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Abstract

The four-dimensional S-matrix is reconsidered as a correlator on the celestial sphere at

null infinity. Asymptotic particle states can be characterized by the point at which they

enter or exit the celestial sphere as well as their SL(2,C) Lorentz quantum numbers: namely

their conformal scaling dimension and spin h±h̄ instead of the energy and momentum. This

characterization precludes the notion of a soft particle whose energy is taken to zero. We

propose it should be replaced by the notion of a conformally soft particle with h = 0 or h̄ = 0.

For photons we explicitly construct conformally soft SL(2,C) currents with dimensions

(1, 0) and identify them with the generator of a U(1) Kac-Moody symmetry on the celestial

sphere. For gravity the generator of celestial conformal symmetry is constructed from a

(2, 0) SL(2,C) primary wavefunction. Interestingly, BMS supertranslations are generated

by a spin-one weight (3
2 ,

1
2) operator, which nevertheless shares holomorphic characteristics

of a conformally soft operator. This is because the right hand side of its OPE with a weight

(h, h̄) operator Oh,h̄ involves the shifted operator Oh+ 1
2
,h̄+ 1

2
. This OPE relation looks quite

unusual from the celestial CFT2 perspective but is equivalent to the leading soft graviton

theorem and may usefully constrain celestial correlators in quantum gravity.
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� Centre de physique théorique, École Polytechnique, CNRS, 91128, Palaiseau, France

ar
X

iv
:1

81
0.

05
21

9v
2 

 [
he

p-
th

] 
 7

 N
ov

 2
01

8



1 Introduction

In the conventional formulation of quantum field theory (QFT) an important role is played by

soft particles whose energy ω → 0. Scatttering amplitudes containing such particles obey special

relations which are central to the consistency of QFT [1,2]. Recently, a reformulation of 4D QFT

has been explored in which asymptotic particle states are described by SL(2,C)-Lorentz primary

wavefunctions instead of the usual energy-momentum eigenstates [3–14]. Such wavefunctions are

labelled by their SL(2,C) conformal dimensions (h, h̄) (related to the twist) and their asymptotic

positions on the celestial sphere, while the S-matrix takes the form of a correlation function in

a celestial 2D CFT. In general one expects that some features of scattering will be easier to

understand in the new formulation while others will become harder.

One thing which is lost in the new formulation is the notion of a soft particle. SL(2,C)

primary wavefunctions are not energy eigenstates so the energy cannot be taken to zero. Instead,

we have the notion of a conformally soft particle for which the conformal dimension either h or h̄

is taken to zero. The symmetries of the celestial sphere imply that the scattering of such particles

also obey special relations.

In this paper we will construct several interesting examples of conformally soft particles. In

an elegant recent paper Pasterski and Shao [9] showed for photons that the conformal primary

wavefunctions in unitary principal series with dimensions (1 + iλ
2
, iλ

2
) form a complete basis (for

one helicity), and that the λ→ 0 wavefunction is the Goldstone mode for spontaneously broken

large gauge symmetries. This is an example of a conformally soft particle which simply decouples

from all scattering amplitudes. However the canonical partner of the Goldstone mode was not

considered in the discussion of [9]. Here we show that an additional logarithmic branch of the

solution space appears for λ → 0, and construct from it the missing canonical partner of the

Goldstone mode. This conformally soft mode does not decouple from scattering amplitudes.

Rather it generates a Kac-Moody symmetry on the celestial sphere [4,5] which can be identified

with the large gauge symmetry of QED.

The situation is even more interesting for gravitons. For this case it was shown [9] that the

conformal primary wavefunctions in the unitary principal series with dimensions (3
2

+ iλ
2
,−1

2
+ iλ

2
)

form a complete basis (for one helicity). Taking λ → 0, we again get a Goldstone mode for

spontaneously broken BMS supertranslation symmetry which decouples from scattering. Again

a logarithmic branch appears with a canonically conjugate wavefunctions which has dimension

(3
2
,−1

2
) and enters into the soft part of the supertranslation charge. This is not conformally soft

in the sense stated above since both left and right dimensions are nonzero. However we see that

a suitable divergence of this wavefunction is related to the dimension (3
2
, 1

2
) current Pz [15, 16]

which generates supertranslations on the celestial sphere. More specifically, OPEs with Pz take

one operator to a second canonically related one with dimensions increased by (1
2
, 1

2
). Hence
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OPEs involving Pz have the 1
z−w factor characteristic of a holomorphic current. Finally we

consider wavefunctions with λ = −i and hence dimensions (2, 0). A suitable convolution of these

wavefunctions with the field operator at null infinity gives precisely the known formula [17] for

the 2D stress tensor on the celestial sphere, previously obtained by reverse engineering from the

subleading soft graviton theorem [18].

The paper is organized as follows. We start in Section 2 by introducing a map between

Minkowski space and the celestial sphere at null infinity. In Section 3, we construct the con-

formally soft photon, which has conformal dimensions (1, 0), and show that it is the canonical

partner of the Goldstone mode associated to large gauge transformations at null infinity. In

Section 4, we turn to the gravity case and construct a (3
2
,−1

2
) wavefunction and show that it

is the canonical partner of the spin-two Goldstone mode, and is related to the current which

generates supertranslations. We finally construct a conformally soft graviton mode of conformal

dimensions (2, 0) and discuss its relation to the 2D stress tensor for 4D gravity. In the Appendix,

we collect details about the inner product of conformal primaries, the shadow transform, and

provide explicit expressions for the conformally soft and Goldstone modes at null infinity.

2 Minkowski → Celestial Sphere

Let Xµ, with µ = 0, 1, 2, 3, be the Cartesian coordinates1 on the four-dimensional Minkowski

spacetime R1,3. Massless particles exit flat spacetime at future null infinity where they intersect

the asymptotic sphere at infinity. This sphere is referred to as the celestial sphere and denoted

CS2. A natural map between Minkowski spacetime and the celestial sphere is obtained by going

to Bondi coordinates (u, r, z, z̄):

X0 = u+ r , X i = rX̂ i(z, z̄) , X̂ i(z, z̄) =
1

1 + zz̄
(z + z̄,−i(z − z̄), 1− zz̄) . (2.1)

In these coordinates the Minkowski line element is

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ , (2.2)

where u is the retarded time, r is the radial coordinate and z is a complex coordinate on the

unit sphere with metric

γzz̄ =
2

(1 + zz̄)2
. (2.3)

A massless particle crosses the celestial sphere at a point (w, w̄) with momentum

pµ = ω
1+ww̄

qµ(w, w̄), with qµ(w, w̄) a null vector and ω ≥ 0 the energy. The null vector qµ as

1Our signature convention is ηµν = diag(−,+,+,+).
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a function of w, w̄ is

qµ(w, w̄) = (1 + ww̄, w + w̄,−i(w − w̄), 1− ww̄) . (2.4)

Under an SL(2,C) transformation

w → aw + b

cw + d
, w̄ → āw̄ + b̄

c̄w̄ + d̄
, (2.5)

where ad− bc = 1, qµ transforms as a vector up to a conformal weight,

qµ → qµ
′
= (cw + d)−1(c̄w̄ + d̄)−1Λµ

νq
ν , (2.6)

and Λ ν
µ is the associated SL(2,C) group element in the four-dimensional representation2. Note

that null vectors (2.4) satisfy

qµ(w, w̄)qµ(w′, w̄′) = −2|w − w′|2 , (2.7)

and the derivative of (2.4) with respect to w (w̄) is the photon polarization vector εµw (εµw̄) of

positive (negative) helicity:

∂wq
µ =
√

2εµw(q) = (w̄, 1,−i,−w̄) , ∂w̄q
µ =
√

2εµw̄(q) = (w, 1, i,−w) , (2.8)

satisfying

εw · q = 0 , εw · εw = 0 , εw · εw̄ = 1 , (2.9)

and similarly for w ↔ w̄. The completeness relationship is

εµwε
ν
w̄ + εµwε

ν
w̄ = ηµν +

1

2
(qµnν + nµqν) , (2.10)

with nµ = ∂w∂w̄q
µ = (1, 0, 0,−1). The graviton polarization tensor of positive (negative) helicity

is εµνww = εµwε
ν
w (εµνw̄w̄ = εµw̄ε

ν
w̄).

