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Quantum theory is formulated as a probabilistic theory on a flat Minkowski space-time, while general theory

of relativity is formulated on a curved manifold as a geometric theory. Bohmian Quantum Gravity approach

indicates that one need to convert a probabilistic theory to a geometric form to merge it with general theory

of relativity. We explore the differential geometric formulation of Scalar Electrodynamics and Spinor Elec-

trodynamics and its coupling to the gravitational field equation. Using Feynman-Gell-Mann equation (second

order Dirac equation), the fermionic matter field is nicely incorporated into general theory of relativity with

the help of scalar-vector-tensor theory of gravity. Gravitationally coupled spin-field equations and generalized

Feynman-Gell-Mann equation are derived from the action proposed here in the article. It is also shown that

spin-electromagnetic interaction and spin-spin interaction can curve the space-time.

I. INTRODUCTION

There are many generalization to Einstein’s theory of grav-

ity [1–8], even though Scalar-Tensor Theory deserve a spe-

cial consideration. Using extended version of Einstein’s the-

ory, namely the Scalar -Tensor theory of Gravity [9], it is

found that the quantum theory can be incorporated into grav-

ity in a geometric manner. Scalar field contribution in the

Scalar-Tensor Theory arises purely from a quantum mechan-

ical quantity called the quantum potential [8, 10–12]. Such

a geometrical unification of quantum theory to general the-

ory of relativity is achieved using deBroglie-Bohm version of

quantum theory [13–15]. In all these attempts, quantum me-

chanical Klein-Gordon matter field couples to gravity in a nice

geometric fashion. More promising direction is to incorporate

all the classical fields in a geometric frame work. Wheeler had

started such a geometrodynamics program but incorporating

fermionic matter field in this framework stood as a difficult

problem[16].

Recent research on Klein-Gordon equation shows that a

quantum mechanical wave equation has a correspondence to

the conformally flat metric based geometric formulation [8,

10, 11]. We can therefore explore this correspondence for

Klein-Gordon-Maxwell-Einstein system in the same way the

Klein-Gordon-Einstein System is formulated [8, 10]. This can

be extended to Feynman-Gell-Mann-Einstein System in a nice

manner using the recent results [17–19]. It is to be suspected

that, correspond to every quantum mechanical field equation

formulated on a flat space-time has an equivalent geometri-

cal counter part. One can always think about the correspon-

dence between geometric formulation of the theory and the

quantum mechanical complex-field formulation. According

to recent research, we need a different physical interpretation

of quantum theory to merge it with general theory of rela-

tivity. Quantum physics should be considered as something

which emerge from a fluctuating vacuum. From the fluid dy-

namics perspective, there should exist a microscopic dynam-

ics to make possible the fluid dynamics equations, and these

equations emerge as a continuum limit. If this is true, there

should be a fluctuating background field which provides en-

ergy to the particles. In Bohmian quantum gravity approach,

we are compelled to accept the real existence of such a fluctu-

ating background and the quantum mechanical laws naturally

arises from this. A. I. Pesci and co-authors had shown that the

quantum potential can be derived from the classical kinetic

equations both for particles with and without spin [18]. Thus

the quantum mechanical laws are emerging from a more fun-

damental statistical rules. In our previous article[10], we have

shown that the Lagrange multiplier appears in the Bohmian

Quantum Gravity theory plays the role of such a fluctuating

vacuum field. It is also shown that the uncertainty principle

can emerge from such a fluctuating vacuum field [10]. It is

to be noted that, these results have connections to stochastic

mechanics approach to quantum mechanics as proposed by

Nelson [20]. In his approach, quantum particles are driven

by a kind of Brownian motion resulting from quantum fluc-

tuation. Physical origin of such a fluctuation is still mysteri-

ous. In Bohmian-Quantum Gravity, such a fluctuating vacuum

field appears from the unification of gravitation and quantum

mechanics using deBroglie-Bohm version of Quantum the-

ory [13–15, 21, 22]. Bohmian-Quantum Gravity approach

provides a natural avenue to incorporate all the known clas-

sical fields in a geometric frame work.

