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ABSTRACT 

 

This research investigates dynamic response of tunable periodic structures and 

homogenization methods in magnetoelastic composites (MECs).  The research on tunable 

periodic structures is focused on the design, modeling and understanding of wave 

propagation phenomena and the dynamic response of smart phononic crystals.  High-

amplitude wrinkle formation is employed to study a one-dimensional phononic crystal 

slab consists of a thin film bonded to a thick compliant substrate.  Buckling induced 

surface instability generates a wrinkly structure triggered by a compressive strain.  It is 

demonstrated that surface periodic pattern and the corresponding large deformation can 

control elastic wave propagation in the low thickness composite slab.  Simulation results 

show that the periodic wrinkly structure can be used as a smart phononic crystal which 

can switch band diagrams of the structure in a transformative manner.   A magnetoactive 

phononic crystal is proposed which its dynamic properties are controlled by combined 

effects of large deformations and an applied magnetic field.  Finite deformations and 

magnetic induction influence phononic characteristics of the periodic structure through 

geometrical pattern transformation and material properties.  A magnetoelastic energy 

function is proposed to develop constitutive laws considering large deformations and 

magnetic induction in the periodic structure.  Analytical and finite element methods are 

utilized to compute dispersion relation and band structure of the phononic crystal for 

different cases of deformation and magnetic loadings.  It is demonstrated that magnetic 

induction not only controls the band diagram of the structure but also has a strong effect 



ii 
 

on preferential directions of wave propagation.  Moreover, a thermally controlled 

phononic crystal is designed using ligaments of bi-materials in the structure.  

Temperature difference is used to generate large deformations and affect the elastic 

moduli tensor of the structure.  Phononic characteristics of the proposed structure are 

controlled by the applied temperature difference.  The effect of temperature difference on 

the band diagrams of the structure is investigated. 

Homogenization methods in periodic and random MECs are also investigated.  A finite 

element method (FEM)-based homogenization approach is presented to simulate the 

nonlinear behavior of MECs under a macroscopic deformation and an external magnetic 

field.  Micro-scale formulation is employed on a characteristic volume element, taking 

into account periodic boundary conditions.  Periodic homogenization method is utilized 

to compute macroscopic properties of the MEC at different mechanical and magnetic 

loadings.  A new efficient numerical scheme is used to develop the magnetoelastic 

tangent moduli tensors.   In addition, the effective response of a random MEC under 

applied magnetic fields and large deformations is computed.  The focus is on the spatially 

random distribution of identically circular inclusions inside a soft homogenous matrix.  A 

FEM-based averaging process is combined with Monte-Carlo method to generate 

ensembles of randomly distributed MECs.  The ensemble is utilized as a statistical 

volume element in a scale-dependent statistical algorithm to approach the desired 

characteristic volume element size. 
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CHAPTER ONE 

Introduction 

 

 

1.1 Overview 

This dissertation consists of two main topics: 1) wave propagation in tunable phononic 

crystals, and 2) computational homogenization in periodic and random magnetoactive 

composites.  New tunable periodic structures are proposed and analyzed to manipulate 

elastic wave propagation.  Moreover, periodic and random homogenization approaches 

are addressed in magnetoelasticity framework.  New numerical methods are presented to 

develop effective properties of magnetoelastic composites (MEC) utilizing 

homogenization approach.  Based on the contents of the dissertation, the present Chapter 

provides brief introductions and backgrounds on different topics that are presented in 

following chapters.   

 

1.2 Magnetoelastic composites 

MECs are materials consisting of micro-size permeable particles randomly distributed in 

an elastomeric matrix.  Upon the application of an external magnetic field, the MEC 

undergoes finite deformations due to the interaction of magnetizable particles and an 
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elastomeric matrix [1-10].  In addition to the nonlinear geometrical deformation, the 

mechanical properties of the MEC can be controlled by the applied magnetic field.  

Extensive works have been devoted to develop mathematical formulation of MECs [3-

28].  

Recently, researches have been focused on media with electro-magneto-mechanical 

coupling interactions.  Specifically, magnetorheological elastomers (MREs) have been 

developed as field-controllable composite materials capable of significant changes in 

their mechanical properties.  MREs consist of micron size magnetic particles suspended 

in an elastic/hyperelastic elastomeric matrix that can endure finite deformations upon the 

application of an external magnetic field [15-23].   

Curing the MRE by magnetic field causes the particles to form a chain-like column 

resulting in a transversely isotropic structure.  Otherwise, a random distribution of 

magnetic particles can be considered as an isotropic MRE.  The deformation in MREs is 

induced by the combined magnetic and mechanical interactions between iron particles as 

well as the hyperelastic matrix.  The applied magnetic field is an added parameter to 

control the mechanical properties of the MRE [3, 14].  Figure 1 shows an SEM image of 

MREs with random distribution of magnetic particles, and particles aligned along the 

applied magnetic field used for curing, within the silicon matrix [11]. 
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Figure 1. SEM images of MREs with (a) random distribution of magnetic particles, (b) particles 

aligned along the applied magnetic field used for curing, within the silicon matrix [11]. 

 

Theoretical modeling of MREs has been extensively studied based on the 

electrodynamics of continuous media [2, 15].  Several studies have been done to develop 

basic constitutive equations for nonlinear magnetoelastic relations [17-27].  Some efforts 

have been focused on the effect of magnetic fields and finite deformations on the wave 

propagation in MREs [20-28].  The effect of initial stress on the propagation of Rayleigh, 

Love and Stoneley waves in a magnetoelastic medium has also been studied in [24-26].  

Recently, general theoretical framework for the analysis of incremental motions 

superimposed on a state of finite deformations subjected to the electromagnetic field has 

been studied [20-22]. 

 

 

(a) (b) 
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1.3 Homogenization 

Different homogenization approaches have been utilized to investigate the effective 

characteristics of MECs for random and periodic microstructures.  Homogenization has 

been used as a tool to study the overall response of the composite and heterogeneous 

materials presumed to be statistically homogenous.  Various techniques have been carried 

out to simulate the heterogeneous materials as an equivalent effective medium [29-36].  

Homogenization offers an averaging process on the microstructure’s characteristic 

volume element (CVE) to compute the effective behavior of the composite.   

For periodic structures, CVE is known as the smallest spatial microstructural unit of the 

structure (i.e. a unit cell).  For random heterogeneous materials, the challenge is to find 

an appropriate CVE to extract the overall properties of the composite material.  For this 

purpose, a statistical analysis is required to find the CVE with randomly dispersed 

inclusions.  The effective behavior of composite material depends on properties of 

microstructure’s constituents.  Exact mathematical procedures as well as numerical 

methods have been developed to study overall mechanical properties of adaptive 

composites such as magnetoelastic and electroelastic media [37-44].   

Different types of micro-scale boundary conditions have been studied in the 

homogenization process [45-51].  Recently, a finite element method (FEM) based 

homogenization approach is used to study different mechanical and magnetic material 

parameters and boundary conditions on the overall response of the structure [46-47].   
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Homogenization has been widely used as a powerful tool in multi-scale modeling and 

FE
2
 analysis of heterogeneous structures [50].  An algorithm for computation of 

consistent tangent moduli of electroelastic composites is presented in references [47-49, 

51].   

 An example of multi-scale modeling in pure elasticity is shown in Figure 2.  First, a 

CVE is chosen for the study.  The CVE is loaded by the macroscopic deformation by 

incremental steps.  Then, the effective constitutive laws and homogenized moduli tensors 

are driven to characterize the macroscopic properties of the continuum.  The process is 

repeated in an iterative way until the convergence is achieved [52].   

 

Figure 2.  An example of multi-scale modeling for heterogeneous structures [52]. 

 

Many heterogeneous structures in engineering applications are identified by random 

distribution of their constituents within a matrix [52-61].  For brevity, “random 

composites” is referred to the heterogeneous structures with randomly dispersed 
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inclusions.  Likewise, “periodic composites” is used for the periodic distribution of the 

inclusions in a composite structure.  Examples of random composites cover wide range of 

polymer, ceramic or metal matrix surrounding inclusions of different materials.  The 

inclusions are mainly made of high material properties’ contrast with respect to matrix to 

enhance the effective properties of material.  Recent studies on the heterogeneous 

structures focuses on evaluation of overall response of composites.  Overall properties are 

also referred to effective or homogenized properties in the literature [52-61].  The 

challenge in study of mechanics of random composites is to identify a characteristic 

volume element (CVE) and appropriate boundary conditions.  Since the classical CVE 

concept in the homogenization of periodic composites is not valid for random media.  

Several techniques have studied the homogenization of non-periodic media [52-69].  A 

statistical based scale-dependent homogenization approach is used to simulate 

mechanical behavior of a two phase particulate composite.  A numerical convergence 

scheme is used to define an algorithm for determining the CVE size [53].   Monte-Carlo 

method is widely used to generate statistical ensembles of random composites [53-57].  

Specific details are addressed in the determination of CVE size for linear elastic and 

nonlinear regimes under different boundary conditions [57].  A scale-dependent 

homogenization approach is presented for the study of linear and nonlinear thermoelastic 

random composites which uses variational methods to define hierarchy bounds on 

constitutive laws.  This provides a statistical limit for determining CVE size [59-66].  

Moreover, the mismatch between the material properties of composites constituents has 

shown to have strong effect on the CVE size [56-60].  In a recent study, a multi-scale 

strategy is proposed for nonlinear thermoelastic analysis of random composites with 
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temperature dependent properties [66].  Random magnetoelastic composites have also 

been studied in [67-70] where different inclusion shapes, material properties and particle 

concentration are used in the calculations.  A closed-form expression is derived for the 

effective constitutive laws through defining a homogenized energy function which takes 

into account the concentration, aspect ratio of fibers cross-section and their distribution 

[70]. 

     

1.4 Phononic crystals 

Electromagnetic and elastic wave propagation through periodic structures has been 

extensively studied in recent years.  A phononic crystal (PnC) is a periodic structure 

consists of different materials in an elastic medium designed to interact with elastic 

waves.  PnCs are structures with one-dimensional (1D), two-dimensional (2D) or three-

dimensional (3D) periodicity in their geometry and material properties.  These structures 

have interesting applications, such as, frequency filters, beam splitters, sound or vibration 

isolators, acoustic mirrors and elastic waveguides [71-84].   

Periodic structures can be designed to hinder wave propagation in some range of 

frequencies; namely, band-gaps.  Existence of band-gaps is due to the periodic change of 

density and speed of wave in the structure [77-80].  Unit cell is the smallest structural 

unit of the periodic material which is spatially assembled together in 1D, 2D or 3D to 

build up the structure.  Basically, the wave propagation characteristics in PnCs depend on 

unit cell’s geometry and material properties (i.e. density, stiffness and bulk modulus). 
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While different approaches have been used to study wave propagation phenomena in 

periodic structures, the most common methods are plane wave expansion methods, finite 

element methods, and finite-difference time domain methods to explore band diagrams 

[72, 75, 77, 78].  Figure 3 shows examples of 1D, 2D and 3D PnCs and corresponding 

unit cells [85-87]. 

 

Figure 3. Examples of (a) a 1D [85], (b) a 2D [86] and (c) a 3D [87] PnC and corresponding unit 

cells chosen for wave propagation study. 

 

Dynamic response of the structure can be controlled through the geometry and elastic 

properties of the unit cell.  Adaptive periodic structures promise the ability to design 

tunable properties that can control band-gaps upon the application of an external 

stimulus.  The elastic band structure of PnCs made of piezoelectric materials has been 

investigated through plane wave expansion method [83].  The phononic band-gap (PBG) 

(a) 

(b) 

(c) 
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and acoustic characteristics of the structure have been shown to significantly shift due to 

various electric and magnetic fields [84].   

The band structure characteristics of lattices of three different geometries consisting of 

piezoelectric and piezomagnetic media were studied to understand the effects of different 

magnetic and electric fields through the plane wave expansion method [88-90].  It has 

been shown that tunable PnCs can be employed as a transmission switch for elastic waves 

when magnetic field passes a threshold [88].  Only limited work has been carried out on 

the band diagram calculations of MRE PnCs.  In all previous work on MRE PnCs 

constant coefficients are presumed as magnetoelastic coefficients [91-94].  Parametric 

study of the effects of different geometry and configuration on the band structure of a set 

of parallel square-section columns regularly distributed in air has been investigated as a 

tunable periodic structure [90].  Periodic structures have also been studied theoretically 

and experimentally for super resolution at a narrow band of frequencies using flat lenses 

made of PnCs [95].  Figure 4 shows some applications of PnCs as waveguides and 

acoustic lenses [95-96]. 
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Figure 4.  Application of PnCs as (a) acoustic lens [95] and (b) acoustic waveguides [96]. 

 

Deletion of existing band-gaps and creation of new band-gaps were reported due to the 

effects of large deformation and the microstructural elastic instability in periodic 

elastomers subjected to different types of mechanical loadings.  When deformation 

reaches a critical value, strong revolution happens in the band structure due to 

transformation in structural pattern resulting in a tunable behavior of the structure in 

terms of the applied mechanical loading [97-98].  Figure 5 shows a tunable periodic 

structure which its phononic characteristics is tuned by the applied macroscopic 

deformation [99].  

(a) 

(b) 
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Figure 5. A tunable 3D PnC and corresponding unit cells in undeformed and deformed states, 

designed to manipulate elastic waves [99]. 

 

1.4.1 Wave propagation analysis using Bloch theorem 

Elastic wave propagation in PnCs is studied based on the fundamentals of solid state 

physics in lattices utilizing Bloch theorem [74].  In PnCs, the desired quantities in wave 

propagation are extracted from displacement and stress fields.  In this work, a 2D infinite 

size periodic lattice in       plane, is considered.  The periodic lattice is characterized by 

a unit cell and direct lattice vectors    and   .  Reciprocal lattice of any periodic structure 

is defined by reciprocal lattice vectors    and   : 
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‖     ‖
            

        

‖     ‖
                   

       

‖     ‖
 

Hence, the position of each point, Q, of the lattice -with respect to the reference unit cell- 

can be expressed as 

            

where       are integers.  The displacement of a point Q in the lattice satisfies the 

periodic condition: 

            

Bloch theorem states that the displacement of each point Q follows the Bloch theorem: 

                 

where k is the Bloch wavenumber. Comparing the Bloch statement with the periodicity 

condition requires; 

        

Since              (where     is the Kronecker delta) this statement is satisfied when k 

is represented in terms of reciprocal lattice vectors: 

            

Clearly: 

           . 
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Figure 6 shows a typical periodic structure with corresponding unit cell, direct lattice 

vectors and reciprocal lattice vectors [74, 97-99]. 

 

Figure 6. A typical periodic structure with corresponding unit cell, direct lattice vectors and 

reciprocal lattice vectors. 

   

Bloch theorem states that the spatial field in each unit cell of the direct lattice presents the 

same distribution and does not depend on the cell’s location.  This fact reduces the 

problem of studying an infinite number of cells to one of considering only a single unit 

cell by applying appropriate boundary conditions.  Several techniques are demonstrated 

on the wave propagation analysis in periodic structures.  Mathematical methods such as 

plane wave expansion method have been used for simple geometry lattices while finite 

difference time domain method and FEM based solutions are usually used to study 

complex microstructures [71-99].  In FEM based approach, the unit cell is meshed and 

a1 

a
2
 

b
2
 

b
1
 

Q 

𝑥  

𝑥  
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Bloch boundary conditions are applied on the opposite boundaries of the unit cell [77-

78].  The wave propagation in the unit cell is described through the discretized equation 

of motion and by considering the cell interaction with the neighboring cells.  Substituting 

Bloch solution in the wave equation results in an eigenvalue problem whose eigenvalues 

are the frequency of the solution.  Wavenumber is a periodic function of the wavevector,  

k in the reciprocal lattice.   

Hence, the dispersion relations are obtained by investigating the variation of the 

eigenfrequency,    versus wavenumber, k, over a single period in reciprocal lattice.  This 

requires identifying the single unit cell in the reciprocal lattice called first Brillouin zone.  

The dispersion relations are extracted from the eigenvalue problem where the 

wavenumber is swept on the boundaries of the first Brillouin zone.  It has been shown 

that the calculation domain may further be reduced by taking the advantage of the 

symmetry of the first Brillouin zone.  The reduced domain is referred as irreducible 

Brillouin zone (IBZ) [74-78].  Some examples of first Brillouin zone and IBZs are 

depicted in Figure 7 for some typical lattices [100].   

Once the Brillouin zone is identified, the wavenumber, k, is swept on the boundaries of 

the IBZ and the corresponding eigenfrequencies are computed for each k.  Band diagrams 

are then plotted as   versus k dispersion relations to analyze the band-gaps of the 

structure.  
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Figure 7.  Examples of first Brillouin zone and irreducible Brillouin zone for 1D, 2D and 3D 

typical lattices [100]. 
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1.5 Pattern change in soft structures 

One of the concepts that have been utilized in the design of the PnCs in this dissertation 

is the pattern change in the soft structures.  Recently, interests have been attracted to 

study the behavior of reconfigurable structures [101].   Once the loading condition is 

vanished the structure tends to return to the initial state in a reversible manner.  Advances 

in reconfigurable materials have led to the next generation of adaptive and actuating 

materials.  Various parameters can be employed to modulate the shape and geometry of 

the materials as a tunable material.  The structures can be loaded by different external 

stimuli such as mechanical [102], electrical [103], magnetic [104] and thermal [105] 

excitations.  The static and dynamic response of the structure then can be controlled 

through the applied stimuli.  In this section, recent findings on pattern change in the 

reconfigurable structures are summarized.  

Figure 8 shows a flower-shaped film that is capable of self-folding and resulting in a 

different enclosed shape.  The hinged structure is combined with thermo-responsive self- 

folding capsules which are absorbed on the polymer bilayer at elevated temperatures. 

Cooling results in swelling of thermo-responsive polymer and folding of the capsules.  

Heating results in releasing the cells and unfolding the capsules provides a thermally 

modulated reconfigurable scheme in the structure [105].  
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Figure 8. A thermally modulated reconfigurable structure [101, 105]. 