3 Conformally Soft Photons

3.1 Massless Spin-One Conformal Primary

The outgoing (+) and incoming (−) massless spin-one conformal primary wavefunctions

(Xµ ∈ R1,3 and a = w, w̄ is the index on the celestial sphere) are3 [7, 9]

A∆,±
µ;a (Xµ;w, w̄) =

∂aqµ
(−q ·X ∓ iε)∆

+
(∂aq ·X) qµ

(−q ·X ∓ iε)∆+1
, (3.1)

2For an explicit expression for Λ ν
µ in terms of a, b, c, d see for instance [19].

3The iε-prescription is added to circumvent the singularity at q ·X = 0.
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where qµ is a function of (w, w̄) as given in (2.4). They transform as two-dimensional confor-

mal primaries with conformal dimensions (h, h̄) = 1
2
(∆ + J,∆ − J) under an SL(2,C) Lorentz

transformation:

A∆,±
µ;a

(
Λρ
νX

ν ;
aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

)
= (cw + d)2h(c̄w̄ + d̄)2h̄Λ σ

µ A
∆,±
σ;a (Xρ;w, w̄) . (3.2)

When the index a = w the spin J = +1 (positive helicity) while for a = w̄, J = −1 (negative

helicity). The spin-one conformal primary wavefunctions satisfy both the radial and the Lorenz

gauge conditions

XµA∆,±
µ;a = 0 , ∂µA∆,±

µ;a = 0 , (3.3)

and are solutions to the four-dimensional Maxwell equations

∂ρ∂
ρA∆,±

µ;a = 0 . (3.4)

It is convenient to decompose, following [9, 10], (3.1) as

A∆,±
µ;a =

∆− 1

∆(∓i)∆Γ(∆)
V ∆,±
µ;a + ∂µα

∆,±
a , (3.5)

where

V ∆,±
µ;a (Xµ;w, w̄) = (∓i)∆Γ(∆)

∂aqµ
(−q ·X ∓ iε)∆

, α∆,±
a (Xµ;w, w̄) =

∂aq ·X
∆(−q ·X ∓ iε)∆

. (3.6)

The residual gauge transformation α∆,±
a preserves the Lorenz gauge condition ∂2α∆,±

a = 0. V ∆,±
µ;a

satisfies the Lorenz gauge condition but not the radial gauge condition. It is gauge equivalent to

the conformal primary wavefunction (3.5) when ∆ 6= 1 and, with the given normalization, is the

Mellin transform of the canonically normalized plane wave4

V ∆,±
µ;a (Xµ;w, w̄) = ∂aqµ

∫ ∞
0

dω ω∆−1e±iωq·X−εω . (3.7)

Notice that V ∆ does not transform covariantly under SL(2,C) but the non-covariant terms are

pure residual gauge, hence, following [9], we will still call them conformal primaries.

3.1.1 Shadow Transform

The shadow transform, which involves a convolution in w, maps a primary wavefunction with

conformal dimension ∆ to a primary wavefunction with conformal dimension 2−∆. The shadow

4The Mellin transform of a function f(ω) is defined by f̄(∆) =
∫∞

0
dωω∆−1f(ω) and its inverse transformation

is f(ω) =
∫∞
−∞

d∆
2πiω

−∆f̄(∆) with ω > 0. The iε prescription in (3.7) is necessary to regulate the integral. Unless

it is important for the discussion we will omit the regulator.
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transform of the spin-one conformal primary wavefunction A∆
µ;a (3.1) was computed in in terms

of its uplift A∆
µ;ν to the embedding space R1,3; we review the definition of the shadow transform

and this computation in Appendix B. The result for the shadow wavefunction is [9]5.

Ã2−∆,±
µ;a = (−X2)1−∆A2−∆,±

µ;a . (3.8)

One can verify that the shadow transform (3.8) of a spin one conformal primary is itself a spin-one

conformal primary.

3.1.2 Conformal Basis

A conserved inner product between complex spin-one wavefunctions is

(A,A′) = −i
∫
d3X i[AjF ′∗0j − A′j∗F0j] , (3.9)

where i = 1, 2, 3 is the spatial index in R1,3 and ∗ denotes the complex conjugation. It was

shown by Pasterski and Shao in [9] that, with respect to the inner product (3.9), the conformal

primary wavefunctions V ∆ form a δ-function-normalizable basis on the principal continuous series

∆ = 1 + iλ with λ ∈ R:

(V ∆,±
µ;a (Xµ;w, w̄), V ∆′,±

µ;a′ (Xµ;w′, w̄′)) = ±(2π)4 δ(λ− λ′)δaa′ δ(2)(w − w′) , (3.10)

up to zero-mode issues which we will discuss below. Alternatively, an equally good basis of spin-

one conformal primary wavefunctions is spanned by the shadow transformed conformal primaries

Ṽ ∆. The right-hand side of (3.10) is obtained by taking Mellin transforms of the inner product

of plane waves; we review the computation in Appendix A. With a similar computation one finds

that the inner product for the spin-one conformal primary wavefunctions A∆ has an additional

normalization factor:

(A∆,±
µ;a (Xµ;w, w̄), A∆′,±

µ;a′ (Xµ;w′, w̄′)) =
λ sinh(πλ)e∓πλ

π(1 + λ2)
(V ∆,±

µ;a (Xµ;w, w̄), V ∆′,±
µ;a′ (Xµ;w′, w̄′)) .(3.11)

We now turn to the important subtleties arising at λ = 0. The canonically normalized V ∆

inner product (3.10) pairs ∆ = 1 + iλ modes with their ∆ = 1 − iλ partners (recall that the

definition (3.9) involves a complex conjugation). However, for ∆ = 1, the primaries V ∆ are

ill-defined and so is the inner product (3.10). To obtain a complete basis of conformal primary

wavefunctions on the principal continuous series ∆ = 1 + iλ with λ ∈ R, we need to include

5In order to define the transform along the light-cone −X2 = 0 and q ·X = 0 we need to prescribe a proper

regulator. This can be achieved by an imaginary timelike shift of Xµ → Xµ ± iεV µ with V µ = (−1, 0, 0, 0). We

are grateful to S. Pasterski for discussions on this point.
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a canonically paired set of zero modes. One of them is readily obtained by the ∆ → 1 limit

of the conformal primary wavefunction A∆. In this limit, the mode A∆ becomes a pure gauge

transformation which can be recognized as the antipodally matched large gauge transformation

of [20]. This identifies A∆=1 as the Goldstone mode associated to the spontaneously broken large

gauge symmetries. However its canonical partner appears to be missing.

