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Abstract

Constitutive equations are derived for a 1-D micropolar Timoshenko beam made of a web-core
lattice material. First, a web-core unit cell is modeled by discrete classical constituents, i.e., the
Euler–Bernoulli beam finite elements (FE). A discrete-to-continuum transformation is applied to
the microscale unit cell and its strain energy density is expressed in terms of the macroscale 1-D
beam kinematics. Then the constitutive equations for the micropolar web-core beam are derived
assuming strain energy equivalence between the microscale unit cell and the macroscale beam. A
micropolar beam FE model for static and dynamic problems is developed using a general solution
of the beam equilibrium equations. A localization method for the calculation of periodic classical
beam responses from micropolar results is given. The 1-D beam model is used in linear bending
and vibration problems of 2-D web-core sandwich panels that have flexible joints. Localized 1-D
results are shown to be in good agreement with experimental and 2-D FE beam frame results.

Keywords: Micropolar, Timoshenko beam, Constitutive modeling, Lattice material, Finite
element, Sandwich structures

1. Introduction

Advances in laser welding have brought lightweight all-steel sandwich panels to the market in
the past two decades. The panels consist of a structural core (e.g. I- or X-core) between two faces;
the joining is done by welds that penetrate through the faces into the core. Laser-welded sandwich
panels are currently used, for example, in shipbuilding, but only as minor parts such as staircase
landings and non-structural walls [1, 2]. However, increased knowledge of the limit state behavior of
the panels is making way for more demanding applications like ship decks [3–10]. By one estimate
[2], a ship deck constructed of steel sandwich panels offers 30–50% weight savings compared to
traditional stiffened steel plate solutions. While this study is motivated by ship structures, steel
sandwich panels show good potential for applications in bridges and buildings as well [11–14].

To analyze the global structural response of a large ship within computational limits, any deck
constructed of sandwich panels needs to be modeled in a homogenized sense without accounting
for every small detail. To this end, a sandwich panel may be modeled as an equivalent single-layer
(ESL) beam or plate based on the first-order shear deformation theory (FSDT) [15]. In this study,
the focus is on web-core (I-core) sandwich panels for which different ESL-FSDT models based on
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classical [16, 17], couple-stress [18–21] and micropolar [22] continuum theories have been developed.
Recently, analytical solutions founded on discrete classical models have also been formulated for
web-core plates [23–25]. As for the different ESL-FSDT models, it has been shown that only
the micropolar approach [22] can correctly capture the deformations of a rigid-jointed web-core
structure because it considers both symmetric and antisymmetric shear deformations, as explained
schematically in Fig. 1. In this paper, we develop the micropolar approach further by deriving the
constitutive relations for a web-core beam with flexible joints via a two-scale energy method. In
Fig. 1, the beam and unit cell lengths L and l represent the macroscale and microscale, respectively.

L

l

Laser stake-welded joints

Web-core panel

2-D web-core beam frame

F

Symmetric shear Antisymmetric+
symmetric shear

1-D micropolar beam

Figure 1: The structure studied here represents a plane section of a laser-welded web-core sandwich panel. The 2-D
web-core beam frame is modeled as a 1-D micropolar beam that allows antisymmetric shear deformation to emerge
at locations where the 2-D deformations cannot be reduced to 1-D by considering only symmetric shear behavior.

The two-scale approach has its roots in the method first presented by Noor and Nemeth [26–
28]. They derived a micropolar-type Timoshenko beam model by a variational method using the
strain and kinetic energy expressions of different rigid-jointed lattice configurations. We operate
with a similar strain energy expression here to derive the constitutive relations for the ESL-FSDT
Timoshenko beam model developed earlier in the general context of micropolar elasticity [22].

In a more contemporary vein, the present two-scale constitutive modeling method is based on
ideas that are comparable to those behind second-order computational homogenization techniques
[29–32]: (1) No constitutive model is assumed for the macroscale beam a priori. (2) A microscale
unit cell of the beam is modeled by classical constituents (i.e., by conventional beam elements).
(3) The macroscale beam kinematics are imposed on the microscale unit cell in order to bridge
the two scales. However, instead of solving a nested boundary value problem as in computational
homogenization, the (hyperelastic) constitutive relations in the present linear case will be deter-
mined directly from the unit cell strain energy given in terms of the macroscale beam strains.
In a broad sense, the two-scale approach for a 1-D micropolar beam is a step towards a general
constitutive modeling technique in micropolar elasticity with particular emphasis on mid-surface
structural components such as beams, plates and shells made of lattice materials. The micropolar
modeling of lattices does not usually employ mid-surface kinematics (see, e.g. [33–35]).

