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In elections, the vote shares or turnout rates show a strong spatial correlation. The logarithmic
decay with distance suggests that a 2D noisy diffusive equation describes the system. Based on the
study of U.S. presidential elections data, it was determined that the fluctuations of vote shares also
exhibit a strong and long-range spatial correlation. Previously, it was considered difficult to induce
strong and long-range spatial correlation of the vote shares without breaking the empirically observed
narrow distribution. We demonstrate that a voter model on networks shows such a behavior. In
the model, there are many voters in a node who are affected by the agents in the node and by the
agents in the linked nodes. A multivariate Wright-Fisher diffusion equation for the joint probability
density of the vote shares is derived. The stationary distribution is a multivariate generalization
of the beta distribution. In addition, we also estimate the equilibrium values and the covariance
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I. INTRODUCTION

Social physics has become an active research field[1–4] and many studies have been devoted to the understanding
of social phenomena and interacting human behaviors [5–18]. Opinion dynamics is a central research theme, and
empirical studies based on election data have been extensively pursued [19–22]. In these investigations, the correlation
between the voters’ decisions was evaluated by studying the dependence of the variance of the turnout rate on the
number of voters N [20, 21]. If the voters’ decisions are independent, the variance of the turnout rate should be
proportional to N−1. An empirical study of French election data showed that the voters’ decisions were proportional
to the power of N−3/4. In addition, it was determined that the spatial correlation of the turnout rate in each election
exhibited a logarithmic decay with distance that suggested a description based on a 2D noisy diffusion equation.
A threshold model was introduced for the binary decision of an individual with intension field[20]. If the intension

of an individual exceeds a certain threshold, the decision is one. When it is below the threshold, the decision is 0.
The intension field was decomposed into the sum of a noise which is an instantaneous contribution, a space dependent
”cultural” field and the influence of the decision of other individuals. Here, ”cultural field” encodes all the local,
stable features that influence the final decision. Without the noise and the cultural field, the model simplifies to
the Random Field Ising Model[23–25]. It was concluded that the long-range spatial correlations cannot be due to
the influence of the decision of others, because the interaction cannot induce the empirically observed unimodal and
narrow distribution of turnout rates. The long-range spatial correlation was thus attributed to that of the ”cultural
field”. As a phenomenological model of the cultural field, a 2D noisy diffusion equation was proposed.
The voter model and its noisy extension have been studied extensively in opinion dynamics[2, 26–32]. In particular,

the validity of the voter model as a model for elections was tested in the U.S. presidential election[22]. In this
model, agents move between their living places and their workplaces. In both places, their decisions are affected
by other voters. The model is called the social influence recurrent mobility (SIRM) model. Based on the diffusion
approximation of the model, a noisy diffusion equation was derived. By balancing the strength of the noise with the
voter models consensus mechanism or the force of conformity, it was concluded that the SIRM model can reproduce
the statistical features of the vote-share in presidential elections, i.e. the stationarity of the variance of vote-share
distributions and the long-range spatial correlation that decays logarithmically with distance. However, the model has
a drawback in that under certain circumstances, the noise might break the range of vote shares. This was addressed
by introducing the beta distributed noise[33]. Furthermore, a generalization to the case of more than two political
parties was also proposed in the same framework.
In this report, we study the correlation of the fluctuations of vote shares using theoretical and empirical methods.

Based on U.S. presidential election data, we show that the correlation of the fluctuation of the vote shares between
the nearest neighbor counties exceed 80% and it is much higher than that of the temporal averages of the vote shares.
Furthermore, as with the latter ones , the fluctuation also shows long-range spatial correlation. In the threshold
model without the influence of the decisions of others, the fluctuations of the vote shares are independent of each
other even if the cultural field shows a strong spatial correlation. The correlation of the cultural field only affects
the correlation of the temporal averages of the vote shares. The threshold model with the social influence term is
inappropriate for inducing such a strong correlation of the fluctuations because it contradicts the empirical results.
Therefore, an alternate model that can incorporate a strong correlation without losing the unimodality of the vote
share distribution should be introduced. According to the results of the SIRM model, a voter model should be a good
candidate. We show that the vote shares of a voter model on networks obeys a multi-variate beta distribution which
can incorporate strong correlation without losing the unimodality of the distribution of the vote shares. Furthermore,
the distribution is similar to the multivariate normal distribution and the calibration of the model parameters is easy.
The paper is organized into multiple sections. In Sec. II, the U.S. presidential election data is studied and the

vote shares are decomposed into the equilibrium values and the fluctuations around them. The cultural field are
encoded in the former and both exhibit strong and long-ranged spatial correlation. It is shown that the vote shares
approximately obey a multivariate normal distribution. A voter model on networks is introduced in Sec. III. The
multivariate Wright-Fisher diffusion equation is then derived for the joint probability density function (pdf) of the
vote shares. The stationary distribution is a multivariate beta distribution. We approximate the distribution using
a multivariate normal distribution and estimate the covariance matrix of the vote shares. Sec. IV is devoted to the
numerical analysis and verification of the theoretical results. Sec. V includes the conclusions and discussions of future
problems.