In a momentum space decomposition, the canonical partner of the Goldstone mode is known

to be the ω → 0 soft photon [20]. We will show in the next section that the missing partner

of the Goldstone mode can be identified from a subtle logarithmic branch of the solution space

arising at ∆ = 1.

3.2 ∆ = 1 Conformal Modes

3.2.1 Goldstone Mode

In the limit ∆ → 1, the conformal primary wavefunction A∆
µ;a (3.1) and its shadow Ã2−∆

µ;a (3.8)

coincide and reduce to a total derivative. We identify this pure gauge spin-one conformal primary

with the Goldstone mode:

AG
µ;a ≡ lim

∆→1
A∆,±
µ;a = ∂µα

1
a , (3.12)

where

α1
a = −∂aq ·X

q ·X
, (3.13)

is the ∆→ 1 limit of the pure gauge parameter (3.6), and does not depend on the ±iε prescrip-

tion.

3.2.2 Conformally Soft Mode

The Goldstone mode at ∆ = 1 is so far missing a canonical partner. Fortuitously, solutions to

Maxwell’s equations that are not pure gauge can be constructed from the following combination

of A∆ and its shadow:6

Alog,±
µ;a ≡ lim

∆→1
∂∆

(
A∆,±
µ;a + Ã2−∆,±

µ;a

)
. (3.14)

The conformal transformation of the mode (3.14) is that of a ∆ = 1 primary wavefunction

Alog,±
µ;a → (cw + d)1+J(c̄w̄ + d̄)1−JΛ ν

µ A
log,±
ν;a . (3.15)

The fully regulated logarithmic mode is

Alog,±
µ;a = −log

[
−X2 ∓ 2iεX0 − ε2

]
∂µ

(
∂a(q ·X ± iεq0)

−q ·X ∓ iεq0

)
. (3.16)

6The ± superscript refers to iε regulators at −X2 = 0 and q · X = 0 given explicitly in the fully regulated

logarithmic mode.
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The presence of the logarithm is natural: when two linearly independent solutions to a differential

equation degenerate a logarithmic solution typically appears (see for instance [21]). Its field

strength F log,±
µν;a = ∂µA

log,±
ν;a − ∂νAlog,±

µ;a is

F log,±
µν;a = −

2(Xµ ± iεδ0
µ)

X2 ± 2iεX0 + ε2
∂ν

(
∂a(q ·X ± iεq0)

−q ·X ∓ iεq0

)
− (µ↔ ν) . (3.17)

We are interested in the dimension (1, 0) difference of these two log modes which we call the

conformally soft (CS) photon,

FCS
µν;a ≡

1

2πi

(
F log,+
µν;a − F log,−

µν;a

)
. (3.18)

This will be shown below to form a canonical pair with the Goldstone mode (3.12). (The sum of

the two log modes decouples from the Goldstone mode and is ill-behaved at infinity. Henceforth

it is ignored.) For regions in spacetime in which either X2 = 0 or q ·X = 0, but not both at the

same time, we use the representation of the delta function and its derivative for ε→ 0

δ(x) = − 1

2πi

(
1

x+ iε
− 1

x− iε

)
,

δ′(x) =
1

2πi

(
1

(x+ iε)2
− 1

(x− iε)2

)
= −δ(x)

x
,

(3.19)

and obtain a distributional expression when ε→ 0 for the conformally soft photon:

FCS
µν;a = 2XµA

G
ν;a

(
δ
(
X2
)

+
(q ·X)

X2
δ(q ·X)

)
− (µ↔ ν). (3.20)

One can directly verify that ∂µFCS
µν;a = 0. The conformally soft gauge field, such that FCS

µν;a =

∂µA
CS
ν;a − (µ↔ ν), is given by

ACS
µ;a = (q ·X) log[X2]AG

µ;aδ(q ·X) + AG
µ;aΘ

(
X2
)
, (3.21)

and transforms as a ∆ = 1 conformal primary wavefunction.

The solution (3.20) represents a radiative shock wave which comes in along the past light

cone of the origin and emerges along the future light cone. In the intervening regions Coulomb

fields appear at the locus of q · X = 0, which lies outside (or on) the light cone of the origin.

Inside the past or future light cone all fields vanish. It is illuminating to look at the behavior

near null infinity, denoted by I, and hence use the retarded coordinates (u, r, z, z̄) in which the

line element for Minkowski spacetime is given by (2.2). Near I, fields can be expanded in powers

of 1/r; one finds (details are given in Appendix C) that the expansion of the z component of the

Goldstone mode AG
z;w = ∂zα

1
w, at both future null infinity I+ and past null infinity I−, is given

by

AG
z;w = − 1

(z − w)2
, (3.22)
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while the z̄ component of the Goldstone mode AG
z̄;w = ∂z̄α

1
w develops a δ-function:

AG
z̄;w = 2πδ(2)(z − w) . (3.23)

The field strength of the Goldstone mode of course vanishes. The uz and uz̄ components of the

conformally soft mode field strength at leading order at I+ are

FCS
uz;w =

δ(u)

(z − w)2
, FCS

uz̄;w = −2πδ(u)δ(2)(z − w) , (3.24)

while at I− (with the usual antipodal identification of the celestial coordinates)

FCS
vz;w =

δ(v)

(z − w)2
, FCS

vz̄;w = −2πδ(v)δ(2)(z − w) . (3.25)

This last expression is the incoming initial data for a radiative shock wave which impinges on

the origin and then, according to (3.24) reemerges at u = 0. These field strengths do not on

their own satisfy the constraint equation and Bianchi identity

r2∂uFur − γzz̄(∂z̄Fuz + ∂zFuz̄) = 0,

∂uFzz̄ + ∂z̄Fuz − ∂zFuz̄ = 0 ,
(3.26)

which require the following expressions for Coulombic fields on I+

r2FCS
ur;w = 4πγzz̄∂zδ

(2)(z − w)Θ(−u) , FCS
zz̄;w = 0 . (3.27)

Similarly, to satisfy

r2∂vFvr + γzz̄(∂z̄Fvz + ∂zFvz̄) = 0,

∂vFzz̄ + ∂z̄Fvz − ∂zFvz̄ = 0 ,
(3.28)

on I− requires the Coulombic fields

r2FCS
vr;w = 4πγzz̄∂zδ

(2)(z − w)Θ(v) , FCS
zz̄;w = 0 . (3.29)

These Coulombic fields are produced by and confined to the future of the incoming radiative

shock wave along v = 0, and annihilated by and confined to the past of the outgoing shock wave

along u = 0. In summary this describes the wavefunction of the conformally soft photon; see

Figure 1.

It is interesting to project the solution (3.20) onto its self dual part

F SD
µν ≡

1

2
(FCS

µν − i(∗FCS)µν) , (3.30)

leading to the following values at I+:

F SD
uz;w =

δ(u)

(z − w)2
, F SD

uz̄;w = 0,

r2F SD
ur;w = −γzz̄F SD

zz̄;w = 2πγzz̄∂zδ
(2)(z − w)Θ(−u) ,

(3.31)

and similarly one can obtain the projection onto its anti-self dual part.
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Figure 1: Wavefunction of the conformally soft photon. A radiative shock wave with initial data at v = 0

emerges from past null infinity I−, impinges on the origin, and reemerges at u = 0 at future null infinity I+.

