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Abstract

There are two main approaches to duality covariant first order higher derivative corrections

to the heterotic string, one extending the duality structure and the other deforming the gauge

transformations. In this paper we introduce a framework from which both approaches can be

derived, proving their equivalence and extending them to higher orders.
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1 Introduction

T-duality is an exact symmetry of (super)string theories. It leaves hidden imprints in the low-

energy supergravity limits, which can be unmasked through toroidal compactifications. They

are however already present even before dimensional reduction, as realized from the advent of

duality symmetric approaches. Double Field Theory (DFT) [1], [2] (for reviews see [3]) is a

framework that makes the T-duality symmetry manifest, thus highly constraining the allowed

interactions of the effective theories under its reach. There are many variants and extensions,

but the ones that are of interest here are the frame-like [4] or flux [44] formulations of the

D = 10 and N = 1 supersymmetric [6], [7] heterotic DFT [8].

Higher derivative corrections to (super)gravity arising from string theory also share these

hidden imprints. Toroidal compactifications can again make them appear in the form of a sym-

metry in the lower dimensional theory [9], though it turns out that the problem is a little more

involved than the two-derivative case because unconventional non-covariant field redefinitions

are required. Many methods have been proposed to learn about higher derivative interactions

based on the way in which duality organizes the lower dimensional theories [10].

The natural scenario to study how T-duality constrains higher derivative interactions is

DFT, as it encodes duality symmetries from the onset in a background independent fashion, so

it is not surprising that this long standing problem has resurfaced in such a context [11]. Inter-

estingly, two seemingly different approaches arise in this scenario for the case of the heterotic

string to first order in α′:

• One scenario considers a generalized version of the Green-Schwarz transformation. In

the standard picture [12] the Kalb-Ramond field is not Lorentz invariant, which requires
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Lorentz Chern-Simons corrections to its three-form field strength pH with respect to a cer-

tain torsionful spin connection ω− = ω− 1
2

pH, due to Hull [13] (recently discussed in [14]).

The first order T-duality covariant generalization was introduced in [15], [16]. There, the

fields are O(D,D) multiplets transforming as usual under generalized diffeomorphisms

but receiving a first order generalized Green-Schwarz transformation that deforms the

double Lorentz symmetry. After a GL(D) decomposition, choice of solution to the strong

constraint and proper field redefinitions the standard Green-Schwarz transformation is re-

covered from the generalized one. Due to the T-duality covariance the Kalb-Ramond and

gravitational sectors mix in such a way that the generalized Green-Schwarz transforma-

tion demands the well-known quadratic Riemann interactions, on top of the Chern-Simons

terms.

• Another scenario is based on the work of Bergshoeff and de Roo [17], [18]. There, the

torsionful spin connection ω− and the gravitino curvature were shown to behave effectively

as a gauge multiplet with respect to supersymmetry to first order in α′. We refer to this

as the Bergshoeff-de Roo identification between independent and composite degrees of

freedom. This fact was exploited to compute the first order corrections to the action [17],

and later extended up to quartic Riemann interactions through a Noether procedure

[18]. In [19], [20] this idea was engineered by considering the extended duality structure

O(D,D + k) of the heterotic setup [8], such that after a GL(D) decomposition the one-

form gauge fields were identified with (a component of) the generalized spin connection for

O(1,D−1) ∈ O(1,D+k−1), extensively discussed in the literature [1], [4], [21], [22], [23].

Since the identification between independent and composite degrees of freedom is done

after the GL(D) decomposition, duality covariance is not manifest and must be checked

explicitly.

Both approaches look rather orthogonal as in the first case the duality structure is extended

and the local symmetries remain intact, whereas in the second case the duality group stays

unmodified but the local symmetries are deformed. The link between them remains unclear

-though they lead to the same first order heterotic action- and higher order corrections to these

approaches have been so far elusive. In this paper we introduce a general setup from which

both approaches can be derived and extended to all orders in a derivative expansion. Let us

provide some highlights of the route we follow and the results we encounter:

• We consider a hybrid between both approaches. Starting from a G = O(D,D+k) extended

space, we perform a G = O(D,D) decomposition -as opposed to the standard GL(D)

decomposition- in the lines of [24]. This leaves us with a G-valued generalized frame plus

additional covariantly constrained G-vectors, thus fully preserving T-duality covariance.

• The G generalized diffeomorphisms induce a generalized Green-Schwarz transformation

for the G-valued frame with respect to the extra G-vectors.

• The G-vectors are identified in a duality covariant way -by matching gauge and super-

symmetry transformations- with generalized fluxes playing the role of a generalized spin

connection for the full O(1,D+ k− 1). We do the same between the gauginos and a gen-
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eralized notion of gravitino curvature. This is what we call the generalized Berghshoeff-de

Roo identification.

Contrary to the standard identification, the generalized one is exact. This is possible because

the gauge group is identified with the full O(1,D+ k− 1) rather than its O(1,D− 1) subgroup,

so the generalized identification that we propose here would be impossible to implement in

supergravity. An interesting consequence of our results is that the tangent space must be

infinite dimensional. This might sound strange, but is somewhat expected given that the

identification is exact, which presumably means that it captures an infinite tower of higher

derivative corrections. We test this proposal by performing an α′ perturbative expansion. To

first order we recover the well known heterotic generalized Green-Schwarz transformation of [15],

and to second order we obtain a novel consistent correction that preserves the constraints and

closes.

The paper is organized as follows. In Section 2 we introduce the G structure of the extended

space and reduce it to the double space in a G-covariant way. Section 3 is devoted to lock

the vector degrees of freedom in terms of (derivatives of) the G-covariant generalized frame

(the generalized Bergshoeff-de Roo identification). As a consistency check of the approach we

perform a derivative expansion, finding the second order completion of the heterotic general-

ized Green-Schwarz transformation of [15]. The full supersymmetric treatment is presented in

Section 4. An outlook is given in the last section, together with a list of possible future lines of

research.

2 From extended to double

The starting point of this section is the generalized frame formalism [4] (mostly following the

conventions in [44]) in the

Extended space

{

Global symmetry G = O(D,D + k)

Local symmetry H = O(D − 1, 1) ×O(1,D + k − 1)
, (2.1)

and the goal is to re-formulate it in terms of multiplets of the

Double space

{

Global symmetry G = O(D,D)

Local symmetry H = O(D − 1, 1) ×O(1,D − 1)
. (2.2)

The notation is presented in Table 1. The degrees of freedom in the extended case are a

generalized dilaton d and a generalized frame EM
A which is a constrained field, satisfying

ηMN = EM
A ηAB EN

B . (2.3)

The generalized dilaton plays no role whatsoever in our analysis, so it will be ignored. The

gauge transformations of the extended generalized frame are given in terms of extended and

gauged generalized diffeomorphisms, plus extended Lorentz H-transformations

δEM
A = ξP∂PEM

A +
`
∂MξP − ∂PξM

˘
EP

A + g fMN
PξNEP

A + EM
B ΓB

A . (2.4)
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Name Group Indices Metric

G O(D,D) M ηMN

g O(k) α καβ

G O(D,D + k) M = (M, α) ηMN =

˜
ηMN 0

0 καβ

¸

H = H O(D − 1, 1) A = a PAB = Pab

H O(1,D − 1) a P̄ab

h O(k) α καβ

H O(1,D + k − 1) A = (a, α) P̄AB =

˜
P̄ab 0

0 καβ

¸

H H×H A = (A, A) = (a, a, α) ηAB =

˜
PAB 0

0 P̄AB

¸

H H ×H A = (a, a) ηAB =

˜
Pab 0

0 P̄ab

¸

Table 1: Notation used throughout the paper. Modulo a few exceptions, calligraphic letters refer to the

extended space while conventional ones to the double space. The metrics and their inverses

are used to raise and lower indices.