II. EMPIRICAL STUDY

U.S. presidential election data from 1980 to 2016 were studied. A total of ten elections occurred during this interval
and they are labeled as t = 1, 2 · · · , T = 10 where t = 1 corresponds to the election in 1980. The data of 3105 counties
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was studied and label as i = 1, 2, · · · , I. The data consist of the number of votes N(i, t) and the number of votes
for the democratic party n(i, t) in county i and election t. The total number of votes cast in election t is calculated
as NT (t) =

∑

i N(i, t). The votes that were not cast for either the Democratic party or the Republican party were
excluded, and the votes for the latter party is given by N(i, t)− n(i, t). We denote the vote share for the democratic
party as v(i, t) ≡ n(i, t)/N(i, t).

Initially, we detrend the vote share data. The weighted spatial average of v(i, t) is estimated as

v(t) ≡
∑

i

n(i, t)/NT (t).

We estimate the temporal average of v(t) as vavg ≡
∑

t v(t)/T and obtain the detrended vote share as

vd(i, t) ≡ v(i, t)− (v(t)− vavg).

Based on this process, the weighted spatial average of vd(i, t) becomes vavg and it does not depend on t. The temporal
average of vd(i, t) is defined as vd(i) =

∑

t vd(i, t)/T , which is an estimate of the equilibrium values of vd(i, t) in county
i. We interpret vd(i) as the ”cultural field” because it reflects the local and stable features. We denote the fluctuation
(deviation) of vd(i, t) around vd(i) as ∆vd(i, t) ≡ vd(i, t)− vd(i). Figure 1(a) shows the distribution of ∆vd(i, t). The
standard deviation(SD) is approximately 8% and slightly left-skewed.

We study the N dependence of the variance of vd(i, t). The spatial average of vd(i) is denoted as vd,avg =
∑

i vd(i)/I.
The fluctuation of vd(i, t) around vd,avg is decomposed as the sum of the fluctuation of ∆vd(i, t) and that of vd(i).

V(vd(i, t)) =
1

IT

∑

i,t

(vd(i, t)− vd,avg)
2 =

1

IT

∑

i,t

(vd(i, t)− vd(i) + vd(i)− vd,avg)
2

=
1

IT

∑

i,t

{∆vd(i, t)
2 + (vd(i)− vd,avg)

2}

= V(∆vd(i, t)) + V(vd(i))

As
∑

t ∆vd(i, t) = 0, the cross term vanishes and the third equality holds. The N dependence of the fluctuation of
∆vd(i, t) is then investigated. We bin vd(i, t) according to N(i) ≡

∑

t N(i, t)/T into 31 classes and each class contains
100 counties, with almost the same number of average votes N(i). As previously discussed [20], if the voters choose
independently, the variance of ∆vd(i, t) is proportional to the inverse of N(i) as vd(i)(1 − vd(i))/N(i). Figure 1(b)
plots V(vd(i, t)), V(vd(i)) and V(∆vd(i, t)) vs. 1/N . It is evident that, V(∆vd(i, t)) is much larger than 1/4N in all
the bins. One also observes that the decomposition of the variance holds.

Next, we study the spatial correlation of vd(i, t). There are I(I − 1)/2 ≃ 4.81 × 106 pairs of counties (i, j), i, j ∈
{1, 2, · · · , I}. They are sorted according to the distance r(i, j) between county i and county j. The database of the
national bureau of economic research is utilized to obtain information on the inter-county distance[34]. The distance
is taken as the separation of the centroids. The sorted pairs (i, j) are binned into 481 classes and each class contains
104 pairs. We label the bin of the county pairs (i, j) separated by their average distance r as R(r) and |R(r)| = 104

represents the number of pairs in the bin.

The covariance of vd(i, t) and vd(j, t) of the pairs in R(r) are defined as:

Cov(vd(i, t), vd(j, t)|r) =
1

T

∑

t

1

|R(r)|

∑

(i,j)∈R(r)

(vd(i, t)− vd(R(r)))(vd(j, t)− vd(R(r))).

Here, vd(R(r)) is the average value of vd(i, t), vd(j, t) in R(r).

vd(R(r)) =
∑

t

∑

(i,j)∈R(r)

vd(i, t)/|R(r)|T =
∑

t

∑

(i,j)∈R(r)

vd(j, t)/|R(r)|T.