The rest of the paper is organized as follows. The micropolar Timoshenko beam model [22] is
briefly reviewed in Section 2. The two-scale constitutive modeling of a web-core beam which gives
the stress resultant equations for the beam is carried out in Section 3. A novel micropolar Timo-
shenko beam finite element is formulated in Section 4 on the basis of a general static displacement
solution to the beam equilibrium equations. We also provide new means for the calculation of
the periodic classical stress response of 2-D web-core frames from 1-D micropolar beam solutions.
Numerical examples are presented in Section 5 and concluding remarks in Section 6.
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Figure 2: Micropolar Timoshenko beam. The positive directions of the stress resultants and rotations are shown.

2. Micropolar Timoshenko beam theory

The pertinent equations of a 1-D micropolar Timoshenko beam model [22] are reviewed here
with the axial behavior of the beam taken into account as a new contribution. We consider a beam
of length L and height h, as shown in Fig. 2. The displacements Ux and Uy and the microrotation
Ψ of the beam can be expressed in terms of the central axis kinematic variables (ux, uy, φ, ψ) as

Ux(x, y) = ux(x) + yφ(x), Uy(x, y) = uy(x), Ψ(x, y) = ψ(x), (1)

where ux is the axial displacement, φ is the rotation of the cross-section, uy is the transverse
deflection, and ψ is an independent microrotation that will ultimately describe the rotation of the
flexible joints of the web-core beam. The nonzero strains of the beam are

εx =
∂Ux
∂x

= u′x + yφ′ = ε0x + yκx, κxz =
∂Ψ

∂x
= ψ′

εxy =
∂Uy
∂x
−Ψ = u′y − ψ, εyx =

∂Ux
∂y

+ Ψ = φ+ ψ,
(2)

where the prime “′” on the variables denotes differentiation with respect to x. The curvature κxz
describes the bending of the face sheets of the web-core beam with respect to their own centroid
axes. The symmetric and antisymmetric shear strains of the beam are defined as

γs = εxy + εyx = u′y + φ, (3)

γa = εxy − εyx = u′y − φ− 2ψ = 2(ωz − ψ), (4)

respectively, where ωz is the macrorotation. The symmetric part takes the same form as the shear
strain in the classical Timoshenko beam theory. The antisymmetric part is defined by the difference
between the macrorotation and the microrotation. Evidently, for ωz = ψ we have γa = 0 and the
relative strains reduce to their classical definitions [36], for example, εxy = u′y − ωz = (u′y + φ)/2.

In addition to having an independent rotational degree of freedom, the micropolar beam can
transmit couple-stress mxz, as well as the usual stresses σx, τxy, and τyx. The four equilibrium
equations of the beam can be written in terms of the stress resultants (Nx,Mx, Qxy, Qyx, Pxz) as

N ′x = 0, M ′x −Qyx = 0, Q′xy = −q, P ′xz +Qxy −Qyx = −m, (5)

where q is a distributed transverse load and m is a distributed externally applied couple. The shear
forces are not necessarily equal (i.e., Qxy 6= Qyx). As for the boundary conditions, one element in
each of the following four duality pairs should be specified at the beam ends

Nx or ux, Qxy or uy, Mx or φ, Pxz or ψ. (6)
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Figure 3: Split of the shear forces into symmetric and antisymmetric parts.

The symmetric and antisymmetric shear forces are defined as

Qs =
Qxy +Qyx

2
, (7)

Qa =
Qxy −Qyx

2
, (8)

respectively (see Fig. 3). In the following, the use of the symmetric and antisymmetric shear strains
and forces facilitates the determination of the constitutive relations that complete the micropolar
Timoshenko beam theory.

3. Two-scale constitutive modeling

Figure 4 shows, for modeling purposes, a web-core unit cell attached to an arbitrary cross
section of the micropolar beam. The micropolar beam of length L is a macrostructure and the unit
cell of length l represents its periodic microstructure. In order to obtain the constitutive equations
for the beam model, the strain energy of the microscale unit cell needs to be expressed in terms
of the macroscale strains (2)–(4). This is achieved in the next sections through continualization of
the unit cell corner displacements in combination with finite element modeling of the unit cell by
classical constituents (i.e., Euler–Bernoulli beam elements). The resulting constitutive matrix of
the beam is positive definite, which implies that it describes a stable lattice material.