We included a dimensional coupling g−2 ∼ α′ to render the structure constants fMNP dimen-

sionless. The extended Lorentz parameters satisfy

ΓAB = Γ[AB] , ΓAB = 0 , (2.5)

and the gaugings obey linear and quadratic constraints

fMNP = f[MNP] , f[MN
KfP]K

L = 0 . (2.6)

The gauge transformations close

rδ1, δ2s = −δ12 , (2.7)

with respect to the following brackets

ξM12 = 2ξP[1∂Pξ
M
2] + ∂MξP[1ξ2]P + g fNP

MξN1 ξP2 (2.8)

Γ12AB = 2ξP[1∂PΓ2]AB + Γ[1A
C Γ2]BC , (2.9)

provided a strong constraint is imposed

ηMN ∂M ⊗ ∂N = 0 , fMN
P ∂P = 0 . (2.10)

4



We now want to write everything in terms of G = O(D,D) ∈ G multiplets. Taking a close

look into Table 1 we see that derivatives and parameters split as follows

∂M = (∂M , ∂α) , ξM =
`
ξM , ξα

˘
. (2.11)

Since we intend to preserve G-invariance, we need to annihilate all the G components of the

gaugings fMNP , such that only the fαβγ survive. The extended strong constraint (2.10) then

implies the double strong constraint

∂α = 0 , ηMN ∂M ⊗ ∂N = 0 . (2.12)

As for the parameters, the ξM components now generate double generalized diffeomorphisms,

and the ξα generate gauge transformations of a given gauge group K defined by its structure

constants fαβγ .

The extended generalized frame satisfies the constraint (2.3) implying that it contains dim[G]

degrees of freedom (dof)

dim[O(D,D + k)] = dim[O(D,D)]looooooomooooooon
EM

A

+ 2Dkloomoon
AM

α

+ dim[O(k)]loooomoooon
eαα

, (2.13)

where EM
A is a double generalized frame satisfying

ηMN = EM
AηABEN

B , (2.14)

and eα
α is a bijective map between h and g

καβ = eα
α καβ eβ

β . (2.15)

Then, the extended dof admit a general G and H decomposition of the form

EM
A = (χ

1

2 )M
N EN

A ,

EM
α = −AM

β eβ
α , (2.16)

Eα
A = AM

α EM
A ,

Eα
α = (✷

1

2 )α
β eβ

α ,

where we introduced the following quantities

χMN = ηMN −AM
α ANα , ✷αβ = καβ −AMαA

M
β , (2.17)

that satisfy the identity

AM
β f(✷)β

α = f(χ)M
N AN

α , (2.18)

for any function f .

Due to the original H symmetry, there are many non-physical gauge dof. It will then turn

out to be convenient to perform a gauge fixing to remove some of them

EMaAM
α = 0 , eα

α = constant . (2.19)
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Demanding that these constraints are gauge invariant δEα
a = 0 and δeα

α = 0 freezes the

following components of the H parameters

Γαa = eαα (✷
− 1

2 )α
β ∂P ξβ E

P
ā , (2.20)

Γαβ = eα[α e
β
β] (✷

− 1

2 )α
γ

´
δ(✷

1

2 )γβ − ∂P ξγ APβ − g fγδ
λ ξδ (✷

1

2 )λβ

¯
,

forcing a dependence on the generators of K.

We now compute from the gauge transformations in the extended space (2.4) how the double

dof in (2.16) transform. The transformations turn out to have simpler expressions in terms of

a redefined vector field CM
α

CM
α = −AM

β(✷− 1

2 )β
α , AM

α = −CM
β(∆− 1

2 )β
α , (2.21)

which is also covariantly constrained EMaCM
α = 0, and we define

∆αβ = καβ + CMαC
M

β , ΞMN = ηMN + CM
αCNα , (2.22)

which relate to the previous definitions as follows

∆αβ = (✷−1)αβ , χMN = (Ξ−1)MN , CM
βf(∆)β

α = f(Ξ)M
NCN

α . (2.23)

The transformations of the double fields are

δEM
a = pLξEM

a + EM
b Λb

a + EPa ∂P ξ
α CMα , (2.24)

δEM
a = pLξEM

a + EM
b Λb

a − ∂Mξα CQαE
Qa , (2.25)

δCM
α = pLξCM

α + ∂Mξα − ∂MξβCQβC
Qα + CM

β ∂P ξβ CP
α + g fβγ

αξβCM
γ , (2.26)

where pL denotes the standard generalized Lie derivative in the double space, and we have

redefined the double Lorentz parameters so that both projections of the frame field look slightly

more symmetric

Λab = Γab − EM
[aE

N
b](Ξ

1

2 )M
P

´
δ(Ξ− 1

2 )PN + ∂P ξ
αCQα(Ξ

− 1

2 )QN

¯
, (2.27)

Λab = Γab .

In addition we defined the standard projected derivatives

∂M = PM
N∂N , ∂M = P̄M

N∂N , (2.28)

in terms of the projectors

PMN = EM
aENa =

1

2
pηMN −HMN q , P̄MN = EM

aENa =
1

2
pηMN +HMN q . (2.29)

In terms of the collective H indices of Table 1 the transformation of the frame field can be

recast as

δEM
A = pLξEM

A + EM
BΛB

A − 2∂[Mξα CN ]αE
NA , (2.30)

and this reproduces the schematic form of generalized Green-Schwarz transformations discussed

in [15] for a given choice in the bi-parametric freedom discussed there. The difference is that

6



here CM
α is an independent degree of freedom, corresponding to the duality covariant gauge

vectors of a gauge group K. Normally, in the heterotic supergravity CM
α would undergo a

GL(D) parameterization in terms of one-form gauge fields Aµ
α and the gauge group would

be K = SO(32) or K = E8 × E8, or further enhancements [25], [26], [27] (see also [28] for

an alternative approach to heterotic DFT). In this paper we will ignore the gauge sector of

heterotic supergravity, so we have different plans for CM
α.

We have then extracted the double field transformations from those in the extended space.

Closure is guaranteed by construction, and the brackets can be obtained either through direct

inspection or from the G andH decomposition of the extended brackets (2.8)-(2.9). In the latter

case, the field-dependent redefinition of the H parameter (2.27) must be properly accounted

for. The double brackets are

ξM12 = 2ξP[1∂P ξ
M
2] + ∂MξP[1ξ2]P + ∂M ξα[1ξ2]α ,

ξα12 = 2ξP[1∂P ξ
α
2] + gfβγ

αξβ1 ξ
γ
2 , (2.31)

Λ12ab = 2ξP[1∂PΛ2]ab + 2Λ[1a
cΛ2]bc + 2EM

[aE
N

b]∂Mξα1 ∂Nξβ2 ∆αβ ,

Λ12ab = 2ξP[1∂PΛ2]ab + 2Λ[1a
cΛ2]bc + C[a

αCb]
β HMN∂Mξ1α∂Nξ2β + 2EM

[aE
N

b]∂M ξα1 ∂Nξ2α .