The covariance is then decomposed using the following identity:

(vd(i, t)− vd(R(r)))(vd(j, t)− vd(R(r)))

= (vd(i, t)− vd(i) + vd(i)− vd(R(r)))(vd(j, t) − vd(j) + vd(j)− vd(R(r)))

We then obtain the next decomposition of the covariance as the cross term vanishes by the equality
∑

t(vd(i, t) −
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FIG. 1. (a) Plot of the distribution of ∆vd(i, t) = vd(i, t)− vd(i). The dotted line shows the normal distribution with the same
mean and the variance. (b) Plot of the variance of vd(i, t) and its decomposition to the variance of vd(i) and ∆vd(i, t) vs. the
inverse of the average value of N(i). The solid line shows the sum of the two variances. The broken line shows 1/(4N).

vd(i)) = 0.

Cov(vd(i, t), vd(j, t)|r) = Cov(∆vd(i, t),∆vd(j, t)|r) + Cov(vd(i), vd(j)|r).

By normalizing the covariances with the variances, we estimate the correlation coefficients ρ for vd(i, t), vd(i) and
∆vd(i, t). Figure 2 represents the semi-logarithmic plot of the covariance and the correlation vs. r.

The left figure plots the covariance vs. r. The solid line shows the sum of the covariance of vd(i) and ∆vd(i, t). It
is evident that the sum lies on the plot of the covariance of vd(i, t). The covariance of ∆vd(i, t) is larger than that
of vd(i). The right figure plots the correlation coefficient ρ vs. r. In all the three cases, the correlation exhibits a
logarithmic decay with r. The interesting point is that the correlation of ∆vd(i, t) is the largest and it is over 80%
for the bin of the nearest neighbor county pairs. The correlation of ∆vd(i, t) for nearest neighbor pairs is estimated
to be 83.4%. The spatial correlation of vd(i) implies that the cultural field of two counties are similar when these
counties are near each other. The spatial correlation of ∆vd(i, t) represents the co-movement of the voters’ decisions
in the two counties. These two correlations have completely different physical origins. For r ≥ 103[km], an unusual
behavior is observed. The correlation decays with r and local maxima appear in the correlation of vd(i) and vd(i, t).
The correlation of ∆vd(k, t) shows a monotonically decreasing behavior up to 2000[km].

The results will now be summarized. We decompose I variables ~vd(t) = (vd(1, t), · · · , vd(I, t)) as the sum of
~vd = (vd(1), · · · , vd(I)) and ∆~vd(t) = (∆vd(1, t), · · · ,∆vd(I, t)). ~vd(t) fluctuates around ~vd. ~vd is a proxy for the
cultural field and ∆~vd(t) shows a stronger spatial correlation than ~vd. ~vd(t) approximately obeys a multivariate
normal distribution with a mean of ~vd and the variance-covariance matrix V(~vd)+V(∆~vd(t)).

~vd(t) = ~vd +∆~vd(t) ∼ NI(~vd,V(~vd) + V(∆~vd(t)))

It should be noted that the time scale of ∆~vd(t) and that of ~vd are quite different. The voting habits of the different
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FIG. 2. Semi-logarithmic plots of the (a) covariance and (b) correlation of vd(i, t), vd(i) and ∆vd(i, t) vs. r. The solid line in
the left figure shows the sum of the covariance of vd(i) and ∆vd(i, t). According to the decomposition of the covariance, the
contribution of ∆vd(i, t) is larger than that of vd(i). The correlation coefficient of ∆vd(i, t) is also larger than that of vd(i).

regions is extremely persistent and the time scale of ~vd is a century or more[20]. However, ∆~vd(t) fluctuates rapidly
and the time scale is short.

III. SOCIAL INFLUENCE MODEL ON NETWORKS

We now introduce a voter model on networks. There are I nodes and they are labeled as i = 1, 2, · · · , I. The link
set E = {(i, j)} consists of links that connect node i and j. J(i) ≡ {j|(i, j) ∈ E} denotes the set of nodes that are
linked with node i and |J(i)| is the number of nodes linked with node i. In each node, there are Ni agents whose
decisions obey the dynamics of the voter model[22, 26]. One agent is chosen at random from NT =

∑

iNi agents. If
the agent is from node i, another agent is chosen from node i or from node j ∈ J(i), which is connected to node i. ni

and vi ≡ ni/Ni denote the number of votes and the vote share of an option. We assume that the intrinsic tendency
of the voters in node i to vote for an option is determined by the parameters µi and θ1. µi is the probability that a
voter votes for an option and θ1 is a parameter that controls the variance of the vote share. Intuitively, θ1 represents
the number of voters who are not influenced by other voters. ai ≡ µiθ1 and bi ≡ (1−µi)θ1 corresponds to the number
of such voters who choose and do not choose the option, respectively. The strength of the influence of the voters in
the linked node j ∈ J(i) is denoted as θ2. Figure 3 illustrates the model.