     

In a recent study, pattern change in a soft periodic lattice has shown to have negative 

Poisson’s ratio effect.  Buckling in the microstructure has been employed to contract the 

structure in the transverse direction when it is under compressive loading.   The pattern 

change arises due to microstructural instability in the material.  Figure 9 shows the 3D 

periodic lattice in undeformed and deformed state [106].  The structure is compressed by 

      which demonstrates the contraction in the transverse direction. 
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Figure 9. Transverse contraction of the periodic lattice under compressive strain due to 

microstructural buckling [106]. 

 

Magnetic field has been used as an external stimulus to change the pattern in 

magnetoactive polymers.  The structure is made of 60 wt% vinyl cobalt nanoparticles 

within a PDMS matrix, under the excitation of a permanent magnet.  The structure 

restores its initial shape once the magnetic field is vanished provides the opportunities to 

utilize as a reconfigurable structure [104]. 

Pattern change in elastic periodic structures has also been utilized in wave propagation 

systems [98, 107, 108]. The applied deformation transforms the structure to a new 

geometry which can switch the band diagrams in a reversible manner.  Figure 10 shows 

the effect of compressive load on a granular structure.  It has been shown that the 
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phononic characteristics of the structure significantly changes under the influence of the 

large deformation and stress [107].      

 

Figure 10.  Pattern change in a granular structure under compressive loading [107]. 

 

One of the interesting pattern change phenomenon occurs in bilayer structures under 

compressive strain, where the contrast in the material properties of a thin layer with a 

thick substrate generates wrinkles at the surface of the structure. When a critical 

compressive strain is applied to an elastic thin film bonded to a compliant substrate, 

surface wrinkling occurs in the thin film due to surface buckling instability.  Wrinkling 

can be employed as a novel methodology for creating 1D and 2D periodic micro and 

nanosurfaces [109-125].  Wrinkling has potential applications due to its highly ordered 

pattern, unique structure and convenient fabrication methods; from surface patterning 

[118-119] and smart adhesion [120-121] to optical surfaces [122-123] and flexible 

electronic devices [124].   It has been shown that the amplitude and periodicity of 
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wrinkles depend on the material properties, geometry of layers and the applied 

compressive strain [110-111].  A recent study has developed a new method to fabricate 

high aspect ratio (amplitude over wavelength of wrinkles) wrinkles over flat surfaces 

which enhances the aspect ratio from 0.3 to 0.6 [125].  This has improved the surface 

contour area from 9% to 36%, doubled the local curvature, and increased the 

stretchability of wrinkly flexible electronic devices from 20% to 40%.  Formation of high 

aspect ratio wrinkles results in a periodic pattern of scatterers at the surface of the 

structure.  Figure 11 shows the surface wrinkling evolution of a bilayer composite of thin 

gold film on a PDMS substrate at different levels of macroscopic strain.  Different 

wrinkle modes and patterns are generated by the increasing strain beyond        [126]. 

 

Figure 11. Surface wrinkling of a 66nm thick film of gold bonded on a PDMS substrate at 

different levels of applied compressive strain from     at left column to       at the right 

side [126]. 
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In Chapter 2 the surface wrinkling pattern change is employed to design a smart PnC slab 

and analyze the wave propagation in the resultant periodic structure. 

 

1.6  Notations 

Here, the vector and tensor notations mainly used throughout this manuscript, are 

summarized.  The summation notation for repeated indices is used.  Scalars are in regular 

letters.  Bold faces are used for vectors and tensors.  The scalar product of two vectors A 

and B is denoted by:         .  The terms single contraction or dot product also refers 

to the scalar product.  Cross product of two vectors is defined by:              

where   is the third-order permutation tensor.   

The double contraction or scalar product of two second-order tensors C and D is denoted 

by:           .  Single contraction is also defined on two second-order tensors as; 

          .  Single contraction of a second order tensor C with a vector A is also 

denoted by;          .  Double contraction and single contraction of two third-order 

tensors E and F are denoted by:              and              , respectively.  

Double contraction of a third-order tensor E and a second-order tensor C is a vector 

denoted by;            .  Scalar product of a third-order tensor E and a vector A is a 

second-order tensor represented by;           .  For a vector A and a second-order 

tensor C cross-product is a second-order tensor defined by;               . 
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For three vectors M, N and P tensor product is defined as;              .  Tensor 

product of two vectors A and B is a second-order tensor denoted by;         .  

Tensor product of two second-order tensors C and D is a fourth-order tensor denoted by; 

          .  Tensor product is also defined for a vector A and a second-order tensors 

C by:           which represents a third-order tensor.  Also          .   For a 

second order tensor C with components    , the transpose is denoted by    with the 

components    .  The trace of C is defined by;        .  

 

1.7 Research Goals 

The goal for the tunable phononic crystals research is to explore: 

 Novel tunable PnCs to employ in wave propagation systems. 

 Combined effects of magnetic field and pattern change on the wave propagation 

in a tunable PnC. 

 Surface acoustic band-gaps in a smart PnC.  

 Thermally modulated pattern change effects on wave propagation in smart PnCs. 

The goal for the homogenization methods in magnetoactive media is to:  

 Identify the nonlinear magnetoelastic moduli tensors using a cost-effective 

computational method and available commercial FEM packages.  Moduli tensors 

are of high importance in the study of instability, effective properties and multi-



23 

 

scale modeling of MECs.   Only few existing work are reported on the calculation 

of the moduli tensors which requires high mathematical computations.   

 Understand new computational methods for homogenized properties of MECs 

with randomly dispersed permeable inclusions using FE-based homogenization 

methods.   

 

1.8   Uniqueness of this research  

 Surface instability is employed to design a novel smart PnC slab.  Band diagram 

of the resultant tunable structure is significantly transformed by the applied 

compressive strain.  

 Combined effects of pattern change and magnetic excitation has shown significant 

effects on the band diagrams of the porous structure.     

 Band diagrams of the magnetoelastic PnC is examined through defining 

magnetoelastic energy function.  As a result, nonlinear moduli tensors are 

considered as functions of deformation gradient tensor and magnetic induction 

vector.   

 The effect of magnetic field on the elastic wave directionality in the 

magnetoactive PnC is studied.  Magnetic field has shown to strongly affect the 

preferential directions of wave propagation in magnetoactive PnCs. 

 A thermally tunable PnC is designed and the effect of temperature difference on 

the wave propagation is investigated.  Temperature difference has shown to 

transform the band diagram of the resulting tunable PnC. 
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 A new cost-effective algorithm for computation of nonlinear moduli tensors of 

MECs is presented. 

 A FEM-based homogenization approach is combined with Monte-Carlo method 

to evaluate overall properties of MECs with random distribution of inclusions. 

 

1.9 Structure of the dissertation 

Chapter 2 introduces a new paradigm in designing tunable PnCs using surface instability.  

Buckling induced surface instability is used to generate wrinkly scatterers at the surface 

of a bilayer composite slab.  The slab consists of a thin and stiff film bonded on a soft 

substrate. The effect of applied compressive strain on band diagrams of the PnC slab is 

investigated.  

In Chapter 3 the effect of combined effects of mechanical deformation and magnetic field 

on dynamic response of a magnetoactive PnC is studied.  First, the theoretical 

formulation of magnetoactive media is reviewed.  A hyperelastic magnetic energy 

function is considered to develop the constitutive laws.  Variational method is used to 

develop the coupled governing equations.  Weak expressions of the coupled governing 

equations are derived to use in the FEM framework.  Nonlinear moduli tensors are used 

as functions of deformation gradient tensor and magnetic field.  The Chapter focuses on 

dynamic response of the tunable PnC under applied magneto-mechanical loadings. 
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Chapter 4 introduces a new thermally controlled PnC.  Temperature difference is used to 

exploit large deformations and affect the phononic characteristics of the structure.  Band 

diagrams are plotted to investigate the effect of temperature difference on band-gaps.  

Theoretical modeling and governing equations of magnetoactive media is presented in 

Chapter 5.  The Chapter employs the FEM-based homogenization approach to propose a 

novel and computationally cost-effective method for evaluation of homogenized tangent 

moduli tensors using sensitivity analysis.  

Chapter 6 details the computational approach in the study of magnetoactive media with 

randomly dispersed particles.  An FEM based homogenization method is combined with 

Monte-Carlo approach to evaluate the static response of the structure under macroscopic 

loadings.  A statistical approach is presented to find the appropriate CVE size to compute 

the overall properties of the structure.   

Finally, concluding remarks and some recommendations for future work are presented in 

Chapter 7.  
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CHAPTER TWO 

Switching Band-Gaps of a Phononic Crystal Slab by Surface Instability
1
 

 

 

High-amplitude wrinkle formation is employed to propose a one-dimensional phononic 

crystal slab consists of a thin film bonded to a thick compliant substrate.  Buckling 

induced surface instability generates a wrinkly structure triggered by a compressive 

strain.  It is demonstrated that surface periodic pattern and corresponding stress can 

control elastic wave propagation in the low thickness composite slab.  Simulation results 

show that the periodic wrinkly structure can be used as a transformative phononic crystal 

which can switch band diagram of the structure in a reversible manner.  Results of this 

study provide opportunities for smart design of tunable switch and frequency filters at 

ultrasonic and hypersonic frequency ranges.     

In the present study, one of the unexplored features of wrinkle-based structure is studied; 

utilizing wrinkle formation at a surface of a slab as a tunable phononic crystal (PnC) in 

elastic wave propagation systems.  The effect of generation and control of wrinkles on 

the propagation of elastic wave in thin film/substrate slabs is investigated.  It is presumed 

that global buckling is prevented. Wrinkles are formed when the compressive strain 

                                                           
1
 Results of this chapter are published in: 

 

 Bayat A and Gordaninejad F 2015 Switching band-gaps of a phononic crystal slab by surface 

instability Journal of Smart Materials and Structures 24 075009. 

 Bayat A and Gordaninejad F 2015 A Wrinkly Phononic Crystal slab Proc. SPIE San-Diego, USA, 

9438, p. 943810. 

 

http://iopscience.iop.org/0964-1726/24/7/075009/article
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2212031
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reaches a critical strain.  The compressive strain is used as a control parameter to tune the 

periodicity, amplitude and pattern of the wrinkly slab.  Phononic characteristics of the 

periodic wrinkly slab will be controlled through both geometry and stress.   

The wavelength   of uniform wrinkles is defined by       (
       

  

        
  
)

 
 ⁄

,  where 

          are the elastic modulus, shear modulus and Poisson’s ratio of the film, 

respectively, and           the elastic modulus, shear modulus and Poisson’s ratio of the 

substrate, respectively.  The wavelength is defined as the length of the structure divided 

by number of wrinkles in the undeformed state.  The periodicity in a deformed 

configuration is defined by          where   is the applied strain beyond the 

bifurcation point.  The amplitude of wrinkles relates to the applied strain by   

  √
 

  
   where    is the critical strain defined by    

 

 
(
        

  

       
  
)

 
 ⁄

.   

2.1 Modeling 

The post-bifurcation state of the structure as well as wave propagation in the deformed 

structure is investigated through numerical simulations.  Simulations are performed using 

Finite element methods (FEM) through COMSOL Multiphysics.  A 2D plane strain 

model is adopted to simulate the 1D wrinkling in a bilayer structure, beyond the 

bifurcation point.  The schematic of the model, parameters and boundary conditions are 

shown in Figure 12(a).  Loading of the structure will be applied through prescribed 

compressive strain, ε in the    direction at the right edge.  Free shear traction is imposed 

on all edges.  Symmetry boundary condition is applied on the left and bottom edges to 
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prevent normal displacements.  The top surface has a free boundary condition.  The 

thickness of the substrate is chosen to be sufficiently deep compared to the film 

thickness.  

 

  

 

Lagrangian coordinates is chosen for the study.  Two different cases of film-substrate 

bilayer composite slabs are considered here:  a linear elastic film on a soft material 

(linear-hyperelastic) and a hyperelastic film on a soft substrate (hyperelastic-hyperelastic) 

hereafter will be referred as L-H and H-H bilayer slabs, respectively.  A nearly 

incompressible neo-Hookean model is selected for hyperelastic materials.  A linear 

buckling study is carried out on the bilayer structure to predict the mode shapes at 

compressive strains.  To deal with small amplitude signals, a linear perturbation analysis 

is used for the solver to predict the mode shapes.  Surface deformation modes will be a 

plane strain sinusoidal deflection in       plane as schematically shown in Figure 

12(b).  Other mode shapes mainly differ in number of the periodicity.  Two typical mode 

shapes are pictured in Figure 13.  The first mode shape resulted from the buckling 

analysis for both L-H and H-H bilayer structures have similar patterns.   

Free 
 𝑓  

H 

Symmetry B.C. 

Symmetry 

B.C. 

𝜺 

𝒫 
Λ 

𝒙𝟏 

𝒙𝟐 

(b) (a) 

Figure 12. (a) Schematic of a bilayer slab and corresponding boundary conditions, and (b) the 

deformed wrinkly structure resulted from the compressive stretch, ε, due to surface instability 

(not to scale).  
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Figure 13. First and second mode shapes for a typical L-H structure 

 

A nonlinear stationary study is carried out on the bilayer slab of finite thickness to predict 

post-buckled wrinkly shape under compressive strain.  Slight sinusoidal imperfections are 

imposed on the geometry of the film layer to activate the buckling mode and capture the 

post-transformation shape.  In buckling mechanisms, post-bifurcation states cannot be 

captured for an ideal system.  External perturbations are required to excite the desired 

buckling modes.  Imperfections can be applied through perturbations in:  (1) mesh, (2) 

boundary conditions, and (3) geometry of the model.  In this study, imperfections are 

applied through the geometry of the structure.  Slight sinusoidal perturbation is imposed 

on the geometry of the film layer to activate the desired buckling mode and capture the 

post-transformation shape.  Post-bifurcated wrinkles’ shape is highly sensitive to the 

applied imperfection.  Figure 14 shows the effect of imperfection amplitude on the 
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bifurcation. A sensitivity analysis is conducted to find the appropriate imperfection 

weight.  Similar post-bifurcation modes are resulted for the imperfection weight in the 

range of 0.02%-0.2%.  No bifurcation occurs below 0.02%. 

 

 

 

 

 

 

 

 

Results for wrinkling of the L-H and H-H bilayer structures at different levels of the 

applied strain are shown in Figure 15.   For L-H structure,          ,       ,    

         ,            , 
  

 
      and 

 

 
      , are used as input parameters, where    

and    are bulk and shear moduli of hyperelastic substrate, respectively.  For H-H 

structure,             ,            ,              ,             , 
 

 
     and 

  

 
       are used in the model.  Once the critical strain is reached, the surface initiates 

Figure 14.  Effect of different imperfection weight (w) on the bifurcation.  Post-buckling 

does not occur for w = 0.01% and less. 



31 
 

to buckle and evolves by the increasing applied strain.  The amplitude of wrinkles 

continuously increases by the compressive strain.  For the L-H composite slab, a 

sinusoidal mode appears in the structure for different levels of     In Figure 15(b), one 

observes that upon the increase of  , different modes of post-bifurcation appears in the H-

H slab.  Once the   passes 0.33, the sinusoidal mode transfers to a second mode with a 

wavelength and a periodicity twice those of the first mode [113].  Further increase of the 

compressive strain beyond 0.37, results in a third mode with a wavelength and a 

periodicity three times as those of the first mode.  It must be noted that all three post-

bifurcation modes are triggered by the initial sinusoidal imperfection in both L-H and H-

H models. 

Figure 16 shows the variation of the dimensionless amplitude   
 

    
 (left axis) and 

periodicity of wrinkles (right axis) versus the applied strain,  , where   is the maximum 

vertical displacement of the top surface boundary, obtained from the FEM modeling.  

The periodicity of wrinkles continuously decreases by the increasing strain for L-H 

(Figure 16(a)) and H-H (Figure 16(b)) structures and agrees with the theoretical 

estimation.  Discontinuity of the periodicity graph in Figure 16(b), appears due to 

periodicity-doubling and tripling at        and       , respectively. 
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The periodicity continues to decrease for second and third post-bifurcation modes.  For 

L-H structure, the threshold strain to initiate the surface buckling is          , which 

slightly differs from the theoretical prediction          .  Likewise, for H-H structure, 

the critical strain is           , while the theoretical critical strain predicts          .  

𝜀       

𝜀       

𝜀      

(a) L-H Structure 

𝜀       

𝜀       

𝜀      

(b) H-H Structure 

Figure 15. Simulation results for plane strain wrinkling of (a) L-H structure, with 
𝝁𝒇

𝝁𝒔
 𝟏𝟐𝟓, 

𝝂𝒇  𝟎 𝟐 𝝂𝒔  𝟎 𝟒𝟗  
𝒉𝒇

𝑯
 𝟎 𝟏𝟓, 

𝑯

𝜸
 𝟎 𝟐𝟓  and (b) H-H structure, with 

𝝁𝒇

𝝁𝒔
 𝟏𝟐𝟓, 

𝜿𝒇

𝜿𝒔
 𝟑, 

𝒉𝒇

𝑯
 𝟎 𝟐𝟓, at different levels of compressive strain.  Dashed rectangles show unit cells 

selected for wave propagation analysis. 
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Consequently, it is demonstrated that the geometry, pattern and periodicity of wrinkles 

are significantly transformed by the applied compressive strain, creating opportunities to 

employ the wrinkly structure as a tunable 1D PnC.  The elastic wave propagation in the 

periodic wrinkly structure is investigated through the FEM.  Wave propagation in 

periodic structures depends on the unit cell’s geometry, material properties and the 

lattice’s periodicity.  The incremental elastic wave propagation is influenced by the 

transformation of wrinkles’ pattern due to large deformations and stress.   