3.1. Continualization of unit cell displacements

The unit cell corner displacements in Fig. 4 are expressed in terms of the cross-sectional dis-
placements Ux and Uy and rotation Ψ. With distance from an arbitrary cross section located within
the interval −L/2 ≤ x ≤ L/2, Taylor series expansions of Eqs. (1) lead to

Ux(x± l/2,±h/2) = ux ±
h

2

[
1

2
(γs − γa)− ψ

]
± l

2

(
ε0x ±

h

2
κx

)
, (9)

Uy(x± l/2,±h/2) = uy ±
l

2

[
1

2
(γs + γa) + ψ

]
, (10)

Ψ(x± l/2,±h/2) = ψ ± l

2
κxz, (11)
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Figure 4: Arbitrary cross section of the micropolar beam of length L possessing microstructure of length l. The
displacements at nodes 1 to 4 of the web-core microstructure are expressed in terms of the cross-sectional beam
displacements and micropolar strains via a 1-D Taylor series expansion.

where the micropolar strains (2)–(4) have been imposed on the cross-sectional rotation φ and the
displacement gradients. Using the node numbering of Fig. 4, we can write the discrete-to-continuum
transformation given by Eqs. (9)–(11) in matrix form

d = Tuu + Tεε, (12)

where the generalized discrete displacement vector is

d = {Ux,1 Uy,1 Ψ1 Ux,2 Uy,2 Ψ2 Ux,3 Uy,3 Ψ3 Ux,4 Uy,4 Ψ4}T (13)

and the vectors for the continuous variables read

u = {ux uy φ ψ}T , (14)

ε = {ε0x κx γs γa κxz}T. (15)

The transformation matrices Tu and Tε are given in Appendix A. The transformation by Eq. (12)
is not limited to the web-core unit cell but may be applied to any lattice unit cell that can be
reduced to the four-node presentation of Fig. 4 through static condensation.

3.2. Unit cell strain energy and beam constitutive matrix

The web-core microstructure displayed in Fig. 4 can be modeled by using four nodally-exact
Euler–Bernoulli or Timoshenko beam finite elements as both choices result in a system that is
consistent with the generalized displacement vector (13). As for their material composition, the
elements can be heterogeneous and anisotropic. However, the web-core structure at hand (Fig. 1)
consists of relatively thin components made of steel, so we use linearly elastic isotropic, homoge-
neous Euler–Bernoulli beam elements in this study.

The web-core unit cell in Fig. 4 has similar top and bottom faces with axial stiffness EAf and
bending stiffness EIf . Only half of each web stiffness parameter is accounted for due to symmetry
between neighboring unit cells so that we have EAw/2, EIw/2 and kθ/2 for the axial, bending
and joint stiffnesses, respectively. While the faces are modeled using normal Euler–Bernoulli beam
elements, the webs are modeled using special-purpose elements with rotational springs at both
ends to account for the flexibility of the laser-welded joints [37–39].
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The strain energy of the web-core unit cell modeled by using four Euler–Bernoulli beam finite
elements can be written as

W =
1

2
dTkd, (16)

where k is the global twelve-by-twelve stiffness matrix of the unit cell. By applying the transfor-
mation (12) to the strain energy (16) it is straightforward to verify that the displacement terms
(14) do not contribute to the strain energy and we obtain

W =
1

2
εTTT

ε kTεε. (17)

We define the linear density of the unit cell strain energy as

W l
0 ≡

W

l
=

1

2
εTCε (18)

where the constitutive matrix is given by

C =
1

l
TT
ε kTε. (19)

The unit cell represents a lattice material of which the micropolar beam is made of. Therefore, in
analogy with any hyperelastic material, we write for the micropolar beam continuum

S ≡ ∂W l
0

∂ε
= Cε, (20)

where S is now the stress resultant vector of the micropolar beam. The explicit form of Eq. (20)
is 