In this article, first we geometrize scalar and spinor electro-

dynamics and then couple it with gravitational field equations

using scalar-vector-tensor Theory. In this formalism spin is

included in a nice geometric manner using usual general rela-

tivity without introducing frame fields.

II. GEOMETRIZATION OF SCALAR

ELECTRODYNAMICS

Let us take the Lagrangian density of the scalar electro-

dynamics which has a local U(1) symmetry and it is given

by,

L = (∂µΦ+
ie

~
AµΦ)(∂

µΦ∗ − ie

~
AµΦ∗)− m2

~2
ΦΦ∗ (1)

−1

4
FµνFµν .

Adopting the metric signature (+,−,−,−), the equation of

motion of the charged scalar field composed of spinless parti-
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cles is given by,

(∂µ +
ie

~
Aµ)(∂

µ +
ie

~
Aµ)Φ +

m2

~2
Φ = 0.

(2)

Taking Φ =
√
ρ ei/~S(x,t) and separating real and imag-

inary part, the Klein-Gordon equation coupled to electro-

magnetic field becomes,

(∂µS + eAµ)(∂
µS + eAµ) = m2

(

1 +
~
2

m2

∂µ∂
µ√ρ

√
ρ

)

(3)

∂µ

(

ρ(∂µS + eAµ)
)

= 0 (4)

These equations can be written in a familiar form which is

similar to previous works [8, 10, 11],

(∂µS + eAµ)(∂
µS + eAµ) = m2Ω2 (5)

∂µ

(

ρ(∂µS + eAµ)
)

= 0 (6)

Here Ω2 = exp
(

~
2

m2

∂µ∂
µ√ρ√
ρ

)

≈ 1 + ~
2

m2

∂µ∂
µ√ρ√
ρ , where

Q = ~
2

m2

∂µ∂
µ√ρ√
ρ is the quantum potential. Note that Eq. 5 and

Eq. 6 can easily be generalized to curved background. These

equations (Eq. 5 and Eq. 6) together determine the Klein-

Gordon Equation coupled to electro-magnetism in terms of

the density ρ and four momentum ∂µS of field variable Φ
given in Eq. 2. It can be easily seen that Eq. 5 describes the

Hamilton-Jacobi equation for the charged scalar field Φ with

a quantum correction to the mass term. Following our previ-

ous works [10–12], we can geometrize scalar electrodynamics

problem by finding a metric corresponds to the equations of

motion (see Eq. 5).

We need to assume the exponential form of the conformal

factor to get a positive definite effective mass Meff = m2Ω2,

thus Ω2 = exp (Q) or in other words Q = lnΩ2 should be

assumed. Hence we propose the following action for the ge-

ometrization of scalar electrodynamics,

A[gµν ,Ω, S, ρ, Aµ, λ] =
1

2k

∫

d4x
√
−g
(

RΩ2 − 6∇µΩ∇µΩ
)

+

∫

d4x
√
−g
( ρ

m
Ω2(∇µS + eAµ)(∇µS + eAµ)−mρΩ4

)

−1

4

∫

d4x
√
−g FµνF

µν

+

∫

d4x
√
−gλ

[

ln(Ω2)−
(

~
2

m2

∇µ∇µ√ρ
√
ρ

)]

, (7)

where the electro-magnetic field tensor is given by Fµν =
∇µAν − ∇νAµ. Minimizing this action with respect to dif-

ferent field variables will result into the following field equa-

tions. Scalar curvature equation is given by,

RΩ+ 6�Ω+ 2κ
λ

Ω

+
2κ

m
ρΩ
(

(∇µS + eAµ)(∇µS + eAµ)− 2m2Ω2
)

= 0.