The deformation of the body is defined by the deformation gradient tensor,   
  

  
 , 

which projects a point in the material coordinates,  X,  to its Eulerian coordinates, x.  The 

constitutive law for linear elastic film at large deformation is defined by a stiffness matrix 

through        
 

 
         .  The first Piola-Kirchoff stress tensor is defined 

by: 

(a) L-H structure (b) H-H structure 
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Figure 16. Variation of the dimensionless amplitude, 𝜹 (left axis) and periodicity of the 

wrinkles, 𝓟 (right axis) vs. applied strain ε, for (a) L-H and (b) H-H composite slabs, 

computed form numerical simulations. 
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                (1) 

 

The hyperelastic material is characterized by a neo-Hookean type strain energy function, 

as follows: 

  
 

 
              

 

 
                  (2) 

 

Thus, the first Piola-Kirchhoff stress tensor,   
  

  
 is: 

                               (3) 

 

where     is the transpose matrix of the inverse of   and       .  Equation governing 

the incremental motions superimposed on pre-deformed structures in Lagrangian 

coordinates is: 

   ̇   
   ̇

   
            (4) 

 

where  ̇ is the incremental displacemet,  ̇ is the incremental first Piola-Kirchoff stress 

tensor, and   is the density of each layer, hereafter is referred to as    and    for film and 

substrate layers, respectively. The increment of first Piola-Kirchoff stress tensor,  

 ̇     ̇ is a function of the incremental deformation gradient tensor,  ̇  
  ̇

  
 .  The 

incremental moduli tensor is a fourth-order tensor defined by   
   

    
 .  For the material 

model defined in Equation (2) the incremental moduli tensor is: 

                                              (5) 
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Where       
    

    
        and   is the tensor product symbol.  A solution of the wave 

equation in the form of plane wave  ̇       ̇         is sought, where  ̇ is the 

amplitude vector and   is the angular frequency.  Thus, the stress can be written in the 

following form: 

 ̇   ̇                 (6) 

 

Therefore, the equation of motion is an eigenvalue problem, as follows: 

   ̇      ̇               (7) 

 

where   is the eigenfrequency of the system.  

Wave propagation in PnCs is investigated through the application of Bloch type boundary 

conditions on parallel boundaries of the unit cell; the smallest repetitive structural 

element of the structure.  The deformed unit cells are shown in Figure 15 for each 

compressive strain.  To capture the first mode of the post-transformed unit cell, a 

rectangular geometry with a width of        (
       

  

        
  
)

 
 ⁄

, and a height of        is 

chosen as the unit cell to be deformed through the compressive strain.  For the second 

and the third post-bifurcation modes, unit cells with widths of     and    are modeled, 

respectively.  For each unit cell, appropriate perturbations are imposed on the geometry 

of top surface to excite the desired mode.  The periodicity,    of the lattice equals the 

wavelength of the wrinkle in the deformed state.  For 1D wave propagation, Bloch type 
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displacement boundary conditions   ̇        ̇              are applied on the left and 

the right boundaries of the unit cell, where     is the Bloch wave vector and      is the 

distance vector between parallel boundaries.  Superscripts + and – denote corresponding 

right and left opposite boundaries, respectively.  It follows that the traction on the right 

and the left boundaries follows the Bloch relation.  The only difference appears due to the 

fact that tractions on parallel boundaries are in opposite directions.  The wave vector 

takes values of         along the irreducible Brillouin zone (IBZ), where           

is a real number and    
  

 
  is the lattice vector of the 1D reciprocal space [74].   

It is noted that in FEM solvers, once the Bloch displacement boundary conditions are 

applied, the traction boundary conditions are automatically satisfied.  Implementation of 

the plane wave form solution in the equation of motion and FEM discretization of the 

problem results in an eigenvalue problem whose stiffness matrix is a function of 

deformation gradient tensor and wavenumber,  .  Prestressed eigenfrequency study of the 

software is used to take into account the effect of deformation and prestress on the wave 

propagation analysis.  This analysis is provided by the software to compute 

eigenfrequencies influenced by a prior static loading.  By sweeping   on the boundaries 

of IBZ, dispersion relations are investigated and eigenfrequencies are extracted as a 

function of wavenumber,     to plot band diagrams.  Dispersion curves are plotted as 

normalized frequency,    
  

    
  versus reduced wavenumber,  k, where    

        

    
 , 

   √
      

  
  and     √

      

  
.  All dispersion curves and band diagrams are computed 

for the eigenfrequencies larger than 1MHz. 
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2.2 Results and discussion 

Band diagrams at different levels of the applied strain are shown in Figure 17, for both L-

H and H-H structures.  Band-gaps are shown in shaded regions.  
  

  
        

  

  
      

  

 
         

 

 
                   and        are inputs of the L-H model.  Geometry 

and material parameters used in the H-H model are  
  

  
        

  

  
     

  

 
         

 

 
 

       and  
  

  
       where   is the wavelength of wrinkles at first bifurcation mode.   

Figure 17(a-d) demonstrates that band-gaps are generated and shifted by increasing 

compressive strain for L-H periodic slab.  Two gaps are observed at        and       .  

Five band-gaps are created in frequency spectrum of the structure when the strain is 

increased to         and       .  Analogously, for H-H composite, number and width 

of the band-gaps are switched by increasing strain.  Figure 17(g-h) shows that when the 

periodicity doubling and tripling take place at        and      0, respectively, 

significant transformation of the wave propagation characteristics is observed.  Results 

show that the dispersion curves tend to be flat bands at higher strains, providing more 

band-gap properties at second and third post-bifurcation modes.  All results presented in 

Figure 17 are computed for a constant height of the slab,  
 

 
       

 

 

 



38 
 

 

 

 

 

Figure 17. Numerical results for band diagram plots for (a-d) L-H and (e-h) H-H composite 

structure at different levels of the compressive strain, 𝜺.  Band-gaps are shown in shaded regions.  

Dispersion curves are computed for eigenfrequencies larger than 𝟏𝑴𝑯𝒛.   
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Figure 18 illustrates the effect of height of the slab on band diagrams of the structure.   

Slabs with different heights of  
 

 
               and 3 are modeled for both L-H and H-H 

composites.  Input parameters for the L-H composite are 
  

  
        

  

  
      

                                        and         For the H-H model, 

  

  
        

  

  
     

  

  
                           and         are inputs of the 

model.      

Figure 18(a-d) shows how dynamic response of the L-H composite is influenced by 

height of the substrate.  Band-gaps at higher frequencies vanish when     .  Similar 

trend is observed for H-H model, as is shown in Figure 18(e-h).  For both L-H and H-H 

composites, band-gaps moves to lower frequencies and the high frequency gaps vanish 

for     .  For      no band-gap appears in band diagrams.  Increasing the height of 

the slab results in a high contrast between the wrinkles’ amplitude and thickness of the 

structure, so as wrinkles barely affect the wave propagation.  One observes from Figures 

18(d) and 18(h) that band diagrams are most likely a bulk material rather than a periodic 

structure.  Red dashed line in Figures 18(d) and 18(h) is the sound line limiting the sound 

cone given by the transverse phase velocity of the substrate.  Two narrow surface band-

gaps are observed for both L-H and H-H structure as shown in the Figures 18(d) and 

18(h), respectively.     
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 Figure 18.  Numerical results for band diagram plots for (a-d) L-H and (e-h) H-H periodic 

structure for different heights of composite slabs.  Band-gaps are shown in shaded regions.  

Dispersion curves are computed for eigenfrequencies larger than 𝟏𝑴𝑯𝒛. 
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Figure 19(a-b) shows the evolution of band-gaps by the increasing density contrast ratio,  

  

  
.  Inputs of the L-H model are 

  

  
                        

  

 
         

 

 
        

and         Inputs of H-H model are,  
  

  
     

  

  
     

  

 
         

 

 
       and 

     .  One observes that for both L-H and H-H structures, density contrast ratio has 

slight effect on band-gap properties of the structure. 

 

Figure 19. Evolution of Phononic band-gap vs. density contrast ratio, 
  

  
  for (a) L-H and (b) H-H 

composites. Phononic band-gap vs. shear modulus contrast ratio, 
  

  
   for (c) L-H and (d) H-H 

composites. 
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Effects of shear modulus contrast ratio,  
  

  
  on band diagrams of L-H and H-H structures 

are shown in Figure 19(c-d).   
  

  
                       

  

 
         

 

 
      and 

      are inputs of the L-H model and  
  

  
     

  

  
     

  

 
         

 

 
      and 

      are input parameters of the H-H model.  It is important to note that the width of 

the unit cell,  , depends on the input parameters    and   .  For low shear modulus 

contrast ratio, more band-gap properties are observed at high frequencies.  By increasing 

  

  
  ratio, band-gaps tend to shift to low frequencies.  At  

  

  
     , high frequency band-

gaps vanish and only a single band-gap remains for H-H composite structure.   

Figure 20 represents examples of harmonic response of an L-H slab compressed by 

      at different frequencies.  Prestressed frequency domain study is utilized to 

capture the dynamic response of the structure on a priori deformed structure.  This study 

takes into account the effect of large deformations and stress on the frequency response 

of the structure.  Harmonic perturbation is applied on the right edge of the model.  The 

amplitude of the perturbation is chosen as 10% of the applied displacement.  Line graphs 

show the strain energy density along middle surface of the structure.  Contour plots 

represent in-plane vertical component of displacement resulted from a harmonic 

perturbation superimposed on the deformed structure.  Figures 20(a-d) illustrates the 

harmonic perturbation response at                      and      , respectively.  While 

Figures 20(a) and 20(c) show the wave propagation in the deformed structure, Figures 

20(b) and 20(d) demonstrate that the wave is attenuated along the wrinkly structure.  This 
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is due to the fact that         and         correspond to the center of band-gaps of 

the composite slab, as is shown in Figure 20(d).   Accordingly, frequency domain 

analysis verifies the results obtained from the Bloch wave analysis on the deformed unit 

cell of the composite slab. 

 

 

 

 

 

 

(a)   𝜴  𝟎 𝟎𝟑𝟎 (b)   𝜴  𝟎 𝟎𝟒𝟎 

(c)  𝜴  𝟎 𝟎𝟔𝟎 (d)   𝜴  𝟎 𝟎𝟖𝟓 
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Figure 20.  Line graphs showing the strain energy density along the middle surface of the L-H 

composite slab compressed by ε=0.4 at different normalized frequencies.  Contour plots 

represent the vertical component of harmonic perturbation.  Modeling parameters are identical to 

the ones used for band diagram investigation in Figure 17(d). 
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2.3 Summary and conclusion 

The ability of high aspect ratio wrinkle formation to be utilized as a highly tunable PnC is 

designed and demonstrated through FEM simulations.  Two material models are 

considered for the analysis; L-H and H-H composite slabs. Amplitude, period and 

geometry of wrinkles are controlled by the applied compressive strain.  Wave 

propagation is controlled through the combined effect of large deformations and stress in 

the moderately thick periodic wrinkly slab.  For H-H structure, three different mode 

shapes are triggered at different levels of the applied compressive strain.  Band diagram 

analysis demonstrates that the applied compressive strain can control and transform band-

gap properties of the designed PnC.   

Conversion of post-bifurcation modes of the H-H structure has shown to have significant 

effects on phononic characteristics of the wrinkly slab.  Moreover, the dynamic response 

of the wrinkly structure for different thickness of the slab is presented and possibility of 

surface elastic band-gaps is discussed.  A frequency sweep analysis is performed on a 

typical L-H structure to examine the harmonic response at different frequencies.  Results 

of the harmonic perturbation analysis verified the band diagram analysis.   

The proposed structure demonstrates the possibility of creating large elastic band-gaps by 

the applied compressive stretch.  The designed PnC can function as a 1D pillar based PnC 

[127] with capability of tuning the phononic band-gaps.  Due to wide range of fabrication 

methods and growing interest in micro and nano-wrinkle structures [109-112], results of 

this study can be employed in developing micro and nano-scale tunable acoustic switches 

[128], acoustic filters [128], elastic isolators and acoustic sensors [128-129] to be utilized 
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in ultrasonic and hypersonic applications.  Moreover, the wrinkly tunable PnC can be 

employed in developing PnC-based high quality factor micro-mechanical resonators 

[131] which has high applications in optomechanical systems [132], sensing and 

communication devices [130-132].      
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CHAPTER THREE 

Dynamic Response of a Tunable Phononic Crystal 

under Applied Mechanical and Magnetic Loadings
1 

 

 

Dynamic response of a tunable PnC consisting of a porous hyperelastic magnetoelastic 

elastomer subjected to a macroscopic deformation and an external magnetic field is 

theoretically investigated.  Finite deformations and magnetic induction influence 

phononic characteristics of the periodic structure through geometrical pattern 

transformation and material properties.  A magnetoelastic energy function is proposed to 

develop constitutive laws considering large deformations and magnetic induction in the 

periodic structure.  Analytical and finite element methods are utilized to compute 

dispersion relation and band structure of the PnC for different cases of deformation and 

magnetic loadings.  It is demonstrated that magnetic induction not only controls the band 

diagram of the structure but also has strong effect on preferential directions of wave 

propagation.   

In this study, a porous periodic structure of a soft magnetoelastic medium is designed to 

control wave propagation characteristics via the combined effects of finite deformations 

                                                           
1
 Results of this chapter are published in: 

 Bayat A and Gordaninejad F 2015 Band-gap of a Soft Magnetorheological Phononic Crystal 

ASME Journal of Vibrations and Acoustics 137 011013. 

 Bayat A and Gordaninejad F 2015 Dynamic Response of a Tunable Phononic Crystal under 

Applied Mechanical and Magnetic Loadings Journal of Smart Materials and Structures 24, 

065027. 
 Bayat A and Gordaninejad F 2014 A Magnetically Field-Controllable Phononic Crystal Proc. 

SPIE, San-Diego, USA, 9057, p. 905713. 

 

http://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleid=1906169
http://iopscience.iop.org/0964-1726/24/6/065027
http://iopscience.iop.org/0964-1726/24/6/065027
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1858256
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and magnetic fields.  Figure 21 illustrates the solution procedure.  A soft matrix provides 

the reversible pattern transformation of the structure due to large deformations.  The 

magnetic field contributes to the change in mechanical properties of the structure.  In 

addition, constitutive relations for incremental motions superimposed on a predeformed 

structure is developed following the approaches used in Ref. [19-22].  Moreover, wave 

propagation analysis is performed and the variational formulation for magnetoelastic 

wave equations considering the Bloch boundary conditions is developed.  Finite element 

(FE) methods are used to solve the coupling magnetoelastic equations and results are 

presented as band diagrams as well as isofrequency contours at different cases of 

loadings.  The nonlinear FE solver, COMSOL Multiphysics 4.4 is utilized for numerical 

simulations. 

 

Figure 21. Schematic of the computational approach proceeded to study the dynamic response of 

the structure. 
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3.1 Governing equations  

The continuum is considered as a magnetoelastic hyperelastic body that is initially in an 

undeformed state, denoted by   with boundary     as the reference configuration.  When 

the body is subjected to time-dependent magnetic and mechanical loadings, it deforms.   

Thus, the region occupied by the continuum   , with boundary    , at a given time t is 

the deformed configuration.  Let   and   be the position vectors of the material particle at 

reference and deformed configuration respectively, where          and          is 

called the deformation mapping.  In this study, a multi-scale approach is followed to 

consider the geometrical nonlinearity in the deformed structure as well as a linear wave 

propagation analysis in the deformed structure. Figure 22 illustrates the reference, 

deformed and incrementally deformed configurations.     

 

Figure 22.  Reference (undeformed), deformed and superimposed incrementally deformed 

configurations. 

 

The continuum first undergoes large deformations due to the macroscopic deformation 

gradient tensor and magnetic induction from    to    to take into account the pattern 
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change in the structure.  Next, the incremental wave motion superimposed on the 

deformed body is studied at    configuration.   

The deformation gradient tensor is defined as               , where      is 

gradient operator with respect to material coordinates  .  The notations 

                  are used for differential operators in Lagrangian coordinate  , and 

                  are used as the corresponding operators in Eulerian coordinates with 

respect to  .  Also,        with    . In Eulerian form, the magnetic field and 

magnetic induction vectors are denoted by         and       , respectively. 

It is assumed that the magnetic field is stationary and the non-conducting magnetoelastic 

material is initially at the static configuration and subjected to only magnetic and 

mechanical interactions. Thus,         are independent of time and equations of 

magnetostatics can be written, as follows: 

        ,                  , (1) 

 

In the absence of distributed charges or current density, the electric field and the 

displacement vector can be neglected.  Let us assign        and          for the 

Lagrangian counterpart of the magnetic field and the magnetic induction vectors, (defined 

in the reference configuration    ) respectively, where   is the transpose of the 

deformation tensor.  Using the standard kinematic identities:                  and 

                 , Equation (1) can be written in the Lagrangian form, as follows: 

         ,                   , (2) 
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The equation of motion governing a continuum in the presence of electromagnetic and 

body forces are, 

          
   

   
 ,      in     (3) 

where   is the total Cauchy stress tensor which incorporates electromagnetic body forces, 

  is the density, and f is the mechanical body force density per unit mass.  In Lagrangian 

form, the equation of motion is, 

            
   

   
,      in     (4) 

 

where T is the total nominal stress tensor and    is the reference mass density, which are 

related to their Eulerian counterparts by: 

                           (5) 

 

Here, a nonlinear magnetoelastic hyperelastic material is considered with total energy 

density           as a function of deformation tensor and magnetic induction vector, 

defined per unit volume in   .  For a compressible material, the constitutive relations for 

total nominal stress and magnetic field in the Lagrangian coordinates are: 

  
  

  
              

  

   
,      in     (6) 

 

The Eulerian counterparts of Equation (6) are: 

      
  

  
                  

   
,      in     (7) 
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For an isotropic magnetoelastic material,   is an isotropic function of two tensors 

      (right Cauchy–Green deformation tensor) and       which can be expressed 

in terms of six independent invariants, as follows:  

                  
 

 
[             ]                       , 

                                                                     

 

(8) 

             are principal invariants of   and              are invariants which are 

function of   . Thus, the total nominal stress and the Lagrangian magnetic field can be 

expressed, as follows: 

  ∑   
   

  

 
    ,            ∑   

   

   

 
   , (9) 

where    
  

   
  are the derivatives of the energy function with respect to independent 

invariants. 