We include here a few words on the generalized metric formulation, mostly intended to show

that the O(D,D) decomposition we use is exactly the one introduced in [24]. The extended

generalized metric is defined as follows

pHMN = EM
AENA − EM

AENA =

˜
rHMN

rCMβ

rCNα
rNαβ

¸
. (2.32)

The components can be computed directly from (2.16) and after implementing the redefinition

(2.21) we find

rHMN = HMN + 2CM
α(∆−1)αβCN

β ,

rCMα = 2CM
β(∆−1)βα , (2.33)

rNαβ = −καβ + 2(∆−1)αβ .

This is precisely the parameterization of the extended space generalized metric in terms of

O(D,D) multiplets as presented in [24]. We are using the same letters, but strictly the tensors

in [24] contain scalars in the context of heterotic compactifications on tori, while here we are

dealing with the full generalized fields and not assuming a compactification. For completeness

we give the transformation of the double generalized metric

δHMN = pLξHMN + 4∂(M ξα CN)α , (2.34)

which again takes the form of a generalized Green-Schwarz transformation as in [15].
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Key to the forthcoming analysis are the extended generalized fluxes

FABC = 3D[AE
M

B EN
C] ηMN + g fMNP EM

AE
N

BE
P
C , (2.35)

where we have defined DA = EM
A ∂M, which are generalized diffeomorphism scalars and

transform anomalously under extended Lorentz transformations

δFABC = ξP∂PFABC − 3
`
D[AΓBC] + Γ[A

D FBC]D

˘
. (2.36)

As a consequence of the strong constraint (2.10) and due to the linear and quadratic constraints

for the gaugings (2.6), the generalized fluxes satisfy Bianchi identities

rDA, DBs = FAB
C DC , D[AFBCD] −

3

4
F[AB

EFCD]E = 0 . (2.37)

Generalized fluxes can also be defined in the double space

FABC = 3D[AE
M

B EN
C] ηMN , (2.38)

where we defined double flat derivatives DA = EM
A∂M . They satisfy their own Bianchi iden-

tities

rDA, DBs = FAB
C DC , D[AFBCD] −

3

4
F[AB

EFCD]E = 0 . (2.39)

The extended fluxes can then be cast in terms of the double ones. The projections that are

relevant to our discussion are

Fabc = (χ
1

2 )a
e Febc , (2.40)

Fabγ = −
”
(χ

1

2 )a
e

´
Eα

dFbde +DbEαe

¯
−Db(✷

1

2 )α
β Eβa

ı
eαγ̄ , (2.41)

Faαβ = g fδǫ
γ Eγ a (✷

1

2 )δα(✷
1

2 )ǫβ eαα e
β
β (2.42)

+(χ
1

2 )a
b Eα

c eα[α e
β
β]

”
FbcdEβ

d + (2DcEβ b −DbEβ c)
ı

+eα[α e
β
β] Db(✷

1

2 )γα

”
(χ

1

2 )a
b(✷

1

2 )β
γ + Eγa Eβ

b
ı
.

3 The generalized Bergshoeff-de Roo identification

In the previous section we saw that the generalized frame in the extended space can undergo a

G and H decomposition in terms of a double generalized frame EM
A, fundamental G-vectors

AM
α playing the role of gauge fields of the gauge group K, and a g-valued matrix eα

α. Our

intention here is to lock the extended dof AM
α and eα

α in terms of (derivatives of) the double

generalized frame EM
A, leaving it as the unique dof of the theory.

To avoid detours, we include an appendix where we discuss different possibilities for locking

the extended dof, also comparing with previous attempts. Here we go straight to the point.

The identification we make is the following

K = H . (3.1)
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A priori this would seem impossible because

dimK = k , dimH =
(D + k)(D + k − 1)

2
, (3.2)

and so there is no way to match both dimensions for finite k. However, the identification we

make forces k → ∞, so there is no conflict in making this choice as long as the dictionary

between both groups is well established. Since the indices in K and H are noted differently, we

need to introduce a map between them

VA
B = −g Vα (t

α)A
B , (3.3)

where ptαqA
B denote the generators of the gauge algebra, and satisfy rtα, tβs = fαβ

γtγ .

The locking is accompanied by the gauge fixing discussed in the previous section, AMα = 0

and eα
α = constant, which required non vanishing Γaα and Γαβ parameters (2.20). The only

dof that one has to identify is then Eαa = EM
aAMα ≡ Aaα, that transforms as a projected

generalized connection

δAaα = pLξAaα −Daξα + gfαβ
γξβAaγ +AdαΓ

d
a . (3.4)

Using the map (3.3), this can be rewritten as

δAaBC = pLξAaBC −DaξBC + 2AaD[C ξ
D
B] +AdBC Γ

d
a , (3.5)

and this is precisely the way in which the following projection of the extended fluxes transforms

δFaBC = pLξFaBC −DaΓBC + 2FaD[CΓ
D
B] + FdBCΓ

d
a . (3.6)

The resemblance between (3.5) and (3.6) turns into an exact identity provided

ξAB = −g ξα (t
α)AB = ΓAB ,

AaBC = −g Eαa (t
α)BC = FaBC .

(3.7)

This is the key identity of the paper: it corresponds to an exact locking of the extended

degrees of freedom, and it is what we call the generalized Bergshoeff-de Roo identification. Its

supersymmetric extension will be discussed on a separate section.

We assume the generators to define invertible maps1

ptαqAB ptβqAB = XR δαβ , (3.8)

ptαqAB ptαqCD = XR δCD
AB

, (3.9)

where XR denotes the Dynkin index of the representation. Notice that consistency of the

equations above requires

καβ = −fαγ
δ fβδ

γ = −
4

XR
(tγ)

K
[C (tα)D]K(tβ)

CL (tγ)L
D = XR (N − 2)καβ . (3.10)

1This assumption might actually be too strong, as in the second identity the Kroneker delta must be replaced

by the projector to the adjoint representation. We leave for future work to provide a more rigorous treatment of

this infinite-dimensional mathematical structure.
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Hence XR = 1
N−2 , where N = δA

A
. In the limit we consider this would vanish. Nevertheless it

will play a fundamental role as a regulator of certain divergent traces and so, we will still keep

track of this factor until the end of the computation.

It is worth noting that the identification (3.7) holds independently of the gauge fixing con-

ditions discussed in the previous section. Without such a gauge fixing the identification would

generate infinitely many gauge dof Eαa and eα
α with an infinite amount of gauge symmetry

parameterized by Γαa and Γαβ . The gauge fixing eliminates the redundant gauge dof, and to-

gether with the locking leaves the double generalized frame EM
A as the unique dynamical field.

In addition, (2.20) defines Γaα and Γαβ in terms of ξα, which due to the identification depends

again on ΓAB. The iteration can be pursued order by order to obtain a derivative expansion.

For later use we display here the first contributions to the α′ ∼ O(g−2) expansion

Γαa = −
1

g XR
eβα DaΓCD (tβ)

CD −
1

2 g3 X2
R

eβα F
c
AB FcCD DaΓ

CD (tβ)
AB +O

ˆ
1

g5

˙
, (3.11)

Γαβ = −
1

XR
fαβ

γ ΓAB (tγ)
AB eαα e

β
β −

1

g2 X2
R

DaΓAB FaCD (tα)
AB (tβ)

CD eα[α e
β
β] +O

ˆ
1

g4

˙
.