The probability that the number of voters for an option ni increases by 1 is written as the product of the probabilities
of the next two processes. Initially, a voter of node i who does not choose the option is selected. The probability is
(Ni−ni)/NT . Secondly, an infectious voter who can affect the voter and choose the option is selected. The infectious
voters should live in node i or in the linked node j, j ∈ J(i). θ1 voters in node i also can affect the voter. The number
of infectious voters in the linked node j is set to be θ2. This is the simplification of the infectious process. The total
number of the infectious voter in node i is Ni− 1+ θ1+ θ2 · |J(i)|. Here −1 of Ni− 1 indicates that we omit the voter
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FIG. 3. Illustration of the voter model. The big circles represent node i and node j ∈ J(i) that is linked with node i. There
are Ni and Nj voters in node i and node j, respectively. Among them ni(nj) voters (UP arrow) and Ni − ni(Nj − nj) voters
(Down arrow) are for and against an option in node i(j). Initially, a susceptible voter is chosen at random from node i. Next,
an infectious voter is chosen from node i or node j ∈ J(i). Node i has Ni − 1 infectious voters after a voter is chosen from
the node. In addition, there are θ1 = ai + bi voters who do not change their decisions. Among them, ai and bi voters are for
and against the option, respectively, µi = ai/θ1 is the intrinsic tendency of node i to vote for the option and θ1 controls the
strength of the tendency. Node j has θ2 infectious voters.

who is chosen in the first process. Among them ni + ai + θ2 ·
∑

j∈J(i) vj choose the option. The probability for the

second process is then:

ni + ai + θ2 ·
∑

j∈J(i) vj

Ni − 1 + θ1 + θ2 · |J(i)|
.

The probability for ni → ni + 1 is then written as:

P (ni → ni + 1) =
Ni − ni

NT
·
ni + ai + θ2 ·

∑

j∈J(i) vj

Ni − 1 + θ1 + θ2 · |J(i)|
.

Likewise, the probability that ni decreases by 1 is written as:

P (ni → ni − 1) =
ni

NT
·
Ni − ni + bi + θ2 ·

∑

j∈J(i)(1 − vj)

Ni − 1 + θ1 + θ2 · |J(i)|
.

There are two main differences in this model compared to the SIRM model[22, 33]. One difference is the node
dependent terms µi and θ1. If the influence from other voters in the linked nodes j ∈ J(i) is turned off by setting
θ2 = 0, the model reduces to Kirman’s ant colony model[5, 35]. The stationary probability distribution of ni is the
beta-binomial distribution. The vote share vi obeys a beta distribution with shape parameters (ai, bi) in the limit
Ni → ∞. The derivation of the beta distribution is given in Appendix B. .

vi ∼ Beta(ai, bi)

The expectation value of vi is µi and the variance of vi is µi(1 − µi)/(θ1 + 1). This variance originates from the
interaction between the voters in node i. The correlation of the voters binary choices is 1/(θ1 + 1)[36]. The second
change is the normalization of nj by Nj and we use vj = nj/Nj. The mathematical reason for the modification is to
avoid the ill-posedness in the original SIRM model[33]. As we shall show shortly, if we normalize as indicated, the

noise term becomes proportional to
√

vi(1− vi) as in the Wright-Fisher diffusion equation and it does not break the
condition vi ∈ (0, 1) even when vi approaches 0 or 1.

The raising operator Ri ≡ P (ni → ni + 1) is written using vote shares ~v = (v1, v2, · · · , vI) as:

Ri(~v) =
Ni

NT
· (1− vi) ·

vi + ai/Ni + θ2 ·
∑

j∈J(i) vj/Ni

1− 1/Ni + θ1/Ni + θ2
∑

j∈J(i) /Ni
.
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The lowering operator Li ≡ P (ni → ni − 1) is also written as:

Li(~v) =
Ni

NT
· vi ·

(1− vi) + bi/Ni + θ2 ·
∑

j∈J(i)(1− vj)/Ni

1− 1/Ni + θ1/Ni + θ2
∑

j∈J(i) /Ni
.

We write vi,c for the average value of the vote shares {vj} of the linked nodes j ∈ J(i).

vi,c =
∑

j∈J(i)

vj/|J(i)|.