Assuming that the deformation          and the applied magnetic field in     are 

priori known, an incremental displacement is superimposed on the deformed body in the 

form of         ̇   ̇     , which causes both the magnetic field and deformation 

undergo incremental changes within the material.  In the following, a superimposed dot 

̇ , represents an infinitesimal change in the quantity concerned.  The new configuration 

is denoted by   .  Considering  ̇ and  ̇  as increments in independent variables   and   , 

by considering increments of constitutive Equations (8), one can express the linearized 

form of these equations, as follows: 

 ̇    ̇    ̇                           ̇     ̇    ̇ , (10) 
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where  ̇                 and      and   are incremental magnetoelastic moduli 

tensors defined by: 

  
   

    
                

   

     
                 

   

     
             

   

      
, (11) 

    and   are fourth-, third- and second-order tensors, with corresponding symmetries, 

respectively.  The expressions for incremental moduli tensors in terms of the six 

invariants of the total energy function are well documented in the literature [19-21].  The 

products in Equation (10) are defined as: 

   ̇          ̇                ̇        |  ̇      

    ̇     |   ̇                   ̇        ̇  ,    

(12) 

By considering the increment of the Lagrangian form of governing Equations (2) and (3), 

one has: 

     ̇     ̇    
   

   
        

     ̇                             ̇    

(13) 

The Eulerian counterparts of the Equation (13) can be obtained through the following 

transformations: 

 ̇       ̇          ̇      ̇ ,             ̇
       ̇  (14) 

 

where the superscript e indicates the Eulerian form of the quantity concerned, when the 

reference configuration is updated from    to   , after the increments are formed.  Hence 

Equation (13) in the Eulerian form can be written as: 
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     ̇    ̇   
   

   
,        

     ̇                             ̇    

(15) 

Combining Equations (10), (12) and (14), one has: 

 ̇         ̇                          ̇          ̇  (16) 

 

where         is the displacement gradient and the updated magnetoelastic moduli 

tensors are defined by: 

     
                           | 

        
     |               

      
     

      , (17) 

 

It is noted that the updated moduli tensors possess the same symmetry as the ones in 

Equation (11). 

 

3.2 Buckling Analysis 

In periodic structures, shape transformation due to buckling instabilities has been utilized 

to explore tunable PnCs [97, 98].  Under a deformation, the periodicity of an infinite size 

periodic porous structure breaks down, due to the first occurrence of bifurcation in the 

microstructure.  Pattern transformation of PnCs occurs due to either:  i) local buckling 

modes, or ii) global modes of instability, namely microscopic and macroscopic 

instability.  Microscopic instability is based on the investigation of all possible bounded 

modes of instability within the range of wavelengths comparable to the unit cell’s size.  
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The macroscopic instability is a measure of instability modes with wavelengths much 

longer than the unit cell’s size [133].  

In this study, a buckling analysis is performed on finite size PnCs to find eigenmodes and 

post-buckling periodicity of the deformed structure, following the approach documented 

in References [133].  The structure consists of a two-dimensional (2D) square array of 

circular holes of radius          .  The initial cell of the undeformed structure is a 

square with a side of         that is used as the direct lattice vectors in   and   

directions (Figure 23(a)).  A nearly incompressible Neo-Hookean hyperelastic model is 

assumed for numerical simulations.  The density,               , shear modulus, 

            and initial bulk modulus of        are assumed for FE simulations 

[30].   

The deformation boundary conditions are applied on all boundaries of the models 

through;               , where  , F and   are the displacement vector, the 

deformation gradient tensor and the position vector in Lagrangian coordinates, 

respectively.  The superscripts (+) and (–) are associated with the nodes on the opposite 

boundaries (right (top) and left (bottom) in Figure 23(a)) of the rectangular model.  The 

linear buckling study is employed to study the buckling eigenmodes of the structure.  The 

buckling analysis on several PnCs of     ,           and       cells, subjected to 

deformation boundary conditions, agreed with the previous findings on the instability 

modes [97, 98, 133].  Figure 23 shows the first mode pattern transformation results from 

the buckling analysis of a finite size      periodic structure under uniaxially 

compressive stretch.   
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Hence, buckling instabilities changes the configuration to a new enlarged unit cell with 

periodicity of     times the initial unit cell (Figure 23(c)).  The new unit cell will be 

referred to as the representative unit cell (RUC).  A post-transformation analysis is 

performed on the RUC to obtain the deformed geometry for the wave propagation study. 

3.3   Wave propagation analysis 

In this study, the propagation of infinitesimal harmonic plane waves is considered in a 

medium subjected to a pre-existing homogeneous deformation gradient tensor, F, and a 

uniform magnetic induction vector,   .  In this work, the focus is on the two-dimensional 

elastic wave propagation in periodic structure of infinite size.  PnCs are characterized by 

a unit cell that is defined through direct lattice vectors,    and   .  These vectors are the 

periodicity of the lattice in   and   directions.  The RUC and the corresponding deformed 

(a) (b) (c) 

Figure 23.  The FEM results for pattern transformation in the phononic crystal due to 

buckling instability under the applied deformation.  (a) An undeformed 8×8 periodic 

structure, (b) the first buckling mode of the structure subjected to uniaxially compressive 

stretch in horizontal direction, and (c) the first buckling eigenmode of the enlarged unit cell. 
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geometry for a horizontal uniaxial stretch       , considered for wave propagation 

study, are shown in Figure 24.    

 

 

 

A solution of field Equation (15) in the form of: 

                       ̇            , (18) 

 

is considered, where         are amplitudes and   is the angular frequency.  

Substituting Equation (18) into Equation (15) in the absence of body forces yields the 

updated Equations as a function of     and     To develop a FE model, the variational 

formulation of the coupled Equations (15) is derived.       ̇          is used to 

define a vector potential   such that          .   The weak form of governing 

Equations is derived by taking the inner product of Equations (15)1 and (15)3 with an 

arbitrary test function.  Let us consider    and    be arbitrary variations of   and  , 

(a) (b) (c) 

𝚳                   𝚼 

 𝚾                    𝚪    

Figure 24.  (a) The RUC selected for the uniaxial compression, (b) the corresponding deformed 

geometry for uniaxial stretch 𝝀𝒙  𝟎 𝟗, and (c) reciprocal lattice’s unit cell selected for the 

wave propagation study.  Irreducible Brilluine zone is shown in the region bounded by 𝜞 𝜰 
𝜧 𝜲 𝜞  
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respectively, that satisfies the boundary conditions on   .  Taking the variational form of 

the (15)1 and (15)3, integrating by parts and using the divergence theorem yields:  

 
 
 ̇              

  
 ̇             

 
       (19) 

 
 
 ̇              

  
  ̇           (20) 

 

Equations (19) and (20) are defined on V, the RUC’s domain, and     represents the 

perimeter of the RUC.  It is noted that the weak form in Equation (20) results from a 

stationary magnetic field condition and the non-conducting magnetoelastic medium in the 

absence of the surface current density on   .  Moreover,  ̇   ̇    ̇         is the 

incremental surface traction normal to the boundaries of the deformed RUC, where n is 

the unit vector normal to boundaries in the outward direction.  Additionally, ( ̇   ) 

represents the tangent magnetic field at boundaries.  Natural boundary conditions in 

Equations (19) and (20) appear as work terms applied to the boundaries   , which arise 

from the tangent magnetic field and the normal traction force.  It is evident from Figure 

24 that the boundary integrals  
  

 ̇        in Equation (19) and      ̇
           in 

Equation (20) vanish, because the normal unit vector n acts in opposite directions on the 

parallel boundaries of the deformed RUC.  The final weak forms of the constitutive 

equations are: 

   ̇
                         (21) 

   ̇
              (22) 
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Weak forms in Equations (21) and (22) define the coupling constitutive behavior of 

MREs.  The nodal values of the vector potential    [        ]  and displacement 

  [        ] are the unknowns. 

Bloch displacement boundary conditions are applied on the opposite boundaries of the 

deformed RUC so that                       where k is the Bloch wave vector and 

r denotes the distance vector between parallel boundaries.  The superscripts (+) and (–) 

denote the corresponding opposite boundaries; right (top) and left (bottom) in Figure 24, 

respectively.  It should be noted that in Equation (16) the tractions on boundaries follow 

the Bloch relation.  The only difference appears due to the fact that the tractions on the 

parallel boundaries are in the opposite directions.  Hence, the Bloch type boundary 

conditions are  ̇         ̇           .  The deformed RUC and the corresponding 

unit cell in reciprocal lattice including irreducible Brillouin zone (IBZ) are shown in 

Figure 24.  The wave vector takes the values of             along the edges   

       , where                       are real numbers    and     are 

the lattice vectors of the reciprocal space [74]: 

   
        

‖     ‖
            

        

‖     ‖
                   

       

‖     ‖
,  

  

Since the boundary conditions are in complex space, thus   and  

 ̇ are generally complex.  It is noted that in FE solvers, once the Bloch displacement 

boundary conditions are applied, the traction boundary conditions are automatically 

satisfied.  The Bloch type boundary condition is applied through the essential or Dirichlet 

boundary condition node in the partial differential equations (PDE) interface of the FE 
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solver.  A computational code is implemented in the FE model to investigate the 

incremental moduli tensors defined by Equation (17) in terms of deformation gradient 

and the applied magnetic induction.  The magnetoelastic interaction is characterized by a 

stiffness matrix, which is a function of magnetic induction, stretch and wave vector. 

The field equations for 2D motions are considered;     ̇ 
   .  Hence, solutions 

which only depend on the in-plane variables   and   are sought.  The FE discretization of 

the coupling problem results in an eigenvalue problem.  Eigenfrequency study is used for 

investigating the eigenfrequencies    of the coupled equations.  Eigenfrequencies of the 

wave equation are obtained to examine band diagrams and plot the iso-frequency 

contours at different levels of the applied magnetic induction.  Dispersion relations are 

calculated sweeping the boundaries of IBZ.  The reduced frequency   
  

    
, is plotted as 

a function of the wave vector where   
     

 
  and    √   .   

 

3.4 Results and discussions  

A compressible Neo-Hookean type energy function is proposed to extract constitutive 

relations and magnetoelastic moduli tensors, as follows: 

  
 

 
            

 

 
               (23) 
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where            and        are the two Lame constants of the hyperelastic 

material in the absence of the magnetic induction and is assumed to be constant.     is 

principal invariant of right Cauchy–Green deformation tensor and           are 

invariants dependent on the magnetic induction vector which exhibit the nonlinear 

coupling behavior of the material.  One observes that the parameter   does not affect the 

stress tensor, while   if positive, enhances the material stiffness in the direction of the 

applied magnetic induction.  In the contrary,   provides a measure of how the magnetic 

field is affected by the macroscopic deformation.  Magnetic permeability in vacuum, 

                  ,                       are assumed for numerical 

simulations which accounts for 10% by volume of iron particles in the soft elastomer [17-

23].  Moreover, the dissipation is neglected. 

The constitutive laws in Equations (16) are expanded as: 

 ̇  
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 (         )      
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  ̇ 

  

(24) 

 

The energy function in Equation (23) is used to calculate the incremental magnetoelastic 

moduli tensors (Equation (17)) in order to apply in corresponding constitutive laws in 
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Equation (24).  For a uniaxial deformation gradient tensor   [
   
   

] and uniaxial 

magnetic induction vector    [
 
  

], substituting Equation (11) in Equation (17) and 

vanishing the zero terms, the corresponding moduli tensors will be: 

     
       

       
       

       
       

       
       

    , 

     
  

      

 
 

          
 

 
,   

     
       

  
    

 

 
 

      

 
,    

     
  

      

 
 

          
 

 
 ,   

     
       

   
     

 
  

      

 
 ,  

     
  

               

 
 

          
                

 
  , 

     
  

               

 
 

          
                

 
, 

    
      

      
      

      
    ,   

    
      

            ,    

    
            , 

   
     

    

   
             

          , 

   
             

           

(25) 

 

where       [
  

  

   
 ] is the left Cauchy-green deformation tensor. 

To illustrate the effect of the applied magneto-mechanical loadings, the PnC is first 

deformed through the macroscopic deformation tensor, F, and then is subjected to an 

external magnetic field.  A plane strain uniaxial compression is applied to deform the 

RUC.  The deformation gradient tensor is   [           ], where    and    are the 

applied stretches in   and   directions, respectively.  Since the deformation occurs before 
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the magnetic field is applied,    is determined from the equilibrium condition, such that 

the pure mechanical stress component in   direction vanishes.     is assumed to be 0.9 

for the numerical simulations, hence        .   

A nonlinear stationary study is performed on the RUC to capture the large deformation 

effect.  The deformation boundary conditions are applied on all boundaries of the RUC.  

Small distortions are implemented to perturb the initial geometry and obtain the post-

bifurcation state of the RUC.  The deformed RUC is extracted and imported in a new 

model for the coupled wave propagation analysis.  No pre-stress exists in the new model.  

The RUC and the deformed RUC for uniaxially compressive stretch        are shown 

in Figures 24(a) and 24(b), respectively.  

Once the deformation is applied, the RUC is subjected to different levels of magnetic 

inductions.  The corresponding band diagrams are shown in Figure 25.  To illustrate the 

effect of the applied magnetic induction, the first 30 in-plane modes are computed and 

plotted in band diagrams.  As can be seen in Figure 24, the range of the frequency 

spectrum of the band structure expands as the magnitude of the applied magnetic 

induction increases.   
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Figure 25.  In-plane band diagrams for uniaxially compressive stretch          at (a) No 

magnetic induction, (b) 1.0T, (c) 2.0T, and (d) 3.0T unidirectionally applied magnetic induction.  

PBGs are shown in shaded regions. The second and third modes represented by red and blue 

bands, respectively, are selected for directionality analysis.  

 

The range of the reduced frequency spectrum increases from          in the absence 

of magnetic stimulus, to          for the 3.0T applied magnetic induction.  Figure 

25(a) shows the band diagram in the absence of magnetic induction.  A Phononic 

bandgap (PBG) is captured at the range of            .  No considerable change in 

PBG is observed at 0.25T applied magnetic induction.  As the magnetic induction 

increases to 1.0T, 2.0T and 3.0T, the first PBG transforms to            ,   
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          and            , respectively (Figure 25(b-d)).  Upon the application 

of the 1.0T magnetic induction a new PBG is created at              but vanishes at 

2.0T and 3.0T applied magnetic inductions.  Also, a new PBG is generated at        

     at 2.0T and widens and shifted to             as the magnetic induction 

increases to 3.0T (Figure 25(c) and (d)).  During the application of the magnetic 

induction, the first and second PBGs orientation is widened and considerably shifted after 

about        .  Additionally, band diagram investigation on the effect of magnetic 

induction in the undeformed structure demonstrates that the first PBGs in the band 

diagram appear due to the applied deformation while the second PBGs appear due to the 

applied magnetic induction.  In Figure 25, second and third modes, depicted by red and 

blue lines, respectively, are selected to study the directional behavior of the structure.  

While the band diagram exhibits the compact representation of the consecutive 

eigenmodes, it cannot illustrate the directionality of the wave propagating in the structure.  

Dispersion relations are also presented in the form of iso-frequency contours to fully 

illustrate the wave propagation characteristics of the PnCs.  The iso-frequency contours 

identify the frequency of free wave motion of the PnC in the         plane.  The solution 

           of the magnetoelastic eigenvalue problem for all combinations of 

        and         defines the dispersion surfaces of the structure.  The 

symmetry of the phase constant surfaces allows to limit the iso-frequency plots in the first 

Brillouin zone.     

Preferential directions of the free wave propagation, phase velocity and group velocity 

can be derived from iso-frequency contours of the phase constant surfaces.  By definition, 
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phase velocity is related to the speed of the wave crests while the group velocity 

represents the speed of the wave envelope and lies along the normal to the corresponding 

iso-frequency contour in the         plane.  Phase velocity and group velocity are 

defined by    
 

    and    
  

  
  respectively, where k is the magnitude of the wave 

vector [134-135].  The group velocity determines the direction of the wave propagation, 

while directionality represents the flow of energy in the structure.  Directionality of PnCs 

also provides information about the directions in the structure that wave does not 

propagate.   These unique features of PnCs depend on the unit cell’s geometry, material 

properties and frequency and provide useful information on the wave propagation in the 

periodic structures.  Directionality can be considered as a measure of stiffness of a PnC 

structure.  For instance, in the vicinity of a long wavelength limit, the anisotropy of a PnC 

can be expressed in terms of the phase and group velocity diagrams [135-136].   

Figure 26 represents the effect of uniaxial compression,        and different 

magnitudes of magnetic induction on dispersion relations in terms of normalized iso-

frequency contours of the second eigenmode shown by red line in the band diagrams.  It 

is necessary to mention that isofrequency contours are represented for 0.25T to 

demonstrate the transition in the contours for the loading from 0 to 1.0T magnetic 

induction.  Since the isofrequency plots are similar for the applied magnetic inductions 

beyond 2.0T, the results for 3.0T are not presented in the paper.  The dispersion relations 

in case of no magnetic field are plotted in Figure 26(a) and shows that wave propagates at 

different directions with different speeds.  In this case, qualitative behavior of the contour 

lines verifies the results documented in the literature [97].   
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By increasing the magnetic loading, the dispersive behavior of the contour lines changes 

and tends to become parallel to the    axis, particularly at higher frequencies.  The 

pattern of contour lines does not change qualitatively when the magnitude of the 

magnetic induction vector increases beyond 2.0T.  It is interesting to note that frequency 

spectrum covers a higher range by increasing the magnetic excitation.  In Figure 26, 

arrows represent the direction and magnitude of the group velocity vectors.  Group 

velocity vector fields confirm that the structure shows a directional behavior at higher 

levels of magnetic loading. 

 

Figure 26. Normalized iso-frequency contours associated with the second modes for uniaxially 

compressive stretch        at (a) No magnetic induction, (b) 0.25T, (c) 1.0T, and (d) 2.0T 

unidirectionally applied magnetic induction.  The contours are associated with the red band in 

Figure 25. 
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The iso-frequency contour plots of the third modes (represented by blue line in the band 

diagrams) are shown in Figure 27 for uniaxial compression,        and different levels 

of magnetic induction. A totally different pattern is observed for the third modes.  At 

1.0T and 2.0T wave propagation has a directional behavior only at low frequencies. 

 

Figure 27.  Normalized iso-frequency contours associated with the third modes for uniaxially 

compressive stretch         at (a) No magnetic induction, (b) 0.25T, (c) 1.0T, and (d) 2.0T 

unidirectionally applied magnetic induction.  The contours are associated with the blue band in 

Figure 25. 

 

 Directionality, quantified as   
 

 
         

   
 at each frequency, is represented by 

polar plots in Figures 28 and 29 associated with results presented in Figures 26 and 27 
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respectively.  Frequency and directionality is plotted in radial and tangential directions, 

respectively.  

Figure 28(a-b) illustrates that the frequency-dependent directionality of the structure 

covers a large angular range.  Upon the application of the 0.25T magnetic induction, the 

directional behavior of the structure is initiated.  At high frequencies an isotropic pattern 

is observed.  Figure 28(c-d) exhibits directional behavior of the structure due to the 

increasing magnetic excitation.  The directionality spans a narrow angular range 

demonstrating a higher speed of wave in the direction of the applied magnetic field.   