Nx

Mx

Qs

Qa

Pxz


=


2EAf 0 0 0 0

EAfh
2

2 + Θ 0 0 Θ
6EIf+Θ

l2
6EIf−Θ

l2
0

SYM
6EIf+Θ

l2
0

2EIf + Θ





ε0x
κx

γs

γa

κxz


(21)

where

Θ =
3EIwkθl

6EIw + kθh
. (22)

By using the constitutive relations (21) the equilibrium equations (5) can be solved for the dis-
placements. Finally, in the micropolar theory it holds that

τxyεxy + τyxεyx = τsγs + τaγa (23)

from which it follows that the strain energy of the micropolar beam can be written as [22]

U =
1

2

∫
V

(σxεx + τsγs + τaγa +mxzκxz)dV

=
1

2

∫ L/2

−L/2

(
Nxε

0
x +Mxκx +Qsγs +Qaγa + Pxzκxz

)
dx

=
1

2

∫ L/2

−L/2

(
εTCε

)
dx,

(24)
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which shows that the linear density of the strain energy of the micropolar beam is the same as
that of the unit cell [see Eq. (18)]. This result underscores the fact that the determination of the
constitutive equations (20) and the bridging of the two scales is founded on an assumption of strain
energy equivalence between the macrostructure (beam) and the microstructure (unit cell).

3.3. Validity of the constitutive matrix

The constitutive matrix (19) represents a lattice material in the context of the micropolar beam
theory. In order for the material to be stable in the conventional sense (U > 0 for nonzero ε),
the constitutive matrix C should be positive definite [40]. The matrix is positive definite if all (1)
eigenvalues or, equivalently, (2) leading principal minors of the matrix are positive and nonzero.
The symbolic expressions for the leading principal minors are considerably simpler:

C1 = |C11| = 2EAf ,

C2 =

∣∣∣∣∣C11 C12

C12 C22

∣∣∣∣∣ = EAf (EAfh
2 + 2Θ)

C3 = . . . = EAf (6EIf + Θ)(EAfh
2 + 2Θ)/l2

C4 = . . . = 24EAfEIfΘ(EAfh
2 + 2Θ)/l4

C5 = |C| = 24EAfEIfΘ
[
4EIfΘ + EAfh

2(2EIf + Θ)
]
/l4.

(25)

Because all beam parameters are positive, we have

Ck > 0 for k = 1, 2, . . . , 5 (26)

and the constitutive matrix (19) represents a stable lattice material. It may also be stated that
Eq. (26) guarantees the stability of the thermodynamic state of the micropolar beam [41].

3.4. Interpretation of the web-core stiffness parameters

• In the constitutive matrix (19), C11 = 2EAf is the axial stiffness due to the two faces,
whereas EAfh

2/2 under C22 is the usual global bending stiffness generated by the sandwich
effect [42]. If the top and bottom face sheets had different thicknesses, a coupling term C12

would appear in the matrix. The axial web stiffness EAw does not appear in the constitutive
matrix at all because of the transverse inextensibility of the beam (Uy = uy).

• The shear stiffnesses C33, C34 and C44 account for the shear behavior of the micropolar
Timoshenko beam model as well as possible through the beam-cell energy equivalence scheme.
The model does not employ any extrinsic micropolar shear correction factors.

• The bending moments Mx and Pxz are coupled by C25 = Θ and the shear forces Qs and Qa
by C34. Some lattice materials may have fully populated constitutive matrices C and exhibit
stronger (anisotropic) coupling; however, such materials are not studied in this paper.

• The laser-welded joints of the web-core beam are rigid for infinite rotational stiffness kθ and
pinned for zero rotational stiffness. For these two limiting cases we have

kθ →∞ : Θ =
3EIwl

h
and kθ → 0 : Θ = 0 (27)

In the case of pinned joints (Θ = 0), the coupling between the bending moments Mx and Pxz
vanishes and the sandwich effect is also lost so that the beam is essentially an Euler–Bernoulli
beam with bending stiffness equal to the local bending stiffness 2EIf .
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4. Finite element based on general displacement solution

4.1. General displacement solution

In order to derive a general solution to the beam equilibrium equations (5) which can be used
as the basis for finite element formulations, we substitute the constitutive matrix

