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Abstract

We construct local operators in short representations of supersymmetry algebras from

polyvector fields on the quantum moduli space of vacua of supersymmetric gauge the-

ories. These operators form a super Lie algebra under a natural bracket operation

with structure constants determined by terms in the operator product expansion of

the corresponding operators. We propose a formula for the superconformal index in

terms of an index over polyvector fields on the moduli space of vacua.

Along the way, we construct several models with moduli space of vacua correspond-

ing to affine cones over smooth bases using the classical geometry of Severi varieties

and the Landsberg-Manivel projective geometries corresponding to the Freudenthal

magic square of exceptional Lie algebras. Curiously, we relate the Landsberg-Manivel

projective geometries to the exceptional enhanced symmetry surprises of Dimofte and

Gaiotto. Finally, we determine Beasley-Witten higher-derivative F-terms in new ex-

amples arising from Severi varieties and remark on their origin in classical projective

duality.
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1 Introduction

Supersymmetric quantum field theories have furnished a rich testing ground for many

ideas in quantum field theory. The theories often have classical flat directions, and

as a result, the theories often have a space of inequivalent vacua called the classical

moduli space. Remarkably, the strong constraints of supersymmetry often allow the

quantum corrected moduli space of vacua to be exactly determined [1]. Supersymmetric

quantum field theories are often connected by a rich web of electric-magnetic Seiberg

dualities that relate strongly coupled gauge dynamics in one theory to weakly coupled

gauge dynamics in the dual theory [2]. Traditionally, these dualities have been studied

by ‘t Hooft anomaly matching, comparing deformations, matching local operators, and

matching the quantum moduli space of vacua [2].

In this paper, we attempt to derive the spectrum of BPS local operators directly

from the quantum moduli space of vacua. In the rare instances when the moduli space

of vacua is an affine complex cone over a smooth Kähler base, we are surprisingly suc-

cessful. We determine the operators that are BPS with respect to a fixed supercharge.

As a result, we can recover the superconformal index directly from the quantum mod-

uli space of vacua. Our basic strategy is to view the low energy effective theory as

an N = 1 supersymmetric nonlinear sigma model from Minkowski space or R × S3

to M, the quantum moduli space of vacua. The local operators arise as cohomology

classes of polyvector fields on M, which is familiar as the ring of local observables in

the topological B-model onM. These operators had largely been ignored in supersym-

metric QCD (SQCD) until Beasley and Witten’s study of multi-fermion F-terms [3].

We systematically compute these operators using an extension of the Borel-Weil-Bott

theorem.

Using the spectrum of BPS local operators, we find a candidate expression for the

superconformal index I(t, y) in terms of the moduli space of vacua as

(1− ty)(1− ty−1) Exp−1[I(t, y)] = Exp−1[χ(t)(1− t2) + t2] + . . . ,

where χ(t) is an alternating sum of Euler characteristics of polyvector fields on the

moduli space of vacua that will be defined more precisely and Exp−1 is the inverse of

the plethystic exponential. The formula is typically not exact due to extra degrees of

freedom arising from the singularity at the origin of the moduli space [1]. However, in

the examples we consider, the formula agrees remarkably well with the superconformal

index.

A similar expression for the superconformal index was found for large-N gauge

theories dual to type IIB string theory on AdS5 × L5 with L Sasaki-Einstein in [4].

There, the local operators were studied using cyclic homology. The local operators
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in the large-N quiver gauge theory are related to polyvector fields on the Calabi-Yau

cone Y over L via the Hochschild-Kostant-Rosenberg theorem [5]. The moduli space of

vacua in these theories is roughly the large N limit of SymN Y , which is N -th symmetric

product of Y . A similar relation was also found in [6, 7].

Alternatively, we can determine the local operators from gauge theory using the

cohomology of a nilpotent supercharge Q. The classical Q-cohomology can be refor-

mulated in terms of a generalization of Lie algebra cohomology. This classical space of

states coincides with the local operators in the holomorphic twist of the theory [8, 9].

However, the differential of the quantum corrected Q-cohomology is different due to the

Konishi anomaly. After taking into account the Konishi anomaly [10], we find that the

leading contributions to Q-cohomology match the space of local operators computed

from polyvector fields on the quantum moduli space of vacua in accordance with [11].

The quantum behaviour of SQCD was studied long ago using instanton techniques.

For NF = NC−1, instantons generate a superpotential and deform the classical moduli

space of vacua. The Konishi anomaly provides a consistency check on these calculations

and can partially simplify them. It is therefore reassuring that the Konishi anomaly

also corrects the gauge theory Q-cohomology in order to match the polyvector fields

on the quantum moduli space of vacua. Similarly, the multi-fermion operators studied

by Beasley and Witten arise from instanton effects in SQCD.

Finally, we verify that our counting of operators is consistent with the supercon-

formal index. The superconformal index [12, 13, 14] has been used to match protected

operators in dual quantum field theories. In a superconformal theory, the index counts

protected operators satisfying a BPS condition that cannot be combined to form long

multiplets. The equality of the index for a theory and its electric-magnetic dual often

lead to very interesting integral identities between products of elliptic gamma functions

[15, 16]. Conversely, recently discovered integral identities have led to the derivation of

new dualities between quantum field theories. One of the great features of the super-

conformal index is that it can be easily computed, at least in a perturbative expansion.

Part of its simplicity follows from its construction, which is insensitive to the precise

form of the superpotential. However, the Q-cohomology does depend on the explicit

form of the superpotential.

One of the main motivations of this study is to develop a strategy to prove that the

Q-cohomology groups of local operators in two Seiberg dual theories are isomorphic.

This can be viewed as a categorification of the equality of superconformal indices and

in particular Spiridonov’s elliptic beta integral [17]. Since the superconformal index

is the partition function for the holomorphically twisted theory [7], it is natural to

conjecture that even more is true. Namely, not just the operators, but the correlation

functions should be equivalent. In the language of holomorphic factorization algebras
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developed by Costello and Gwilliam [18], our conjecture is that

Conjecture. The holomorphic factorization algebras associated to the holomorphic

twists of two Seiberg dual theories are (quasi-)isomorphic.

Since two Seiberg dual theories have equivalent quantum moduli spaces of vacua, it

is natural to prove the equality of the Q-cohomology groups by relating both cohomolo-

gies to the local operators that can be described directly on the quantum moduli space

of vacua. In two-dimensions, Ando and Sharpe [19] showed that the superconformal

index (elliptic genus) of a Landau-Ginzburg model is equal to that of its low-energy

sigma model using a Thom class computation. It is natural to expect that a similar

result holds in four dimensions. The full superconformal index can be derived using

the holomorphically twisted sigma model appearing in [20]. The calculations in this

paper represent the first steps toward evaluating these indices. We find many indi-

cations that there might be simplifications in the full formula, perhaps arising from

cohomology vanishing theorems.

Identifying local operators in terms of polyvector fields has the added virtue that

we can adapt several classical results on polyvector fields to gauge theory. In particu-

lar, polyvector fields have a Schouten-Nijenhuis bracket operation that generalizes the

ordinary Lie bracket of vector fields. On a complex manifold, the Schouten-Nijenhuis

bracket on global sections of the sheaf of polyvector fields extends to a Gerstenhaber

algebra on the cohomology of the sheaf of polyvector fields. Following a suggestion of

Costello, we propose that the Shouten-Nijenhuis bracket computes certain protected

OPE coefficients. These can be viewed as the leading OPE coefficients in the holomor-

phically twisted theory [8, 21]. The bracket is an example of a secondary products in

supersymmetric field theory [22].