 

Figure 28.  Directionality plots associated with the second modes for uniaxially compressive 

stretch        at (a) No magnetic induction, (b) 0.25T, (c) 1.0T, and (d) 2.0T unidirectionally 

applied magnetic induction. Frequency and direction is plotted in radial and angular directions, 

respectively.  
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Figure 29 shows the directionality plot associated with the third modes at different levels 

of the magnetic induction.  At 1.0T, structure shows directional behavior only for low 

frequencies.  No strong preference in directions is captured for third modes by increasing 

magnetic induction beyond 1.0T. 

 

 

Figure 29.  Directionality plots associated with the third modes for uniaxially compressive stretch  

       at (a) No magnetic induction, (b) 0.25T, (c) 1.0T, and (d) 2.0T unidirectionally applied 

magnetic induction Frequency and direction is plotted in radial and angular directions, 

respectively. 

 

 

Next, we study the effect of the macroscopic deformation loading case on the band 

diagrams.  Different macroscopic deformation tensors generate different patterns in the 

porous structure.  Here, a Mooney-Rivlin type energy function is used to extract 

constitutive relations and magnetoelastic moduli tensors, as follows: 
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[                       ]         , (26) 

 

where             is the shear modulus in the absence of the magnetic induction, 

and assumed to be constant.            are principal invariants of right Cauchy–Green 

deformation tensor and           are invariants dependent on the magnetic induction 

vector.  Here, it is assumed that                  for magnetic permeability in 

vacuum,                       for numerical simulations [20-22]. 

To illustrate the effect of the applied magneto-mechanical loadings, the PnC is first 

deformed through the macroscopic deformation tensor F, and then is subjected to an 

external magnetic field. Two different cases of deformation are considered: 

 A plane strain uniaxial compression: In this case, the RUC is compressed in    

direction.  The deformation gradient tensor is defined as:   [           ] . 

Where    and    are the applied stretches in    and    directions, respectively.  

Since the deformation is occurred before the magnetic field applies, the    is 

determined from the equilibrium condition so that the pure mechanical stress 

component in    direction vanishes.         is assumed for the numerical 

simulations, hence        .  

 A plane strain equally biaxial compression: In this case, the RUC is equally 

compressed in    and    directions. The deformation gradient tensor is defined as: 

  [         ]  where   is the applied stretch, and considered to be     for 

numerical simulations. 
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The RUC and the deformed RUC for uniaxially compressive stretch        are shown 

in Figures 30(a) and 30(b), respectively.  For the biaxial compression, different RUC is 

selected, due to convergence issue.  The corresponding RUC and deformed RUC are 

shown in Figures 30(c) and 30(d), respectively. 

 

Figure 30. (a) The RUC selected for the uniaxial compression, (b) the corresponding deformed 

geometry for        , (c) The RUC selected for equally biaxial compression (d) the 

corresponding deformed geometry for      , (e) reciprocal lattice’s unit cell selected for the 

wave propagation study.  Irreducible Brilluine zone is shown in the region bounded by 
       . 

 

Once the deformation is applied, the RUC is subjected to different levels of magnetic 

inductions.  Figure 31 reports the evolution of PBGs with the applied magnetic induction 

for different types of macroscopic deformation.   

(a) (b) 

(c) (d) 

(e) 
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Figure 31. PBG vs. applied magnetic induction in y direction, for the square array PnC in: (a) 

uniaxially compressive stretch         and (b) in biaxially compressive stretch      . 

 

This plot is resulted from the band diagram simulation at different levels of the magnetic 

induction.  During the application of the magnetic induction on the uniaxially compressed 

structure (Figure 31(a)), the first PBG orientation is widened and considerably shifted 

after about        .  The width of the second and third PBGs remains fairly constant 

with increasing the magnetic induction up to 2.0T.  The three PBGs gradually widens 

when the magnetic field reaches to        .  The PBG diagram obeys a fairly similar 

trend for the case of biaxial compression (Figure 31(b)).  PBGs gradually widen and shift 

to higher frequencies during the increase of the magnetic induction. 
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3.5  Summary and conclusion 

 

In pursuing of the smart design for isolators and frequency filters, a tunable PnC design is 

illustrated through a porous pattern of the soft magnetoelastic PnC.  In summary, the 

ability of a periodic magnetoelastic structure to be used as a tunable PnC is demonstrated.  

A buckling analysis is carried out to demonstrate the change of periodicity of the 

structure due to the applied deformation.  When the magneto-mechanical loading is 

applied, the transformation of eigenmodes occurs due to both the geometric pattern 

transformation and the material property changes.  Results reveal that the designed PnC 

has the potential to control and switch the PBGs with the applied macroscopic 

deformation and magnetic stimulus.  Upon the application of the magnetic field, new 

PBGs is created and the position and width of the PBGs is altered.  Interestingly, the band 

diagram investigations reveal that by increasing the magnetic induction the frequency 

spectrum of the bands widens and PBGs shift to higher frequencies.  Strong preferential 

directions in wave propagation are observed by increasing the magnetic induction, 

particularly for the second modes.  Results confirm that the considered PnC possesses 

highly directional dispersive phononic characteristics compare to the previously studied 

mechanically tunable PnC [97].  The benefit of this approach is that it combines the effect 

of magnetic induction and deformation based pattern change in the microstructure and 

provides an added degree of freedom in the control of the dynamic response of the 

structure.  However, 1.0T magnetic induction is required to capture the desired band 

diagram and directionality in the deformed structure, which is a high value, but 
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achievable.  Results demonstrate the potential of the proposed PnC to be utilized in wave 

propagation systems, such as wave filters, beam steering and waveguides.   
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CHAPTER FOUR 

A Thermally Tunable Phononic Crystal 

 

 

A thermally tunable PnC is designed and analyzed through analytical and FEM 

simulations.  Bimaterial ligaments composed of two strips with contrast in their thermal 

expansion coefficient are employed to design local resonators inside a periodic structure.  

The thermally induced large deformations are utilized to exploit pattern change in the 

structure to control elastic wave propagation.  Once the temperature difference is 

removed the structure tends to return to the initial state providing opportunities to be used 

as thermally tunable acoustic switches and filters.   

   

4.1 Modeling 

Figure 32(a) shows the geometry of the periodic structure considered in this study.  The 

unit cell is a resonator consisting of a square core with four identical bimaterial 

ligaments.  The frame and core are modeled as elastic materials with negligible thermal 

expansion coefficients.  Once the temperature difference is applied on the structure the 

bimaterial ligaments are deformed and generate pattern change in the periodic structure, 

as is shown in Figure 32(b).   
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Figure 32. A finite sample of the proposed periodic structure at (a) undeformed state, (b) 

deformed by thermal actuation,        . 

 

(a) 

(b) 
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Ligaments are modeled as nearly incompressible neo-Hookean materials.  When the 

thermal expansion takes place, a volume change occurs in the structure.  The total 

deformation gradient tensor,   can be decomposed into an elastic,     and a thermal,      

gradient tensors;        .  The total volume ratio is related to the mechanical and 

thermal volume ratios as;         or                  .   

The thermal strain appears as              , where   is the thermal expansion 

coefficient and T and       are the current and reference temperatures, respectively.  For 

isotropic materials, the thermal gradient tensor is a diagonal matrix;          .  Hence, 

       
 .  The hyperelastic model is characterized by a nonlinear energy density 

function [136-137]: 

  
 

 
              

 

 
       

             (1) 

 

Where   and   are the shear and bulk moduli, respectively, and           is the first 

invariant of the right Cauchy-Green deformation tensor      
      Thus, the first Piola-

Kirchhoff stress tensor,   
  

  
 is: 

                     
              (2) 

 

where   
   is the transpose matrix of the inverse of   .  We note that        

   and 

   
 

   
.  Equation governing the incremental motions superimposed on pre-deformed 

structures in Lagrangian coordinates is: 

   ̇   
   ̇

   
            (3) 
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where  ̇ is the incremental displacemet,  ̇ is the incremental first Piola-Kirchhoff stress 

tensor, and   is the density of the material.  The increment of first Piola-Kirchhoff stress 

tensor,  ̇     ̇ is a function of the incremental deformation gradient tensor,  ̇  
  ̇

  
 .  

The incremental moduli tensor is a fourth-order tensor defined by   
   

    
 .   

A solution of the wave equation in the form of plane wave  ̇       ̇         is sought, 

where  ̇ is the amplitude vector and   is the angular frequency.  Thus, the stress can be 

written in the following form: 

 ̇   ̇                 (4) 

Therefore, the equation of motion is an eigenvalue problem, as follows: 

   ̇      ̇               (5) 

 

where   is the eigenfrequency of the system.  Wave propagation in PnCs is investigated 

through the application of Bloch type boundary conditions on parallel boundaries of the 

unit cell; the smallest repetitive structural element of the structure.  The primitive unit 

cell and the deformed unit cell are shown in Figure 33.  Elastic modulus and Poisson’s 

ratio are input in the model as        and        and         and        

for frame and square core.         and         are used as the Lame constants 

for the strip and          and        for the L-shaped ligament.           
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and         are presumed for thermal expansion coefficient of the strip and L-

shaped ligament.  The unit cell size is       and the size of the core square is     .   

A 2D propagation of infinitesimal harmonic plane waves is considered in a periodic 

structure subjected to a pre-existing homogeneous deformation gradient tensor.  PnCs are 

characterized by a unit cell that is defined through direct lattice vectors,    and   .  These 

vectors are the periodicity of the lattice in    and    directions.              are 

used as the lattice vectors in the study.  

 

Figure 33. (a) The primitive unit cell, (b) deformed unit cell, under         and (c) First and 

irreducible Brillouin zone chosen for the wave propagation analysis. 

 

 

4.2 Results and discussions 

The deformed unit cell is shown in Figure 33(b) for        .  Bloch type displacement 

boundary conditions are applied on the opposite boundaries of the deformed unit cell so 

that   ̇        ̇              where k is the Bloch wave vector and r denotes the 

𝛤 X 

M 

(a) (b) (c) 
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distance vector between parallel boundaries.  The superscripts (+) and (–) denote the 

corresponding opposite boundaries; right (top) and left (bottom) in Figure 33(b), 

respectively.  The band diagram and mode shapes for undeformed structure are shown in 

Figure 34.  40 modes are shown in the diagram for frequencies larger than         .   

The band diagram shows narrow gaps of frequencies at         ,         , 

        ,          ,          and         . Psudo-gaps in    ,      

and     directions are shown separately in diagrams.  The structure shows partial gaps 

in the specific directions of symmetries, while complete band-gaps cover very narrow 

range of frequencies.  The band diagram and mode shapes for the deformed structure are 

shown in Figure 35.  40 modes are shown in the diagram for frequencies larger than 

        .  The band diagram shows narrow gaps of frequency at         ,   

       and         . Psudo-gaps in    ,      and     directions are also 

shown in diagrams.  The structure shows partial gaps in the specific directions of 

symmetries, while complete band-gaps occur at very narrow range of frequencies.  

Comparing the band diagram results in the undeformed and deformed structure 

demonstrates that the band-gaps are suppressed by the applied temperature difference.  

Moreover, the position and width of psudo-gaps in specific directions are changed by the 

applied temperature difference.  Figures 34(b) and 35(b) compare the effect of 

temperature difference on the mode-shapes of the structure.  
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Figure 34. (a) Band diagram of undeformed structure and (b) the first 6 mode-shapes at 𝛤. 

Psudo-gaps and complete gaps are shown in color region in the band diagram. 
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ω 

(a) 
(b) 
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Figure 35. (a) Band diagram of deformed structure and (b) the first 6 mode-shapes at 𝛤. Psudo-

gaps and complete gaps are shown in color region in the band diagram. 
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4.3 Summary and Conclusion 

A thermally tunable PnC is designed and analyzed through FEM modeling.  The 

proposed periodic structure utilizes temperature induced large deformations in bimaterial 

ligaments of an in plane resonant unit cell to exploit pattern transformation in a periodic 

structure.  The propagation of elastic waves is studied on the prestressed deformed 

structure.  Complete band-gaps are shifted by the applied temperature difference.  

Moreover, psudo-gaps are transformed in specific directions of symmetry of the unit cell. 

Band diagram results demonstrate the ability of the thermally tunable periodic structure 

to be used in the control of elastic wave propagation.   



84 
 

 
 

CHAPTER FIVE 

A New Computational Method for Overall Tangent Moduli of a Soft 

Magnetoactive Composite Using Periodic Homogenization
1
    

 

 

A finite element methods based homogenization approach is presented to simulate the 

nonlinear behavior of magnetoactive composites under a macroscopic deformation and an 

external magnetic field.  The coupled magnetoelastic constitutive law and governing 

equations are developed in micro-scale for large deformations.  Micro-scale formulation 

is employed on a characteristic volume element, taking into account periodic boundary 

conditions.  Periodic homogenization method is utilized to compute macroscopic 

properties of the magnetoelastic composite at different mechanical and magnetic loading 

paths.  A new and cost effective numerical scheme is used to develop the magnetoelastic 

tangent moduli tensors.  The sensitivity analysis is proposed to compute the overall 

tangent moduli tensors of the composite through the finite difference method.  The 

presented approach is useful in characterization of magnetoactive and electroactive 

composites and FE
2
 methods. Results are presented for typical equilibrium states.   

In this study, a FEM-based homogenization method is employed to compute the effective 

response of a periodic MEC under applied magnetic fields and large deformations.  Due 

                                                           
1
 Results of this chapter are published in: 

 
Bayat A and Gordaninejad F 2015 A New Computational Method for Homogenized Tangent Moduli of a 

Soft Magnetoelastic Composite  Journal of Smart Materials and Structures 24 075010. 

http://iopscience.iop.org/0964-1726/24/7/075010/article
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to high interest in magneto-active and electro-active composites, the characterization of 

these composites needs to be realized through commercial software.  This study differs 

from the prior work in the proposed numerical approach for the computation of the 

tangent moduli tensors using the commercial FEM package COMSOL which is capable 

of multiphysics modeling.  The overall tangent moduli are developed based on the 

sensitivity analysis of deformation gradient tensor and magnetic field vector by utilizing 

the finite difference method.  Constitutive laws of the homogenized material are not 

derived from a macroscopic energy function, but a CVE is attached to a material point to 

extract the effective response through the volume average of microscopic quantities.  It is 

assumed that the principle of separation of scales is satisfied for the relative dimensions 

of the microstructure and fluctuation field in contrast to that of the CVE.  Theoretical 

framework for constitutive laws and coupled governing equations for magnetoelastic 

continuum is presented following the finite elasticity theory [21-28].  The FEM 

discretization is carried out on the CVE consisting of a magnetically permeable particle 

and a hyperelastic matrix considering periodic boundary conditions.  The periodic 

homogenization is employed to extract macroscopic constitutive laws of the nominal 

stress tensor and magnetic induction vector.      

 

5.1  Modeling 

A direct micro to macro extraction of the material properties is defined through the FEM-

based homogenization approach.  A CVE consisting of a magnetically permeable particle 

and a soft matrix is used for micro-scale.  The permeable particle and soft matrix are 
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characterized by a magnetoelastic energy function where the magnetic permeability of 

the matrix is presumed as that of the free space.   

A typical CVE chosen for micro-scale analysis is shown in Figure 36.  The MEC is 

considered to be initially at an undeformed state, denoted by    with boundary     as the 

reference configuration.  The body deforms when subjected to time-dependent magnetic 

and mechanical loadings.   The region occupied by the continuum   , with boundary    , 

at a given time t is the deformed configuration.  Let   and   be the position vectors of the 

material point at reference and deformed configurations, respectively, where          

and          is the deformation mapping.  The deformation gradient tensor is defined 

by                , where       is the gradient operator with respect to material 

coordinates,  .  In this study, notations                      are used for micro-scale 

differential operators in Lagrangian coordinates.  A Lagrangian formulation is adopted to 

develop magnetoelastic relations.  The Lagrangian magnetic field and magnetic induction 

vectors are denoted by         and       , respectively.  It is assumed that the 

magnetic field is stationary and the non-conducting MEC material is initially at the static 

configuration and subjected to only magnetic and mechanical interactions.  Thus,         

are independent of time.  Maxwell equations of magneto-statics can be written, as 

follows: 

         ,                   , (1) 

 

It is worth mentioning that Equation (1) is resulted from no electric field, no free charge 

and no current density assumptions on the continuum.  Equation (1) is used to define a 
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scalar potential     , such that          , since                           .  

Thus, the magneto-static differential equations are solved for the scalar potential. 

In the absence of body forces, the equilibrium equation on the micro-scale reads: 

        , (2) 

 

where T is the nominal stress tensor defined at reference configuration.  Equations (1) 

and (2) are coupled governing equations of the magneto-elastic continuum.  Constitutive 

relations of the magneto-elastic medium are derived from a nonlinear magnetoelastic 

energy density,         , which is a function of the deformation gradient tensor and 

magnetic field vector, defined per unit volume at   .  For a compressible material, 

constitutive relations for the nominal stress and the magnetic induction are: 

  
  

  
           

  

  
        in      (3) 

 

In macro-scale, the volume occupied by a body in reference (undeformed) configuration 

is denoted by   
̅̅ ̅, which is bounded by    

̅̅ ̅̅ ̅ and notations   ̅ and    
̅̅ ̅̅̅ are assigned for the 

corresponding deformed configuration of the continuum.   ̅ and  ̅ are associated with the 

macroscopic Lagrangian and Eulerian coordinates, respectively.  The macroscopic 

deformation mapping,  ̅ follows  ̅   ̅  ̅   .  Accordingly,      ̅     ̅          ̅ are 

used for macro-scale differential operators in Lagrangian coordinates.  Hence,  ̅  

     ̅  ̅    ̅   ̅ is the macroscopic deformation gradient tensor.  Consequently, 

coupled governing equations of the continuum are: 
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     ̅  ̅   ,               ̅  ̅   ,                   ̅  ̅    (4) 

 

where  ̅  ̅      ̅ are macroscopic magnetic field, magnetic induction and nominal 

stress, respectively.  Similarly, macroscopic quantities can be related to a macroscopic 

energy function   ̅   ̅  ̅  ̅   through:  

 ̅  
  ̅

  ̅
         ̅   

  ̅

  ̅
        in    

̅̅ ̅  (5) 

 

Derivation of constitutive laws through a macroscopic energy function is beyond the 

scope of this study.  Computation of these macroscopic quantities is performed through 

surface integrals of corresponding microscopic counterparts across the CVE’s boundary.  