Coulombic fields are produced by and confined to the future of the incoming shockwave, and annihilated by and

confined to the past of the outgoing shock wave.

3.2.3 Canonical Pairing

We now show that the new conformally soft mode is the canonical partner of the Goldstone mode

with respect to the inner product (3.9). The inner product is independent of the choice of the

surface we integrate over, and taking the integral in (3.9) to be over I+, we find that the inner

product between the Goldstone and the conformally soft mode is:

i(ACS
w (w), AG

w′(w
′))I+ = 8π2δ(2)(w − w′) . (3.32)

Moreover, from (3.11) it follows that the inner product of the conformally soft mode with any

other conformal primary V ∆ vanishes. Hence, the Goldstone mode and the conformally soft

mode, (3.12) and (3.21), are the pair of zero-modes that enhance the conformal primary wave-

functions V ∆ to a δ-function-normalizable basis on the principal continuous series ∆ = 1 + iλ

with λ ∈ R, including the point λ = 0.

3.2.4 Quantum Currents

The inner product enables us to associate a mode of the quantum field operator Â to every

classical solution of the wave equation. The mode expansion of Â on the complete basis of spin-

one conformal primary wavefunctions on the principal continuous series ∆ = 1 + iλ with λ ∈ R

9



is

Âµ(X) =

∫
d2w dλ

√
2

(2π)4

(
aλwV

∗1−iλ,+
µ;w̄ (X) + a†λw̄V

1+iλ,−
µ;w (X) + (w ↔ w̄)

)
+

∫
d2w

8π2

(
SwA

G
µ;w(X) + JwA

CS
µ;w(X) + (w ↔ w̄)

)
,

(3.33)

where aλw and a†λw̄ are respectively the annihilation and creation operators of photons obeying

the commutation relation

[aλw(w), a†λ′w′(w
′)] =

1

2
(2π)4δ(λ− λ′)δ(2)(w − w′) , (3.34)

and similarly, Jw, Sw obey

[Jw(w), Sw′(w
′)] = 8π2δ(2)(w − w′) . (3.35)

They can be expressed in terms of the inner products of the field operator Â with respectively

AG and ACS. Let us first consider the operator associated to the Goldstone mode

Jw = i(Â, AG
w). (3.36)

One may immediately see that quantum commutators with Jw generate large gauge transforma-

tions on I+:

[Jw, Âz] = AG
z;w = − 1

(z − w)2
. (3.37)

The soft part of the large gauge charge can be expressed as weighted integrals of Jw over the

sphere. Combining Jw with its I− counterpart gives the soft photon current [8, 20]. It is a

dimension (1, 0) current whose insertions generate a U(1) current algebra on the celestial sphere.

We may also consider the operator associated to the conformally soft mode

Sw = i(Â, ACS
w ). (3.38)

This is related to (the I+ part of) the Goldstone current of [22].

4 Conformally Soft Graviton

4.1 Massless Spin-Two Conformal Primary

The outgoing (+) and incoming (−) massless spin-two conformal primary wavefunctions in R1,3

are [9]

h∆,±
µν;a(X

µ;w, w̄) =
1

2

[(−q ·X)∂aqµ + (∂aq ·X)qµ][(−q ·X)∂aqν + (∂aq ·X)qν ]

(−q ·X ∓ iε)∆+2
. (4.1)
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Primary wavefunctions (4.1) solve the vacuum linearized Einstein equation and are symmetric in

the four-dimensional vector indices and symmetric and traceless in the two-dimensional vector

indices. They transform as both a four-dimensional rank-two tensor and as two-dimensional spin-

two conformal primaries with conformal dimension (h, h̄) = 1
2
(∆ + J,∆− J) under an SL(2,C)

Lorentz transformation:

h∆,±
µν;a

(
Λµ
νX

ν ;
aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

)
= (cw + d)∆+J(c̄w̄ + d̄)∆−JΛ ρ

µ Λ σ
ν h

∆,±
ρσ;a(X

µ;w, w̄) . (4.2)

The two-dimensional index a = ww corresponds to spin J = +2 (positive helicity) while a = w̄w̄

corresponds to J = −2 (negative helicity).

The conformal primary wavefunction (4.1) is traceless and satisfies Lorenz and radial gauge

conditions:

ηµνh∆,±
µν;a = 0 , ∂µh∆,±

µν;a = 0 , Xµh∆,±
µν;a = 0 , (4.3)

and hence the vacuum linearized Einstein equations become

∂ρ∂ρh
∆,±
µν;a(X

µ;w, w̄) = 0 . (4.4)

A representative wavefunction that differs from (4.1) only by a pure diffeomorphism is [9]7

V ∆,±
µν;a (Xµ;w, w̄) = (∓i)∆Γ(∆)

1
2
∂aqµ∂aqν

(−q ·X ∓ iε)∆
. (4.5)

It is traceless and satisfies the Lorenz gauge condition but not the radial gauge condition. This

representative conformal primary has the advantage of being related to plane waves by a Mellin

transform

V ∆,±
µν;a (Xµ;w, w̄) =

1

2
∂aqµ∂aqν

∫ ∞
0

dωω∆−1e±iωq·X−εω . (4.6)

Notice that V ∆
µν does not transform covariantly under SL(2,C) but the non-covariant terms are

pure residual gauge, hence, following [9], we will still call (4.5) conformal primaries.

4.1.1 Shadow Transform

As in the spin-one case, we can perform a shadow transformation on the spin-two conformal

primary wavefunction h∆
µν;a (4.1) which takes its conformal dimension ∆ to 2−∆. The expression

for the shadow wavefunction was found in [9]:8

h̃2−∆,±
µν;a = (−X2)1−∆h2−∆,±

µν;a . (4.7)

One can verify that the shadow wavefunction (4.7) satisfies the defining properties of spin-two

conformal primary wavefunctions.

7Here and hereafter in similar contexts it is understood that the a index on the rhs is ww or w̄w̄, while the

pair of as on the rhs are each a single w or w̄.
8For (4.7) to be well-defined at −X2 = 0 and q ·X = 0 one needs to prescribe a regulator analogous to the

one in section 3.
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4.1.2 Conformal Basis

A natural conserved inner product between complex spin-two wavefunctions is [23–27]

(hµν , h
′
µν) = −i

∫
d3X i

[
hµν∂0h

′∗
µν−2hµν∂µh

′∗
0ν+h∂µh′∗0µ−h∂0h

′∗+h0µ∂
µh′∗−(h↔ h′∗)

]
, (4.8)

where h = hρρ. It was shown in [9] that, with respect to the inner product (4.8), the gauge

representative spin-two conformal primary wavefunctions V ∆,±
µν;a form a complete δ-function-

normalizable basis on the principal continuous series ∆ = 1 + iλ with λ ∈ R:

(V ∆,±
µν;a (Xµ;w, w̄), V ∆′,±

µν;a′ (X
µ;w′, w̄′)) = ±(2π)4 δ(λ− λ′)δaa′ δ(2)(w − w′) , (4.9)

up to zero-mode issues. Alternatively, an equally good basis of spin-two conformal primary

wavefunctions is spanned by the shadow transformed conformal primaries Ṽ ∆. As in the spin-

one case, the primaries V ∆ are ill-defined at λ = 0 and so is the inner product (4.9). To obtain a

complete basis of conformal primary wavefunctions on the principal continuous series ∆ = 1+ iλ

with λ ∈ R we need to include a canonically paired set of spin-two zero modes. One of them is the

∆ → 1 limit of the conformal primary wavefunction h∆ which becomes a pure diffeomorphism

that can be recognized as the antipodally matched supertranslation of [15, 28]. Hence h∆=1 is

the Goldstone mode associated to the spontaneously broken supertranslation symmetries. In the

next section we will construct its canonical partner which in a momentum space decomposition

is known to be the ω → 0 soft graviton [15,28].