Many of the techniques developed here can be applied to theories in various di-

mensions and varying amounts of supersymmetry. In particular in two dimensions, a

gauge theory that has a Calabi Yau manifold X as its moduli space of vacua in the IR,

has the same elliptic genus as the sigma model with target X. The elliptic genus is the

two dimensional analog of the superconformal index, and it is explicitly expressible in

terms of vector bundles on the Calabi Yau target [23, 24].

2 Overview

Typically, supersymmetric theories have moduli spaces of vacua with several branches

and high-dimensional singular loci. To simplify the analysis of the physics at the singu-

lar loci, we first consider models where the moduli space of vacua is an affine complex
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cone over a smooth Kähler base. In this case, the only singularity is at the origin of

the cone. These models are not very common. We consider two types of families of

theories with moduli space of vacua that are affine cones of a smooth Kähler base.

The first family is SQCD with gauge group SU(2) and Nf flavors. Its moduli space

of vacua is an affine cone over the Grassmannians Gr(2, 2Nf ). The second family con-

sists of affine cones over the four Severi varieties and their hyperplane sections. They

can be described by generalized Wess-Zumino models with cubic superpotentials. Sur-

prisingly all of these models arise as projective geometries associated to Freudenthal’s

magic square [25]. The most complicated member of the family is the Cayley plane

OP2, which was recently considered in [26].

Finally, we will consider models with singular loci. Our main tool will be to utilize

the geometry of orbit closures. While seemingly esoteric, the geometry of orbit closures

elegantly recovers the structure of the moduli space of Sp(n) SQCD. For exceptional

Lie algebras, the geometry of orbit closures will be used to describe the various smooth

and singular strata of moduli spaces given by superpotentials of degree four or more.

When the quantum moduli space of vacua M is an affine cone over a smooth

projective Kähler base B, we review how the polyvector fields on B can be pulled

back to polyvector fields on M following [3]. We will construct local operators from

cohomology classes H•(B,∧•TB⊗Lk) where L is the line bundle obtained from pulling

back O(1) to B.

We find that the alternating sum of the Euler characters of polyvector fields on

M have a particularly simple expression when M is a cone over a Severi variety.

This includes both the Grassmannian Gr(2, 6) and the Cayley plane OP2. The simple

expression arises from a small correction due to removing the identity operator and

taking the plethystic logarithm. From this index, we can determine the superconformal

index and conjecture a general form of the index in terms of polyvector fields. We then

test this conjecture for SQCD with gauge group SU(2) and four flavors. We find an E7

surprise where the plethystic logarithm is almost entirely expressible of characters of

the exceptional Lie group E7 [27]. While the E7 symmetry has a natural explanation

in terms of a five dimensional gauge theory or coupling two four dimensional gauge

theories together [27], it would be desirable to have an explanation entirely in terms of

the geometry of the Grassmannian Gr(2, 8).
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3 Smooth models

Freudenthal’s magic square

From a pair (A,B) of normed real division algebras A,B ⊆ {R,C,H,O} Freudenthal

and Tits define a Lie algebra

g(A,B) = DerA⊕ (A0 ⊗ J3(B)0)⊕DerJ3(B),

where A0 is the space of imaginary elements of A, J3(B) is the Jordan algebra of

3 × 3 B-Hermitian matrices, and J3(B)0 is the subspace of traceless matrices. The

corresponding Lie algebras are shown in table 1.

R C H O
R so3 sl3 sp6 f4
C sl3 sl3 × sl3 sl6 e6
H sp6 sl6 so12 e7
O f4 e6 e7 e8

Table 1: Freudenthal’s Magic Square

To each Lie algebra in Freudenthal’s magic square, Landsberg and Manivel [25]

associate a projective geometry. These geometries are listed in table 2. The Lie algebra

of the projective geometry’s isometry group is the corresponding Lie algebra in the

magic square. All of the “exceptionally simple exceptional models” studied by Razamat

R C H O Family Name

R ν2(Q
1) P(TP2) Grω(2, 6) OP2

0 hyperplane section of Severi

C ν2(P2) P2 × P2 Gr(2, 6) OP2 Severi variety

H Grω(3, 6) Gr(2, 6) S12 E7/P7 lines through a points of Gad

O F ad
4 Ead

6 Ead
7 Ead

8 Gad

Table 2: Freudenthal Geometries

and Zafrir [26] can be naturally associated to one of the Manivel-Landsberg projective

geometries. The first two families of Severi varieties and their hyperplane sections

are described by the critical locus of a cubic superpotential. The third family, also

known as the “subexceptional series,” describes varieties that are the critical locus of a

quartic superpotential. The fourth and final row corresponds to the Deligne-Cvitanović

exceptional series and appears in the classification of rank one N = 2 SCFTs [28].
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The third family of Freudenthal Lie groups appears in another interesting way. Di-

mofte and Gaiotto found an E7 “surprise” in the theory of 28 five-dimensional free

hypermultiplets coupled to four-dimensional SQCD with four flavors (eight chiral mul-

tiplets). The flavor symmetry group enhanced from SU(8) to E7. Similarly, they found

SO(12) enhanced symmetry with 16 four-dimensional free hypermultiplets coupled to

three-dimensional SQCD with three flavors. These two enhanced symmetry groups ap-

pear in the third row of the Freudenthal magic square. It is natural to conjecture that

there is an enhanced SU(6) flavor symmetry group for 10 three dimensional matter

multiplets coupled to two dimensional SQCD with two flavors extending the pattern.

Severi varieties

Affine cones over the four Severi varieties arise as the moduli space of vacua of simple

generalized Wess-Zumino models consisting of n chiral multiplets with a specific cubic

superpotential. The four Severi varieties correspond to the four real division algebras

A = R,C,H, and O. The cubic polynomial arises as the determinant of symmetric

three-by-three matrix over the corresponding division algebra. It is therefore a cubic

polynomial in 3 + 3 dimA real variables, which is the number of chiral multiplets.

Since the superpotential has r-charge 2, the chiral multiplets have r-charge 2/3. The

models have an extended flavor symmetry group G, and the chiral multiplets are in a

representation Vλ of G. The corresponding groups are listed in Table 3. The algebras

R and C correspond to the Veronese embedding of P2 in P5 and the Segre embedding

of P2×P2 in P8 respectively. The algebra H corresponds to the Grassmannian Gr(2, 6).

Finally the algebra O corresponds to the Cayley plane.

# chirals X dim(X) GFlavor Matter Rep Vλ
6 P2 ⊂ P5 2 SU(3) Sym2 3

9 P2 × P2 ⊂ P8 4 SU(3)× SU(3) 3⊗ 3

15 Gr(2, 6) 8 SU(6) ∧26

27 OP2 16 E6 27

Table 3: Wess-Zumino models of Severi Varieties

The four Severi varieties arise as the projective duals of cubic hypersurfaces

X
∨(dim(Vλ))
3 ∈ Pdim(Vλ)−1

in dim(Vλ) − 1 dimensional projective space [29]. The cubic polynomial defining the

hypersurface is the cubic superpotential. The space of cubics polynomials has dimen-
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sion (
dim(Vλ) + 2

3

)
− dim(Vλ)

2.

This is equal to the dimension of the conformal manifold of the corresponding Wess-

Zumino theory [30].

Grassmannian Gr(2, 6)

The most familiar member of the Severi varieties is the Grassmannian Gr(2, 6). It

arises as the moduli space of vacua of SU(2) QCD with three flavors. SU(2) QCD

with three flavors has a magnetic dual consisting of 15 chiral multiplets M ij and cubic

superpotential

W = εi1j1i2j2i3j3M
i1j1M i2j2M i3j3 .

The F-term relations are the Plücker relations for the Grassmannian Gr(2, 6). The

moduli space of vacua is

M = C[M ij]/
(
εi1j1i2j2i3j3M

i1j1M i2j2
)
.