(3.12)

Analogously we can solve iteratively for the relevant components of the generalized fluxes

Fabc = Fabc −
1

2XR g2
FaCD FeCD Febc +O

ˆ
1

g4

˙
, (3.13)

Fabα =
1

XR g

´
FabcF

cAB +DbFa
AB

¯
eα

α(tα)AB + O

ˆ
1

g3

˙
, (3.14)

Faαβ = −
1

XR
fαβγe

α
α e

β
β FaCD (tγ)CD

+
1

X2
R g2

´
Facd F

c
AB Fd

CD +
´
DaFcAB − 2DcFaAB

¯
Fc

CD

¯
eα[α e

β
β](tα)

AB(tβ)
CD

+
1

X3
R g2

fβγδ FaAB Fc CD Fc
EF eα[α e

β
β] (t

γ)AB(tδ)CD(tα)
EF + O

ˆ
1

g4

˙
. (3.15)

Let us conclude with some words on how the extended space becomes infinite after the

identification. First we identify K indices α with H indices AB, through the generators (tα)AB.

The H indices now split under an H decomposition as A = (a, α), such that α → AB →

(ab, aβ, αb, αβ). We have also introduced a bijective map e : h → g in (2.15) that allows to con-

vert h indices α back to K indices α, such that α → AB → (ab, aβ, αb, αβ) → (ab, aβ, αb, αβ).

Repeating this procedure over and over leads to an infinite dimensional tangent space. As we

will see, interestingly, contractions in this space converge yielding finite order by order expres-

sions. We show the first and second order expansion in what follows.

3.1 First order

We show here that the exact identification (3.7), when expanded to first order in α′ ∼ O
`
g−2

˘
,

reproduces the expected first-order generalized Green-Schwarz transformation of [15]. To this
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end, we begin with the H projection of the the generalized frame, whose exact transformation

was written in (2.24)

δEM
a = pLξEM

a + EM
bΛb

a +DaξαCMα . (3.16)

In (2.21) the gauge vector CM
α was related to another one AM

α and these dof were locked

in (3.7) by identifying them with the generalized flux component FaBC . Implementing these

relations yields

δEM
a = pLξEM

a + EM
bΛb

a −
1

g2XR
EM

b FbCD DaΓCD +O

ˆ
1

g4

˙
. (3.17)

The contracted factor on the last term splits as follows

FbCD DaΓCD = Fbcd D
aΓcd + Fbαβ DaΓαβ + 2Fbαc D

aΓαc . (3.18)

In the last term the mixed contraction 2Fbαc D
aΓαc ∼ O

`
g−2

˘
by virtue of (3.11), (3.14) and

so it can be ignored at this stage. For the second term we need to take the leading order from

(3.15) and (3.12), obtaining

Fbαβ DaΓαβ =
1

XR
FbCD DaΓCD +O

ˆ
1

g2

˙
. (3.19)

Remarkably the RHS of (3.19) contains the exact same expression appearing in the LHS of

(3.18). Then, replacing (3.19) in (3.18) we read off

FbCD DaΓCD =
XR

−1 +XR
Fbcd D

aΓcd +O

ˆ
1

g2

˙
=

XR

−1 +XR
Fbcd DaΓcd +O

ˆ
1

g2

˙
, (3.20)

where in the last equality we used the fact that extended and double fluxes are equal to leading

order (2.40). Then (3.17) becomes

δEM
a = pLξEM

a + EM
b Λb

a −
b

2
EM

dFdbcD
aΛbc +O

ˆ
1

g4

˙
, (3.21)

were we defined

b =
2

g2(−1 +XR)
, (3.22)

and used (2.27) to rename the Lorentz parameter. We then find that the first non-trivial order

in α′ (3.21) exactly reproduces the first order generalized Green-Schwarz transformation of

DFT [15].

Let us now focus on the transformation of the H projection (2.25)

δEM
a = pLξEM

a + EM
bΛb

a − ∂Mξα CQαE
Qa . (3.23)

To first order in α′ we find

− ∂M ξα CQαE
Qa =

1

g2XR
∂MΓCDFa

CD +O

ˆ
1

g4

˙
, (3.24)

and in addition we can decompose

∂MΓCDFa
CD = ∂MΓcdFa

cd + ∂MΓαβFa
αβ + 2∂MΓαcFa

αc . (3.25)
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Again the last term can be neglected as it contributes to higher order, and the second one gives

∂MΓαβFa
αβ =

1

XR
∂MΓCDFa

CD +O

ˆ
1

g2

˙
, (3.26)

which reinserting into (3.25) and replacing by double fluxes yields

∂MΓCDFa
CD =

XR

1−XR
∂MΓcdF a

cd +O

ˆ
1

g2

˙
, (3.27)

in analogy with (3.20). We can now replace (3.27) into (3.24) into (3.23), and use the leading

order redefinition of Lorentz parameters (2.27) to arrive at

δEM
a = pLξEM

a + EM
b Λb

a +
b

2
∂MΛbc F a

bc +O

ˆ
1

g4

˙
. (3.28)

This matches the other projection of the first order generalized Green-Schwarz transformation

[15].

As previously anticipated, the final result is finite and non vanishing in the limit XR → 0

leading to the simple identification b → −2/g2.

3.2 Second order

Now we obtain the so far unknown O(α′2) deformations of the generalized Green-Schwarz

transformation. Once again we start considering the H projection of the generalized frame

(2.24)

δEM
a = pLξEM

a + EM
bΛb

a −
1

g2XR
EM

c (χ− 1

2 )c
b FbCD DaΓCD . (3.29)

After repeating the steps of the previous section for the last term but keeping the following

order terms that were previously neglected, gives

FbCD DaΓCD =
XR

(−1 +XR)
Fbcd D

aΓcd (3.30)

−
2

g2 (−1 +XR)

”
FbEFFcG

F
´
FcCGDaΓC

E −FcCEDaΓC
G

¯

−
´
DaΓEG

¯ ´
FbcdF

c
EFF

d
G
F +DbF

c
EFFcG

F − 2 DcFbEFF
c
G
F

¯

− FbEFD
a

´
DcΓEGFcG

F
¯
− DaDcΓEF

´
FcdbF

d
EF +DcFbEF

¯ı

+O
`
g−6

˘
.

Notice that the χ factor in (3.29) has the effect of switching the extended into the double fluxes

(χ− 1

2 )a
b Fbcd = Facd in the first line of (3.30) whereas it is equivalent to a Kronecker delta on

the second to fourth lines, at this order.

We can try to reproduce the logic of the first order computation, namely to split indices

A → (a, α), replace (3.11)-(3.15), discard terms with mixed indices (as they are subleading)

and get rid of terms with Greek dummy indices by noting that they are proportional to the

12



same terms with H indices. This procedure turns out not to work for each individual term at

O
`
g−4

˘
but remarkably it does for the whole sum in (3.30). Hence, we conclude

δEM
a = pLξEM

a + EM
bΛb

a −
b

2
EM

dFdbcD
aΛbc

−
1

2
b2 EM

b
”
DaDcΛef

´
FcdbF

d
ef +DcFbef

¯
− FbefFcd

f
´
F chdDaΛh

e − F cheDaΛh
d
¯

+ F c
ef DaΛe

g

´
FbcdF

dgf −DbFc
gf + 2 DcFb

gf
¯
− FbefD

a
´
DcΛedFcd

f
¯ı

+ O
`
g−6

˘
.