Ri, Li are then rewritten as

Ri(~v) =
Ni

NT
· (1 − vi) ·

vi + ai/Ni + θ2 · |J(i)| · vi,c/Ni

1− 1/Ni + θ1/Ni + θ2 · |J(i)|/Ni
,

Li(~v) =
Ni

NT
· vi ·

(1 − vi) + bi/Ni + θ2 · |J(i)| · (1− vi,c)/Ni

1− 1/Ni + θ1/Ni + θ2 · |J(i)|/Ni
.

The stochastic differential equation [37] for vi is written with drift di and diffusion Di as:

dvi = didt+
√

DidWi(t).

Here, dWi(t) is iid white noise, or Brownian motion. The drift term di is estimated as:

di =
δvi
δt

(Ri − Li) =
δvi
δt

1

NT
(ai − θ1vi + θ2 · |J(i)| · (vi,c − vi)).

Here, we take the limit Ni → ∞ in the second equality. The diffusion term Di is estimated as:

Di =
(δvi)

2

δt
(Ri + Li) =

(δvi)
2

δt

Ni

NT
2vi(1− vi).

If we set Ni = N and NT = IN , we have δvi = 1/N and δt = 1/IN2. di and Di are written as:

di = (ai − θ1vi + θ2 · |J(i)| · (vi,c − vi))

Di = 2vi(1− vi).

The Fokker-Plank equation for the time evolution of the joint probability density function f(~v, t) is give as:

∂tf(~v, t) = −
∑

i

{

∂idi −
1

2
∂2
i Di

}

f. (1)

Here, we write the derivative by vi as ∂i. This is a multi-variate Wright-Fisher diffusion process [38].

Given that the drift and diffusion terms do not explicitly depend on t, the stochastic system is a statistically
stationary process and the solution of the Fokker-Planck equation converges to a stationary distribution[37].

fst(~v) = lim
t→∞

f(~v, t).

We define Ji ≡ dif − 1
2∂iDif and Eq.(1) can be written as:

∂tf(~v, t) = −
∑

i

∂iJi.

We obtain fst by solving Ji = 0 and we have:

(di −
1

2
(∂iDi))fst =

1

2
Di∂ifst.
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The equation can be rewritten as

Zi ≡
(2di − ∂iDi)

Di
= ∂i ln fst.

We see Zi should satisfy ∂jZi = ∂iZj. A potential solution fst(~v) = e−φ(~v) of Eq.(1) exists [37, 39] if φ satisfy

−∂iφ = ∂i ln fst =
2di − ∂iDi

Di
≡ Zi

From the constraint ∂jZi = ∂iZj , we obtain

θ2
vi(1 − vi)

=
θ2

vj(1− vj)
.

If we set θ2 = 0, the stationary solution f0
st(~v) becomes the direct product of the beta distribution fBeta(vi|ai, bi).

f0
st(~v) =

∏

i

fBeta(vi|ai, bi).

The expectation value of ~v is ~µ = (µ1, µ2, · · · , µI) and the covariance matrix Σ0 of ~v is given by:

Σ0
i,j = Cov(~v)i,j = δi,jvi(1 − vj)

1

θ1 + 1
.

When θ1 >> 1, the joint probability function f0
st(~v) can be approximated by the multi-variate normal distribution as:

~v ∼ NI(~µ,Σ
0).

When θ2 6= 0, the potential solution does not exist. ~v fluctuates around their equilibrium values ~v∗ and v∗i is
determined by the condition that di = 0.

v∗i = µi + (θ2|J(i)|/θ1)(v
∗
i,c − v∗i ).

Here, v∗i,c is the average value of v∗j , j ∈ J(i).

When θ2 >> θ1, v
∗
i ≃ v∗i,c holds and v∗i is equal to the average value of µi, µavg ≡

∑

i µi/I. It is assumed that the
fluctuation of ~v around µavg is small and approximates Di = 2vi(1−vi) as Di = D = 2µavg(1−µavg). In this case, the
potential condition is satisfied. We call the approximation the ”Gaussian approximation”, because the Wright-Fisher
diffusion eq. has a solution that can be approximated as a Gaussian distribution. We obtain ln fst as:

ln fst =

∫ ~v
∑

i

Zidvi =
1

µavg(1− µavg)

(

θ1~µ · ~v − µavg(1− µavg)
1

2
t~vΣ−1~v

)

The inverse of the covariance matrix Σ−1 is

µavg(1− µavg)(Σ
−1)i,j =







θ1 + θ2|J(i)| i = j
−θ2 j ∈ J(i)
0 i 6= j, j /∈ J(i)

The multivariate normal approximation of ~v is

~v ∼ NI(~v
∗,Σ). (2)

IV. NUMERICAL STUDY

We then numerically verify the validity of the normal distribution approximation. The conditional probability den-
sity function for vi with vi,c fixed is a beta distribution with the shape parameters ai(vi,c) = θ1µi+θ2|J(i)|vi,c, bi(vi,c) =



9

θ1(1− µi) + θ2|J(i)|(1 − vi,c).

vi ∼ Beta(ai(vi,c), bi(vi,c)).