4.2 ∆ = 1 Conformal Modes

In the limit ∆ → 1, the conformal primary wavefunction h∆
µν;a (4.1) and its shadow h̃2−∆

µν;a (4.7)

coincide and both reduce to a total derivative9. We identify this pure diffeomorphism spin-two

conformal primary with the Goldstone mode

hG
µν;a ≡ lim

∆→1
h∆
µν;a = ∂µξν;a + ∂νξµ;a , (4.10)

where

ξµ;a ≡ −
1

8
∂2
a[qµ log(−q ·X)] . (4.11)

The diffeomorphism generator (4.11) preserves the Lorenz gauge fixing of the conformal primary

wavefunction and hence satisfies the harmonic gauge ∂ρ∂ρξµ;a = 0. Below it will be identified

with a specific supertranslation.

9Notice that there is another case where the primary wavefunction is pure gauge, namely for ∆ = 0 [9].
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We seek a canonical partner for (4.10). A new solution to Einstein’s equations that is non-zero

and not a total derivative is given by:

hlog,±
µν;a ≡ lim

∆→1
∂∆

(
h∆,±
µν;a + h̃2−∆,±

µν;a

)
. (4.12)

The next steps follow the ones developed in Section 3.2; we will not repeat the details here but

directly gives the expression:

hST
µν;a = (q ·X) log[X2]hG

µν;aδ(q ·X) + hG
µν;aΘ

(
X2
)
, (4.13)

which we will refer to as the supertranslation (ST) mode. It transforms as a ∆ = 1 conformal

primary wavefunction of weight (3
2
,−1

2
) for positive helicity. We will see below that it generates

the inhomogeneous term in the supertranslations on I+.

4.2.1 News Tensor on I+

We now want to express the ∆ = 1 pure diffeomorphism (4.10) and the supertranslation

mode (4.13) in retarded coordinates (u, r, z, z̄) and expand them near I+. The gravitational

free data Czz(u, z, z̄) is given by the leading angular component of the metric

hzz(u, r, z, z̄) = rCzz(u, z, z̄) + . . . , (4.14)

where the dots denote subleading terms in powers of r. The Bondi news tensor Nzz, which

characterizes the outgoing gravitational radiation, is

Nzz = ∂uCzz . (4.15)

The Bondi news is the gravitational analogue of the photon field strength Fuz = ∂uAz at I+.

For the zz component of the pure diffeomorphism mode hG
µν;a with a = ww one finds the

data10

CG
zz;ww =

(z̄ − w̄)

(z − w)3(1 + zz̄)(1 + ww̄)
, CG

z̄z̄;ww =
πδ(2)(z − w)

(1 + zz̄)(1 + ww̄)
,

CG
zz;ww = −2D2

zf , CG
z̄z̄;ww = −2D2

z̄f.

(4.16)

Here the function on the celestial sphere

f = − (z̄ − w̄)

4(z − w)(1 + zz̄)(1 + ww̄)
, (4.17)

10Notice that here the parametrization qµ = 1
1+ww̄ (1 + ww̄,w + w̄,−i(w − w̄), 1− ww̄) for the null vector was

taken.
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is the supertranslation parameter. Near I+, the vector field (4.11) becomes the supertranslation

f∂u and transforms as a vector of weight (1
2
,−1

2
). The Bondi news at I+ for the supertranslation

mode (4.13) is

NST
zz;ww = − (z̄ − w̄) δ(u)

(z − w)3(1 + zz̄)(1 + ww̄)
, NST

z̄z̄;ww = − πδ(2)(z − w)δ(u)

(1 + zz̄)(1 + ww̄)
, (4.18)

and similar expressions can be obtained for a = w̄w̄. The full spacetime associated with this

asymptotic data is, at linear order, a gravitational analog of the electromagnetic shock wave

geometry in Figure 1.

4.2.2 Canonical Pairing

We now show that the new ∆ = 1 supertranslation mode is the canonical partner of the Goldstone

mode with respect to the inner product (4.8). Taking the integral in (4.8) to be over I+, we find

that the inner product between the Goldstone and the ∆ = 1 supertranslation mode is:

(hST
ww(w), hG

w′w′(w
′))I+ =

iπ2

2
γww̄δ

(2)(w − w′) , (4.19)

which implies that this mode generates the action of supertranslations on the Goldstone boson.

To obtain the result above, we used that∫
d2z

(w − z)(w̄′ − z̄)

(w̄ − z̄)3(w′ − z)3
= π2δ(2)(w − w′). (4.20)

The latter expression is found by noticing that the integral (4.20) takes the form of a conformal

integral [29]

In =
1

2π

∫
d2z

n∏
i=1

1

(z − zi)hi
1

(z̄ − z̄i)h̄i
, (4.21)

where
∑n

i=1 hi =
∑n

i=1 h̄i = 2, hi − h̄i ∈ Z. Convergence of the integral requires hi + h̄i < 2 for

all i although In may be extended by analytic continuation. The integral (4.21) was evaluated

for n = 2 in [29]

I2 =
Γ(1− h1)Γ(1− h2)

Γ(h̄1)Γ(h̄2)
(−1)h1−h̄12πδ(2)(z1 − z2). (4.22)

From (4.8) it follows that the inner product of the ∆ = 1 supertranslation mode and any other

conformal primary V ∆ vanishes. Hence, the Goldstone mode and the conformal supertranslation

mode, (4.10) and (4.12), are the pair of zero-modes that enhance the conformal primary wave-

functions V ∆ to a δ-function-normalizable basis on the principal continuous series ∆ = 1 + iλ

with λ ∈ R including the point λ = 0.
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4.3 Supertranslation Current

The inner product allows us to associate to every classical solution of the linearized Einstein

equations a mode of the quantum field operator ĥ. The quantum commutator of the operator

conjugate to the Goldstone mode

jww = i(ĥ, hG
ww), (4.23)

is dimension (3
2
,−1

2
) and generates the inhomogneous term for large diffeomorphisms on I+:

[jww, ĥzz] = hG
zz;ww = 2∂zξz;ww . (4.24)

Using that Ĉzz = −2D2
zĈ and the expressions (4.16) for the Goldstone mode, we find

jww = −2πD2
w∆Ĉ , (4.25)

where ∆Ĉ ≡ ĈI++ − ĈI+− . We thus find that its derivative is related to (the I+ part of) the

supertranslation current of [15,16]:

Pz = 4πDzĈzz|
I++
I+−
, (4.26)

via

4Dwjww = Pw . (4.27)

Pw is a spin-one operator of dimension (3
2
, 1

2
) which nevertheless shares holomorphic properties

of a conformally soft operator as follows. In an energy eigenbasis Pw was shown to have the OPE

with operators on the celestial sphere of energy ω

PzOω(w) ∼ ω

z − w
Oω(w). (4.28)

After Mellin transform to a conformal basis, this becomes

PzO(h,h̄)(w) ∼ 1

z − w
O(h+ 1

2
,h̄+ 1

2
)(w). (4.29)

Hence, because OPEs with Pz shift the conformal dimension of the operator by (1
2
, 1

2
), Pz has

Ward identities which are holomorphic in z and are equivalent to the leading soft graviton

theorem.