(8)

Maxwell’s equation can be found by varying the action with

respect to Aµ,

∇µF
µν − 1

m
ρΩ2(∇νS + eAν) = 0. (9)

Continuity equation is obtained from the variation of action

with respect to S. This is just the imaginary part of the quan-

tum gravity corrected Klein-Gordon-Maxwell equation.

∇µ

(

ρΩ2(∇µS + eAµ)
)

= 0 (10)

The real part of the quantum gravity corrected Klein-Gordon-

Maxwell equation is obtained by varying the action with re-

spect to quantum mechanical density ρ,

(

(∇µS + eAµ)(∇µS + eAµ)−m2Ω2
)

Ω2√ρ

+
~
2

2m
[�(

λ
√
ρ
)− λ

�
√
ρ

ρ
] = 0. (11)

Generalized Einstein’s gravitational field equation for the

matter-field without spin, which is coupled to electro-

magnetism is obtained by varying the action with respect to

the background metric tensor gµν .

Gµν − [gµν�−∇µ∇ν ]Ω
2

Ω2
− 6

∇µΩ∇νΩ

Ω2
+ 3gµν

∇σΩ∇σΩ

Ω2

+
2κ

m
ρ(∇µS + eAµ)(∇νS + eAν)

− κ

m
ρ gµν(∇σS + eAσ)(∇σS + eAσ) + κmρΩ2gµν

−κ
(

FµσF
σ
ν − 1

4
gµνFαβF

αβ

)

+
κ~2

m2Ω2
[∇µ

√
ρ∇ν(

λ
√
ρ
) +∇ν

√
ρ∇µ(

λ
√
ρ
)]

− κ~2

m2Ω2
gµν∇σ(λ

∇σ√ρ
√
ρ

) = 0 (12)

Constraint equation is given by,

Ω2 = exp

(

~
2

m2

∇µ∇µ√ρ
√
ρ

)

. (13)

Equating the trace of the Eq. 12 and Eq. 25, λ-equation can

also be found to be,

λ =
~
2

m2

1

(1−Q)
∇µ

(

λ
∇µ√ρ
√
ρ

)

. (14)

In the linear order case (Ω2 = 1 +Q), Eq. 14 becomes,

λ =
~
2

m2
∇µ

(

λ
∇µ√ρ
√
ρ

)

. (15)

Equation 15 is obtained by ignoring powers of Q (keeping

only ~
2 term) in the λ expression given in Eq. 14. This λ

field equation is already been interpreted as the vacuum field

equation [10–12].



3

III. GEOMETRIZATION OF SPINOR

ELECTRODYNAMICS

It is a well known fact that, incorporating Dirac-matter field

in general relativity is a difficult task. This can be easily

achieved in this article using the Feynman-Gell-Mann equa-

tion and it is given by,

(∂µ +
ie

~
Aµ)(∂µ +

ie

~
Aµ)ψ +

e

2~
σµνF

µνψ +
m2

~2
ψ = 0.

(16)

It was N. C. Petroni, Ph. Gueret and J.-P.Vigier who

had explored the hydrodynamical analysis of the Feynman-

Gell-Mann equation [19]. These authors had derived the

Feynman-Gell-Mann equation using Lagrangian formalism

and the quantum potential is also determined. In Ref. [18],

authors had derived the second-order version of the Dirac

Equation using classical statistical arguments only. They have

found that the Fourier transform of the one-particle distribu-

tion function of the classic relativistic Boltzmann equation

with respect to the momentum variable can be mapped ei-

ther onto the Klein-Gordon or the second order Dirac equation

(Feynman-Gell-Mann equation). Recently in Ref. [17], F. A

Asenjo and S. M. Mahajan have constructed a fully relativistic

quantum vortex dynamics of the hydrodynamical version of

the Feynman-Gell-Mann equation. According Ref. [17, 18],

one can separate Eq. 16 to real and imaginary parts taking,

ψ =
√

ψ†ψ e
i
~
S

(

cos (θ/2)eiη/2

i sin (θ/2)e−iη/2

)