We set the initial values for ~v as vi ∼ Beta(ai, bi) with vi,c = 0.5. Thereafter, we choose a node i at random and
calculate the shape parameters ai(v

c
i ), bi(v

c
i ) and generate new vi according to vi ∼ Beta(ai(v

c
i ), bi(v

c
i )). The process

is repeated for I times (1 MCS) and we obtain a sample ~v(1). The procedure is repeated with the initial condition
~v(t), t = 1, · · · and we obtain a sample ~v(t + 1). The length (MCS) of the sample sequence T is set as 106. In a 2D
system, we set T = 2× 105.

A. Two nodes (I = 2) case

At first, we consider the I = 2 case. We adopt µ1, µ2 so that µavg = 0.5. We then set θ1 = 10 and ai = bi = 5, µi =
0.5 in case I. In case II, we set θ1 = 10 and a1 = b2 = 7, a2 = b1 = 3, µ1 = 0.7, µ2 = 0.3. Based on the symmetry of
the system, v∗i is estimated as:

v∗1,2 =
1

2

a1 + a2
θ1

±
a1 − a2
θ1 + 2θ2

(3)

The variance of vi is:

V(vi) = µavg(1− µavg)
θ1 + θ2

θ21 + 2θ1θ2
(4)

The correlation coefficient ρ of v1 and v2 is:

ρ ≡
Cov(v1, v2)

√

V(v1)V(v2)
=

θ2
θ1 + θ2

. (5)

Figure 4 shows the results of the MC studies. The numerical data are plotted with symbols and the Gaussian
approximation results are presented with lines. Figure 4(a) shows E(vi) and v∗1 in Eq.(3) vs. θ2 for case II. Figure
4(b) shows V(vi) and Eq.(4) vs. θ2. Figure 4(c) shows the correlation coefficient ρ and Eq.(5) vs. θ2. There is some
discrepancy in the estimation of the variance, which originates from the diffusion approximation. We see that the
Gaussian approximation works well.

B. Lattice case

Next, we investigate the 1D lattice and 2D square lattice cases. We are interested in the r dependence of the
correlation. We consider L sites for a 1D lattice and L× L sites for a 2D lattice. The periodic boundary condition is
imposed in both cases. The nodes are indexed by i ∈ {1, · · · , L} for the 1D lattice and (i, j), i, j ∈ {1, · · · , L} for the
2D lattice, respectively. Nodes are linked with their nearest neighbors and |J(i)| = 2(4) for a 1D (2D) lattice. We set
µi = µ(i,j) = µavg = 1/2 and θ1 = 10.

~v obeys a multi-variate normal distribution for 1D lattice case. The inverse of the covariance matrix Σ−1 for the
1D lattice is:

(Σ−1)i,j = (θ1 + 2θ2)δi,j + θ2(δi+1,j + δi−1,j).

For a 2D lattice, the inverse of the covariance matrix Σ−1 is:

(Σ−1)(i,j),k,l = (θ + 4θ2)δi,kδj,l + θ2(δi+1,kδj,l + δi−1,kδj,l + δi,kδj+1,l + δi,kδj−1,l).

The variance of vi is given by:

V(vi) = µavg(1− µavg)Σi,i. (6)

The correlation between vi and v1+r is:

ρ(r) = Σ1,1+r/Σ1,1. (7)
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For a 2D lattice case, we obtain similar equations by replacing Σi,j with Σ(i,j),(k,l).

V(v(i,j)) = µavg(1− µavg)Σ(i,j),(k,l). (8)

The correlation between v(i,j) and v(i+r,j) is

ρ(r) = Σ(1,1),(1+r,1)/Σ(1,1),(1,1). (9)

Figure 5 shows a comparison of the MC data with the results of the Gaussian approximation. It is evident that the
multivariate normal distribution describes the joint probability function of ~v quite well. Furthermore, we can confirm
that the r dependence of the correlation decays exponentially with r for the 1D lattice case. For the 2D case, we also
observe the exponential decay for θ2 = 102. For large θ2 = 103, 104, the r dependence does not obey an exponential
decay. The correlation length becomes comparable with the system size L = 40 and the exponential decay is not
observed for the limited system size.