We expect the relation (4.29) may be a strong constraint on S-matrix elements in a conformal

basis.
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4.4 ∆ = 2 Goldstone Mode

As noticed in [9], the shadow conformal primary wavefunction (4.7) with conformal dimension 2

reduces to a total derivative. We identify this pure diffeomorphism spin-two conformal primary

with the ∆ = 2 (λ = −i) Goldstone mode:

h̃∆=2
µν;a ≡ −X2 h2

µν;a = ∂µζν;a + ∂νζµ;a , (4.30)

where h2
µν;a is the conformal primary (4.1) with ∆ = 2 and

ζµ;a ≡ −
1

24
∂3
a[X

ρ(qρ∂āqµ − qµ∂āqρ)log(−q ·X)] . (4.31)

The diffeomorphism generator (4.31) preserves the Lorenz gauge fixing of the conformal primary

wavefunction and hence satisfies the harmonic (de Donder) gauge ∂ρ∂ρζµ;a = 0.

We express the ∆ = 2 pure diffeomorphism (4.30) in Bondi coordinates near I+ and find that

its associated Bondi news tensor is given by

Ñ∆=2
zz;ww =

1

(z − w)4
, (4.32)

and a similar expression can be obtained for Ñ∆=2
z̄z̄;w̄w̄. The news (4.32) is conformally soft as it

transforms as a primary with conformal weights (h, h̄) = (2, 0) under an SL(2,C) transforma-

tion (4.2). Note that Ñ∆=2
zz;ww = D3

zY
z
ww with

Y z
ww = − 1

6(z − w)
. (4.33)

In [17], a two-dimensional stress tensor for four-dimensional gravity was found whose I+ part

is given by

Tww = 2i

∫
dud2z

γzz̄

z − w
uD3

zN̂z̄z̄ . (4.34)

Insertions of the operator (4.34) into the tree-level S-matrix reproduce the Ward identity for a

two-dimensional conformal field theory. The construction of this operator was recently general-

ized to d > 2 in [30]. After integration by parts, we find that the two-dimensional stress tensor

(4.34) is the convolution of the operator N̂ and the ∆ = 2 primary (4.32):

Tww = 12i

∫
dud2z

γzz̄

(z − w)4
uN̂z̄z̄ = 12i

∫
dud2zγzz̄ Ñ∆=2

zz;ww uN̂z̄z̄ . (4.35)

Acknowledgements

We are grateful to Thomas Dumitrescu, Gaston Giribet, Daniel Kapec, Blagoje Oblak, Sabrina

Pasterski, Burkhard Schwab, Shu-Heng Shao and Alexander Zhiboedov for useful discussions.

16



LD and AP acknowledge support from the Black Hole Initiative at Harvard University, which is

funded by a grant from the John Templeton Foundation. LD was also supported by a Fellowship

of the Belgian American Educational Foundation and by the CNRS and thanks the CPHT at

Ecole Polytechnique for hospitality during her visits. This work was supported in part by DOE

grant DE-SC0007870.

A Inner Product

We review here the result obtained in [9] that the spin-one conformal primary wavefunctions on

the principal continuous series ∆ = 1 + iλ with λ ∈ R are δ-function-normalizable with respect

to the inner product (3.9). Starting with the Klein-Gordon inner product between plane waves

(e±iωq·X , e±iω
′q′·X) = ±2(2π)3ωq0 δ(3)(ωqi − ω′q′i) , (A.1)

the inner product for the representative (3.7) is obtained by taking two Mellin transforms:

(V ∆,±
µ;a (Xµ;w, w̄), V ∆′,±

µ,a′ (Xµ;w′, w̄′))

= ±2(2π)3∂aq · (∂a′q′)∗
∫ ∞

0

dω ωiλ
∫ ∞

0

dω′ ω′−iλ
′
ω q0δ(3)(ωqi − ω′q′i)

= ±(2π)4δ(λ− λ′)δaa′δ(2)(w − w′) ,

(A.2)

where we used q0δ
(3)(ωqi − ω′q′i) = 1

4ω2 δ(ω − ω′)δ(2)(w − w′), ∂aq · (∂a′q)∗ = 2δaa′ and∫ ∞
0

dω ωiλ−1 = 2πδ(λ). (A.3)

To compute the inner product for the spin-one conformal primary wavefunction A∆,±
µ;a (3.5) note

that the pure gauge mode can be expressed as the following Mellin transform

∆∂µα
∆,±
a = (∂aqµ + qµ∂a)

1

(−q ·X ∓ iε)∆
=

1

(∓i)∆Γ(∆)
V ∆,±
µ;a + qµ∂a

∫ ∞
0

dω ω∆−1e∓iω(−q·X∓iε) .

(A.4)

This yields

(A∆,±
µ;a (Xµ;w, w̄), A∆′,±

µ;a′ (Xµ;w′, w̄′)) = ±(2π)4λ sinh(πλ)e∓πλ

π(1 + λ2)
δ(λ− λ′)δaa′ δ(2)(w − w′) . (A.5)

Notice that this inner product coincides with (A.2) up to a normalization factor.

B Shadow Transform in the Embedding Space

To compute the shadow wavefunction Ã2−∆
µ;a of the spin-one conformal primary wavefunction (3.1)

it is convenient to use real coordinates ~w ∈ R2 and use the embedding space formalism [29, 31].
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The shadow Õa1...a|J|(~w) of the two-dimensional conformal primary Oa1...a|J|(~w) in the symmetric

traceless rank-|J | representation of SO(2) with dimension ∆ is [29,32–35]

Õa1...a|J|(~w) =
k∆,J

π

∫
d2 ~w′

1

|~w − ~w′|2(2−∆)
Ia1...a|J|,b1,...b|J|(~w − ~w′)Ob1...b|J|(~w′) , (B.1)

where we take the normalization factor k∆,J = ∆ + J − 1 and Ia1...a|J|,b1,...b|J|(~w − ~w′) is the

inversion tensor for symmetric traceless tensors, formed from the symmetrised product of |J |
inversion tensors

Iab(~w − ~w′) = δab − 2
(wa − w′a)(wb − w′b)

|~w − ~w′|2
. (B.2)

The integral in (B.1) is divergent unless ∆ < 1 but can be extended to more general ∆ by analytic

continuation so that under conformal transformations (B.1) defines a conformal primary operator

in the symmetric traceless rank−|J | representation of SO(2) of weight 2−∆ [29]. The shadow

operator Õa1...a|J| is most conveniently computed in terms of its uplift Õµ1...µ|J| to the embedding

space R1,3 (recall that qµ(~w) ∈ R1,3 and −1
2
q · q′ = |~w − ~w′|2):

Õµ1...µ|J|(~w) =
k∆,J

π

∫
d2 ~w′

∏|J |
n=1[δνnµn(−1

2
q · q′) + 1

2
q′µnq

νn ]

(−1
2
q · q′)2−∆+|J | Oν1...ν|J|(~w

′) . (B.3)

The two-dimensional primary Oa1...a|J|(~w) is then recovered via the projection:

Oa1...a|J|(~w) =
∂qµ1

∂wa1
· · · ∂q

µ|J|

∂wa|J|
Oµ1...µ|J|(~w) , (B.4)

and similarly for the shadow Õa1...a|J|(~w).

