6(,>' 12&4)&'789:;9.                  (5) 

The result in Eq. (5) shows that the highest frequency of !' contributes to the instability 

mitigation. In a real system the highest frequency would be the original wobbling 

frequency Ω or so, and the largest amplitude of ?' is also that for the original wobbling 

mode. So when the frequency change is slow, the original wobbler frequency of ! 

contributes to the mitigation.  

     The fluid simulations are also done for the RTI with !#$% " ! @A B ?CDE!!$F 

together with the same parameter values employed in Fig. 4. In this case ?=0.1 and 0.3, 

and !!=3 Ω, Ω and Ω/3. The growth reduction ratio was 66.9~74.0% at $ " GHI. 

Figure 6 presents the simulation results for ?=0.3. The little oscillation of the imposed 

perturbation oscillation frequency !#$% has a minor effect on the dynamic instability 

mitigation.  

Fig. 5 Fluid simulation results for the RTI mitigation for the time-dependent 1J#$% "
1JK?LMN!O$ at $ " GHI. In the simulations ? " PQRS and (a) !TU " !/3, (b) 

!TU " ! and (c) !TU " R!. The dynamic mitigation mechanism is robust against 

the time change of the perturbation amplitude 1J#$%.  

!

"#$

%
#$

!"#$&' ( &#)

"#$

%
#
$

!%#*&'( &

"#$

%
#
$

!&#$&' ( )&

+( ,-).*/ ( 0 12



 12 

 

     When the wobbling wavelength ! " #$%& depends on time, one can expect as 

follows in a real system: &'() " &* + ,&-./01 2 and &* 3 ,&. In this case the wobbling 

wavelength changes slightly in time, and Eq. (3) becomes as follows:  

4567789-./:-;'2<:)=.>?@
2

*
A 789-;2=.>B ?@4 56

2

*
-'./<;):C DEF

EG<F
HE',& ? I)-.EJ01 : 

A K DEFEG<F HE',& ? I)L 562
* -.M/=EJ01 N:<;: A K DEFEG<F HE',& ? I)7 ;=.M/=EJ0

1 N
;O=M/=EJ01 NO

 (6) 

Here HE is the Bessel function of the first kind. The result in Eq. (6) demonstrates that 

the instability growth reduction effect is not degraded by the small change in the wobbling 

Fig. 6 Fluid simulation results for the RTI mitigation for the time-dependent 

wobbling frequency P'() " PQ'R + , STUPV()  at ( " W%X . In the 

simulations , " YZ[\  and (a) PQV " P /3, (b) PQV " P  and (c) PQV "
[P. The dynamic mitigation mechanism is also robust against the time change 

of the perturbation frequency P'().  

!" #$%&'( " ) *+

,

-./

0
.
/

!"#$12 " 1

-./

0
.
/

!%#$12 " 1.%

-./

0
.
/

!&#$12 " %1
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wavelength. In actual situations the mode ! " # contributes mostly to the instability 

mitigation, and in this case the original reduction effect shown in Eq. (3) is recovered.  

     The fluid simulations are also performed for this case $%&' " $( ) *$+
,-.

/ 0 . 

Figure 7 shows the example simulation results for *$1$( " #23 and 4
5

!
=3 Ω, Ω and 

Ω/3. Figure 7(a) shows the RTI growth reduction ratio of 61.3% for 4
5

!
=Ω/3, Fig. 7(b) 

shows 68.0% for 4
5

!
=Ω, and Fig. 7(c) shows 93.3% for 4

5

!
=3 Ω at & " 617. 8For a 

realistic situation 4
5

!
~ 4, where 4 is the wobbling or modulation frequency.  

     All the results shown above demonstrate that the dynamic instability mitigation 

mechanism proposed is rather robust against the changes in the amplitude, the phase and 

the wavelength of the wobbling or modulating perturbation of δF in general or δg in RTI.  

 

     Another possible example is the filamentation instability [13-16, 22] as shown in Fig. 