Notations,      
 

 

 
∫  
  

   and       
 

 

 
∮  
   

  , are introduced for volume 

and surface integrals on the body’s domain and boundary, respectively, where V is the 

volume of the domain in the reference configuration.  Assuming the continuity of the 

deformation gradient tensor and the magnetic induction vector on the boundary of the 

CVE, the surface integral can be equivalently estimated as the volume integral of 

corresponding properties on the CVE’s domain.  Using Gauss theorem, macroscopic 

deformation and nominal stress tensors are given by: 

 ̅                    ,                  ̅                             (6) 

 



89 
 

 
 

where       and     are the position vector, traction vector, and normal vector on the 

boundary of the CVE, respectively.  Likewise, the corresponding magnetic field and 

magnetic induction vectors in macro-scale are defined by integral equations: 

  ̅                   ,                  ̅                            (7) 

 

where    and         are the magnetic potential and magnetic flux on the boundary of 

the CVE, respectively.   

In periodic homogenization, the microscopic position vector can be expressed as a linear 

function of the macroscopic deformation gradient and a fluctuation field;       ̅  

    , where      is the fluctuation field, a vector function of the position vector.  

Similarly, the magnetic potential follows        ̅         where      is a scalar 

function of  .  Boundary conditions of the CVE are derived from the classical Hill-

Mandel homogeneity condition.  Hill-Mandel condition states that the increment of the 

macroscopic energy function is equivalent to the volume average of the increment of the 

microscopic energy function,  ̇̅    ̇  .  It is shown that periodic boundary conditions 

for the deformation and magnetic potential on      satisfy the Hill-Mandel condition 

[46-48].  Fluctuation fields are assumed to be periodic on       thus, the traction vector 

and magnetic flux are anti-periodic, as follows: 

                                      

                                         on       
(8) 
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where superscripts (+) and (–) are associated with nodes on opposite boundaries (right 

(top) and left (bottom) edges on Figure 36 (b-c)) of the     .  In order to define the 

boundary value problem (BVP), the macro-scale boundary conditions on    , for 

mechanical and magnetic problem must be specified.  Figure 36 shows a schematic of the 

BVP.  The boundary of the homogenous body is decomposed into different sections, 

where corresponding Dirichlet and Neumann boundary conditions for mechanical and 

magnetic problems are prescribed.  Displacement type boundary conditions,   ̅   ̅   on 

  ̅  as well as traction boundary conditions   ̅   ̅  ̅  on    ̅   are prescribed to define 

mechanical BVP, where   ̅,  ̅  and   ̅  are the macroscopic displacement, traction and 

normal to the surface vectors defined on the boundary of the body, respectively.  The 

corresponding magnetic BVP is defined through scalar magnetic potential boundary 

condition;  ̅   ̅  on   ̅ and magnetic flux boundary condition;   ̅   ̅  ̅  on    ̅ , 

where  ̅ and  ̅ are the macroscopic magnetic potential and magnetic flux, respectively. 
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Figure 36. (a) The homogenized body and corresponding boundary decomposition in 

Lagrangian configuration, (b) corresponding CVE, attached to �̅�, selected for homogenization 

study including a circular permeable particle inside a soft square matrix, (c) the deformed CVE 

in Eulerian configuration. 
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The macroscopic deformation gradient tensor and magnetic field are obtained from 

macro-scale BVP which are inputs of the micro-scale problem.  The transition from 

microscopic to macroscopic properties is defined on the micro-scale problem through 

FEM-based averaging process.  Thus, the effective nominal stress and magnetic induction 

as well as macroscopic (effective) moduli tensors are computed from corresponding 

microscopic properties on CVE domain.   

To develop a finite element model, the variational formulation of the equilibrium and 

magneto-statics equations is derived.  To derive the weak form of governing equations, 

inner product of Equations (1)2 and (2) with an arbitrary test function, is considered and 

then integrated over the CVE domain.  Let us consider    and    be arbitrary variations 

of   and  , respectively, that satisfy the boundary conditions on     .  Taking the 

variational form of Equations (1)2 and (2), using integration by part and then the 

divergence theorem yields: 

∫             
   ∮     

    
            (9) 

∫             
   ∮    

    
      (10) 

 

It is noted that the weak form of magneto-statics equation results from a stationary 

magnetic field condition and a non-conducting MEC medium in the absence of surface 

current density on     .  Natural boundary conditions in Equations (9) and (10) appear 

as work terms applied to     , which arise from the normal traction force and the 

magnetic flux.  Recalling Equation (8), it is evident from Figure 36(b) that boundary 
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integrals ∮     
    

  , in Equation (9) and ∮    
    

  , in Equation (10) vanish, since 

the normal unit vector, n acts in opposite directions on the parallel boundaries of the 

deformed CVE.  Weak forms in Equations (9) and (10) define the coupled magnetoelastic 

behavior of the model which is solved utilizing the nonlinear FEM solver. COMSOL 

Multiphysics is used for numerical simulations which allows for direct implementation of 

weak expressions.   

To predict the overall response of the MEC through homogenization approach, 

computation of the effective tangent moduli is required.  Homogenized tangent moduli 

tensors contribute to constitutive laws of macro-scale BVP.  In contrast to macroscopic 

quantities;  ̅  ̅  ̅      ̅  which can be directly computed by Equations (6) and (7), the 

overall tangent moduli 
  ̅

  ̅
 
  ̅

  ̅
 
  ̅

  ̅
 
  ̅

  ̅
 cannot be obtained through volume averaging of 

microscopic counterparts.  This is due to the fact that there is no explicit relation of 

macroscopic nominal stress tensor and magnetic induction vector as a function of  ̅ and 

 ̅.  Incremental (linearized) constitutive relations of the coupled magnetoelastic BVP can 

be estimated, as follows: 

  ̅  
  ̅

  ̅
   ̅  

  ̅

  ̅
   ̅    ̅   ̅   ̅    ̅  ,                                               

  ̅  
  ̅

  ̅
   ̅  

  ̅

  ̅
   ̅   ̅    ̅   ̅    ̅       

(11) 

 

where  ̅  ̅ and  ̅ are macroscopic mechanical, magneto-mechanical and magnetic moduli 

tensors, respectively.  Taking the gradient of displacement vector and magnetic potential 

defined for periodic homogenization, the deformation gradient and magnetic field can be 
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decomposed into a constant and a fluctuation part    ̅     and    ̅    , where 

             and             .  Substituting in moduli tensor relations one has, 

            

 ̅   
  

  
 
   ̅    

  ̅
               

   

  ̅
    , 

 

  ̅   
  

  
 
   ̅    

  ̅
                

   

  ̅
     

 

 ̅   
  

  
 
   ̅    

  ̅
                

   

  ̅
      

  

(12) 

where     and   are microscopic counterparts of moduli tensors.  In Equations (12), the 

challenge is to compute partial derivatives of fluctuation fields;  
   

  ̅
 and 

   

  ̅
 , since there is 

no explicit expression of microscopic fluctuation fields in terms of macroscopic 

variables,  ̅ and  ̅.  Computation of the sensitivity of    and   , with respect to their 

macroscopic counterparts needs to be performed through numerical methods.  Sensitivity 

analysis is a technique developed to measure incremental variations of a single input 

parameter that affects a particular dependent variable of an objective function, while 

remaining inputs are kept constant.  The objective function is in general a function of the 

solution to a multiphysics problem             , which is manipulated by the control 

variables     .  Using a Taylor expansion around the state    , the sensitivity of y to    

is defined by 
  

   
.  A finite difference method is used to compute macroscopic tangent 

moduli and sensitivity of    and    with respect to  ̅ and  ̅.  Details are given in section 3.  
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5.2   Results and Discussion 

The FEM-based homogenization approach presented in this study is carried out on a 

typical two dimensional CVE consisting of a permeable inclusion and a matrix shown in 

Figure 36(b).  The matrix is a square of     edge and the radius of circular inclusion is 

     .  The CVE is analyzed under different states of deformation and magnetic field to 

compute the distribution of microscopic nominal stress and magnetic induction as well as 

effective counterparts.  Both inclusion and matrix are modeled as a compressible neo-

Hookean magnetoelastic material.  To conduct numerical analysis, a particular form of 

energy function is required.  Due to lack of experimental data on MECs, limited data are 

available in the literature.  In this study, a typical magnetoelastic energy function is 

considered:      

  
 

 
               

 

 
         

  
 ⁄         (13) 

 

where       is the right Cauchy–Green deformation tensor,       is the trace of c and 

      .    and   are Lamé constants and   is the magnetic permeability.  Material 

properties of the inclusion are chosen as          ,            and           and 

those of the matrix are         ,           and        where          

          is the magnetic permeability of the vacuum [45, 46, 47]. 

For the magnetoelastic energy function given in the Equation (13), the nominal stress 

tensor is calculated as: 
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where     is the inverse matrix of    and    is the identity tensor.  The magnetic 

induction vector would be: 

   [ 
  

  
]       

 
       (15) 

 

The microscopic moduli tensors are derived as: 

      [
  

  
]     [

   

    
]         

     
           [     

 ]   
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  [(
  

 
) (           

             
     

  )]            

(16) 

 

     [
  

  
]    [

   

    
]       

  

 [                 
 

 
        

  ]  (17) 

 

    [
  

  
]   [

   

    
]       

  

      (18) 

 

For clarity, distribution of microscopic stress and magnetic induction are investigated for 

three different cases of magneto-mechanical loadings in       plane:  
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 A plane strain uniaxial stretch at constant magnetic field: three cases of 

macroscopic deformation is considered while magnetic field is being kept 

constant at    direction: 

 ̅  [
    
    

]                         and       ̅  *
 

   
+        

    is numerically computed at each loading step, so as  ̅    . 

 A plane strain pure shear at constant magnetic field: three cases of macroscopic 

deformation is considered while magnetic field is being kept constant at    

direction: 

 ̅  [
    
    

]                       and      ̅  *
   
 

+     

 A plane strain equally biaxial stretch at different levels of magnetic field: three 

cases of magnetic loading is considered at    direction while macroscopic 

deformation is kept constant: 

 ̅  *
    
    

+        and       ̅  *
  

 
+                             

Simulation results for uniaxial loading case are shown in Figure 37.  All contour plots 

presented are normalized by the corresponding volumetric average of the quantity 

concerned.  Figures 37(a-c) show the distribution of the microscopic nominal stress 

component,    , for uniaxial stretch at constant magnetic field  ̅          .  The 

macroscopic stress changes as                      and          , as the stretch is 

increased by         and    , respectively.  The microscopic stress is a nonlinear function 
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of the deformation gradient tensor and magnetic field.  Distribution of the microscopic 

stress is different for compressive and tensile stretches.  Smaller stress occurs in the 

matrix compared to the inclusion, as it is expected due to stiffer material properties of the 

inclusion.   

 

 

 

Distribution of the    component of the microscopic magnetic induction, normalized by 

 ̅  , is shown in Figure 37(d-f).  Due to high contrast between magnetic permeability of 

the inclusion and matrix, high magnetic induction occurs at the inclusion area.  Effective 

magnetic induction varies by               and       , as the stretch is increased by 

        and    , respectively.  This increase is due to the fact that the magnetic induction 
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Figure 37.  Contour plots of normalized microscopic distribution of  𝑻𝟐𝟐 for uniaxial loading 

case at (a) 0.8, (b) 1.1 and (c) 1.4 stretches.  Normalized microscopic distribution of 𝑩𝟐 for 

uniaxial loading case at (d) 0.8, (e) 1.1 and (f) 1.4 stretches.   
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vector is a nonlinear function of stretch.  Moreover, nonuniform deformation distribution 

in the matrix area causes a higher magnetic induction at top and bottom edges of the 

CVE.   

 

 

 

Figures 38(a-c) and 38(d-f) show the contour plots of the microscopic stress and 

magnetic induction for case of pure shear loading, respectively.  Macroscopic magnetic 

field is applied in    direction. The      component of stress tensor and    component of 

the magnetic induction vector are shown for analysis.  The macroscopic stress takes the 

(a) 

𝑇  

�̅�  
 𝑇  

�̅�  
 

(b) 

𝑇  

�̅�  
 

(c) 

𝐵 

�̅� 

 

(d) 

𝐵 

�̅� 

 

(e) 
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(f) 

Figure 38.  Contour plots of normalized microscopic distribution of  𝑻𝟏𝟐 for pure shear loading 

case at (a) -0.3, (b) 0.1 and (c) 0.2 shear stretches.  Normalized microscopic distribution of  𝑩𝟏 

for pure shear loading case at (d) -0.3, (e) 0.1 and (f) 0.2 shear stretches.  The red boundary lines 

represent the 𝝏𝑪𝑽𝑬 in undeformed configuration.  All deformed plots are scaled to 1.  
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values                    and          , as the shear stretch changes by          and 

   , respectively.  Similar to the case of uniaxial loading case, the highest stress and 

magnetic induction occurs at the inclusion, due to stiffer mechanical properties and 

higher magnetic permeability of the inclusion.  The macroscopic magnetic induction 

changes by                 and        , as the shear stretch increases by          and 

   , respectively. 
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Figure 39.  Contour plots of normalized microscopic distribution of  𝑻𝟏𝟏 for equally biaxial 

loading case at (a) 𝟏𝒆𝟓𝑨𝒎 𝟏, (b) 5𝒆𝟓𝑨𝒎 𝟏 and (c) 𝟏𝒆𝟔𝑨𝒎 𝟏 magnetic field.  Normalized 

microscopic distribution of  𝑩𝟏 for equally biaxial loading case at (d) 𝟏𝒆𝟓𝑨𝒎 𝟏, (e) 5𝒆𝟓𝑨𝒎 𝟏 

and (f) 𝟏𝒆𝟔𝑨𝒎 𝟏 magnetic field.   
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Figures 39(a-c) and 39(d-f) show the contour plots of the microscopic stress and 

magnetic induction for equally biaxial loading case, respectively.  Macroscopic magnetic 

field is applied as                        in    direction. The      component of stress 

tensor and    component of the magnetic induction vector are shown for comparison.  

The macroscopic stress takes the values                       and           , as the 

magnetic field is increased by                      , respectively.  The highest stress 

and magnetic induction occurs at the inclusion, due to stiffer mechanical properties and 

higher magnetic permeability of the inclusion.  The macroscopic magnetic induction 

changes by               and       , as the magnetic field is increased by 

                     , respectively. 

In all cases of magneto-mechanical loadings presented, the relative distribution of the 

microscopic stress components mainly depends on the deformation state.  This arises 

obviously due to the dominant geometric nonlinearity term compared to the magnetic 

nonlinearity term, in the microscopic stress formulation at considered magnetic field.     

One might note that periodic boundary conditions are not appeared in the deformed unit 

cells shown in Figures 37-39.  This is because of the fact that periodic boundary 

conditions are applied on the fluctuation fields but the deformed unit cells displays the 

microscopic position vector        ̅      .   The fluctuation fields on the 

boundaries are shown in Figure 40 for the pure shear loading case.  Figure 40 

corresponds to the Figure 38 which depicts the deformed unit cell at pure shear loading 

case. 
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A parametric study is carried out to understand the effect of the increasing magnetic field 

on the macroscopic quantities.  Figure 41 shows the plots for macroscopic stress and 

magnetic induction components with respect to the stretch at different levels of 

macroscopic magnetic field.  For comparison, magnetic field is applied in    direction 

for all loading cases.  The model is parametrically swept on both stretch and magnetic 

field component for some distinct equilibrium states.     
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(a) (b) (c) 

(d) (e) (f) 

Figure 40.  Contour plots showing the periodic boundary conditions on the fluctuation fields. 

The normalized microscopic distribution of  𝑻𝟏𝟐 for pure shear loading case at (a) -0.3, (b) 0.1 

and (c) 0.2 shear stretches.  Normalized microscopic distribution of  𝑩𝟏 for pure shear loading 

case at (d) -0.3, (e) 0.1 and (f) 0.2 shear stretches.  The red boundary lines represent the 𝝏𝑪𝑽𝑬 

in undeformed configuration.  All deformed plots are scaled to 1. The Figure corresponds to 

Figure 38 which sketches the deformed unit cells based on of microscopic position vector. 
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Results for components of the stress tensor for the uniaxial, equally biaxial and pure 

shear loadings are shown in Figures 41(a), 41(c) and 41(e), respectively.  In Figure 41(a), 

the average stress  ̅   turns into compressive one and is highly increased when the 

magnetic field reaches  ̅          .  The quadratic magnetic field-dependent term in 

the stress function becomes a negative term and shows significant effect at higher 

magnitude of the applied magnetic field, while the influence of the deformation only 

dependent terms is dominant at lower magnetic fields.  In Figure 41(c), the effect of the 

magnetic term tends to switch the stress component  ̅   to compressive stress.  Analogous 

to the uniaxial loading case, the deformation dependent term of the stress dominates at 

low magnetic fields.  Figure 41(e) demonstrates the effect of macroscopic magnetic field 

on the  ̅   stress component for pure shear loading case.  The macroscopic magnetic field 

has strong effect on the shear stress component as is expected from Equation (15). 

Corresponding parametric study results for  ̅  component of the effective magnetic 

induction are depicted in Figures 41(b), 41(d) and 41(f) for uniaxial, equally biaxial and 

pure shear loading cases, respectively.  From Equation (16), for a constant deformation 

state, the magnetic induction has a linear relation with the applied magnetic field for both 

matrix and inclusion domains.  In all loading cases, magnetic induction increases by the 

increasing stretch. 
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Figure 41.  Parametric analysis resulting from numerical study representing (a)  �̅�𝟏𝟏 vs. stretch 

(b) �̅�𝟏 vs. stretch for uniaxial loading case, (c)  �̅�𝟏𝟏 vs. stretch (d) �̅�𝟏 vs. stretch for equally 

biaxial loading case and (e)  �̅�𝟏𝟐 vs. stretch (f) �̅�𝟏 vs. stretch for pure shear loading case at 

different levels of macroscopic magnetic field.   
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5.3  Computation of macroscopic moduli tensors 

Computation of the first term in right hand side of Equation (12) requires integration of 

components of microscopic moduli tensors given by Equations (17-19), over CVE’s 

domain.  Calculation of the second term of integral Equations (12) requires the 

computation of 
   

  ̅
 and 

   

  ̅
.  For small perturbations, a suitable approach is the Taylor 

expansion of fluctuation functions around macroscopic quantities,  ̅ and  ̅.  Thus, 
   

  ̅
 and 

   

  ̅
 are first-order sensitivity of    and   , with respect to their macroscopic counterparts, 

respectively.   