C =


C11 C12 0 0 C15

C22 0 0 C25

C33 C34 0

SYM C44 0

C55

 (28)

into the constitutive equations (21). The coupling terms C12 and C15, although not needed for
the web-core beam (see Fig. 1), do not complicate the analytical solution substantially; further
additional terms would. A brief outline of the solution process is given in Appendix B. The
homogeneous solution (q = m = 0) to the equilibrium equations (5) is

ux = c1 + c2x+
C15 − C12

C11
c6x

2 + α1

(
c7eβ1x + c8e−β1x

)
, (29)

uy = c3 − c4x− c5
x2

2
− c6

(
x3

3
− β3x

)
− β2

β1

(
c7eβ1x − c8e−β1x

)
, (30)

φ = c4 + c5x+ c6x
2 + c7eβ1x + c8e−β1x, (31)

ψ = −c4 − c5x− c6(x2 − α3) + α2

(
c7eβ1x + c8e−β1x

)
(32)

and constants αj and βj (j = 1, 2, 3) are given in Appendix B, as well as particular solutions
for uniformly distributed pressure and moment loads q = q0 and m = m0, respectively. In the
homogeneous solution, the integration constants c1, c3 and c4 correspond to rigid body motions
and the five remaining constants are related to the stress resultants (cf. [43]).

4.2. Shape functions for micropolar Timoshenko beam element

The general analytical solution (29)–(32) containing polynomial and exponential terms is used
for the derivation of a nodally-exact beam finite element without introducing any shape function
approximations. Fig. 5 presents the setting according to which the element is developed. Both
nodes have four degrees of freedom, namely, the axial and transverse displacements ui and wi,
respectively, and rotations φi and ψi (i = 1, 2). Using Eqs. (29)–(32), we define the FE degrees of
freedom as

u1 = ux(−Le/2), u2 = ux(Le/2),

w1 = uy(−Le/2), w2 = uy(Le/2),

φ1 = −φ(−Le/2), φ2 = −φ(Le/2)

ψ1 = ψ(−Le/2), ψ2 = ψ(Le/2).

(33)

In matrix form we have
∆ = Hc, (34)

where the generalized micropolar displacement vector is

∆ = {u1 w1 φ1 ψ1 u2 w2 φ2 ψ2}T (35)
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Figure 5: Set-up according to which the micropolar Timoshenko beam finite element is developed.

and H is a coefficient matrix and c contains the constant coefficients ci (i = 1, . . . , 8), which are
obtained in terms of the FE degrees of freedom by

c = H−1∆. (36)

The kinematic variables (29)–(32) in terms of the FE degrees of freedom may then be written as

u =


ux(x)

uy(x)

φ(x)

ψ(x)

 = Ac = AH−1∆ =


Nux

Nuy

Nφ

Nψ

∆ = Nu∆, (37)

where A is a matrix with polynomial and exponential terms and the four-by-eight matrix Nu

contains the shape functions. The general solution and the formulation of the shape functions are
given in an online supplementary Mathematica file MicropolarShapeFunctions.

4.3. Kinetic energy for consistent mass matrix

In addition to static applications, the shape functions (37) can be used for the derivation of
a consistent mass matrix for the beam. To obtain the kinetic energy of the micropolar beam for
that purpose, only the constant terms are included in the expansions (9)–(11). Then the discrete-
to-continuum transformation of the kinetic energy of the unit cell can be written as

K̃ =
1

2
ḋTm̃ḋ =

1

2
u̇TTT

u̇ m̃Tu̇u̇, (38)

where the dot on the variables denotes differentiation with respect to time. The global twelve-by-
twelve mass matrix m̃ of the unit cell is modeled by using Euler–Bernoulli beam elements with
consistent mass matrices. The transformation matrix Tu̇ is given in Appendix A. We define the
linear density of the unit cell kinetic energy as

K̃ l
0 ≡

K̃

l
=

1

2
u̇Tmu̇ (39)

where

m = ρ


2Af + hAw

l 0 0 0

0 2Af + hAw
l 0 0

0 0
h2(70lAf+17hAw)

140l
3h3Aw

140l

0 0 3h3Aw
140l

Awh3+2l3Af

210l

 . (40)
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Then we assume that the linear densities of the beam and unit cell kinetic energies are equal

K l
0 ≡ K̃ l

0. (41)

Finally, total kinetic energy of the beam is

K =

∫ L/2

−L/2
K l

0 dx =
1

2

∫ L/2

−L/2
u̇Tmu̇ dx. (42)