8 schematically. In this example an electron beam is injected into a plasma, and the 

electron beam has a density or current modulation in transverse. The modulation is the 

source of the perturbation defined actively by the electron beam itself, and so the 

perturbation phase is defined. From the initial perturbation the filamentation instability 

grows with its growth rate. In this filamentation instability a magnetic field perturbation 

is induced by the electron beam modulation, the electron trajectories are bent and then 

the electron beam perturbation is further enhanced so that the magnetic field is also 

Fig.7 Fluid simulation results for the RTI mitigation for the time-dependent wobbling 

wavelength $%&' " $( ) *$+
,-.

/ 0 at & " 617. In the simulations *$1$( " #239 and (a) 

45
: " 4/3, (b) 45

: " 4 and (c) 45
: " 34. The dynamic mitigation mechanism is also 

robust against the time change of the perturbation wavelength $%&'.  
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enhanced. If the electron beam axis oscillates transversally, the perturbations, which 

could have different phase, are successively imposed in the system and the dynamic 

mitigation mechanism works.  

     It is assumed that an electron beam moving in the ! direction with "#$  has a 

small density perturbation in the transverse direction (%). The perturbed electron beam is 

injected into a plasma as shown in Fig. 9. The current density perturbation induces the 

filamentation instability [13-16, 22], in which the perturbation of the transverse magnetic field 

in the & direction grows, the electron trajectories are bent by the magnetic field, and 

consequently the current perturbation is enhanced.  

     The growth rate of the filamentation instability is expressed by '( ) *+,-'#./$ , 

where * 0 "#$-1 , , 0 2#$-2/ , 2#$  is the electron beam number density, 2/  the 

number density of the background plasma electrons, '# 0 3-+3 4 *5 , and ./$  the 

plasma frequency of the background plasma electrons.  

     Figure 9 shows the dynamic stabilization mechanism for the filamentation 

Fig. 8 Filamentation instability. In this case an electron beam has a density perturbation 

in transverse, and is injected into a plasma. In the plasma return current is induced to 

compensate the electron beam current. The perturbed electron beam itself defines the 
filamentation instability phase, and the e-beam axis oscillates in the y direction in this 

example case. Therefore, the filamentation instability is mitigated by the dynamic 

stabilization mechanism shown in Fig. 1 and in the second section.  
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instability schematically. The input electron beam is injected into a plasma, and the 

electron beam has a current modulation in the y direction. The electron beam current 

modulation defines actively the filamentation phase as shown in Fig. 9(a). After a short 

time of !", the filamentation instability grows. Then the electron beam oscillates in the 

y direction as shown in Fig. 9(b), and the electron beam modulation also moves in the y 

direction. The new perturbation with the shifted phase is applied, and the perturbations 

grow. The overall instability growth should be defined by the sum of all the perturbations 

at t, and the filamentation instability is dynamically stabilized as shown in Fig. 1(c).  

     In order to verify the filamentation instability stabilization, we perform 2-

dimensional particle-in-cell simulations. As an example case, we use the following 

parameter values: # $ %&'(%) $ *(+ , , $ -&'(. $ /0+ , -)'(. $ 12/0* , the 

temperatures of the beam electrons, the background electrons and the background ions 

Fig. 9 Dynamic stabilization mechanism for the filamentation instability. (a) A 

modulated electron beam is imposed to induce the filamentation instability. The 

electron beam axis is wobbled or oscillates transversally with its frequency of Ω. (b) At 

a later time its phase-shifted perturbation is additionally imposed by the electron beam 
itself. The overall perturbation is the superimposition of all the perturbations, and the 

filamentation instability is dynamically stabilized.  
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are 100eV. In our simulations, !" # $%&&' ( $&)* ( +,-./012
-34567- , the time is 

normalized by 1/8"1  and the scale length is normalized by 5.  