(3.31)

It is quite remarkable that all the dependence on the Dynkin coefficient XR and the coupling

constant g has arranged once again in the same parameter b as before (3.22).

The transformation of the H projection (2.25) is completely analogous

δEM
a = pLξEM

a + EM
b Λb

a +
1

g2 XR
∂MΓCD (χ− 1

2 )ab F
b
CD . (3.32)

Repeating the procedure for the previous projection one readily arrives at

δEM
a = pLξEM

a + EM
bΛb

a +
b

2
∂MΛbc F a

bc

+
1

2
b2 EM

b
”
DbD

cΛef
´
Fcd

aF d
ef +DcF

a
ef

¯
− F a

efFcd
f

´
F chdDbΛh

e − F cheDbΛh
d
¯

+ F c
ef DbΛ

e
g

´
F a

cdF
dgf −DaFc

gf + 2 DcF
agf

¯
− F a

efDb

´
DcΛedFcd

f
¯ı

+ O
`
g−6

˘
.

(3.33)

As a non-trivial check we have verified closure. The brackets receive second order corrections,

and are given by

ξM12 = 2ξP[1∂P ξ
M
2] + ∂M ξP[1ξ2]P

−
b

2
Λcd
[1 ∂MΛ2]cd + b2

„
∂MΛef

[1 DcΛ2]e
dFcdf +

1

2
∂M

´
DcΛef

[1

¯
DcΛ2]ef


+O(b3) ,

Λab
12 = 2 ξN[1 ∂NΛab

2] − 2 Λac
[1 Λ2]c

b + b DaΛcd
[1 DbΛ2]cd + b2

”
DaΛcd

[1 DbΛef
2] F

g
cd Fgef

− DaDeΛcd
[1 DbDeΛ2]cd − 2 D[a

´
DcΛed

[1 Fcd
f
¯

Db]Λ2]ef

ı
+O(b3) , (3.34)

Λ
ab
12 = 2 ξN[1 ∂NΛ

ab

2] − 2 Λ
ac

[1 Λ2]c
b + b DaΛcd

[1 DbΛ2]cd + b2
”
DaΛcd

[1 DbΛef
2] F

g
cd Fgef

− DaDeΛcd
[1 DbDeΛ2]cd − 2 D[a

´
DcΛed

[1 Fcd
f
¯

Db]Λ2]ef

ı
+O(b3) .

The first order exactly reproduces [15] and the second order is a new result. These expressions

could also be obtained from the extended brackets (2.31) after performing the identification,

but one has to take care of the fact that the identification introduces field dependence in the

parameter components, which must be properly accounted for.
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4 Supersymmetry

We now consider the N = 1 and D = 10 supersymmetric formulation of extended gauged DFT

[6], [7]. The fermionic degrees of freedom are two Majorana spinors: an extended generalized

gravitino ΨA (which is anH vector and anH spinor) that contains the gravitino Ψa and gauginos

Ψα from the point of view of the double space, and a generalized dilatino ρ (which is an H

singlet and an H spinor) which will be ignored as it plays no relevant role in our analysis. Both

are scalars under extended generalized diffeomorphisms and G invariant. The supersymmetry

parameter ǫ is also a Majorana H spinor. The gamma matrices satisfy a Clifford algebra for H
{

γa, γb
}

= 2P ab , (4.1)

and we use the standard convention for antisymmetrization of γ-matrices γa...b = γ[a . . . γb].

The Clifford relation (4.1) implies the following useful identities

γaγb = γab + Pab ,

γabγc = γabc + 2γ[aPb]c = γaγbc + 2γ[aPc]b ,

γabγ
cd = γab

cd + 4γ[a
[dPb]

c] + 2P[b
[c Pa]

d] .

(4.2)

Crucial to the analysis is the derivative

∇AVB = DAVB − ωAB
CVC , (4.3)

which is H covariant provided the generalized spin connection transforms as follows

δΓωABC = −DAΓBC + ωDBCΓ
D
A + ωADCΓ

D
B + ωABDΓ

D
B . (4.4)

Compatibility with the H invariants and vanishing generalized torsion impose constraints on

the connection

ωA(BC) = 0 , ωAbC = 0 , (4.5)

and generalized frame compatibility determines some projections of the connection in terms of

the dynamical fields

3ω[ABC] = FABC . (4.6)

Together these imply

ωaBC = FaBC , ωAbc = FAbc . (4.7)

There are additional relations involving the generalized dilaton, but we ignore them here as

they have no relevance in the analysis.

Let us now move on to the covariant derivative of a spinorial object. When we consider

spinors, the covariant derivative takes an extra contribution. For example, the covariant deriva-

tive of the gravitino and the adjoint gravitino are

∇AΨB = DAΨB − ωAB
CΨC −

1

4
ωAbcγ

bcΨB , ∇AΨB = DAΨB − ωAB
CΨC +

1

4
ωAbcΨBγ

bc ,

where the adjoint spinor is defined through Ψ̄ = ΨtC and the charge conjugation matrix satisfies

C−1 = Ct = −C , CγC−1 = −γt . (4.8)
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We will only work to leading order in fermions, such that supersymmetric transformations of

bosons are at most quadratic in fermions, and supersymmetric transformations of fermions are

linear in fermions. On top of the extended generalized diffeomorphisms and H transformations,

the extended generalized frame receives supersymmetric transformations given by

δǫEM
a = −

1

2
ǭ γaΨB EM

B ,

δǫEM
a =

1

2
ǭ γbΨa EMb , (4.9)

δǫEM
α =

1

2
ǭ γbΨα EMb .

The gravitino and gaugino on the other hand transform as follows

δΨa = ξM∂MΨa +ΨBΓ
B
a −

1

4
Γbcγ

bcΨa +∇aǫ , (4.10)

δΨα = ξM∂MΨα +ΨBΓ
B
α −

1

4
Γbcγ

bcΨα +∇αǫ . (4.11)

The composition of these transformations closes to leading order in fermions with respect to

the following brackets

ξM12 = 2ξP[1∂Pξ
M
2] + ∂MξP[1ξ2]P + g fNP

MξN1 ξP2 −
1

2
EM

a ǭ1 γ
a ǫ2 ,

Γ12AB = 2ξP[1∂PΓ2]AB + Γ[1A
C Γ2]BC , (4.12)

ǫ12 = 2ξP[1∂Pǫ2] −
1

2
Γ[1abγ

abǫ2] .

We now proceed as before making the same G ∈ G and H ∈ H decomposition and gauge

fixing. Imposing Eα
ā = 0 and δeα

ᾱ = 0 now gives a supersymmetric completion of the locked

H gauge parameters (3.11), (3.12)

Γαa = eαα (✷
− 1

2 )α
β

ˆ
∂P ξβ E

P
ā −

1

2
ǭ γb ΨaE

M
bAMα

˙
, (4.13)

Γαβ = eα[α e
β
β] (✷

− 1

2 )α
γ

ˆ
δ(✷

1

2 )γβ − ∂P ξγ APβ − g fγδ
λ ξδ (✷

1

2 )λβ −
1

2
ǭ γb Ψδ eβ

δ EM
bAMγ

˙
.