4.4. Finite element equations

The Lagrangian of the micropolar beam is

L = K − (U −Wd −Ws) (43)

where K and U are given by Eqs. (42) and (24), respectively, and the potential energy contribution
due to the distributed external loads is

Wd =

∫ Le/2

−Le/2
(quy +mψ)dx (44)

and the beam end surface tractions bring about the work [22]

Ws = [Nxux +Qxyuy +Mxφ+ Pxzψ]
Le/2
−Le/2

≡∆Tf (45)

where
f = {N1 Q1 M1 P1 N2 Q2 M2 P2}T . (46)

By using the shape function formalism (37) in the Lagrangian (43) [here ∆ = ∆(t)], the Lagrange
equations

d

dt

∂L
∂∆̇
− ∂L
∂∆

= 0 (47)

lead to the finite element equations

M∆̈ + K∆ = f + q + m (48)

where the consistent mass matrix and stiffness matrix are

M =

∫ Le/2

−Le/2
NT
umNudx, K =

∫ Le/2

−Le/2
NT
ε CNεdx, (49)

respectively. The shape function matrix Nε is based on Eq. (15) and is easily formed from Nux,
Nuy, Nφ and Nψ and their derivatives, see Eq. (37). The distributed loads are given by

q + m =

∫ Le/2

−Le/2
(qNT

uy +mNT
ψ)dx. (50)

Once the nodal displacements have been calculated by using Eq. (48), the central axis displacements
are obtained from Eq. (37) and the micropolar in-plane displacement field from Eq. (1). Then the
micropolar response may be localized to obtain the periodic web-core response.
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4.5. Localization by beam elements

After a 1-D micropolar beam problem has been solved, the corresponding 2-D periodic response
is obtained by mapping the micropolar results into the classical Euler–Bernoulli beam elements of
the web-core unit cell of Fig. 4. The used Euler–Bernoulli elements are based on a setup similar
to that in Fig. 5 and each element has a local coordinate system x̂− ŷ. For example, for the axial
and transverse deflections of a unit cell’s top face under a uniformly distributed load q0 we have

ûx,f = N̂ux∆̂ =

{
1
2 −

x̂
l

1
2 + x̂

l

}T{
Ux,4

Ux,3

}
, (51)

ûy,f = N̂uy∆̂ =


(l+x̂)(l−2x̂)2

2l3
(l+2x̂)(l−2x̂)2

8l2
(l−x̂)(l+2x̂)2

2l3
(2x̂−l)(l+2x̂)2

8l2



T
Uy,4

Ψ4

Uy,3

Ψ3

+
q0x̂

4

24EIf
, (52)

respectively, where the latter satisfies the Euler–Bernoulli beam equation û′′′′y,f = q0/EIf . The
current localization scheme assumes that micropolar solutions contribute only to the homogeneous
cubic part of ûy. The particular, fourth-order load term in Eq. (52) is independent of micropolar
considerations. By substituting the micropolar variables (1) that correspond to the nodal joint
displacements into Eqs. (51) and (52), the periodic response for one web span is obtained. The
axial force and the bending moment of the top face for each web span are

N̂x,f = EAf
∂ûx,f
∂x̂

, M̂x,f = −EIf
∂2ûy,f
∂x̂2

, (53)

respectively, the normal stress of interest in practical applications is calculated from

σ̂x,f =
N̂x,f

Af
+
ŷM̂x,f

If
, (54)

from which the peak stresses are calculated by ŷ = ±tf/2.
Finally, we take use of the fact that the position of the microstructure is not fixed along the x-

axis in the (homogenized) micropolar beam; only the distance l between two webs is predetermined.
Thus, we consider a chain of unit cells that moves axially over a beam domain and calculate
continuously the maximum face sheet stress in the upper left corner (node 4, ŷ = +tf/2) of one of
the unit cells. This calculation also requires the displacements of the upper right corner (node 3).
Ultimately, this gedanken experiment leads to the conclusion that the stress is given by