. (17)

Here the extra θ and η variables are incorporated to take

into account the spinor nature of the two-component wave-

function ψ. The quantum mechanical density is defined as

ρ = ψ†ψ. The four component Dirac-Spinor is given by, Ψ =
(

ψ
−ψ

)

. This decomposition conserves the spinor degrees of

freedom in terms of two spin-fields θ and η. These spin-fields

θ and η constitute a parametric representation of the unimod-

ular spin vector with spin components Σ1 = sin θ sin η, Σ2 =
sin θ cos η, and Σ3 = cos θ, therefore, η = arctan(Σ1/Σ2).
Define q(ζ) = ~

2/4 − ζ2 and ζ = ~/2Σ3 = ~/2 cos θ, then

defining the most general four-momentum Pµ by incorporat-

ing the spin variables ζ and η,

Pµ = (∂µS + eAµ + ζ∂µη). (18)

Substituting Eq. 17 and separating real and imaginary part, the

Feynman-Gell-Mann equation becomes,

PµPµ = m2
(

1 +
~
2

m2

�
√
ρ

√
ρ

+
e~

2m2
Mαβ F

αβ

− ~
2

4m2
∂µM

αβ∂µM∗
αβ

)

(19)

∂µ

(

ρPµ
)

= 0 (20)

Considering Eq. 19 and following the arguments of deBroglie

[23], F. Shojai [8] and others [10–12], one can find a differ-

ential manifold with a metric g̃µν where the particle with spin

moves on this manifold freely. Particle follows the geodesic

on the differential manifold defined by the metric g̃µν . Hence

quantum theory can be geometrized and can be coupled with

gravity in a nice manner once the quantum potential Q or

the conformal factor Ω2 is known. All the previous works

along this direction didn’t consider quantum mechanical par-

ticles with spin. In this manuscript, we exploit the hydrody-

namic picture of the Dirac equation via the Feynman-Gell-

mann equation in order to couple it with the gravitational field.

Aforementioned Eq. 19 and Eq. 20 can be re-arranged in a

much more familiar form, making similar to previous works

[8, 10–12],

PµPµ = m2Ω2
D (21)

∂µ

(

ρPµ
)

= 0. (22)

Here Ω2
D = 1 + QD, where QD = QKG +

Qspin−em + Qspin−spin = ~
2

m2

�
√
ρ√
ρ + e~

2m2Mαβ F
αβ −

~
2

4m2 ∂µM
αβ∂µM∗

αβ , where QD is termed as the Dirac-

Quantum Potential. Here Ω2
D can be termed as the Dirac-

Shojai conformal factor. This Dirac-Shojai conformal factor

defines a curved space-time g̃µν = Ω2
Dηµν which is confor-

mally flat. The space-time curvature generated by the quan-

tum mechanical density ρ is already known [8–12, 24]. Here

two important additional effects appears, (a) Spin-tensorMαβ

couples with electro-magnetic tensor Fαβ and yields a curva-

ture contribution, (b) space-time variation of the spin-tensor

Mαβ interact with its conjugate and generates an opposite cur-

vature effect. Physical implications of such a curvature effect

from the spin-spin interaction term − ~
2

4m2 ∂µM
αβ∂µM∗

αβ

will be worthwhile for our future explorations. In addition

to the equation of motion (Eq. 21) and continuity equation

(Eq. 22), two spin-field equations can also be obtained, see

Ref. [18] and Ref .[17] for details. Equation 21, Eq. 22 and

two-spin-field equations together determine Feynman-Gell-

Mann Equation in terms of the spinor density ρ, four mo-

mentum ∂µS and spin-field variables ζ and η. Going back

to Eq. 21, it can be easily seen that Eq. 21 describes the

Hamilton-Jacobi equation for the spinor field with a quantum

correction to the mass term including a spin contribution.