This moduli space is an affine cone over the Grassmannian Gr(2, 6). Finally, there is

one syzygy that arises since all of the relations are obtained from a superpotential.

In general, the Plücker embedding for Gr(n, 2) has
(
n
2

)
Plücker variables,

(
n
4

)
Plücker

relations, and
(
n
6

)
syzygies. Only for Gr(2, 6) do the number of Plücker variables and

Plücker relations agree as required for a theory with only chiral multiplets. It is then

an extra condition that there is only one syzygy and no higher syzygies.

Cayley plane OP2

A similar model to the Grassmannian Gr(2, 6) was considered in [31] and more recently

in [26]. It consists of 27 chiral multiplets Φ with an E6 invariant superpotential W =

WE6(Φ). The cubic polynomial WE6 was first written down by Cartan in his thesis [32].

Another more recent description is in [33]. The moduli space of vacua is an affine cone

over the Cayley plane OP2. This implies that the Cayley plane is also described by 27

variables, 27 relations, and one syzygy. The relations are described in [34] and arise

from the appearance of the 27 in ∧227 ∼= 351⊕ 27.

Hyperplane sections of Severi varieties

The hyperplane sections of Severi varieties also occur as the critical locus of a cubic

superpotential. Their geometry is described in [35] Section 6.3. The flavor symmetry

groups are obtained by “folding” the corresponding Dynkin diagram in the series of
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Severi varieties. The number of chiral multiplets, the dimension of the moduli space

of vacua, the corresponding flavor symmetry group, and matter representation of the

flavor symmetry group are displayed in Table 4.

# chirals X dim(X) GFlavor Matter Rep Vλ
5 ν2(Q

1) 1 SO(3) Sym2
0 3

8 P(TP2) 3 SU(3) adj

15 Grω(2, 6) 7 Sp(6) ∧26
26 OP2

0 = F4/P4 15 F4 26

Table 4: Hyperplane sections of Severi Varieties

4 Geometry of orbit closures

Given a group G and a representation V, the action of the group G provides a decom-

position of V into orbits. If view G as a global symmetry group and V as a matter

representation, then the orbits correspond to various symmetry breaking patterns. In

general, the geometry of these orbits is quite complicated. Classical invariant theory

provides invariants that can distinguish between the various orbits. The invariants can

be thought of as Landau-Ginzburg order parameters. The irreducible representations

of (reductive) groups with finitely many orbits were classified by Kac in [36]. Quite

remarkably, almost all of these representations arise from gradings on Lie algebras.

One common way the gradings arise is from a Dynkin diagram with a distinguished

node.

Our interest is that orbit closures often arise as moduli spaces of vacua in supersym-

metric gauge theory. When the largest orbit is a hypersurface defined by a polynomial

W = 0, the moduli space of vacua for the theory of free chiral multiplets with super-

potential W is a smaller orbit closure. The results of [37, 38] describe the geometry of

the moduli space of vacua and allow us to determine its Hilbert series.

If we gauge G, then many of the theories we study have played an important role

in the dynamics of N = 1 supersymmetric gauge theory. Many of these connections

are described in [39]. We first illustrate how orbit closures describe the strata of the

moduli space of vacua in Sp(n) SQCD and then describe more exotic orbit closures.
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Sp(n) SQCD

Let W be a vector space of dimension m and let M = Λ2W be the space of bivectors.

The group GL(W ) acts on the projective space P(Λ2W ). The nontrivial orbits range

in dimension from 2 to 2bm/2c. The k-th Pfaffian variety Pf(2k,W ) is the orbit closure

of bivectors with rank 2k. The Pfaffian variety Pf(2,W ) is the Grassmannian Gr(2,W )

of 2-planes in W. The orbits are nested as

0 ↪→ Pf(2,W ) ↪→ Pf(4,W ) · · · ↪→ Pf(2bm/2c − 2,W ) ↪→ Pf(2bm/2c,W ) = P(Λ2W ).

In Sp(NC) SQCD with k = Nf > Nc flavors, the moduli space of vacua is the Pfaffian

variety Pf(2Nc, 2Nf ) [40].

For Sp(2) with Nf = 4, the moduli space of vacua is the Pfaffian variety Pf(4, 8).

However, this variety occurs as the singular locus of Pf(6, 8). Since Pf(6, 8) is described

by the vanishing of a single Pfaffian, the singular locus is given by the simultaneous

vanishing of the partial derivatives of a single quartic polynomial. This is precisely the

“magnetic dual” description.

Despite the fact that the theory is not superconformal, we can formally consider

the superconformal index given by 28 free chiral multiplets with R-charge 1/2. Then

the index is

ISp(2),Nf=4(t, y) = 1+28t1/2+406t+(4032+28χ2(y))t3/2+(30681+784χ2(y))t2+O(t5/2)

The leading terms come from the Hilbert series of the Pfaffian variety [41]

1 + 6t1/2 + 21t+ 28t3/2 + 21t2 + 6t5/2 + t3

(1− t1/2)22
= 1+28t1/2+406t+4032t3/2+30744t2+O(t5/2)

and the coefficient of the t2 term is 30744−63, where dim(SU(2Nf )) = 63 is the flavor

symmetry group.

Subexceptional series

There is a family of quartic superpotentials corresponding to the subexceptional series

of Lie groups. Analogous to Sp(n) SQCD, these theories are sigma models on an orbit

closure. For the theory with 20 chiral multiplets, the orbit structure is given by the

following inclusion of strata [37]

Dimension 0 10 15 19 20

Orbit O0 O1 O2 O3 O4

(4.1)

10



# chirals X dim(X) GFlavor Matter Rep Vλ
14 Grω(3, 6) 6 Sp(6) 14

20 Gr(3, 6) 9 SU(6) ∧36
32 S12 16 SO(12) 32

56 E7/P7 28 E7 56

Table 5: Subexceptional Series

The orbit closure O3 is a quartic hypersurface in P20. Letting the quartic polynomial

be the superpotential, the moduli space of vacua is the orbit closure O2. For the theory

with 56 chiral multiplets, the orbit closures are [42]

Dimension 0 28 45 55 56

Orbit O0 O1 O2 O3 O4

(4.2)

The orbit closure O3 is a quartic hypersurface in P56. Again using this quartic polyno-

mial as a superpotential for 56 chiral multiplets with R-charge 1/2, the moduli space

of vacua is the orbit closure O2. The orbit closure O1 is the Freudenthal variety E7/P7.

The moduli space of vacua was incorrectly identified as the Freudenthal variety in [31].

Using the free resolution in [42], the Hilbert series of O2 is straightforward to compute.

Combining this with the isometry group E7 of the orbit closure, we can match the

leading terms of the index.

5 SU(2) SQCD review

Supersymmetric QCD with gauge group SU(Nc) and Nf massless flavors of quarks has

aN = 1 vector multiplet and Nf chiral multiplets transforming in the fundamental rep-

resentation of SU(Nc) and Nf chiral multiplets transforming in the anti-fundamental

representation of SU(Nc). The theory has a SU(NC)×SU(NC)×U(1)B×U(1)R global

symmetry. When the theory is in the conformal window, the IR U(1)R charge of the

chiral multiplets is r = (Nf − NC)/NF . When the gauge group is SU(2), the funda-

mental and anti-fundamental representation are isomorphic, so it is equivalent to think

of a theory with 2Nf doublets of SU(2). The number of SU(2) doublets is necessarily

even because of a global anomaly [43]. When the gauge group is SU(2), the global

symmetry enhances to SU(2Nf )× U(1)R.
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The quarks Qi
a, i = 1, . . . 2Nf are chiral superfields transforming in the fundamental

representation of SU(2Nf ) and a is the color index for SU(2). The gauge invariant

mesons are chiral superfields M ij that are color singlets obtained from

M ij = εabQi
aQ

j
b.