C. U.S. county network case

Here, we calibrate the model parameters θ1, θ2 using the U.S. presidential election data in Section II and the
Gaussian approximation of the model. We construct an artificial county network where 3105 counties constitute
nodes of the network and the counties with their nearest z neighbors are connected as links. Here, z neighbors are
determined based on the geodesic distance of the separation of the centroids. If j ∈ J(i) and i /∈ J(j), we add i in J(j).
The number of neighbors depend on i. We adopt z ∈ {3, 4, 5} and all the nodes are included in the largest components.
We then set θ1, θ2 so that SD of vi is approximately 8% and the correlation ρ between the nearest neighbor counties
becomes approximately 83%, which are the empirical values in Section II. We adopt θ1 = {0.044, 0.034, 0.03} and
θ2 = {73, 50, 40} for z = {3, 4, 5}, respectively. Given that θ2 >> θ1, the equilibrium values v∗i are almost equal. This
suggests that the cultural field cannot be encoded in the model parameters µi. This point is discussed in the last
section. Here, we adopt µi = 1/2.
Figure 6 shows the results. The correlation ρ of ~v(t) is plotted as a function of r for the three cases z = 3 (solid

black),z = 4(solid, gray) and z = 5(broken black). When we set µavg = 0.5, v∗i = 0.5 and the correlation of ~v(t)
are the same as that of ∆~v(t). They start from the same value of 83% of the nearest neighbor correlation and decay
monotonically with r. As z increases, the decay rate becomes small and the model shows a longer spatial correlation.
We also plot the empirical results of the correlation of ∆~vd(t) as a function of r using the symbols ◦. The z = 5 case
best fits the empirical behavior of the correlation of ∆~vd(t) among the three cases.

V. CONCLUSIONS

In this report, we study the fluctuation of vote share in US presidential election data. Compared with the temporal
average of the vote shares in each county, the fluctuation shows a stronger and long-range correlation. In order
to describe the behavior, we propose a voter model on networks. There are many voters in each node and they
choose another voter at random and copy the another voter’s choice as in the case of the voter model. Another
voter is selected from the same node where the voter lives or from a neighboring node. Each node has an intrinsic
parameter ~µ that determines the preference for an option. In addition, θ1 and θ2 incorporate the influence from
the voters in the nodes where the voters live and from the voters in the linked nodes, respectively. We derive the
multivariate Wright-Fisher diffusion equation for the joint probability density function (pdf) of the vote shares. The
pdf is a multivariate generalization of the beta distribution. We approximate the pdf using the multivariate normal
distribution and estimate the variance and the correlation coefficient of the vote shares. The results were then checked
numerically.
There are a few unresolved problems for future study. For example, the statistical modeling of elections and

estimation of the model parameters, ~µ, θ1 and θ2 that can fit the empirical nature of the election data need to be
investigated further. The estimation should be compatible with the long-range nature of the correlation with distance
r. We think it is necessary to generalize the model by incorporating several types of voters. As the equilibrium values
v∗i becomes approximately equal to µavg when θ2 >> θ1, {vd(i)} cannot be encoded in {v∗i }. The SIRM model avoids
this problem by introducing a noise term[22].
In order to realize ~vd in our model, which is a proxy of the cultural field, the assumption that all voters are

model voters is too simple. Some voters do not change their choices even if they interact with many other voters
of different choices. This possibility was previously considered in the modeling of Japan’s parliament election with
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three political parties[40]. We assumed that there are two types of voters, the fixed supporter of each political party
and the floating voter. The probability function then becomes the combination of the multinomial distribution of the
fixed supporter and the Dirichlet distribution of the floating voters. If we take into account the network structure of
the social influence, we have a combination of the multinomial distribution and a multivariate generalization of the
Dirichlet distribution. Using this idea, it is possible to incorporate ~vd in the model. It is also worthwhile to solve
the Wright-Fisher diffusion equation for the multi-variate beta distribution (Eq.1). Another type of multivariate beta
distribution has been derived for the inference in a statistical control process[41]. The multivariate beta distribution
for the voter model on networks should be derived since it is the natural multivariate extension of a beta distribution
based on the similarity with the multivariate normal distribution.
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[19] N. A. Araújo, J. S. A. Jr., and H. J. Herrmann, PLos One 5, e12446 (2010).
[20] C. Borghesi and J.-P. Bouchaud, Eur. Phys. J.B. 75, 395 (2010).
[21] C. Borghesi, J.-C. Raynal, and J.-P. Bouchaud, PloS One 7, e36289 (2012).
[22] J. Fernandez-Gracia, K. Suchecki, J. J. Ramasco, M. SanMiguel, and V. M. Egúıluz, Phys.Rev.Lett. 112, 158701 (2014).
[23] S. Galam, J. Phys. C: Solid State 15, 529 (1982).
[24] S. Galam and S. Moscovici, Eur. J. Soc. Psy. 21, 49 (1991).
[25] S. Galam and S. Moscovici, Physica A 238, 66 (1997).
[26] T. M. Liggett, Interacting Particle Systems (Springer-Verlag Berlin Heidelberg, 2005).
[27] M. Mobilia, Phys. Rev. Lett. 91, 028701 (2003).
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Appendix A: Wright-Fisher diffusion for SIRM model