As discussed earlier, following our previous work, we can

geometrize the spinor electrodynamics problem by finding a

metric g̃µν = Ω2
Dηµν corresponds to the equations of motion

(see Eq. 21) which is determined by the Dirac-Shojai con-

formal factor Ω2
D. Dirac-Shojai conformal factor defines a

conformally flat metric in the absence of gravity (when the

background metric is ηµν ). Hence we take the following ac-

tion with a curved background metric gµν (see Eq. 23) in order

to geometrize quantum mechanical matter field with spin and

couple it with gravitational field equations,
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A[gµν ,ΩD, S, ρ, η, ζ, Aµ, λ] =
1

2k

∫

d4x
√
−g
(

RΩ2
D − 6∇µΩD∇µΩD

)

+

∫

d4x
√
−g
( ρ

m
Ω2

D(∇µS + eAµ + ζ∇µη)(∇µS + eAµ + ζ∇µη)−mρΩ4
D

)

−1

4

∫

d4x
√
−g FµνF

µν

+

∫

d4x
√
−gλ

[

ln(Ω2
D)−

(

~
2

m2

�
√
ρ

√
ρ

+
e~

2m2
Mαβ F

αβ − ~
2

4m2

(∇µζ∇µζ

q(ζ)
+

4

~2
q(ζ)∇µη∇µη

)

)]

,

(23)

where the electro-magnetic field tensor is given by Fµν =
∇µAν − ∇νAµ. Taking the identity by Pesci et.al [18] and

generalizing that to a curved manifold, the following identity

holds

∇µM
αβ∇µM∗

αβ =
∇µζ∇µζ

q(ζ)
+

4

~2
q(ζ)∇µη∇µη (24)

where q(ζ) = ~
2

4 − ζ2. Here the spin-tensor Mαβ is defined

as Mαβ =
Ψ†σαβΨ
Ψ†Ψ also σαβ = i

2 (γαγβ − γβγα). Minimiz-

ing the action given in Eq. 23 with respect to different field

variables will result into the following field equations.

Scalar curvature equation with spin contribution is obtained

by varying the action (Eq. 23) with respect to the conformal

factor ΩD,

RΩD + 6�ΩD + 2κ
λ

ΩD

+
2κ

m
ρΩD

(

(∇µS + eAµ + ζ∇µη)(∇µS + eAµ + ζ∇µη)

−2m2Ω2
D

)

= 0

(25)

Maxwell’s equation can be found by varying the action

(Eq. 23) with respect to Aµ,

∇µF
µν − 1

m
ρΩ2

D(∇νS + eAν + ζ∇νη)

+
e~

m2
∇µ(λM

µν) = 0 (26)

Continuity equation is obtained from the variation of action

(Eq. 23) with respect to S. This is just the imaginary part of

the quantum gravity corrected Feynman-Gel-Mann-Maxwell

equation.

∇µ

(

ρΩ2
D(∇µS + eAµ + ζ∇µη)

)

= 0 (27)

The real part of the quantum-gravity corrected Feynman-Gel-

Mann-Maxwell equation is obtained by varying the action

(Eq. 23) with respect to quantum mechanical density ρ,

[

(∇µS + eAµ + ζ∇µη)(∇µS + eAµ + ζ∇µη)−m2Ω2
D

]

+
~
2

2mΩ2
D

√
ρ
[�(

λ
√
ρ
)− λ

�
√
ρ

ρ
] = 0 (28)

Generalized Einstein’s field equation for the fermionic matter-

field, which is coupled to electro-magnetism is obtained by

varying the action with respect to the background metric ten-

sor gµν .