We now want to lock the extended dof (Aaα and Ψα) in terms of the double fields EM
A

and Ψa. We have a starting point based on the pure bosonic locking, so lets begin by exploring

wether that identification survives supersymmetry or not. On the one hand, the G-vectors

transform as

δAaα = pLξAaα −Daξα + gfαβ
γξβAaγ +AdαΓ

d
a −

1

2
ǭ γaΨA Eα

A , (4.14)

which using the map (3.3) can be rewritten as

δAaBC = pLξAaBC −DaξBC + 2AaD[C ξ
D
B] +AdBC Γ

d
a + ǭ γa

”g
2
ΨA Eα

A(tα)BC

ı
. (4.15)

On the other hand the projected flux transforms as

δFaBC = pLξFaBC −DaΓBC + 2FaD[CΓ
D
B] + FdBCΓ

d
a + ǭγaΨBC +∇[BǭγaΨC] , (4.16)
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where we defined

ΨAB = ∇[AΨB] −
1

2
ωD

AB ΨD = D[AΨB] −
1

4
F[Acdγ

cdΨB] −
1

2
FAB

C ΨC . (4.17)

We will call this the gravitino curvature with the caveats that (i) it is not fully covariant, as it

includes a non-covariant term to render it fully determined, (ii) it represents in fact a curvature

for the full ΨA, which includes gauginos as well. So strictly this is a misnomer, but it helps in

highlighting the similarity with the identification in [17]. Comparing with (4.15) we see that

the last term in (4.16) must be canceled. To cure the mismatch, we must redefine the flux as

follows

F∗
aB̄C̄ = FaB̄C̄ −

1

2
Ψ̄B̄γaΨC̄ , (4.18)

such that now

δF∗
aBC

= pLξF
∗
aBC

−DaΓBC + 2F∗
aD[C

ΓD
B] + F∗

dBC
Γd

a + ǭγaΨBC . (4.19)

The following identification equates (4.15) with (4.19)

ξAB = −g ξα (t
α)AB = ΓAB ,

AaBC = −g Eαa (t
α)BC = F∗

aBC
,

Ψ′
AB

≡
g

2
ΨD Eα

D(tα)AB = ΨAB .

(4.20)

In particular, the last identification can be solved for the gaugino dof in terms of derivatives of

the double generalized frame and gravitino. This is the supersymmetric extension of what we

previously called the generalized Bergshoeff-de Roo identification.

This identification is self-consistent because both sides of the last line transform equally.

On the one hand, the extended gravitino curvature (4.17) transforms as

δΨAB = ξP∂PΨAB − 2ΨC[AΓ
C
B] −

1

4
Γab γ

ab ΨAB +
1

2
ΨC DCΓAB

+
1

2
Fc

AB Dcǫ−
1

4

ˆ
D[AFB]ab + FaA

cFbBc −
1

2
FCAB Fab

C

˙
γabǫ . (4.21)

On the other, the combination it is identified with in (4.20)

Ψ′
AB

=
g

2
ΨD Eα

D (tα)AB , (4.22)

transforms as

δΨ′
AB

= ξP∂PΨ
′
AB

− 2Ψ′
C[A

ξCB] −
1

4
Γab γ

ab Ψ′
AB

+
1

2
ΨC DCξAB

+
1

2
Ac

AB Dcǫ+
1

4

ˆ
DaAbAB +AaA

C AbBC −
1

2
AcAB Fab

c

˙
γabǫ . (4.23)

In deriving the last expression we used the following identity

Eα
CFCab = −Eα

cFcab + 2D[aEαb] + gfαβγE
β
aE

γ
b . (4.24)
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Employing the identifications (4.20), all the terms in (4.21) and (4.23) can be identified straight-

forwardly, except for the terms in brackets. It is easy to see however that also those terms co-

incide exactly using the following projected form of the extended generalized Bianchi identities

(2.37)

D[AFB]ab +D[aFb]AB + F[a|A
CF|b]BC −

1

2
FCABFab

C = 0 . (4.25)

Note that in these equations there is no distinction between F and F∗ because we are working

to leading order in fermions only. We would also like to emphasize that the identifications (4.20)

are exact, and totally independent of the gauge fixing.

A perturbative treatment of the supersymmetric case and the proof that it exactly repro-

duces the results of [18] to first order in α′ will be presented in [29].

5 Outlook

We considered the N = 1 supersymmetric heterotic DFT. The duality group G = O(10, 10+ k)

was decomposed in terms of G = O(10, 10) multiplets. The physical G-covariant dof are a

generalized frame and a constrained G-vector. We pointed out that the G-vector could be

identified with certain generalized fluxes provided the heterotic gauge group K were taken

to coincide with H = O(1, 9 + k). A priori this generalized Bergshoeff-de Roo identification

seems unlikely to succeed because the dimension of both groups differs for finite k. We are then

forced to consider infinite-dimensional groups and establish a dictionary between them. A more

rigourous treatment of this mathematical structure is lacking, and deserves more attention in

the future. The procedure allowed us to lock the G-vector in terms of the projected generalized

fluxes. This is not a gauge fixing, but a mechanism that actually reduces the physical dof. A

similar locking is necessary in the supersymmetric sector, where the gauginos must be locked

in terms of a generalized gravitino curvature. The generalized identification is imposed by hand

and it would be nice to find a broader framework from which it arose naturally. Interestingly

the identification is exact, so it presumably captures an infinite tower of α′ corrections, giving

rise to an exact heterotic generalized Green-Schwarz transformation that closes and preserves

the constraints on the fields by construction. We show that a perturbative α′ expansion is

possible, finding at first order the known heterotic generalized Green-Schwarz transformation

of [15]. We tested the proposal by computing the following O(α′2) order, finding a consistent

higher derivative completion that was previously unknown.

The results open the door to a large number of questions and future directions. We elaborate

on some important points:

• Gauge fields. We got rid of gauge fields by identifying them with generalized fluxes. This

was just a procedure implemented to reach the gravitational higher derivative corrections

in a duality covariant form. However, the heterotic string and gauged supergravities in

general contain gauge fields as proper independent dof (e.g. those of K = SO(32) or

K = E8×E8). Reincorporating these fields is a relatively simple task that can be done in

two ways. (i) Starting from a G = O(D,D+ k+ k′), one can lock k-vectors and leave the

other k′ free. This was done for instance in [19], [20], [30]. (ii) Alternatively, one could
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consider the α′ expansion of the O(D,D) generalized Green-Schwarz transformation, and

promote the O(D,D) to an O(D,D + k′) thus incorporating k′ dynamical vector fields.

This was done in [16] for generic gauged supergravities, finding in the heterotic case up

to quartic powers of the gauge curvatures F 4 in exact coincidence with those computed

in [18].

• Quartic Riemann interactions. Our results provide an all-order supersymmetric du-

ality covariant completion of the Green-Schwarz transformation. A natural question is

what kind of interactions are under its reach.