The mesons transform in the anti-symmetric ∧2(2n) representation of SU(2Nf ). The

classical moduli space of vacua is parametrized by the space of possible expectation

values of the mesons M ij subject to the constraint

M ∧M = 0,

or equivalently

εi1j1i2j2...injnM
i1j1M i2j2 = 0.

These equations imply that M has rank at most two. Viewing the mesons M ij as co-

ordinates on projective space P(∧2(2n)), the above equations are the Plücker relations

that describe the embedding of the Grassmannian Gr(2, 2n) as an algebraic subvari-

ety of P(∧2(2n)). However, the space of expectation values of the meson fields is not

projectivized. Therefore, the classical moduli space of vacua is the affine cone over the

Grassmannian Gr(2, 2n).

6 Local operators from polyvector fields

We view the low energy effective theory of a four-dimensional theory as an N = 1

supersymmetric nonlinear sigma model from Minkowski space or R × S3 to M, the

quantum moduli space of vacua. Similar to the B-model in two dimensions, local BPS

operators arise from polyvector fields onM. Recall that the B-model with target space

B has ⊕
p,q

Hq(B,∧pT 1,0B)

as its space of local observables [44]. We will consider the case when the moduli space

M can be described as an affine cone over a base B. Then the local operators arise

from the polyvector fields ⊕
p,q,k

Hq(B,∧pT 1,0B ⊗ Lk)

where L is a line bundle over M. In the examples we consider of algebraic varieties

embedded in projective space, L is the pull-back of O(1) on the ambient projective

space. This picture of local operators is described in more detail by Beasley and

Witten [3].
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In the case that B is a homogeneous space, we can evaluate the relevant cohomology

groups using a generalization of the Borel-Weil-Bott theorem. The first step is to

express the tangent bundle of B as a homogeneous bundle. Although not strictly

necessary for the logical development, we make a brief detour to explain a physical

description of the tangent bundle to the Grassmannian in SU(2) SQCD.

Homogeneous bundles and SU(2) SQCD

The Grassmannian Gr(k, n) can be viewed as the space of complex k-planes Λ ∼= Ck in

Cn. The Grassmannian has a natural vector bundle called the universal subbundle S →
G(k, n), which is the subbundle of Cn×G(k, n) whose fiber at each point Λ ⊂ G(k, n)

is the subspace Λ ⊂ Cn. The universal quotient bundle Q → G(k, n) is the quotient

bundle Q = Cn/S. The subbundle and the quotient bundle fit into the tautological

exact sequence

0→ S → Cn → Q→ 0

on the Grassmannian Gr ∼= G(k, n). The tangent bundle of the moduli space M aris-

ing from fluctuations about a generic point on M recovers the algebraic geometry

description of the tangent bundle as

TGr
∼= HomGr(S,Q).

Alternatively,Mcl can be described by the fluctuations about a fixed supersymmet-

ric vacuum. Up to gauge and global symmetry transformations, the classical moduli

space of supersymmetric vacua has the form

Qi
a =


v 0

0 v

0 0
...

...

0 0


where v is an arbitrary complex number. Unlike the gauge invariant description in

terms of the mesons M ij, this description explicitly depends on a choice of gauge.

When v is non-zero, the expectation values of Qi
a, break the global symmetry group

from SU(2n) to the subgroup SU(2) × SU(2n − 2). The gauge group is completely

Higgsed. We recover that the moduli space of vacua is the quotient space

Gr(2, 2n) ∼=
U(2n)

U(2)× U(2n− 2)
.

The massless fluctuations of the quarks Qi
a about the vacuum transform in representa-

tions of the unbroken gauge group and are listed in table 6. The field Dα̇Φ represents
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SU(2) SU(2n− 2)

Φs
c 2 2n− 2

Φ 1 1

Table 6: Massless fluctuations of quarks in SU(2) SQCD

a tangent vector to the moduli spaceM. Using the Kähler metric, it can be converted

to a holomorphic one-form on M. It transforms in the bundle TGr
∼= HomGr(S,Q).

Index of polyvector fields

The description of the tangent bundle to the moduli space as the homogeneous bun-

dle TGr
∼= HomGr(S,Q) is precisely what is needed in computation of the space of

polyvector fields using a generalization of the Borel-Weil-Bott theorem. This theorem

describes the polyvector fields as representations of the global symmetry group. We

typically list only the dimensions of the representations, but stress that the actual

representations can easily be determined.

Let L by the line bundle on B, which is the restriction of O(1) of the ambient

projective space. Then for any coherent sheaf F on X we denote F(m) = F ⊗ L⊗m.

The Euler character χ(F(m)) is a polynomial in m called the Hilbert polynomial. For

m � 0, these polynomials precisely count the contributions of local operators. How-

ever, for small m, some of the cohomology classes are not actually realized as local

operators. The unitarity bound E ≥ 3
2
r + 2j2 excludes these cohomology elements

from representing local operators. However, we will see later that they can correspond

to Beasley-Witten F-terms.

Polyvector fields on Severi varieties

We define the alternating sum of Euler characters of polyvector fields on the Severi

varieties to be

χ(t) =
∞∑

m=2j

dimB∑
j=0

(−1)jχ(∧jTB(−3)⊗ O(m))t2m/3.

The restriction of m ≥ 2j implements the unitarity bound.

For Severi varieties, this alternating sum of Euler characteristics is

χ(t) =
(1− t4/3)dim(Vλ)

(1− t2/3)dim(Vλ)(1− t)
− t2 − t2 dim(Vλ)/3

(1− t2)
(6.1)

14



where dim(Vλ) is the number of chiral multiplets. In terms of the plethystic logarithm

Exp−1[χ(t)(1− t2) + t2 − t2 dim(Vλ)/3] = dim(Vλ)t
2/3 − dim(Vλ)t

4/3.

7 Superconformal index from the moduli space

In this section, we will explain how the local operators constructed from the moduli

space of vacua can be related to the superconformal index. First, we review the defini-

tion of the superconformal index following [15]. Then we will propose a formula for the

superconformal index in terms of the index of polyvector fields on the moduli space of

vacua.

Superconformal index review

The superconformal index I(t, y, h) is defined as

I(t, y, ha) = TrH (−1)F t2(E+j2)x2j1hFaa

where the trace is taken over the Hilbert space H of the theory quantized on R× S3.

By the operator-state correspondence, the index can also be viewed as a trace over the

Hilbert space of local operators. In the formula F is the fermion number, j1,2 are the

left and right spins, and E is the operator scaling dimension. If the theory has flavor

symmetries, then we can introduce an equivariant index with flavor fugacities ha for

the flavor symmetry charges Fa. For a theory with a UV Lagrangian description with

gauge group G, and chiral multiplets Φi in the representation RG,i of G the index is

given by the following integral

I(t, y, h) =

∫
G

dµ(g) Exp

(
∞∑
n=1

i(tn, yn, hn, gn)

)

over G with respect to the Haar measure dµ(g). The integrand is the plethystic expo-

nential of the single letter index

i(t, y, h, g) =
2t2 − tχ2(y)

(1− ty)(1− ty−1)
χadj(g) (7.1)

+
∑
i

triχRF,i(h)χRG,i(g)− t2−riχRF,i(h)χRG,i(g)

(1− ty)(1− ty−1)
(7.2)

where χ2(y) = y + y−1 and ri are the U(1)R charges of the chiral multiplets. The first

contribution is from the vector multiplet accounts and χadj is the adjoint character of
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the gauge group. Similarly, χRG,i(g) are the characters of the representations RG,i of

the gauge group and χRF,i(h) are the characters of the representations of the chiral

multiplets in the flavor symmetry group. The plethystic exponential is defined by

f(t) =
∑
n≥1

ant
n 7→ Exp[f(t)] =

∏
n≥1

1

(1− tn)an

and can similarly be extended to several variables.