Gµν − [gµν�−∇µ∇ν ]Ω
2
D

Ω2
D

− 6
∇µΩ∇νΩ

Ω2
D

+ 3gµν
∇σΩ∇σΩ

Ω2
D

+
2κ

m
ρ(∇µS + eAµ + ζ∇µη)(∇νS + eAν + ζ∇νη)

− κ

m
ρ gµν(∇σS + eAσ + ζ∇ση)(∇σS + eAσ + ζ∇ση)

+κmρΩ2
Dgµν

− κ

Ω2
D

(

FµσF
σ
ν − 1

4
gµνFαβF

αβ

)

+
κ~2

m2Ω2
D

[∇µ
√
ρ∇ν(

λ
√
ρ
) +∇ν

√
ρ∇µ(

λ
√
ρ
)]

− κ~2

m2Ω2
D

gµν∇σ(λ
∇σ√ρ
√
ρ

)

+
κ~2λ

4m2Ω2
D

(∇µM
αβ∇νM

∗
αβ +∇νM

αβ∇µM
∗
αβ)

− κ~2λ

4m2Ω2
D

gµν∇σM
αβ∇σM∗

αβ

− κ e ~

2mΩ2
D

(

MµσF
σ
ν +MνσF

σ
µ − gµνMαβF

αβ
)

= 0,

(29)

where Gµν is the well known Einstein tensor Gµν = Rµν −
1
2gµνR. The constraint equation is given by,

Ω2
D = exp (QD), (30)

where the quantum potential is given by,

QD =

(

~
2

m2

�
√
ρ

√
ρ

+
e~

2m2
Mαβ F

αβ

− ~
2

4m2
∇µM

αβ∇µM∗
αβ

)

. (31)

In addition to all these field equations, spin variables ζ and

η yields two spin-field equations which is coupled to gravity.

Gravitationally coupled generalized spin-field equations are

obtained by varying the action (see Eq. 23) with respect to η
and ζ, and the following Eq. 32 and Eq. 33 are obtained,
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Ω2
D(∇µS + eAµ + ζ∇µη)∇µζ

+
1

mρ
∇µ

(

λ q(ζ)∇µη
)

+
e~

4m

λ

ρ

∂Mαβ

∂η
Fαβ = 0,

(32)

Ω2
D(∇µS + eAµ + ζ∇µη)∇µη

− ζλ

mρ
∇µη∇µη +

~
2

4m

ζ

q(ζ)2
λ

ρ
∇µζ∇µζ

− ~
2

4mρ
∇µ

( λ

q(ζ)
∇µζ

)

− e~

4m

λ

ρ

∂Mαβ

∂ζ
Fαβ = 0. (33)

It can be easily seen that the spin-field equations coupled to

gravity and vacuum (See Eq. 32 and Eq. 33) and it can re-

produce the equations given in Ref [17, 18] for a specific

choice of the Lagrange multiplier λ = λ0ρ, where λ0 is just

a constant. Note that equations will be slightly different in

coefficients since we use a different action. In our previ-

ous work [11], it is shown that the specific choice λ = λ0ρ
can make vanish the vacuum coupling contributions in Klein-

Gordon equation. In such a scenario, one can deal with the

usual Klein-Gordon equation without any quantum-gravity

corrections. The same situation is applicable in the case of

Feynman-Gell-Mann equation. Taking λ = ρ in Eq. 32 and

Eq. 33, we get vacuum de-coupled spin-field equations,

Pµ∇µζ +
1

mρ
∇µ

(

ρ q(ζ)∇µη
)

+
e~

4m

∂Mαβ

∂η
Fαβ = 0,

(34)

Pµ∇µη − ζ

m
∇µη∇µη +

~
2

4m

ζ

q(ζ)2
∇µζ∇µζ

− ~
2

4mρ
∇µ

( ρ

q(ζ)
∇µζ

)

− e~

4m

∂Mαβ

∂ζ
Fαβ = 0, (35)

and the equation of motion becomes,

(∇µS + eAµ + ζ∇µη)(∇µS + eAµ + ζ∇µη)−m2Ω2
D = 0.

(36)

Ignoring quantum-gravity effect by taking Ω2 = 1, continuity

equation becomes,

∇µ

(

ρ(∇µS + eAµ + ζ∇µη)
)

= 0. (37)

These four equations (Eq. 34, Eq. 35, Eq. 36 and Eq. 37 ) can

be mapped back to usual Feyman-Gell-Mann equation given

in Eq. 16.