In the SIRM model, voters who live in node i move to node j for work[22]. They interact with other agents of node
i and those of node j in addition to the agents on the link (i, j)[33]. We denote the number of voters on link (i, j) as
Ni,j and the number of votes for an option as ni,j . As in the social influence model on a network in the main text, we
introduce the parameters ~µ that determine the intrinsic preference for an option of node i. We also introduce θ1 and
θ2 which control the variance of the vote share and correlation of the votes shares between nodes, respectively. In the
SIRM model, there is a parameter α which controls the strength of social influence from the node where a voter lives
and works. Ni· ≡

∑

j Ni,j and ni· ≡
∑

j ni,j indicate the number of voters who live in node i and the number of votes

for an option attributed to them. N·j ≡
∑

iNi,j and n·j ≡
∑

i ni,j indicate the number of voters who work in node j
and the number of votes for an option due to them. Likewise, we also write vi·, v·j which represents the vote shares
of the voters who live in node i and those who work in node j. We then write NT =

∑

i,j Ni,j for the total number
of voters.
We write the probabilities for ni,j → ni,j + 1 and ni,j → ni,j − 1 as:

P (ni,j → ni,j + 1) =
Ni,j − ni,j

NT
·
ni,j + α(ai + θ2vi·) + (1 − α)(aj + θ2v·j)

Ni,j − 1 + θ1 + θ2

P (ni,j → ni,j − 1) =
ni,j

NT
·
Ni,j − ni,j + α(bi + θ2(1− vi·)) + (1− α)(bj + θ2(1− v·j))

Ni,j − 1 + θ1 + θ2

Here, ai ≡ θ1µi, bi = θ1(1 − µi) are defined as before. The raising operator Ri,j(~v) and the lowering operator Li,j(~v)
are then defined as:

Ri,j(~v) =
Ni,j

NT
(1− vi,j) ·

vi,j + α(ai + θ2vi·)/Ni,j + (1− α)(aj + θ2v·j)/Ni,j

1− 1/Ni,j + θ1/Ni,j + θ2/Ni,j

Li,j(~v) =
Ni,j

NT
vi,j ·

vi,j + α(ai + θ2vi·)/Ni,j + (1 − α)(aj + θ2v·j)/Ni,j

1− 1/Ni,j + θ1/Ni,j + θ2/Ni,j

The stochastic differential equation for vi,j is written as:

dvi,j = di,jdt+
√

Di,jWi,j(t)

Here Wi,j(t) is an iid Wiener process. The drift term di,j and diffusion terms Di,j are written as

di,j = αai + (1− α)aj − θvi,j + θ2(αvi· + (1 − α)v·j), (A1)

Di,j = 2vi,j(1 − vi,j). (A2)

Appendix B: Voter model on complete graph and beta binomial distribution

There are N voters and the number of voters who vote for an option is denoted as n. The probability for n → n+1
is written as,

P (n → n+ 1) =
N − n

N
·

n+ a

N − 1 + θ
.

The probability for n → n− 1 is:

P (n → n− 1) =
n

N
·
(N − n) + b

N − 1 + θ
.

Here, θ = a+ b. In the stationary state, the condition of the detailed balance between P (n) and P (n+ 1) is,

P (n)Ṗ (n → n+ 1) = P (n+ 1) · P (n+ 1 → n).

We obtain the next recursive relation for P (n) and P (n+ 1),

P (n+ 1) =
(N − n)(n+ a)

(n+ 1)(N − (n+ 1) + b)
P (n).
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The solution with the normalization
∑

n P (n) = 1 is the beta binomial distribution.

P (n) = NCn
(a)n(b)N−n

(θ)N
= NCn

B(n+ a,N − n+ b)

B(a, b)
.

Here, (x)n ≡
∏n

k=1(x+ k − 1) is the rising factorial. Using the definition of the beta function, we write P (n) as:

P (n) = NCn

∫ 1

0

pn(1 − p)N−n p
a−1(1 − p)b−1

B(a, b)
dp.

In the continuum limit, the pdf for v ≡ limN→∞ n/N is the beta distribution with shape parameters (a, b).

lim
N→∞

N · P (n = Nv) = fBeta(v|a, b) ≡
va−1(1− v)b−1

B(a, b)
.
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