The shadow transformed spin-one conformal primary Ã2−∆
µ;a is the projection of the uplifted

shadow wavefunction Ã2−∆
µ;ν computed from (B.3) by inserting the bulk-to-boundary propaga-

tor [36]

A∆
µ;ν(X

µ; ~w) =
(−q ·X)ηµν + qµXν

(−q ·X)∆+1
, (B.5)

and using the identity∫
d2 ~w′

1

|~w − ~w′|2(2−∆)

1

(−q(~w′) ·X)∆
=
πΓ(∆− 1)

Γ(∆)

(−X2)1−∆

(−q(~w) ·X)2−∆
. (B.6)

This yields (3.8) [9]. A similar computation yields the shadow transformed spin-two conformal

primary (4.7).

C Conformally Soft Modes in Bondi Coordinates

In this Appendix, we express the conformally soft modes in the retarded frame (u, r, z, z̄) of

Minkoswki spacetime R1,3. Cartesian coordinates Xµ with µ = 0, 1, 2, 3 are related to Bondi
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coordinates (u, r, z, z̄) by the transformation

X0 = u+ r , X1 = r
z + z̄

1 + zz̄
, X2 = −ir z − z̄

1 + zz̄
, X3 = r

1− zz̄
1 + zz̄

, (C.1)

which maps the Minkowski line element to

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ with γzz̄ =
2

(1 + zz̄)2
. (C.2)

Lorentz transformations act on the Bondi coordinates as [19, 37]

u′ = uK−1(z, z̄) +O(1/r) , r′ = r K(z, z̄) +O(1) , z′ =
az + b

cz + d
+O(1/r) , (C.3)

where

K(z, z̄) =
|az + b|2 + |cz + d|2

1 + zz̄
. (C.4)

The transformation of the z coordinate expresses the fact that Lorentz transformations coincide

with conformal transformations of the celestial sphere CS2.

To give the explicit expressions of the conformal primaries we need the following expressions

in the retarded frame:

−X2 = u(2r + u) , −q ·X =
2r|z − w|2

(1 + zz̄)
+ u(1 + ww̄) . (C.5)

The spin-one Goldstone mode for a = w (positive helicity)

AG
µ;w =

∂wqµ
−q ·X

+
(∂wq ·X)qµ

(q ·X)2
(C.6)

in the retarded frame is given by

AG
u;w(u, r, z, z̄) =

−2r(1 + zw̄)(z̄ − w̄)(1 + zz̄)

[2r|z − w|2 + u(1 + zz̄)(1 + ww̄)]2
,

AG
r;w(u, r, z, z̄) =

2u(1 + zw̄)(z̄ − w̄)(1 + zz̄)

[2r|z − w|2 + u(1 + zz̄)(1 + ww̄)]2
,

AG
z;w(u, r, z, z̄) =

−2r(2r + u)(z̄ − w̄)2

[2r|z − w|2 + u(1 + zz̄)(1 + ww̄)]2
,

AG
z̄;w(u, r, z, z̄) =

2ru(1 + zw̄)2

[2r|z − w|2 + u(1 + zz̄)(1 + ww̄)]2
;

(C.7)

similar expressions can be obtained for a = w̄ (negative helicity). Its asymptotic behavior

near null infinity I+ gives components that fall off as O(1/r) or faster, except for the z and z̄

components which have an O(1) piece at I+. To make the r−expansion, we make use of the

following formula (e.g. in [38]):(
y

y2 + |z − w|2

)2
y→0
≈ 2πδ(2)(z − w) + 2π y2∂z∂z̄δ

(2)(z − w) +
y2

|z − w|4
+O(y4). (C.8)
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with y2 = u
2r

(1 + ww̄)(1 + zz̄), and we see that the denominator in (C.7) expands in large r as

1

(2r|z − w|2 + u(1 + zz̄)(1 + ww̄))2
=
πδ(2)(z − w)

ru(1 + zz̄)2
+

1

4r2|z − w|4
+
π∂z∂z̄δ

(2)(z − w)

2r2
+· · · (C.9)

This leads to

AG
z;w = − 1

(z − w)2
+O(1/r) ,

AG
z̄;w = 2πδ(2)(z − w) +O(1/r).

(C.10)

The components of field strength (3.20) in retarded coordinates are found to be

FCS
uz;w =

4r(r + u)(2r + u)(z̄ − w̄)2δ(X2)

[2r|z − w|2 + u(1 + ww̄)(1 + zz̄)]2
+

4r(r + u)(z̄ − w̄)2δ(q ·X)

u(1 + zz̄)[2r|z − w|2 + u(1 + ww̄)(1 + zz̄)]
,

FCS
uz̄;w =

−4ru(r + u)(1 + zw̄)2δ(X2)

[2r|z − w|2 + u(1 + ww̄)(1 + zz̄)]2
− 4r(r + u)(1 + zw̄)2δ(q ·X)

(2r + u)(1 + zz̄)[2r|z − w|2 + u(1 + ww̄)(1 + zz̄)]
,

FCS
ur;w =

−4u(2r + u)(1 + zw̄)(1 + zz̄)(z̄ − w̄) δ(X2)

[2r|z − w|2 + u(1 + ww̄)(1 + zz̄)]2
− 4(z̄ − w̄)(1 + zw̄) δ(q ·X)

[2r|z − w|2 + u(1 + ww̄)(1 + zz̄)]
,

FCS
zz̄;w = 0,

FCS
rz;w =

4ru(2r + u)(z̄ − w̄)2δ(X2)

[2r|z − w|2 + u(1 + ww̄)(1 + zz̄)]2
+

4r(z̄ − w̄)2δ(q ·X)

(1 + zz̄)[2r|z − w|2 + u(1 + ww̄)(1 + zz̄)]
,

FCS
rz̄;w =

−4ru2(1 + zw̄)2δ(X2)

[2r|z − w|2 + u(1 + ww̄)(1 + zz̄)]2
− 4ru(1 + zw̄)2δ(q ·X)

(2r + u)(1 + zz̄)[2r|z − w|2 + u(1 + ww̄)(1 + zz̄)]
.

(C.11)

Expanding the expressions above for large r (u fixed) and using that at I,

δ(X2) =
1

2r
δ(u) , δ(q ·X) =

(1 + zz̄)

2r
2πδ(2)(z − w)Θ(−u), (C.12)

with Θ(u > 0) = 1 and Θ(u < 0) = 0, we obtain the following values on I:

FCS
uz;w =

δ(u)

(z − w)2
,

FCS
uz̄;w = −2πδ(u)δ(2)(z − w),

r2FCS
ur;w = 4πγzz̄Θ(−u)∂zδ

(2)(z − w),

FCS
zz̄;w = 0,

(C.13)

where the O(1) piece of the uz̄ component comes from the leading piece in the expansion (C.9)

and where we used the identity δ(2)(z) = −z∂zδ(2)(z) to obtain the third equation.