Superconformal index from the moduli space

All of the short multiplets contributing to the N = 1 superconformal limits can be

viewed as special cases of the C multiplets with possibly unphysical spins and r-charges.

A Cr(j1,j2) multiplet satisfies the shortening condition ∆ = 2 + 2j1 + 3
2
r [45]. Conserved

currents reside in Ĉ0(1/2,1/2) multiplets and have ∆ = 3. Defining r̃ = 2j1 + r, the

contribution of a Cr(j1,j2) multiplet to the index is

I[r̃,j2](t, y) = (−1)2j2+1 tr̃+2χj2(y)

(1− ty)(1− ty−1)
.

For a fixed set of quantum numbers (r̃, j2), the net degeneracy ND[r̃, j2] is defined to be

the number of short multiplets with integer spin minus the number of short multiplets

with half integer spin. The net degeneracy can be determined from the superconformal

index using the relation [46]

(1− ty)(1− ty−1)I(t, y) =
∑
r̃,j2

ND[r̃, j2]t
r̃+2χj2(y).

For quantum numbers [r̃, j2], the net degeneracy is

ND[0, 0] = #marginal operators−#conserved currents

= H0(B,L)−H0(B, TB),

which gives the dimension of the conformal manifold [30]. In general we expect con-

tributions not just from the tangent bundle TB but from all exterior powers ∧•TB.
However, these operators are no longer sufficient to account for all of the contribu-

tions to the net degeneracy. From experience with holographic duality, it is natural

to expect that the operators arising from polyvector fields generate a Fock space of

operators that contribute to the index.
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Superconformal index from polyvectorfields

Given the index χ(t) of polyvector fields we propose that the superconformal index

I(t, y) can be expressed as

(1− ty)(1− ty−1) Exp−1[I(t, y)] = Exp−1[χ(t)(1− t2) + t2] + . . . ,

where the correction terms arise from massless matter at the singularity.

For the cones over the Severi varieties using χ(t) from Equation (6.1)

(1− ty)(1− ty−1) Exp−1[I(t, y)] = dim(Vλ)t− dim(Vλ)t
2

We therefore recover the superconformal index

I(t, y) = Exp

[
dim(Vλ)t

2/3 − dim(Vλ)t
4/3

(1− ty)(1− ty−1)

]
.

In general, there is not an exact match. For SQCD with four flavors,

Exp−1[I(t, y)](1− ty)(1− ty−1)

=
1

2
56t− 133t2 + (912− 1χ2(y)) t3 + (−(8645 + 133) + 56χ2(y)) t4 + O(t5)

while the index constructed from polyvector fields is

Exp−1[χ(t)(1− t2) + t2] =
1

2
56t− 133t2 + 912t3 − (8645 + 133)t4 + O(t5).

The two indices are remarkably close, but already differ by differ at their t3 term. The

extra massless degrees of freedom at the origin of the moduli space are responsible for

the failure of equality of the two indices. By taking the difference of the two indices,

we can isolate the new extra massless degrees of freedom at the origin of moduli space.

Alternatively, it is an intriguing problem to take into account polyvector fields localized

at the origin to give an exact formula for the superconformal index. In the next section

we will explain the computation of these indices in more detail.

8 Polvectorfields on moduli spaces of vacua

Polyvector fields on P2 ⊂ P5 and P2 × P2 ⊂ P8

The polyvector fields on the Veronese embedding of P2 in P5 are listed in table 7. They

polyvector fields that are sections of O(m) are in the representation Sym2m 3 of SU(3).

The sections of TX(m) are in [2m−1, 1] representation of SU(3) in the notation of LiE.

The sections of ∧2TX(m) transform in the Sym2m+3 3 representations of SU(3). For

the Segre embedding of P2×P2 ⊂ P8 the polyvector fields transform in representations

of SU(3)× SU(3) and are listed in table 8.
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dim OX TX ∧2TX
0 1 0 0 1

1 6 0 0 6

2 15 0 0 15

3 28 -8 0 20

4 45 -24 0 21

5 66 -48 3 21

6 91 -80 10 21

Table 7: χ of polyvector fields on P2 ⊂ P5.

dim OX TX ∧2TX ∧3TX ∧4TX

0 1 0 0 0 0 1

1 9 0 0 0 0 9

2 36 0 0 0 0 36

3 100 -16 0 0 0 84

4 225 -90 0 0 0 135

5 441 -288 9 0 0 162

6 784 -700 84 0 0 168

7 1296 -1440 315 0 0 171

8 2025 -2646 828 -36 0 171

9 3025 -4480 1785 -160 1 171

10 4356 -7128 3384 -450 9 171

Table 8: χ of polyvector fields on P2 × P2 ⊂ P8.

Polyvector fields on Gr(2, 6)

We can apply Borel-Weil-Bott theorem as reviewed in Appendix A. Several of the

cohomology groups are listed in table in Appendix B.

Polyvector fields on the Cayley plane

The Cayley plane X = OP2 ∼= E6/P (α1) where P (α1) is the parabolic subgroup

corresponding to the root α1 of E6. The Dynkin diagram and labelling of roots for E6

is shown in Figure 1. The root α1 is dual to the weight ω1. The first three tensors

powers of tangent bundle of X = OP2 are [47]

TX ∼= Eω2 , ∧2TX ∼= Eω4 , ∧3TX ∼= Eω3+ω5 .
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dim OX TX ∧2TX ∧3TX ∧4TX ∧5TX
0 1 0 0 0 0 0 1

1 27 0 0 0 0 0 27

2 351 0 0 0 0 0 351

3 3003 -78 0 0 0 0 2925

4 19305 -1728 0 0 0 0 17577

5 100386 -19305 0 0 0 0 81081

6 442442 -146432 2925 0 0 0 298935

7 1706562 -853281 51975 351 0 0 905607

8 5895396 -4088448 494208 0 0 0 2301156

9 18559580 -16812796 3309696 -70070 -650 0 4985760

Table 9: χ of polyvector fields on OP2.

α1 α3 α4 α5 α6

α2

Figure 1: E6 Dynkin Diagram

The Euler characteristics of polyvector fields on the Cayley plane are listed in table 9.

Hilbert series and free resolutions

A striking feature of the table of local operators, is that there is a diagonal of zeros. This

motivates the idea of slicing the table diagonally instead of horizontally or vertically.

The first non-trivial diagonal is closely related to a free resolution of the structure

sheaf. For the Veronese embedding of P2 in P5 we have the (graded) free resolution

O → OP5(−4)⊕3 → OP5(−3)⊕8 → OP5(−2)⊕6 → OP5 → OP2 → 0

of OP2 [48]. From the free resolution of OP 2 , we can determine the Hilbert series of the

Veronese embedded P2,

H(P2; t) =
1− 6t2 + 8t3 − 3t4

(1− t)6

For Segre embedded P2 × P2 ↪→ P8 the free resolution is constructed in [49] using

the methods of [50]. The free resolution of the Grassmannian Gr(2, 6) is described in
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[51, 52]. For the complex Cayley plane OP2 the free resolution is given in Lemma 7.2

of [53].