The standard bosonic Green-Schwarz transformation of the Kalb-Ramond field gener-

ates Chern-Simons terms in its three-form curvature. Its first order duality covariant

completion [15] fixes the connection to the heterotic one, and moreover requires and

fixes quadratic Riemann interactions. This is not surprising because T-duality mixes the

Kalb-Ramond and the gravitational sectors. Supersymmetry is another ingredient that

constrains interactions. It was shown in [18] that the supersymmetric completion of the

Lorentz Chern-Simons terms induced by the Green-Schwarz transformation require de-

formed supersymmetric transformations that lead to quartic Riemann interactions (which

are mirrored to their corresponding gauge field analogs). There is a different set of quartic

Riemann terms that have no analog in the gauge sector. Based on the symmetries shared

with the construction in [18], it is possible that the framework presented here captures

the first set, but not the second set of interactions.

• Bi-parametric deformations. The first order heterotic Green-Schwarz transformation

belongs to a bi-parametric family of deformations [15] (see also [31])

δΛEM
A = EM

BΛB
A + a ∂[MΛc

b FN ]b
cENA − b ∂[MΛc

b FN ]b
cENA +O(α′2) , (5.1)

corresponding to the cases a = 0 or b = 0 (which are the same up to a change of sign of

the Kalb-Ramond field), that more generally captures the gauge transformations of the

bosonic string [32] (a = b) and the HSZ theory [11] (a = −b).

First one can ask wether there is an extension of the framework considered here featuring

both deformations. Since the two parameters a and b account for the different groups

H and H respectively, it seems likely that these deformations will arise from a further

extended tangent space G = O(D + k,D + k), whose physical dof can be parameterized

in terms of a double frame, two pairs of covariantly constrained O(D,D) vectors and also

scalars in the coset O(k,k)
O(k)×O(k) . The identifications would then be a little more involved

because, although the vector fields are likely to be identifiable with projections of the

extended generalized fluxes, the scalar fields would have to be identified as well, with the

complication that they are also covariantly constrained to be an element of O(k, k). We

plan to study the general case in the future. Of course, yet another question is whether

new deformations start beyond the first order.

Notice that in the supersymmetric formulation the fermions are H spinors. In 10 dimen-

sions we would then need H = O(9, 1) thus forbidding the supersymmetrization of the

case a 6= 0. N = 1 Supersymmetry then reduces the space of parameters to a single

deformation parameterized by b (for the supersymmetry conventions employed in this
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paper). This is expected because the bosonic string and the HSZ theory do not admit a

supersymmetric completion.

• Maximal supersymmetry. The proper framework to address duality covariant higher

derivative corrections in theories with maximal supersymmetry is Exceptional Field The-

ory. Consider as an example the case of 4 space-time dimensions [33] with E7(7) duality

symmetry. In order to examine a possible uplift of the deformations considered here to

the maximal theory, the natural route would be to first take this DFT construction to a

four-dimensional Kaluza-Klein formulation [34] and then explore how the duality group

embeds into E7(7). While this is certainly possible when the duality group is O(6, 6), the

case O(6, 6 + k) does not admit such an uplift. This makes us believe that the defor-

mations considered here are not consistent with maximal supergravity, nor exceptional

symmetries. Perhaps the results in [35] shed light on this point.

Instead, the higher derivatives in maximal theories start at eight derivatives O(α′3)

through quartic Riemann interactions -which however are different in structure from

the heterotic ones-, among others beyond the gravitational sector. A possibility is that

generating these corrections would require a new deformation starting at this order, in

which case the standard EFT action would not be invariant, and duality covariant eight-

derivative terms (and higher) would be necessary.

• Extended tangent space approach. Previous treatments of first-order higher deriva-

tives through finite extensions of the generalized tangent space [19] must be put into

scrutiny in light of the results discussed here. The identification performed here gener-

ates an infinite extension of the generalized tangent space that accommodates all higher

orders. The extended generalized frame EM
A contains extra directions Eα

A and EM
α,

beyond the double ones EM
A. The extended directions take values in the adjoint of K,

which after being identified with H becomes infinite-dimensional. There is a subtlety

though, in that when converting indices α → (AB) = (ab, aβ, αb, αβ), the components

ab and αβ were shown to start at the same order in perturbations. The α indices are

then further identified over and over generating the infinite dimensional extended tangent

space -see discussion below equation (3.15)-. The point we want to make is that first

order corrections are distributed all over the infinite dimensional tangent space, and not

only through a single finite extension as in [19], but through infinite first order replicas.

We have seen that all these contributions converge and add up to the expected first or-

der deformation, so both approaches are effectively equivalent to first order: lifting the

first order deformations (3.21) and (3.28) to generalized diffeomorphisms in an extended

tangent space is a trivial task. However, seeking a lift for the second order deformations

to the generalized Green-Schwarz transformations (3.31, 3.33) looks more complicated,

casting doubts on further higher derivatives being accounted for through finite extensions

of the generalized tangent space.

• Action. We have only discussed exact gauge transformations, but finding the exact gauge

invariant action can be done by following the same procedure. One should start from the
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G invariant heterotic N = 1 supersymmetric DFT action [8], [6]

SN=1 =

∫

d2D+kX e−2d
´
R(E , d) − Ψ̄Āγb∇bΨĀ − ρ̄γa∇aρ− 2Ψ̄Ā∇Āρ

¯
. (5.2)

Decomposing the extended generalized frame with respect to G-multiplets as in (2.16),

and performing the identifications (4.20) should lead to the final action. One could then

realize a perturbative α′ expansion to find the action order by order. The only non

trivial step here is that we should get rid of the Greek dummy indices by implementing

manipulations similar to those discussed above (3.31).

It is possible that apart from (5.2), there exist higher derivative invariants that trigger

their own tower of α′ corrections. They should be invariant under duality symmetries,

extended generalized diffeomorphisms, extended Lorentz transformations and supersym-

metry. If they exist, the G-decomposition, identifications, and derivative expansion would

proceed in exactly the same way as here.

• Non-perturbative treatment. Possibly the most important question is how to deal

with this deformation exactly, without performing an α′ expansion. A similar question

has been addressed is the HSZ setup [11]. Both frameworks are similar in that there is a

closed non-perturbative form of the gauge transformations and action, which can then be

perturbed in a derivative expansion (see [36], [37], [38], [39], [40]), such that when written

in terms of an O(D,D) generalized frame or metric acquires infinite α′ corrections. It is

certainly desirable to learn what kind of information can be extracted from these closed

and exact expressions.

• Solutions. Exact all order equations of motion (eom) can be derived from (5.2). One

could then explore higher derivative corrections to supergravity solutions (first order de-

formations were considered in [41], [42]), and even aim at obtaining exact solutions to all

orders. Interestingly, one can perform generalized Scherk-Schwarz reductions [43], [44] of

the α′-DFT action obtained from (5.2) to generate higher derivatives corrections in gauged

supergravity. In [16] the first order scalar potential of half-maximal gauged supergravity

was computed in the embedding tensor formalism and a moduli stabilization analysis was

addressed to first order. The results here could in principle allow for a non-perturbative

treatment that could shed light on issues such as moduli stabilization, supersymmetry

breaking, etc. in lower dimensional half-maximal gauged supergravities.

On a slightly different page, using these results as a solution generating technique in super-

gravity would require the knowledge of finite double Lorentz transformations, as opposed

to the infinitesimal ones considered here. This is due to the fact that in supergravity the

double Lorentz group H ×H is broken to a single Lorentz group, and then after generic

T-dualities a finite compensating double Lorentz transformation would be required.