An important contribution of energy momentum tensor

arises due to the spin-electro-magnetic interaction and spin-

spin interaction. This can be captured in an entirely new

stress-energy tensor T spin
µν (ρ, λ, ζ, η, Aµ) where new interest-

ing Physics appears. The extra stress-energy tensor is given

by,

T spin
µν (ρ, λ, ζ, η, Aµ) =

κ~2λ

4m2Ω2
D

(∇µM
αβ∇νM

∗
αβ +∇νM

αβ∇µM
∗
αβ)

− κ~2λ

4m2Ω2
D

gµν∇σM
αβ∇σM∗

αβ

− κ e ~

2mΩ2
D

(

MµσF
σ
ν +MνσF

σ
µ − gµνMαβF

αβ
)

. (38)

As a side remark, this spin-stress-energy tensor contains

terms involving vacuum-spin-spin interaction and vacuum-

spin-electromagnetic interaction term. Physical application

of such interactions and its gravitational implication will be

worthwhile to explore in the future work. Apart from that,

one can include a topological term like Fµν F̃
µν in the action

given in Eq. 23 , which will give the same generalized Einstein

equation but vacuum field equations will be different and an

electro-magnetic source term can appear in the λ equation.

IV. GEOMETRIZATION OF MAXWELL’S EQUATIONS

While minimizing the Lagrangian with respect to the vector

potential Aµ, we will get the following Maxwell’s equation,

∇µF
µν − 1

m
ρΩ2(∇νS + eAν + ζ∇µη)

+
e~

m2
∇µ(λM

µν) = 0. (39)

Hence the Maxwell’s equation written in terms of current den-

sity Jν becomes,

∇µF
µν = Ω2Jν − e~

m2
∇µ(λM

µν). (40)

where Jν = ρ
m (∇νS + eAν + ζ∇µη). Here Jvs

ν =

− e~
m2∇µ(λM

µν) can be seen as an extra vacuum-spin current

due to the coupling of spin-tensorMµν with the vacuum field

λ, this can be seen as a small quantum-gravity corrections to

the Maxwell’s equation.

Due to the antisymmetric nature of Fµν and Mµν , one can

show that ∇µ∇νF
µν = 0 and ∇µ∇νM

µν = 0, thus the

current density equation becomes,

∇µ

(

Ω2Jµ
)

= 0 (41)

Since Jν = ρ
m (∇νS+ eAν + ζ∇µη), it can be shown that,

∇µ

(

ρΩ2(∇νS + eAν + ζ∇µη)
)

= 0 (42)

This is the continuity equation of the particles with spin in the

presence of the electro-magnetic field and gravitational cou-

pling (Ω2 correction). It is already implied that the vacuum-

spin current Jvs
ν is separately conserved i.e. ∇νJvs

ν = 0.

Note that, Eq. 27 is obtained by varying the action (given

Eq. 23) with respect to the quantum mechanical density ρ.

In addition, the expression given here is more general than
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the quantum-mechanical continuity equation studied in previ-

ous works [8, 10, 11]. Here the gravitational coupling with

electro-magnetic field is achieved in an indirect manner via

the conformal factor Ω2 in the current conservation equation

(See Eq. 27). It is worthwhile to note that Js
µ = 1

mρΩ
2ζ∇µη

gives the spin current contribution.

V. GENERALIZED FEYNMAN-GELL-MANN EQUATION

Due to the presence of extra Ω2
D in the generalized continu-

ity equation (see Eq. 27) as compared to Eq. 4 or Eq. 22, we

will always end up with a wave equation containing dissipa-

tion contribution as a conformal gravity correction. Similarly

the equation of motion (Eq. 28) contains an extra vacuum-

correction term f(λ, ρ) = ~
2

2mΩ2

D

√
ρ
[�( λ√

ρ) − λ
�
√
ρ

ρ ]. This

term correction term f(λ, ρ) acts like a forcing contribution

arises to balance the dissipation contribution coming from the

Ω2
D factor appearing in the continuity equation (see Eq. 27).