X Hilbert Series H(X; t)

P2 ⊂ P5 1+3t
(1−t)3

P2 × P2 ⊂ P8 1+4t+t2

(1−t)5

Gr(2, 6) 1+6t+6t2+t3

(1−t)9

OP2 1+10t+28t2+28t3+10t4+t5

(1−t)17

Table 10: Hilbert Series of Severi varieties

The Hilbert series of the Severi varieties is also

H(X; t) =
∑
k≥0

dimVkλt
k

where λ is the weight of the defining representation Vλ of the corresponding Wess-

Zumino model. Then Vkλ is the representation with weight kλ. This representation

geometrically is the space of sections of the line bundle O(k),

H0(X,O(k)) = Vkλ.

The Hilbert series of the Severi varieties are listed in Table 8 using results from [54].

The Hilbert series can also be expressed in the form

H(X; t) =
N(X; t)

(1− t)dim(Vλ)

For the first three Severi varieties, the terms in the numerator N(X; t) determines its

minimal free resolution. It is natural to conjecture that this also holds for OP2. The

numerators N(X; t) of Gr(2, 6) and OP2 are listed in Table 8. The corresponding betti

tables of the minimal free resolutions are
1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1


for Gr(2, 6) and 

1 − − − − − − − − − −
− 27 78 − − − − − − − −
− − − 351 650 351 − − − − −
− − − − − 351 650 351 − − −
− − − − − − − − 78 27 −
− − − − − − − − − − 1
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for OP2. Intriguingly the dimension of the cohomology groups along one of the diago-

X N(X; t)

Gr(2, 6) 1− 15t2 + 35t3 − 21t4 − 21t5 + 35t6 − 15t7 + t9

OP2 1− 27t2 + 78t3 − 351t5 + 650t6 − 351t7 − 351t8 + 650t9 − 351t10 + 78t12 − 27t13 + t15

Table 11: Hilbert series numerators for Gr(2, 6) and OP2

nals precisely matches the number of simplices in the conjectured minimal triangulation

of the projective plane AP2 [55]2.

9 The E7 surprise revisited

Dimofte and Gaiotto argued that four dimensional SQCD with eight chiral multiplets

defines an E7 superconformal invariant boundary condition for a five dimensional theory

of 28 free hypermultiplets [27]. One strong hint for the E7 symmetry is that there are

72 dual descriptions of the SQCD theory corresponding to elements of the quotient of

Weyl groups W (E7)/W (A7) [16]. We will find that the index of polyvector fields on

the moduli space of vacua of SQCD with eight chiral multiplets can be expressed in

terms of the Hilbert series of the Freudenthal variety E7/P (α7). As a consequence,

our conjectured form of the index in terms of polyvector fields also predicts the E7

enhancement of the 4D/5D superconformal index.

Similarly three dimensional SQCD with six chiral multiplets defines an SO(12) su-

perconformal invariant boundary condition for 16 four dimensional free hypermultiplets

[27]. Again we will see that the index of polyvector fields can be expressed in terms of

the Hilbert series of the spinor variety S12.

Quite remarkably the enhanced symmetry groups SO(12) and E7 occur in the

third row of the Freudenthal magic square. Their corresponding Landsberg-Manivel

projective geometries are the spinor variety S12 and the Freudenthal variety.

Polyvector fields on Gr(2, 8)

The moduli space of vacua of four dimensional SU(2) SQCD with four flavors is an

affine cone over the Grassmannian Gr(2, 8). The theory does not have a dual magnetic

description as a Wess-Zumino model. Instead it has a rich duality web. Nevertheless,

we will see that we can still determine a rich set of operators from its moduli space of

2The author would like to thank Sergey Galkin for this observation.
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dim OX TX ∧2TX ∧3TX ∧4TX ∧5TX
0 1 0 0 0 0 0 1

1 28 0 0 0 0 0 28

2 336 -63 0 0 0 0 273

3 2520 -1280 36 0 0 0 1276

4 13860 -12474 1890 0 0 0 3276

5 60984 -80640 26180 -1280 36 0 5280

6 226512 -396396 205920 -30030 336 -63 6279

Table 12: χ of polyvector fields on Gr(2, 8).

vacua. The calculation of cohomologies of local operators is practically identical to the

case of Gr(2, 6) again using the Borel-Weil-Bott theorem. The first few cohomology

groups are shown in table 12 and more cohomology groups are listed in table 16 in the

appendix. The first few terms in the betti table of the minimal free resolution are1 − − − − − . . .

− 70 420 945 924 330 . . .

− − − 1176 7350 19980 . . .


and as representations of SU(8) the betti table isV0 − − − − . . .

− Vω4 Vω+ω5 V2ω1+ω6 V3ω1+ω7 . . .

− − − V2ω5 Vω1+ω5+ω6 . . .


where we have listed only the first few terms.

The r-charges of the chiral multiplets are 1/2 so the alternating sum of polyvector

fields takes the form

χ(t) =
∞∑
m=0

dimB∑
j=0

(−1)jχ̂(∧jTB(−2)⊗ O(m))t2m/4

The alternating sum of Euler characters of polyvector fields on Gr(2, 8) can be written

as

χ(t) =
−t2 + t10 + 2t14

1− t2
+

P (t)

(1− t2)
where

P (t) =
(
1 + 28t+ 273t2 + 1248t3 + 3003t4 + 4004t5 + 3003t6 + 1248t7 + 273t8 + 28t9 + t10

)
.
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The polynomial P (t) is the numerator of the Hilbert series

P (t)

(1− t1/2)28

of the Freudenthal variety E7/P (α7) [54] where P (α7) is the parabolic subgroup cor-

responding to the root α7 of E7.

Taking the plethystic logarithm of the Hilbert series, we find

Exp−1[χ(t)(1− t2) + t2] = 28t− 133t2 + 912t3 − 8778t4 + 93632t5 + O(t6)

=
1

2
56t− 133t2 + 912t3 − (8645 + 133)t4 + O(t5)

The exact result for the index is

Exp−1[I(t, y)](1− ty)(1− ty−1)

=
1

2
56t− 133t2 + (912− 1χ2(y)) t3 + (−(8645 + 133) + 56χ2(y)) t4 + O(t5),

which is remarkably close.

3D Index

dim OX TX ∧2TX ∧3TX ∧4TX ∧5TX ∧6TX ∧7TX ∧8TX
0 1 0 0 0 0 0 0 0 0 1

1 15 0 0 0 0 0 0 0 0 15

2 105 -35 0 0 0 0 0 0 0 70

3 490 -384 21 0 0 0 0 0 0 127

4 1764 -2205 560 21 0 0 0 0 0 140

5 5292 -8960 4230 -384 -35 0 0 0 0 143

6 13860 -29106 19782 -4515 105 15 0 0 0 141

7 32670 -80640 70070 -24960 3003 0 0 0 0 143

Table 13: χ of polyvector fields on Gr(2, 6) with alternate grading for 3d SQCD

Similarly the moduli space of vacua for three dimensional SQCD with three fun-

damental flavors is a cone over the Grassmannian Gr(2, 6). However, unlike in four

dimensional SQCD with three fundamental flavors, the R-charge assignments are dif-

ferent. This means that the index of polyvector fields is different then the one computed

in four dimensions also for Gr(2, 6). The index computed from [27] is

I(q)3D/4D = 1 + 32q1/2 + 462q + 4256q3/2 + 29271q2 + 164064q5/2

+ 789558q3 + 3372864q7/2 + 13085623q4 + 46874080q9/2 +O(q5).
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After taking the plethystic logarithm,

Exp−1[I(q)](1− q2)
= 32q1/2 − 66q + 352q3/2 − 2608q2 + 21152q5/2 − 178124q3

+ 1543904q7/2 − 13683946q4 + 123259552q9/2 +O(q5)

The alternating sum of Euler characteristics

χ(q) =
P (q)

1− q2
− q

1− q
,

where

P (q) = 1 + 16q1/2 + 70q + 112q3/2 + 70q2 + 16q5/2 + q3

is the numerator of the Hilbert series of the spinor variety S12
∼= OGr+(6, 12). Our

conjectured formula for the index in three dimensions is

(1− q2) Exp−1[I(q)] = Exp−1[P (q)] + . . . ,

Exp−1[P (q)] = 16q1/2 − 66q + 352q3/2 − 2607q2 + 21120q5/2 +O(q3)

Chern classes

All of the alternating sums of Euler characteristics χ(t) have power series expansions

that asymptote to either a limiting value or a limiting cycle of values. The limiting value

(or the average value of the limiting cycle) can be expressed in terms of the Hirzebruch-

Riemann-Roch theorem. The result is that the limiting value is the integral of the top

Chern class of a twist of the tangent bundle. From the moduli spaces of vacua in 4d

SU(2) SQCD with Nc = 3, 4 we find∫
Gr(2,6)

ctop(TX(−3)) = 10923

∫
Gr(2,8)

ctop(TX(−2)) = 6556 =
1

2
deg(E7/P (α7)) + 1.