• Background independence. It was argued in [45] that in order to achieve manifest

background independence, a duality symmetric formulation of higher derivative interac-

tions would require gauge degrees of freedom for enhanced gauged symmetries. This is

known in the context of first order α′ corrections to DFT [15] which highly rely on the

frame formulation for double Lorentz symmetries. A natural question is wether higher
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derivatives would require further enhanced gauge symmetries. We see that in the heterotic

case the standard double Lorentz symmetries of DFT are already enough to account for

all the α′ corrections in the universal gravitational sector considered here in a manifestly

background independent way.
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Appendix

A Alternative identifications

We have discussed equivalences between (composite) dof based on the their gauge and super-

symmetric transformations. These equivalences were then used to lock or fix one set of dof in

terms of the other. The procedure is not a gauge fixing, as it reduces the number of physical

degrees of freedom rather that eliminating gauge redundancies. In the context of higher deriva-

tives in heterotic string theory, these equivalences go back to [17], where the gauge fields (for the

SO(32) or E8×E8) and a specific Lorentz SO(1, 9) spin connection (containing torsion propor-

tional to three-form curvature of the Kalb-Ramond field) were shown to transform somewhat

symmetrically, something obvious for gauge symmetries but less clear for supersymmetry, in

which case also the gauginos must be identified with the gravitino curvature. This equivalence

was exploited to compute the first order in α′ action, and later expanded to quartic Riemann

interactions in [18] through a Noether procedure. These ideas were employed in a number of

recent works, some of which we mention below:

• In the context of generalized geometry, [20] considered an extended tangent space decom-

posed with respect to GL(D) ∈ G. The identification was established after the GL(D)

decomposition between the one-form components of the generalized frame, and a gener-

alized spin connection compatible with a reduced structure H ∈ H. It was argued there

that this is only possible if the connection contains a non-vanishing intrinsic torsion.

• In the context of DFT, [30] considered an extended tangent space decomposed with respect

to G ∈ G, as we do. The difference is that there, the O(D,D) vectors are covariantly

constrained in a strong sense, namely they are self-orthogonal and also orthogonal to the

generalized derivatives as in [46], and the identification is performed after solving the

constraint. So again this approach fails to provide O(D,D) covariant higher derivative

corrections.
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• Also in the context of DFT, [19] considered an extended tangent space decomposed with

respect to GL(D) ∈ G. The approach here is similar to that in [20], with the difference

that the identification relates the one-forms to a component of the generalized H spin

connection of DFT, which is O(D,D) covariant. So this approach gets closer to the goal

of finding O(D,D) covariant higher derivatives, but still fails to achieve the purpose.

In this paper we decided to follow a different route: we are interested in a fully G = O(D,D)

covariant identification between the G-vector that arises from the G ∈ G decomposition of

the extended generalized frame, and (derivatives of) the generalized gravitational degrees of

freedom. On top of the one we presented in the paper, which is exact to all orders in derivatives,

we also considered some other possibilities which turned out to fail in one way or another. For

completion we discuss briefly those that looked more promising:

• The natural possibility, aligned with the three attempts discussed above is to relate K

with H ∈ H in a G-covariant way. As we discussed, performing the gauge fixing Eαa = 0

and δeα
α = 0, leaves the double frame EM

A and the vector Aaα = EM
a AMα as the

unique degrees of freedom. We should then identify Aaα with the H components Fabc of

the generalized H spin connection (and not the full H generalized spin connection as we

do in this paper). We would then need a map between K and H given by the Lorentz

generators (tα)ab

[tα, tβ] = fαβ
γtγ , (tα)ab(tβ)

ab = XR δαβ , (tα)ab(tα)
cd = XR δcd

ab
, (A.1)

such that indices can be converted from one group to the other

Vab = −g V α (tα)ab . (A.2)

The gauge transformations of both quantities are

δAabc = ξP∂PAabc + Γd
aAdbc −Daξbc + 2Aad[cξ

d
b] , (A.3)

δFabc = ξP∂PFabc + Γd
aFdbc −DaΓbc + 2Fad[cΓ

d
b] + 2Faδ[cΓ

δ
b] . (A.4)

There is a clear mapping between these transformations, except for the last term in (A.4),

which cannot be set to zero because the gauge fixing locks the off-diagonal component

of the H parameter to a non-vanishing value. An identification is then not possible in

general. However, after taking the parameter to its gauge fixed value (2.20) it can be

seen that the last term in (A.4) starts from one order higher in derivatives than the

rest, and so this approach is perfectly consistent to first order in α′, in which case the

extended fluxes can be replaced by double fluxes Fabc without any loss of generality. It is

easy to check that this identification reproduces the first order generalized Green-Schwarz

transformation, and also gives rise to the extended tangent space approach of [19] after a

GL(D) decomposition.

• One could try to avoid the gauge fixing, so as to have freedom to set Γaα = 0, thus solving

the problem of the previous attempt. If so, one should now also identify the degrees of
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freedom Aaα = Eαa which can no longer be set to zero. Using the relation between K and

H above we find

δAAbc = ξP∂PAAbc + ΓD
AADbc −DAξbc + 2AAd[cξ

d
b] , (A.5)

which is exactly the way in which the H components of the generalized spin connection

transform (an extended tangent space containing the generalized spin connection was also

considered in [47])

δωAbc = ξP∂PωAbc + ΓD
A ωDbc −DAΓbc + 2ωAd[cΓ

d
b] . (A.6)

Identifying these degrees of freedom wouldn’t really solve the problem then, because only

some projections like ω[abc] =
1
3Fabc are determined, and the transformation of the double

frame would depend on undetermined components.

• Independently of what one identifies Eαa with, a different question is wether the de-

pendence on this component can be eliminated from the gauge transformations through

field-redefinitions. Assuming EαA is of first order in α′, the leading order transformations

of the double frame and EαA are given by

δEM
A = pLξEM

A + EM
B ΓB

A − EMB D[Aξα Eα
B] +O(α′2) , (A.7)

δEαA = pLξEαA −DAξα + gfαβ
γξβEγA + EαBΓ

B
A +O(α′) . (A.8)

If we now redefine the Lorentz parameters to first order

Γab = Λab +D[aξα Eα
b] , (A.9)

Γab = Λab +D[aξα Eα
b] , (A.10)

the transformations of the double frame become

δEM
a = pLξEM

a + EM
bΛb

a −
1

2
EMbD

aξα Eα
b +

1

2
EMbD

bξα Eα
a +O(α′2) , (A.11)

δEM
a = pLξEM

a + EM
bΛb

a −
1

2
EMbD

aξα Eα
b +

1

2
EMbD

bξα Eα
a +O(α′2) . (A.12)

Our purpose is to eliminate Eαa through redefinitions. Redefining the double frame as

follows

rEM
a = EM

a +
1

2
Eα

a Eαb EMb , (A.13)

rEM
a = EM

a −
1

2
Eα

a Eαb EMb , (A.14)

achieves the purpose

δ rEM
a = pLξ

rEM
a + rEM

bΛb
a − rEMbD

aξα Eα
b +O(α′2) , (A.15)

δ rEM
a = pLξ

rEM
a + rEM

bΛb
a + rEMbD

bξα Eα
a +O(α′2) . (A.16)

We tried to pursue this procedure to the next order, but the treatment becomes cumber-

some, and then one wonders if the effort is worth considering we already have an exact

identification that can be treated easily and expanded perturbatively order by order.
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