Thus, combining Eq. 27 and Eq. 28 into a single complex

equation, one can obtain a generalized Feynman-Gell-Mann

equation in the wave-function picture with quantum-gravity

correction and it is found to be,

(

∇µ +
ie

~
Aµ

)(

∇µ +
ie

~
Aµ
)

ψ +
e

2~
σµνF

µνψ

+
m2

~2
ψ +

i

~

(∇µΩ
2

Ω2
(∇µS + eAµ + ζ∇µη)

)

ψ

− 1

2mΩ2
D

√
ρ
[�(

λ
√
ρ
)− λ

�
√
ρ

ρ
]ψ = 0. (43)

Applying the constraint condition Ω2 = eQD , and using the

identity ζ∇µη = −i~ψ†∇µψ the equation simplifies to,

(

∇µ +
ie

~
Aµ

)(

∇µ +
ie

~
Aµ
)

ψ +
e

2~
σµνF

µνψ +
m2

~2
ψ

+
i

~

(

∇µQD(∇µS + eAµ)
)

ψ + (∇µQDψ
†∇µψ)ψ

− 1

2mΩ2
D

√
ρ
[�(

λ
√
ρ
)− λ

�
√
ρ

ρ
]ψ = 0, (44)

this is the quantum-gravity corrected Feynmann-Gell-Mann

equation. It is to be noted that we are naturally lead to a

nonlinear extension of quantum theory with almost similar re-

sults as in Ref. [25]. Here the extra nonlinear term appears

as a correction due to the vacuum energy and a dissipating

contribution arises as the conformal gravity correction. The

added advantage of finding the complex wave equation (see

Eq.44) is that, we can easily see how the quantum-gravity

corrections appears in the usual quantum mechanical formal-

ism. When the quantum mechanical matter density ρ con-

forms with the fluctuating vacuum field λ, one reaches to an

equilibrium situation which is determined by a linear differ-

ential equation. Quantum mechanical linear differential equa-

tions appears when the dissipation term in the theory balances

with the forcing term. It is interesting to note that, λ = ρ and

Ω2 = 1, Eq. 44 simplifies to,

(

∇µ +
ie

~
Aµ

)(

∇µ +
ie

~
Aµ
)

ψ +
e

2~
σµνF

µνψ +
m2

~2
ψ = 0,

(45)

which is the original Feynman-Gell-Mann equation.

VI. CONCLUSIONS

In this geometrical formalism we have seen that scalar-

electrodynamics can be geometrized using the scalar-vector-

tensor theory, where the quantum mechanical conformal fac-

tor encodes the scalar matter field dynamics. Here we

have also found the correspondence between the spinor-

electrodynamics to its corresponding geometric counter part

which is also a scalar-vector-tensor theory with two extra

spin-field equations, where the vector field is just electromag-

netism and geometrical scalar-field is the quantum mechani-

cal matter-field. These results will shed light on the under-

standing of the General relativity and Quantum theory in a

geometrical frame-work. Here we claim that classical field

theories can be casted either in the form of fields on a flat

manifold or it can be fully geometrized in terms of a curved

manifold. Here the gravitational scalar field or the conformal

factor Ω2 appears both from the Quantum Mechanical Klein-

Gordon Field and the Feynman-Gell-Mann equation. In the

case of spin, two extra spin-field equation coupled to gravity

is present and an extra spin-energy-momentum tensor is also

present. It is also shown that spin-electromagnetic interac-

tion and spin-spin interaction can curve the space-time, since

it appears in the conformal factor Ω2
D . It is evident that, cor-

responds to every classical complex field equation formulated

on a flat space-time, there is an equivalent curved geometry

counter part.
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