The finite difference method is used to find the first order sensitivity for two independent 

cases of loading paths, deformation induced loading and magnetic induced loading.  

Practically, for an arbitrary deformation loading path, an incremental loading is 

performed on the model by sweeping the uniaxial stretch at gradually decreasing 

incremental steps. This is performed through parametric sweep study of the software.  At 

each increment, the model is run for small perturbations, e.g.    , of four components 

of macroscopic deformation gradient tensor, while all other parameters of the model are 

kept constant.  The four components of     are then computed for each independent 

perturbation and the 4
th

- order sensitivity tensor is estimated through [
   

  ̅
]     

[     ]

[  ̅  ]
 

    
      

 

 ̅  
   ̅  

 .   Analogously, for magnetic loading case, an incremental parametric sweep is 

applied on the macroscopic magnetic field.  At each incremental level, the model is run 

for small variation, e.g.      of two components of the macroscopic magnetic field 

vector, while the rest of parameters are kept constant.  Two components of     are 
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computed for each independent perturbation component and the 2
nd

 –order magnetic 

sensitivity tensor is approximated by [
   

  ̅
]   

[    ]

[  ̅ ]
 

   
     

 

 ̅ 
   ̅ 

 .  In Equations (12), single and 

double contractions are denoted by     and    , respectively.   

In this study, LiveLink
TM

 for MATLAB
®
 interface is used for the computation of the 

macroscopic moduli tensors, which connects COMSOL Multiphysics to MATLAB 

scripting environment.  LiveLink
TM

 for MATLAB
® 

is a Java
®
 based interface that 

increases the FEM modeling ability by using MATLAB commands and functions to set 

up the model and physics from scripts, control the model and analyze the results.  

Microscopic moduli tensors are calculated with direct implementation of Equations (17-

19), as local variables in the model.  The model is created and saved as .mph file in the 

MATLAB directory.  Then the model is imported in the MATLAB script for further 

processing.   

In terms of MATLAB script implementation, a loop is used for each loading path to 

perform the incremental sweep on the parameter concerned.  At every increment step, 

components of the deformation gradient tensor are perturbed by       stretch, while 

         is chosen for the perturbation of components of the magnetic field vector.  

Components of the microscopic moduli tensors and fluctuation fields are computed and 

integrated on CVE’s domain according to the Equation (12).  Once the FEM model is 

created and saved in the MATLAB directory, it is called in the MATLAB script for 

evaluation of the homogenized moduli tensors.  Main syntaxes used in the code are: 

1. model = mphload('modelname') 

2. model.param.set('parameter','value'); 
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3. model.study('std1').run; 

4. [v1,v2,...] = mphint2(model,{‘q1’,’q2’,... },’surface’) 

5. data = mpheval(model,{‘q1’,’q2’,... },'selection',1) 

 

The first command loads the .mph file (COMSOL files extension) which is already saved 

in the MATLAB working directory.  The second command assigns the quantity in 

'value' to the desired parameter in the model.  The third command runs the model.  The 

4
th

 command evaluates the surface integration of the string expressions ‘qi’s on the 

CVE’s domain.  The 5
th

 command evaluates the string expressions ‘qi’s as a field value 

at each node points.   All the data and integration evaluations returns in matrix format and 

stored for plotting and further processing.       

Results for selected components of overall mechanical tangent moduli tensors for a 

typical uniaxial loading path are depicted in Figure 42.      component of the deformation 

gradient tensor is incrementally increased from 0.8 to 1.35 at a constant macroscopic 

magnetic field,  ̅          .  From Equation (17), the components of       are highly 

nonlinear and complex functions of the deformation gradient tensor.  As it is shown in 

Figure 42(a), the components  ̅    and  ̅     are of order of 10
10

, since they are highly 

dependent on  ̅  component of the macroscopic magnetic field.  While  ̅ -dependent 

terms are not dominant in  ̅    and  ̅     components, as demonstrated in Figure 42(b).  

Consequently,  ̅    ,  ̅     and their symmetric counterparts of the mechanical moduli 

tensors are dominant terms in the stress tensor.   
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Results for selected components of the coupling moduli tensor for a uniaxial magnetic 

loading path are shown in Figure 42(c-d).   ̅  is incrementally increased form            

to         at a constant macroscopic deformation state  ̅  [              ].  From 

Equation (18), components of      moduli are linear functions of  ̅ .  The nonlinearity 

observed in the Figures 42(c,d) stems from the effect of sensitivity tensor as given by 
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Figure 42. (a,b) Components of homogenized mechanical moduli tensor, (c,d) Components of 

the homogenized coupling magneto-mechanical moduli tensor. 
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Equation (12).  The magnitude of  ̅    tends to increase by the increasing magnetic field.  

Moreover, as it is deduced from Equation (19), components of    tensors are independent 

of the macroscopic magnetic field. The nonzero components of macroscopic counterparts 

are nearly computed as  ̅    ̅            (not shown in the Figure).  It has to be 

mentioned that tangent moduli tensors are computed through a set of perturbation tests 

conducted along a loading path about a reference macroscopic equilibrium state { ̅  ̅}.  

Hence, the overall properties presented here depend on the selected uniaxial loading path 

and the equilibrium state.  

 

5.4 Summary and Conclusions 

A numerical tool is demonstrated to compute the homogenized properties of the magneto-

active composite structures through a commercial FEM package.  The proposed 

algorithm provides a computational approach to study the micro to macro transition of 

the mechanical and magnetic properties of the MEC structures.  The presented approach 

differs from all prior work in two aspects.  The methods presented in references [48-51] 

for computation of effective tangent moduli tensors are carried out through a C++ based 

in-house FE code and are of high computational cost.  In this study, the FEM package - 

COMSOL Multiphysics- is employed for all numerical simulations which allows for 

direct implementation of weak forms of governing equations.  It also takes the advantage 

of MATLAB scripting environment for parametric study and control of the model’s 

variables and physics.  More importantly, the finite difference method proposed in this 
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study offers a computationally cost-effective methodology to evaluate homogenized 

tangent moduli tensors for different loading paths.   

A neo-Hookean type magnetoelastic energy function is proposed to demonstrate the 

nonlinear coupling behavior of the matrix and magnetic inclusion of the composite.  A 

CVE with periodic boundary condition is selected to extract the microscopic distribution 

of stress and magnetic induction.  Macroscopic properties are evaluated through 

volumetric averaging of microscopic counterparts.  Macroscopic properties of the 

composite are extracted from the microscopic counterparts, through the homogenization 

procedure.  No effective (macroscopic) energy function is assumed in this process.  For 

both uniaxial and biaxial loading cases considered here, macroscopic stress results 

confirm that the magnetic field dependent terms of stress are dominant at high 

macroscopic magnetic fields.  Moreover, magnetic induction increases by increasing 

stretch and magnetic field.  At constant magnetic field, both stress and magnetic 

induction increase by increasing the stretch.   

In conclusion, homogenization is an essential mechanism to compute the effective 

properties of the magneto-active composites, especially when finding an effective 

constitutive law is very difficult for complicated composites. Homogenized tangent 

moduli tensors are useful and necessary characteristics of the magneto-active composites 

for evaluating the overall response of the composite, FE
2
 modeling and macro-scale 

instability analysis.   
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CHAPTER SIX 

Homogenization Approach in Random Magnetoelastic Composites
1
 

 

 

Homogenization is a numerical approach used as a tool to study the overall response of 

the composite and heterogeneous materials presumed to be statistically homogenous.  In 

this study, a FEM-based homogenization method is employed to compute the effective 

response of a random MEC under applied magnetic fields and large deformations.   

Spatially random distribution of identically circular inclusions inside a soft homogenous 

matrix is investigated.  FEM-based averaging process is combined with Monte-Carlo 

method (MCM) to generate ensembles of randomly distributed MECs.  The ensemble is 

utilized as a statistical volume element (SVE) in a scale-dependent statistical algorithm to 

approach the desired characteristic volume element (CVE) size.   

It is assumed that the principle of separation of scales is satisfied for the relative 

dimensions of the microstructure and fluctuation fields in contrast to that of the CVE.  

The overall tangent moduli tensors are developed based on the sensitivity analysis of 

deformation gradient tensor and magnetic field vector by utilizing the finite difference 

method.  Theoretical framework for constitutive laws and coupled governing equations 

for magnetoelastic continuum is presented following the finite elasticity theory [21-28].  

The FE discretization is carried out on SVEs consisting of randomly distributed 

                                                           
1
 Results of this chapter are submitted to the Journal of Computational mechanics. 
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magnetically permeable particles within a hyperelastic matrix.  The random 

homogenization is employed to extract macroscopic constitutive laws of the nominal 

stress tensor and magnetic induction vector.      

 

6.1 Modeling 

A direct micro-meso-macro extraction of material properties is defined through the FEM-

based homogenization approach.  A SVE consisting of magnetically permeable particles 

within a soft matrix is used as ensembles in meso-scale.  The magnetic particles and the 

soft matrix are characterized by a magnetoelastic energy function where the magnetic 

permeability of the matrix is presumed as that of the free space.   

A typical SVE, chosen for meso-scale analysis is shown in Figure 43(b).  The 

magnetoelastic composite (MEC) is considered to be initially at an undeformed state, 

denoted by    with boundary     as the reference configuration.  The body deforms 

when subjected to time-dependent magnetic and mechanical loadings.  The region 

occupied by the continuum   , with boundary    , at a given time t is the deformed 

configuration.  Let   and   be the position vectors of the material point at reference and 

deformed configurations, respectively, where          and          is the 

deformation mapping.  The deformation gradient tensor is defined by           

     , where       is the gradient operator with respect to material coordinates,  .   

In this study, notations                      are used for micro-scale differential 

operators in Lagrangian coordinates.  A Lagrangian formulation is adopted to develop 
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magnetoelastic relations.  The Lagrangian magnetic field and magnetic induction vectors 

are denoted by         and       , respectively.  It is assumed that the magnetic 

field is stationary and the non-conducting MEC material is initially at the static 

configuration and subjected to only magnetic and mechanical interactions.  Thus,         

are independent of time.  Maxwell equations of magneto-statics can be written, as 

follows: 

         ,                   , (1) 

It is worth mentioning that Equation (1) is resulted from no electric field, no free charge 

and no current density assumptions on the continuum.  Equation (1) is used to define a 

scalar potential     , such that          , since                           .  

Thus, the magneto-statics differential equations are solved for the scalar potential. 

In the absence of body forces, the equilibrium equation on the micro-scale reads: 

        , (2) 

where T is the nominal stress tensor defined at reference configuration.  Equations (1) 

and (2) are coupled governing equations of the magneto-elastic continuum.  Constitutive 

relations of the magneto-elastic medium are derived from a nonlinear magnetoelastic 

energy density,         , which is a function of the deformation gradient tensor and 

magnetic field vector, defined per unit volume at   .  For a compressible material, 

constitutive relations for the nominal stress and the magnetic induction are: 

  
  

  
           

  

  
        in      (3) 
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In macro-scale, the volume occupied by a body in reference (undeformed) configuration 

is denoted by   
̅̅ ̅, which is bounded by    

̅̅ ̅̅ ̅ and notations   ̅ and    
̅̅ ̅̅̅ are assigned for the 

corresponding deformed configuration of the continuum.   ̅ and  ̅ are associated with the 

macroscopic Lagrangian and Eulerian coordinates, respectively.  The macroscopic 

deformation mapping,  ̅ follows  ̅   ̅  ̅   .  Accordingly,      ̅     ̅          ̅ are 

used for macro-scale differential operators in Lagrangian coordinates.  Hence,  ̅  

     ̅  ̅    ̅   ̅ is the macroscopic deformation gradient tensor.  Consequently, 

coupled governing equations of the continuum are: 

     ̅  ̅   ,               ̅  ̅   ,                   ̅  ̅    (4) 

where  ̅  ̅      ̅ are macroscopic magnetic field vector, magnetic induction vector and 

nominal stress tensor, respectively.  Similarly, macroscopic quantities can be related to a 

macroscopic energy function   ̅   ̅  ̅  ̅   through:  

 ̅  
  ̅

  ̅
         ̅   

  ̅

  ̅
        in    

̅̅ ̅  (5) 

Derivation of constitutive laws through a macroscopic energy function is beyond the 

scope of this study.  Computation of macroscopic quantities is performed through surface 

integrals of corresponding microscopic counterparts across the ensemble’s boundary.  

Notations,      
 

 

 
∫  
  

   and       
 

 

 
∮  
   

  , are introduced for volume 

and surface integrals on the body’s domain and boundary, respectively, where V is the 

volume of the domain in the reference configuration.  Assuming the continuity of the 

deformation gradient tensor and the magnetic induction vector on the boundary of the 

SVE, the surface integral can be equivalently estimated as the volume integral of 
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corresponding properties on the SVE’s domain.  Using Gauss theorem, macroscopic 

deformation and nominal stress tensors are given by: 

 ̅                    ,                  ̅                             (6) 

where       and     are the position vector, traction vector, and normal vector on the 

boundary of the SVE, respectively.  Likewise, the corresponding magnetic field and 

magnetic induction vectors in macro-scale are defined by integral equations: 

  ̅                   ,                  ̅                            (7) 

where    and         are the magnetic potential and magnetic flux on the boundary of 

the SVE, respectively.   

The microscopic position vector can be expressed as a linear function of the macroscopic 

deformation gradient and a fluctuation field;       ̅      , where      is the 

fluctuation field, a vector function of the position vector.  Similarly, the magnetic 

potential follows        ̅         where      is a scalar function of  .  Boundary 

conditions of the SVE are derived from the classical Hill-Mandel homogeneity condition.  

Hill-Mandel condition,   ̅       states that the increment of the macroscopic energy 

function is equivalent to the volume average of the increment of the microscopic energy 

function,.   

                                     ̅          ̅  

                                                

  ̅   ̅   ̅    ̅                       

   ̅                         ,                            

(8) 
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To satisfy the Hill’s condition, both the mechanical and magnetic boundary integrals in 

Equation (8) are required to vanish through defining appropriate boundary conditions.  

Two types of boundary conditions are considered here:  

 Linear displacement boundary conditions (LD-BC) with zero mean fluctuation 

fields;  ̅    and  ̅   .  

 Periodic boundary condition (PF-BC) for fluctuation fields;       and      and 

anti-periodic condition for t and b [46-48]: 

                                    

                                         on       
(9) 

 

where superscripts (+) and (–) are associated with nodes on opposite boundaries (right 

(top) and left (bottom) edges on Figure 43 (b)) of the     .  One may argue that the use 

of periodic boundary conditions is not suitable for a random heterogeneous structure.  It 

has been shown that adopting periodic boundary conditions can estimate the effective 

properties, even when the structure is characterized with random distribution of the 

inclusions [53-61]. 

In order to define the boundary value problem (BVP), macro-scale boundary conditions 

on     for mechanical and magnetic problem must be specified.  Figure 43(a) shows a 

schematic of the BVP.  The boundary of the homogenous body is decomposed into 

different sections, where corresponding Dirichlet and Neumann boundary conditions for 

mechanical and magnetic problems are prescribed.  Displacement type boundary 
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conditions,   ̅   ̅   on   ̅  as well as traction boundary conditions   ̅   ̅  ̅  on    ̅   are 

prescribed to define mechanical BVP, where  ̅,  ̅ and  ̅ are the macroscopic 

displacement, traction and normal to the surface vectors defined on the boundary of the 

body, respectively.  The corresponding magnetic BVP is defined through scalar magnetic 

potential boundary condition;  ̅   ̅  on   ̅  and magnetic flux boundary condition;  

 ̅   ̅  ̅  on    ̅ , where  ̅ and  ̅ are the macroscopic magnetic potential and magnetic 

flux, respectively. 

 

 

  

The macroscopic deformation gradient tensor and magnetic field are obtained from 

macro-scale BVP which are inputs of the micro-scale problem.  The transition from 

microscopic to macroscopic properties is defined on the micro-scale problem through 

FEM-based averaging process.  Thus, the effective nominal stress and magnetic induction 

as well as macroscopic (effective) moduli tensors are computed from corresponding 

microscopic properties on the SVE domain.   

𝜕 ̅𝑢 

𝜕 ̅𝜎 

�̅� 

𝜕 ̅𝜑 

𝜕 ̅𝑏 

�̅� 

{�̅� �̅�} 

(a) (b) 

- 

- 

+ 

+ 

Effective 

medium 

(c) 

Homogenization 

SVE 

Figure 43. (a) The homogenized body and corresponding boundary decomposition in 

Lagrangian configuration, (b) corresponding SVE, attached to �̅�, selected for statistical analysis 

including randomly distributed circular permeable particle inside a soft matrix (c) the effective 

medium modeled using homogenization approach.  
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To develop a finite element model, variational formulation of the equilibrium and 

magneto-statics equations is derived.  To derive the weak form of governing equations, 

inner product of Equations (1)2 and (2) with an arbitrary test function, is considered and 

then integrated over the SVE domain.  Let us consider    and    be arbitrary variations 

of   and  , respectively, that satisfy the boundary conditions on     .  Taking the 

variational form of Equations (1)2 and (2), using integration by part and then the 

divergence theorem yields: 

∫             
   ∮     

    
            (10) 

∫             
   ∮    

    
      (11) 

It is noted that the weak form of magneto-statics equation results from a stationary 

magnetic field condition and a non-conducting MEC medium in the absence of surface 

current density on     .  Natural boundary conditions in Equations (10) and (11) appear 

as work terms applied to     , which arise from the normal traction force and the 

magnetic flux.  For linear displacement boundary conditions, the traction t and magnetic 

flux b are calculated from the applied displacement field and magnetic potential on the 

boundaries of the ensemble.  The FEM solver automatically computes the surface 

tractions from the displacement type boundary conditions, and applies them as work 

terms in the variational formulations.   