 
 

Fig. 10 Filamentation instability simulation results without and with the electron beam 

oscillation. The current density Jx is shown at each time step. When the electron beam 
axis oscillates in the y direction ( see Figs. d)-f) and g)-i) ), the filamentation instability 

growth is clearly mitigated. 
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     Figures 10-12 show the simulation results for the filamentation instabilities with 

and without the electron beam oscillation. The electron beam perturbation is imposed in 

the beam density, and the amplitude is 10%. The oscillation amplitude is 5! in the y 

direction in these specific cases. The electron beam oscillation frequency " is 2#$% , 

10#$%  and 20#$%  (& '(). Figure 10 presents the current density for the cases without 

and with the electron beam oscillation in the y direction. Figures 11 show the magnetic 

field )* distribution. The stabilization effect of the filamentation instability is clearly 

demonstrated in Figs. 11. Figure 12 shows the magnetic field energy history. The dynamic 

stabilization ratio is introduced by +, - ./ 0 123*423*567 8 /99, where 23* shows 

the magnetic field energy. 23*  is normalized by the magnetic field energy 23*5 

obtained without the electron beam oscillation. At : - ;<#$%=>, the stabilization ratio of 

+, -58.6% in the case of "=2#$% . When the electron beam transverse oscillation frequency 

 
 
Fig. 11 Magnetic field Bz for the filamentation instability without and with the electron 

beam oscillation.  
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! in the y direction becomes larger than or comparable to "# , the dynamic stabilization effect 

is remarkable. In addition, we have also performed a 3D simulation for the filamentation 

instability stabilization, under the same parameter values shown in Figs. 10-12, for 

!=2$%&  with the circular rotation of the electron beam axis trajectory with the amplitude 

of 2λ. The results are shown in Figs. 13(a) and (b). The 3D results also support the 

theoretical and 2D simulation results, and present that the initial clear filament structure 

is mitigated by the electron axis oscillation as shown in Fig. 13(b). The results shown in 

Figs. 10-13 demonstrate that the dynamic stabilization mechanism works well to stabilize 

the filamentation instability.  

 

 

 

  

 
 

Fig. 12 Histories of the normalized magnetic field energy '() * +,)+
-. When the 

electron beam transverse oscillation frequency !  in y becomes larger than or 

comparable to "# , the dynamic stabilization effect is remarkable.  
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4.! Discussions and summary 

     In this paper we have discussed on the dynamic stabilization in plasmas. The 

dynamic stabilizations [1-4], based on the “Kapitza’s pendulum” [23], introduce a new 

strong oscillating force into the basic equation, and then the governing equation is 

modified by the additional term to create a new stable window in the system. Therefore, 

the growth rate is modified, and the stable window appears in the system. The dynamic 

stabilization mechanism has been applied to the inverted pendulum [23], to a fuel target 

implosion in laser inertial fusion [4], and also to the stabilization of the two-stream 

instability [27]. Another dynamic stabilization mechanism, which is also based on the 

strong forced field but is different from the “Kapitza’s pendulum”, was also proposed and 

applied to a new field in a dissipative dynamic system to find a stable region in the system 

!"#$%&'('!"#
$%

)"#$%'
*+$,#-./+00)$+-1#2& ' ()!"#"

*+$,#-./+00)$+-1#2& ' ()!"#"

*# +*"

*#+*"

,-32145/"

,
-32145/"

*#3 *.4

*#+*"

/0+12#!"#35"

/0+12#!"#35"

,-32145/"
*# +*"

3/0+12#!"#35"678'

Fig. 13 3D simulation results on dynamic stabilization mechanism for the 
filamentation instability. (a) The initial setup, and (b)ne, jx and Bz are presented at 

t=20/ωpe. The initial clear filaments are gradually mitigated by the electron beam 

oscillation. The filamentation instability is dynamically stabilized.  
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[30-32]. On the other hand, the dynamic stabilization mechanism based on the phase control 

was proposed and applied to the stabilization of plasma instabilities including the RTI, 

the filamentation instability, and also the fuel target implosion in heavy ion inertial fusion 

(HIF) [20-22, 29]. Originally the dynamic stabilization mechanism comes from the imperfect 

feedback control, which is widely used to stabilize tall building, structures, etc. in our 

society. In the perfect feedback control, the displacement and its phase are measured, and 

the additional perturbation is added to stabilize the systems. In plasmas we cannot 

measure the perturbation phase and amplitude. As we discussed in this paper, we can 

actively apply the perturbations. Then before moving to the system disruption or before 

developing to the non-linear phase, the additional perturbations, which should have 

reverse phase, are applied actively, so that the superimposed total amplitude would be 

mitigated.  
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