20



References

[1] D. R. Yennie, S. C. Frautschi and H. Suura, The infrared divergence phenomena and

high-energy processes, Annals Phys. 13 (1961) 379–452

[2] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516–B524

[3] J. de Boer and S. N. Solodukhin, A Holographic reduction of Minkowski space-time, Nucl.

Phys. B665 (2003) 545–593, hep-th/0303006

[4] A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151,

1308.0589

[5] T. He, P. Mitra and A. Strominger, 2D Kac-Moody Symmetry of 4D Yang-Mills Theory,

JHEP 10 (2016) 137, 1503.02663

[6] S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal

Symmetry of the Celestial Sphere, Phys. Rev. D96 (2017), no. 6, 065026, 1701.00049

[7] C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic

symmetries from 2D CFT, JHEP 01 (2017) 112, 1609.00732

[8] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory. Princeton

University Press, 2018

[9] S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D96

(2017), no. 6, 065022, 1705.01027

[10] S. Pasterski, S.-H. Shao and A. Strominger, Gluon Amplitudes as 2d Conformal

Correlators, Phys. Rev. D96 (2017), no. 8, 085006, 1706.03917

[11] A. Schreiber, A. Volovich and M. Zlotnikov, Tree-level gluon amplitudes on the celestial

sphere, Phys. Lett. B781 (2018) 349–357, 1711.08435

[12] H. T. Lam and S.-H. Shao, Conformal Basis, Optical Theorem, and the Bulk Point

Singularity, 1711.06138

[13] N. Banerjee, S. Banerjee, S. Atul Bhatkar and S. Jain, Conformal Structure of Massless

Scalar Amplitudes Beyond Tree level, JHEP 04 (2018) 039, 1711.06690

[14] S. Stieberger and T. R. Taylor, Strings on Celestial Sphere, Nucl. Phys. B935 (2018)

388–411, 1806.05688

21

http://www.arXiv.org/abs/hep-th/0303006
http://www.arXiv.org/abs/1308.0589
http://www.arXiv.org/abs/1503.02663
http://www.arXiv.org/abs/1701.00049
http://www.arXiv.org/abs/1609.00732
http://www.arXiv.org/abs/1705.01027
http://www.arXiv.org/abs/1706.03917
http://www.arXiv.org/abs/1711.08435
http://www.arXiv.org/abs/1711.06138
http://www.arXiv.org/abs/1711.06690
http://www.arXiv.org/abs/1806.05688


[15] A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152,

1312.2229

[16] G. Barnich and C. Troessaert, Comments on holographic current algebras and

asymptotically flat four dimensional spacetimes at null infinity, JHEP 11 (2013) 003,

1309.0794

[17] D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2D Stress Tensor for 4D Gravity,

Phys. Rev. Lett. 119 (2017), no. 12, 121601, 1609.00282

[18] F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, 1404.4091

[19] B. Oblak, From the Lorentz Group to the Celestial Sphere, 2015. 1508.00920.

[20] T. He, P. Mitra, A. P. Porfyriadis and A. Strominger, New Symmetries of Massless QED,

JHEP 10 (2014) 112, 1407.3789

[21] D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at

the chiral point, JHEP 07 (2008) 134, 0805.2610

[22] A. Nande, M. Pate and A. Strominger, Soft Factorization in QED from 2D Kac-Moody

Symmetry, JHEP 02 (2018) 079, 1705.00608

[23] S. W. Hawking, M. J. Perry and A. Strominger, Superrotation Charge and

Supertranslation Hair on Black Holes, JHEP 05 (2017) 161, 1611.09175

[24] A. Ashtekar, Asymptotic Quantization: Based on 1984 Naples Lectures. 1987

[25] C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical

theories, in Three Hundred Years of Gravitation, pp. 676–684. S. W. Hawking and W.

Israel, 1987.

[26] J. Lee and R. M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990)

725–743

[27] R. M. Wald and A. Zoupas, A General definition of ’conserved quantities’ in general

relativity and other theories of gravity, Phys. Rev. D61 (2000) 084027, gr-qc/9911095

[28] T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinbergs soft

graviton theorem, JHEP 05 (2015) 151, 1401.7026

[29] F. A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results,

1108.6194

22

http://www.arXiv.org/abs/1312.2229
http://www.arXiv.org/abs/1309.0794
http://www.arXiv.org/abs/1609.00282
http://www.arXiv.org/abs/1404.4091
http://www.arXiv.org/abs/1508.00920
http://www.arXiv.org/abs/1407.3789
http://www.arXiv.org/abs/0805.2610
http://www.arXiv.org/abs/1705.00608
http://www.arXiv.org/abs/1611.09175
http://www.arXiv.org/abs/gr-qc/9911095
http://www.arXiv.org/abs/1401.7026
http://www.arXiv.org/abs/1108.6194


[30] D. Kapec and P. Mitra, A d-Dimensional Stress Tensor for Minkd+2 Gravity, JHEP 05

(2018) 186, 1711.04371

[31] D. Simmons-Duffin, Projectors, Shadows, and Conformal Blocks, JHEP 04 (2014) 146,

1204.3894

[32] S. Ferrara and G. Parisi, Conformal covariant correlation functions, Nucl. Phys. B42

(1972) 281–290

[33] S. Ferrara, A. F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for

conformal algebra. vacuum expectation values and operator products, Lett. Nuovo Cim.

4S2 (1972) 115–120

[34] S. Ferrara, A. F. Grillo and G. Parisi, Nonequivalence between conformal covariant wilson

expansion in euclidean and minkowski space, Lett. Nuovo Cim. 5S2 (1972) 147–151

[35] S. Ferrara, A. F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal

four-point function, Nucl. Phys. B49 (1972) 77–98, [Erratum: Nucl. Phys.B53,643(1973)]

[36] M. S. Costa, V. Gonalves and J. Penedones, Spinning AdS Propagators, JHEP 09 (2014)

064, 1404.5625

[37] R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851–2864

[38] D. Kutasov and N. Seiberg, More comments on string theory on AdS(3), JHEP 04 (1999)

008, hep-th/9903219

23

http://www.arXiv.org/abs/1711.04371
http://www.arXiv.org/abs/1204.3894
http://www.arXiv.org/abs/1404.5625
http://www.arXiv.org/abs/hep-th/9903219

	1 Introduction
	2 Minkowski  Celestial Sphere
	3 Conformally Soft Photons
	3.1 Massless Spin-One Conformal Primary
	3.1.1 Shadow Transform
	3.1.2 Conformal Basis

	3.2 =1 Conformal Modes
	3.2.1 Goldstone Mode
	3.2.2 Conformally Soft Mode
	3.2.3 Canonical Pairing
	3.2.4 Quantum Currents


	4 Conformally Soft Graviton
	4.1 Massless Spin-Two Conformal Primary
	4.1.1 Shadow Transform
	4.1.2 Conformal Basis

	4.2  Conformal Modes
	4.2.1 News Tensor on 
	4.2.2 Canonical Pairing

	4.3 Supertranslation Current
	4.4  Goldstone Mode

	A Inner Product
	B Shadow Transform in the Embedding Space
	C Conformally Soft Modes in Bondi Coordinates