For periodic boundary conditions, recalling Equation (9), it is evident from Figure 43(b) 

that boundary integrals ∮     
    

  , in Equation (10) and ∮    
    

  , in Equation (11) 

vanish, since the normal unit vector, n acts in opposite directions on the parallel 
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boundaries of the deformed SVE.  Weak forms in Equations (10) and (11) define the 

coupled magnetoelastic behavior of the model which are solved utilizing the nonlinear 

FEM solver.  COMSOL Multiphysics is used for numerical simulations which allows for 

direct implementation of weak expressions.   

To predict the overall response of the MEC through homogenization approach, 

computation of the effective tangent moduli is required.  Homogenized tangent moduli 

tensors contribute to constitutive laws of macro-scale BVP.  In contrast to macroscopic 

quantities;  ̅  ̅  ̅      ̅  which can be directly computed by Equations (6) and (7), the 

overall tangent moduli 
  ̅

  ̅
 
  ̅

  ̅
 
  ̅

  ̅
 
  ̅

  ̅
 cannot be obtained through volume averaging of 

microscopic counterparts.  This is due to the fact that there is no explicit relation of 

macroscopic nominal stress tensor and magnetic induction vector as a function of  ̅ and 

 ̅.  Incremental (linearized) constitutive relations of the coupled magnetoelastic BVP can 

be estimated, as follows: 

  ̅  
  ̅

  ̅
   ̅  

  ̅

  ̅
   ̅    ̅   ̅   ̅    ̅  ,                                               

  ̅  
  ̅

  ̅
   ̅  

  ̅

  ̅
   ̅   ̅    ̅   ̅    ̅       

(12) 

where  ̅  ̅ and  ̅ are macroscopic mechanical, magneto-mechanical and magnetic moduli 

tensors, respectively.  Taking the gradient of displacement vector and magnetic potential 

defined for periodic homogenization, the deformation gradient and magnetic field can be 

decomposed into a constant and a fluctuation part    ̅   ̃ and    ̅   ̃, where 

 ̃            and  ̃           .  Substituting in moduli tensor relations one has, 

          (13) 
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 ̅   
  

  
 
   ̅  ̃ 

  ̅
               

  ̃

  ̅
    , 

 

  ̅   
  

  
 
   ̅  ̃ 

  ̅
                

  ̃

  ̅
     

 

 ̅   
  

  
 
   ̅  ̃ 

  ̅
                

  ̃

  ̅
      

  

where     and   are microscopic counterparts of moduli tensors.  In Equations (13), the 

challenge is to compute partial derivatives of fluctuation fields;  
  ̃

  ̅
 and 

  ̃

  ̅
 , since there is 

no explicit expression of microscopic fluctuation fields in terms of macroscopic 

variables,  ̅ and  ̅.  Computation of the sensitivity of  ̃ and  ̃, with respect to their 

macroscopic counterparts needs to be performed through numerical methods presented in 

chapter two.   

 

6.2 Random homogenization framework 

In this study, the homogenized response of a 2D magnetoactive heterogeneous material is 

sought through random homogenization process.  A scale dependent statistical approach 

is employed to perform the convergence analysis on the ensembles of the random MEC 

following the approaches documented in [53-61].   
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(c) 

𝔀  𝟓     𝔀  𝟕     𝔀  𝟗       𝔀  𝟏𝟏          𝔀  𝟏𝟑            𝔀  𝟏𝟓            𝔀  𝟏𝟕 

 
Increasing scale factor and number of inclusions 

(a) 

(b) 

Figure 44. Schematic of the statistical algorithm used in the study. (a) selection of random meso-

scale ensembles of the heterogeneous MEC for a typical test window size, (b) increasing the size 

of the test window and number of particles towards the convergence window and (c) five typical 

realizations for 𝔀  𝟕  All ensembles are generated for 𝑨𝒇  𝟎 𝟑𝟓 𝒅  𝟏𝟎 𝐚𝐧𝐝  𝒅𝒄  𝟏. 
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The magnetoactive material is a two-phase composite consists of randomly distributed 

hard and permeable inclusions in a soft non-magnetic matrix. It is assumed that the Hill’s 

general homogenization limit between the size of heterogeneity, d and that of CVE, L is 

satisfied;    .  

The effective behavior of composite material depends on properties of microstructure’s 

constituents.  SVE is an area of the random heterogeneous material that is chosen to 

calculate the overall properties.  In random homogenization, the problem is to find the 

appropriate size of the SVE which can represent the heterogeneous material properties, 

called CVE.  Here, the goal is to develop a FEM-based random homogenization approach 

which uses the Monte-Carlo method to generate random SVEs and capture the effective 

properties.   

Figure 44 shows the schematic of statistical approach and generation of the meso-scale 

SVE ensembles in the random MEC.  The statistical approach is equivalent to moving 

limited number of square-shaped frames at different points of the heterogeneous 

structure, where the size of the square frames is successively increased step by step till 

the desired CVE size is approached (Figure 44(b)).  Typical realizations of the random 

structure for     are shown in Figure 44(c).   

The computational algorithm utilized in the simulation is depicted in Figure 45.  First, 

constant parameters of simulations:   ,       ,       ,  ,   , Tol are input in the model.  An 

area fraction   , is assigned to find the number of inclusions inside the square ensemble.  

   is defined as the ratio of total area of inclusions to the area of the SVE.  Material 
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properties of the matrix and inclusions,   , particle diameter, d, and distance between 

particles,     are held constant in simulations.  Next, a window size, L is assigned to 

generate the realization,   , where   
 

 
 is a non-dimensional scale factor, discretely 

increased in a loop till the convergence point is achieved.  Each    is generated through 

random positioning of circular inclusions in the square matrix, using a so called hard-core 

Poisson point field, so that the circles are prevented from overlapping, by assigning a 

minimum distance    between the boundaries of inclusions.  For each ensemble   , the 

variational formulations (10) and (11) are solved to find the components of the 

constitutive laws and moduli tensors.  Steps 1-3 are repeated in a loop for each   and for 

maximum of 45 independent simulations.  For each  , the number of realizations, N is 

determined through 
     

 ̅√ 
    , where   

  √
 

   
∑      ̅   

     is the standard deviation,  ̅ is the average of the selected 

component of the macroscopic moduli tensors and Tol is the assigned tolerance [54].  

Dispersion of the data is checked through calculation of N at each step. 

    
           

 
 and   

       

 
, are defined as the selected components of the moduli 

tensors being monitored for statistical accuracy.  The algorithm stops when the statistical 

accuracy is achieved and the corresponding ensemble size,    is qualified as the desired 

CVE.  The CVE is defined as the minimum window size for which the number of 

required realizations N, is less than 5 for both parameters  ̅ and  ̅.  In other words, the 

average components of moduli tensors remain in the tolerance interval and the minimum 

dispersion in  ̅ and  ̅ are observed.   
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 Assign inputs:   ,       ,       ,  ,   , Tol. 

 Loop  : 5  . Subsequently increase the size of SVE till the convergence is achieved. 

 Loop t:1  .  

                          Calculate number of particles,      
          

   . 

                          Calculate size of SVE square     . 

                          Generate spatially random distribution of n particles in square ensembles. 

                          Solve the variational formulations (10) and (11). 

                          Compute constitutive laws and overall moduli tensors over each SVE. 

                          Compute    
           

 
 and   

       

 
.  

                          Calculate number of realizations, N from  
     

 ̅√ 
     for each parameters  ̅ and  ̅. 

                          If      

                      End Loop t 

             End Loop                                       

Figure 45. Computational algorithm used in the statistical approach. 

 

6.3 Results and Discussion 

The FEM-based homogenization approach presented in this study is carried out on a 

typical two dimensional SVE consisting of permeable inclusions and a matrix shown in 

Figure 43(b).  The SVE is analyzed under a deformation and magnetic field loading state 

to compute the distribution of microscopic nominal stress and magnetic induction as well 

as effective counterparts.  Both inclusion and matrix are modeled as a compressible neo-

Hookean magnetoelastic material.  To conduct numerical analysis, a particular form of 

energy function is required.  Due to lack of experimental data on MECs, limited data are 

available in the literature.  In this study, a typical magnetoelastic energy function is 

considered:      

  
 

 
               

 

 
         

  
 ⁄         (13) 

where       is the right Cauchy–Green deformation tensor,       is the trace of c and 

      .    and   are Lamé constants and   is the magnetic permeability.  Material 

properties of the inclusion are chosen as          ,            and           and 
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those of the matrix are         ,           and        where          

          is the magnetic permeability of the vacuum [45, 46, 47]. 

The nominal stress tensor is calculated as: 

         [      ]   
       

 

 (        
 

 
   

              )  (14) 

 where     is the inverse matrix of    and    is the identity tensor.  The magnetic 

induction vector would be: 

   [ 
  

  
]       

 
       (15) 

The microscopic moduli tensors are derived as: 

      [
  

  
]     [

   

    
]         
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 ]   
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    [
  

  
]   [
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      (18) 

 

A plane strain pure shear at constant magnetic field is considered while magnetic field is 

kept constant at    direction: 

 ̅  *
    
    

+    and      ̅  *
 

   
+     
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                  and          are assumed constant in the simulations.  Input 

parameters as well as magneto-mechanical loading state are kept fixed for all results 

presented in this study.  Two cases of boundary conditions; LD-BC and PD-BC are 

considered.  The ensemble’s size is successively increased in a loop from 9 to the 

convergence point.  FEM simulations are performed using COMSOL Multiphysics.  The 

statistical algorithm is run through a computer code.  LiveLink
TM

 for MATLAB
®
 

interface is used for computer programming, which connects COMSOL Multiphysics to 

MATLAB scripting environment.  Ensemble size, number of inclusions and random 

position of inclusions are calculated and the SVE is modeled in the COMSOL graphical 

environment.   

Weak expressions (10) and (11) are directly input in the FEM model.  Constitutive laws 

and micro-scale moduli components are input in the model from Equations (14)-(18).  

The homogenized tangent moduli tensors are computed through the sensitivity approach 

documented in the previous chapter.  The model is run for each   following the 

approach explained in section 3.2.  The convergence plots are shown in Figures 46 and 

47 for moduli components,  ̅ and  ̅ and different boundary conditions, respectively.    ̅ 

and  ̅ are normalized by their corresponding average value at the convergence point.  

Figure 46(a) plots the statistical convergence plot for component  ̅ versus the number of 

simulations for different values of   and LD-BC.  The number of necessary realizations, 

N is calculated from 
     

 ̅√ 
     for each   and at each simulation loop.  The 

convergence is achieved for      .   
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Figure 46. Moduli component  ̅ , results from the statistical analysis for (a) LD-BC and (b) PF-

BC versus number of simulations. 
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Figure 47. Moduli component  ̅ , results from the statistical analysis for (a) LD-BC and (b) PF-

BC versus number of simulations. 
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In all convergence plots presented here, the simulations are continued for      to 

demonstrate the scattering of the statistical data for different test windows.  Figure 46 (b) 

demonstrates that when PF-BC is adopted, the convergence is occurred at      .  

Figure 47 reports the convergence plots for  ̅ component of magnetic modulus for LD-

BC and LF-BC cases.  For both cases of boundary conditions, convergence is reached at 

     .    

It is observed that in all convergence plots, by increasing the size of SVEs and number of 

particles, less dispersion is observed in the magnitude of   ̅ and  ̅ and the convergence is 

achieved with less number of simulations.  It is emphasized that the ensemble size 

achieved in the statistical approach is only valid for the particular form of the inputs, 

loading state and boundary conditions.  Different size and convergence plots may result 

for various input and loading conditions.  Figure 48 plots the coefficient of variation,    

versus the scale factor,   corresponds to the convergence plots in Figures 46 and 47.  

   
 

 ̅
 is defined as the ratio between standard deviation to the mean of the statistical 

data and is a measure of the statistical scattering.  Figure 48 confirms that by increasing 

the size of ensembles, less scattering is observed in the moduli components and    

approaches to zero.      
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Figure 48. Coefficient of variation of (a)   ̅   and (b)   ̅   versus scale factor,  . 
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Figure 49 compares the average of moduli components,  ̅ and  ̅ versus scale factor,   

for both cases of boundary conditions.  For       , the moduli component  ̅ shows the 

same convergence trend for both cases of LD-BC and PF-BC.  The convergence trend for 

 ̅ is shown in Figure 49(b).   It is noted that the two types of boundary conditions used in 

this study, do not define the hierarchies bounds for the corresponding moduli parameters 

 ̅ and  ̅ and this plot cannot be used for identification of the CVE size.  The CVE is 

determined statistically through the algorithm demonstrated on Figure 45.     

Figure 50 shows the distribution of the microscopic nominal stress component     for two 

typical SVE size resulted from different boundary conditions.  Solution of the BVP for a 

meso-scale ensemble with     , and 57 number of inclusions for case of LD-BC is 

shown in Figure 50(a).  Result for the same SVE and PF-BC is shown in Figure 50(b).  

Figure 50(c-d) reports the simulation results for SVE with     , and 80 number of 

inclusions for case of LD-BC and PF-BC, respectively.  All contour plots presented here 

are normalized by the corresponding volumetric average of the quantity concerned.  One 

can notice how the use of PF-BC results in periodic displacement boundary conditions.  

For SVEs with      shown in Figures 50(a) and 50(b) the macroscopic stress 

component  ̅    takes the values                       , respectively.  For ensembles 

with      in Figures 50(c) and 50(d)  ̅   takes the values                        

respectively.   
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Figure 49. Average values of (a)   ̅   and (b)   ̅   versus scale factor,  . 
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Figure 50. FEM results for     component of stress tensor for SVEs with (a)     , with LD-

BC, (b)     , with PF-BC, (c)     , with LD-BC and (d)     , with PF-BC. All 

plots are normalized by their average value of     component.  

 

Figure 51 reports the microscopic distribution of    component of magnetic induction, 

run on the same ensembles described in Figure 50.  LD-BC is adopted on the SVEs with  

     and      as shown in Figure 51(a) and 51(c), respectively.  PF-BC is adopted 

on the SVEs with       and      as shown in Figure 51(b) and 51(d), respectively.   

Plots are normalized by the corresponding volumetric average component,  ̅ .  For SVEs 
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with     , pictured in Figures 51(a) and 51(c) the macroscopic magnetic induction,  ̅  

varies as                  , respectively.    For ensembles with      in Figures 51(c) 

and 51(d),  ̅  takes the values                        respectively. 

 

 

Figure 51. FEM results for    component of stress tensor for SVEs with (a)     , with LD-

BC, (b)     , with PF-BC, (c)     , with LD-BC and (d)     , with PF-BC. All 

plots are normalized by their average value of    component. 
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6.4 Summary and conclusion 

Analytical and FEM approaches are combined with a scale-dependent statistical 

method to identify a random MEC behavior under magneto-mechanical loadings.  

Governing equations for magnetoelastic media are presented.  BVP is defined on the 

statistical meso-scale volume elements of the random MEC.  SVEs are generated 

through a computer code with random distribution of particles where particles are 

prevented from overlapping.  The focus is on identifying the minimum CVE size for 

the random MEC.  The CVE size is computed for a particular loading state through a 

statistical algorithm which combines the FEM-based homogenization approach with 

Monte-Carlo method.     

Results show that for low values of scale factor,  , the random positioning of 

inclusions in each realization has high influence on the effective response of the 

MEC, for both cases of boundary conditions.  By increasing the scale factor and 

number of particles (for a constant area fraction) the statistical dispersion and the 

necessary number of realizations significantly reduces.  It is observed that the CVE 

size      and      are obtained for the  ̅ and  ̅ components respectively.  The 

resultant CVE for the multi-physics system should be identified at the window size 

where both magneto-mechanical moduli components,  ̅ and  ̅ are converged.  

Results show that for PF-BC case, convergence is achieved at a smaller SVE size.  

FEM results for typical SVEs show that the highest stress and magnetic induction 

occurs at the inclusions area, due to stiffer mechanical properties and higher magnetic 

permeability.    
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CHAPTER SEVEN 

Concluding Remarks and Future Work 

 

 

The research presented in this dissertation has resulted in the following contributions: 

 High-amplitude wrinkle formation is employed to propose a one-dimensional phononic 

crystal slab consists of a thin film bonded to a thick compliant substrate.  Buckling 

induced surface instability is employed to generate surface periodic scatterers to control 

elastic wave propagation in the low thickness composite slab.  Simulation results show 

that the periodic wrinkly structure can be used as a transformative phononic crystal which 

can switch band diagram of the structure in a reversible manner.   

 Dynamic response of a tunable phononic crystal consisting of a porous hyperelastic 

magnetoelastic elastomer subjected to a macroscopic deformation and an external 

magnetic field is investigated through considering a magnetoelastic energy function and 

nonlinear moduli tensors for the medium.  The band diagram of the structure is tuned by 

combined effects of microstructural pattern change and magnetic field. 

 A thermally tunable phononic crystal is introduced which utilizes pattern change to 

control band diagram of the structure.   

 A numerical scheme is demonstrated to compute the homogenized properties of the 

periodic magnetoactive composite structures. 
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 The finite difference method proposed in this study offers a computationally effective 

methodology to evaluate homogenized tangent moduli tensors for different loading paths 

for periodic magnetoactive composites. 

 An algorithm for determination of characteristic volume element size and effective 

properties of random magnetoactive composites is presented which utilizes the FEM-

based homogenization approach with Monte-Carlo method.   

 

Recommendations for future work: 

 Response of new tunable phononic crystals needs to be studied through combination of 

control parameters, for example thermal and magnetic effects. 

 New pattern transformation paradigms need to be sought in order to propose new 

periodic structures in controlling elastic wave propagation. 

  Dynamic instability in periodic structures has not been explored.  Dynamic instability 

can be occurred in finite amplitude wave propagation in the periodic structures. 

 The effect of macroscopic instability in periodic structures needs to be explored. 

 The proposed homogenization approach presented in this work needs to be extended to 

study multi-scale analysis in the periodic and random magnetoelastic composites. 

 The proposed random homogenization approach presented in this work needs to be 

further extended to study different material models and loading conditions.  For each case 

different boundary conditions may be required.  The approach needs to be utilized in an 

optimization process to identify the optimum matrix properties, the particle shape, 

distribution and percentage in the design of magnetoactive composites.  
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