The Chern classes of the Severi varieties are closely related to the Euler characteristics

of their projective duals. Similarly in three dimensions we find∫
Gr(2,6)

ctop(TX(−2)) = 143 =
1

2
deg(S12).

These relations provide a simple mathematical realization of the E7 and SO(12)-

surprises.
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10 Projective duality and Beasley-Witten F-terms

Beasley and Witten [3] considered multi-fermion F-terms arising from cohomology

classes on the moduli space of vacua. By a direct computation in the generalized

Wess-Zumino model with a cubic superpotential, Beasley and Witten argue that there

are multi-fermion F-terms in SU(Nc) SQCD with Nf flavors arising from sections of

Ωn−1
X ⊗ ∧n−1TX ⊗ O(−n)

where n = Nf −Nc + 1. For both Gr(2, 6) and OP2 there is a cohomology class [56]

H2(X,∧2TX(−3)) ∼= C.

This appears to be a great coincidence from a direct calculation in the sigma model

using the Borel-Weil-Bott theorem. However there is a natural explanation in terms

of projective duality. For a Fano base B, the Fano index r is defined by KB = −rH
where KB is the canonical class of B and H is the generator of the Picard group of

B. The co-index c is the difference between the dimension and index of B, namely

c = dim(B) − r. When the degree of the projective dual hypersurface is equal to the

co-index minus one, then Lemma 4.2 in [56] shows that the existence of a non-trivial

cohomology class

Hc−2(Σ,∧c−2TΣ(−c+ 1)) ∼= C

using projective duality. It is natural to surmise that the computations using projective

duality are secretly the same as the computations at a generic point on the moduli space

of vacua of a Landau-Ginzburg model.

11 Schouten-Nijenhuis bracket and the OPE

Given two vector fields X and Y on B, their Lie bracket [X, Y ] is another vector

field on B. There is an extension of the Lie bracket to polyvector fields known as

the Schouten-Nijenhuis bracket. We write the multivector fields on B as X•(B) =

Γ(∧•TB). A multivector field P in Γ(∧pTB) has degree |P | = p. Given multivector

fields P,Q ∈ X•(B) of degrees |P | = p and |Q| = q, their Schouten-Nijenhuis bracket

is of degree |p|+ |q| − 1. Under the Schouten-Nijenhuis bracket, the multivector fields

on B form a grade supercommutative ring. Since local operators are identified with

multivector fields it is natural to ask for a physical interpretation of their bracket.

The Schouten-Nijenhuis bracket on multivector fields has a direct translation into

the operator product expansion (OPE) of local operators [21]. The simplest example

is the ordinary Lie bracket of two vector fields. Vector fields (with the appropriate
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R-charge) correspond to conserved currents. In 4d N = 1 supersymmetry conserved

currents jµ have scaling dimension ∆ = 3 and reside in supersymmetry multiplets J
with leading component ∆ = 2. The conserved current superfield has the following

expansion

J (z) = J(x) + iθj(x)− iθj(x)− θσµθjµ(x)

The OPE of two conserved current superfields is [57]

Ja(x)Jb(0) = τ
δab1

16π4x4
+
kdabc
τ

+
Jc(0)

16π2x2
− fabc

xµjcµ(0)

24π2x2
+ . . .

where k is the corresponding t’Hooft anomaly and fabc are the structure constants of

the symmetry algebra of the currents. It is natural to identify these structure constants

with the bracket of the corresponding vector fields.

It is also instructive to consider the description of the Schouten-Nijenhuis bracket

in terms of the holomorphic twist of a 4d supersymmetric sigma model. Given two

local operators Oa and Ob, we can place Ob at the origin and consider O(1)
a arising

from holomorphic descent of holomorphic descent of Oa. We can then integrate O(1)
a

over the cycle H1(C2\0, ∂) surrounding Ob. We can then take the OPE of the local and

non-local operator. In the case of sigma models that we are considering, the structure

constant is the Schouten-Nijenhuis bracket on the corresponding polyvector fields. This

is an example of a secondary product (of the two local operators) described in [21, 22].

12 Product structure on cyclic homology

At first it is surprising that the Schouten-Nijenhuis bracket corresponds to a particular

certain subleading term in the OPE expansion. However the BPS local operators that

we consider have an interpretation as the operators in a holomorphic twist of the gauge

theory. Therefore Costello has suggested to consider the OPE directly in the holomor-

phically twisted theory. We now illustrate this in the holomorphic twist of large-N

quiver gauge theories arising from branes at CY singularities following [7]. For gauge

theories arising from D-branes at singularities, a subset of operators correspond to the

states contributing to the equivariant Hirzebruch χy genus of the infinity symmetric

product of the vacuum

-1 0 1 2

λ φn ψp f

Table 14: Homological grading of fields
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Consider the fields contributing to the 4d superconformal index of N = 4 SYM as

part of superfield

Ψ = λ+ 2θnφ
n + εmnpθmθnψp + θ1θ2θ3f

where the homological grading of the fields are shown in table 14. The homological

degree zero piece of the potential term Ψ ∧Ψ ∧Ψ of holomorphic Chern-Simons is

Φ[ = Φ + [φn, ψn]λ+ λf 2

where Φ is the ordinary superpotential for the chiral fields φn in homological degree

zero. The graded potential Φ[ satisfies a non-commutative analog of the BV master

equation

{Φ[,Φ[} = 0

where the bracket {·, ·}

{Φ,Ψ} =
∑
n

(
∂Φ

∂φn

∂Ψ

∂ψn
− ∂Φ

∂ψn

∂Ψ

∂φn

)
is a noncommutative analog of the Schouten bracket. We see that the fermions ψ are in

homological degree 1, and that the homological degree corresponds to the polyvector

field degree. The NC Schouten bracket then takes two elements of degree p and q to

an element in degree p + q − 1. The bracket corresponds to the product structure on

cyclic homology. In this case, the moduli space is the infinite symmetric product of a

local CY manifold.

13 Conclusions and outlook

As promised, we have constructed local operators from polyvector fields on the quan-

tum moduli space of vacua. Our computation of the index in terms of these fields is

somewhat miraculous that it appears to work at all. Our computation the first step

toward the full computation of the superconformal index of a 4d N = 1 sigma model.

The full superconformal index can be expressed as an index over polyvector fields that

arises from the holomorphic twist of the 4d N = 1 sigma model. The holomorphic

twist of the sigma model is a four-dimensional βγ system which is described in [20].

A natural further step is to complete the calculation of the superconformal index di-

rectly in terms of the four-dimensional βγ system. Perhaps there are cohomological

vanishing theorems that can explain why our much simpler calculation comes so close

to computing the exact result for the superconformal index.

We have considered the local operators in theories with moduli spaces of vacua

that are cones over smooth Kähler bases. A natural generalization is to consider more
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general cases where the moduli space has more complicated singularities or multiple

branches. In particular the Coulomb and Higgs branches of 4d N = 2 and 3d N = 4

gauge theories have been intensively studied. While the Hilbert series of the Coulomb

branch is captured by the Hall-Littlewood index [58, 59, 60] it is natural to wonder if

more general indices can be recovered by considering polyvectors on the Coulomb and

Higgs branches. Recent work on the derived critical loci [61] might help clarify the

extra light states arising from singularities in the moduli space of vacua.

The super Lie algebra structure on polyvector fields is highly constraining and

suggests a possible “minibootstrap” program for the short operators in 4d N = 1

superconformal theories, similar to the 4d N = 2 minibootstrap initiated in [62].

The super Lie algebra structure arising from the bracket structure on local operators

is a higher dimensional analog of the bootstrap arguments given to determine the

ground ring of two dimensional string theory [63] [64] which is a prototype for this

type bootstrap program.

Similar to two-dimensional superconformal theories, it is natural to expect that

when the moduli space of vacua has a global isometry group, the superconformal index

can be expressed in terms of characters of a corresponding higher Kac-Moody group [65]

[66]. This extended symmetry could drastically simplify the “minibootstrap” program.

While we have focused on short BPS operators, an interesting series of papers

[67][68] determines the anomalous dimension of the lowest non-BPS operator with R-

charge J in a series expansion in 1/J directly from the effective theory on moduli space.

Another avenue to explore is the relationship with polyvector fields to possible WZW

type interactions on the moduli space [69, 70].

While SQCD has a rich history and has been intensively studied for several decades,

the new algebraic structures uncovered present progress towards solving a subset of the

full theory. Combined with new techniques from the bootstrap there is much hope to

unravel more of the secrets of SQCD.
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A Polyvectorfields from Borel-Weil-Bott

Borel-Weil-Bott for homogeneous bundles on Grassmannians

The Borel-Weil-Bott Theorem computes the cohomology of line bundles on the flag

variety of semisimple algebraic groups. It can also be used to compute the cohomology

of equivariant vector bundles on Grassmannians.

Let V be a vector space of dimension n. We identify the weight lattice of the group

GL(V ) with Zn. Let X be the flag variety of GL(V ). Let Lλ denote the line bundle

on X corresponding to the weight λ. Denote by

ρ = (n, n− 1, . . . , 2, 1)

half the sum of the positive roots of GL(V ). The corresponding line bundle Lρ is the

square root of the anticanonical line bundle.

Theorem A.1 (Borel-Weil-Bott). Assume that all entries of λ+ ρ are distinct. Let σ

be the unique permutation such that σ(λ+ ρ) is strictly decreasing. Then

Hk(X,Lλ) =

{
Σσ(λ+ρ)−ρV ∗, if k = `(σ)

0, otherwise

If not all entries of λ+ ρ are distinct then Hom•(X,Lλ) = 0.

Schur-Weyl modules

We fix a vector space V of dimension n. Let λ = (λ1, . . . , λs) be a partition of n.

Then the Schur-Weyl module SλV is an irreducible representation of GL(V ). It can

be explicitly described as

SλV =

∧λ1 V ⊗
∧λ2 V ⊗ · · · ⊗

∧λs V

R(λ, V )

where R(λ, V ) is a subvector space defined in section 2.1 of [38]. For two vector spaces

S and Q, there is an isomorphism of GL(S)×GL(Q) equivariant representations

r∧
(S ⊗Q) ∼=

⊕
|λ|=r

SλS ⊗ Sλ′Q

where λ′ is the conjugate partition of λ which is corollary (2.3.3) of [38]. Recall that

TGr
∼= HomGr(S,Q) ∼= S∗ ⊗Q, where S∗ is the dual of the subbundle.

r∧
TGr
∼=
⊕
|λ|=r

SλS∗ ⊗ Sλ′Q
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We can compute the cohomology of the bundles ∧rTGr using the following theorem.

Theorem A.2 (Borel-Weil-Bott for Grassmannians). Let Gr(k, V ) be the Grassman-

nian of k-planes in a n-dimensional vector space V. Consider the vector bundle Eα,β =

SαQ ⊗ SβS on Gr(k, V ) where α = (α1, . . . , αn−k) and β = (β1, . . . , βk) are partitions

of length at most n− k and k respectively. Let λ = (α, β) and ρ = (n, n− 1, . . . , 2, 1)

be half the sum of the positive roots of GL(V ). There is a unique non-vanishing

cohomology group

Hk(Gr, Eα,β) ∼=

{
Sσ(λ+ρ)−ρV if k = `(σ)

0, otherwise
(A.1)

where σ is the unique element of the Weyl group that take λ+ ρ to a dominant weight

and `(σ) is the number of adjacent transpositions (simple Weyl reflections) needed to

form σ. Furthermore, the isomorphism is SL(V )-equivariant.

For a proof see [38] Corollary 4.1.9.
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B Tables of polyvector fields

dim OX TX ∧2TX ∧3TX ∧4TX ∧5TX ∧6TX ∧7TX ∧8TX

0 1 0 0 0 0 0 0 0 0 1

1 15 0 0 0 0 0 0 0 0 15

2 105 0 0 0 0 0 0 0 0 105

3 490 -35 0 0 0 0 0 0 0 455

4 1764 -384 0 0 0 0 0 0 0 1380

5 5292 -2205 21 0 0 0 0 0 0 3108

6 13860 -8960 560 0 0 0 0 0 0 5460

7 32670 -29106 4230 21 0 0 0 0 0 7815

8 70785 -80640 19782 -384 0 0 0 0 0 9543

9 143143 -198198 70070 -4515 -35 0 0 0 0 10465

10 273273 -443520 205920 -24960 105 0 0 0 0 10818

11 496860 -920205 528255 -97020 3003 15 0 0 0 10908

12 866320 -1793792 1221220 -302848 20020 0 0 0 0 10920

13 1456560 -3318315 2599443 -810810 85410 -1365 0 0 0 10923

14 2372112 -5870592 5172960 -1935360 282555 -10752 0 0 0 10923

Table 15: χ of polyvector fields on Gr(2, 6).

dim OX TX ∧2TX ∧3TX ∧4TX ∧5TX ∧6TX ∧7TX ∧8TX ∧8TX ∧8TX

0 1 0 0 0 0 0 0 0 0 0 0 1

1 28 0 0 0 0 0 0 0 0 0 0 28

2 336 - 63 0 0 0 0 0 0 0 0 0 273

3 2520 -1280 36 0 0 0 0 0 0 0 0 1276

4 13860 -12474 1890 0 0 0 0 0 0 0 0 3276

5 60984 - 80640 26180 - 1280 36 0 0 0 0 0 0 5280

6 226512 - 396396 205920 - 30030 336 - 63 0 0 0 0 0 6279

7 736164 - 1596672 1149876 - 302848 19980 0 28 0 0 0 0 6528

8 2147145 - 5521230 5069064 - 1963962 282555 - 7020 0 0 0 0 0 6552

9 5725720 - 16912896 18752580 - 9580800 2194500 - 172800 252 0 0 0 0 6556

10 14158144 - 46930455 60540480 - 38153115 12008304 - 1686069 68320 945 0 0 0 6554

11 32821152 - 119927808 175207032 - 130296320 51832872 - 10526208 912384 - 16128 - 420 0 0 6556

12 71954064 - 285817532 463440978 - 394215822 187979220 - 49621572 6637428 - 352044 1764 70 0 6554

Table 16: χ of polyvector fields on Gr(2, 8).
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