σ̂env
x,f =

Ef
l
{ux(x+ l)− ux(x) + (h/2) [φ(x+ l)− φ(x)]}

+
Ef tf
l2
{3 [uy(x)− uy(x+ l)] + l [ψ(x+ l) + 2ψ(x)]} − 3q0l

2

4bt2f
, (55)

which can be calculated directly from a 1-D micropolar solution and gives us a continuous envelope
curve within the beam domain, as will be demonstrated in the next section (Fig. 8). Such envelope
curves are very useful for design purposes [44]. The stress is calculated at the joint (node 4) because
local peak values of the normal stress σx,f tend to appear at the joints in the periodic response of a
web-core beam – the envelope curve connects these peaks. The relative ease of the above periodic
response calculations in the micropolar framework is largely due to the fact that, unlike in classical
1-D context [16], the joint rotation is included in the analysis through the microrotation.
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Figure 6: Beam-like part cut from a laser-welded sandwich panel and tested for fatigue in Ref. [45]. The beam is 50
mm wide and four unit cells long (4l = 480 mm). The web-core represents a bending-dominated microstructure [46].

5. Numerical examples

5.1. General setup

We study the bending and vibration of web-core beams and panels of different lengths. A
typical laser-welded web-core beam is shown in Fig. 6. The faces and webs of the beam are made
of steel (Ef = 212 GPa, Ew = 200 GPa, ν = 0.3, ρ = 7850 kg/m3). The average rotational stiffness
of the laser-welded joints was determined by measurements in Ref. [39]; for practical purposes in
the present context, each joint has a rotational stiffness of 53500 Nm per unit width. Beams of
width b = 0.05 m (kθ = 2675 Nm) and a panel of width b = 1 m (kθ = 53500 Nm) are studied
here. The panel is assumed to be under plane strain conditions that lead to increased Young’s
moduli, e.g., Ef → Ef/(1 − ν2) for the faces [42]. The face and web thicknesses are tf = 2.86
mm and tw = 3.97 mm, respectively. The height, i.e, the distance between the face central axes
is h = 40 mm + 2(tf/2) mm. The web spacing is l = 0.12 m. 2-D solutions are computed using
Euler–Bernoulli FE beam frames modeled by Abaqus (B23 elements); the pins in simply-supported
cases are at the central axis of the 2-D frame so that the model corresponds to 1-D cases.

5.2. Fixed-fixed beam under a uniformly distributed load

We model a 50 mm wide fixed-fixed web-core beam by its symmetric half of length L = 6l = 0.72
m. The micropolar beam is under a uniform load q = −250 N/m and the boundary conditions are

x = 0 : ux = uy = φ = ψ = 0,

x = L : ux = Qxy = φ = ψ = 0,
(56)

which are used to solve constants ci (i = 1, 2, . . . , 8) in Eqs. (29)-(32). Experimentally the boundary
conditions (56) can be realized by a continuous simply-supported beam where each span is loaded
by a similar load. Figure 7(a) shows the transverse deflection along the beam, as given by different
methods. The 1-D (homogenized) micropolar response is in good agreement with the 2-D finite
element beam frame calculations. The localized 1-D face sheet deflection calculated from the
micropolar results (cf. Section 4.5) is similar to the corresponding 2-D response in its wave-like
shape. The classical ESL Timoshenko beam is too flexible and overpredicts the deflection.

Figure 7(b) shows the maximum transverse deflection of the web-core beam calculated using
different approaches. In Ref. [22], only rigid-jointed micropolar web-core beams were considered.
When that model is extended to flexible joints, the symmetric and antisymmetric shear stiffnesses
of the beam become

Ds = Da =
12

l

(
6l

h2EAf
+

l

2EIf
+

h

EIw
+

6

kθ

)−1

. (57)
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Figure 7: Bending response of a fixed-fixed web-core beam under a uniformly distributed load q = −250 N/m
modeled by a symmetric half. (a) Transverse deflection along the beam. (b) Maximum deflection (x = 0.72 m) for
varying joint stiffness. (c) Localized normal force and (d) bending moment diagrams for the top face of the beam.
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Figure 8: Top surface stress of web-core beams of lengths (a) 6l = 0.72 m and (b) 10l = 1.2 m.

Due to similar shear strain definitions, the shear stiffnesses for classical and couple-stress ESL
Timoshenko beams are also given by Eq. (57) [47]. Figure 7(b) shows that the early version
micropolar model fails to predict the response accurately for flexible joints. This may be due
to the fact that the stiffness parameters, including Ds and Da, are determined on the basis of
an isotropic micropolar constitutive model [22]. The present 1-D micropolar beam model, which
makes no such constitutive assumptions, is in good agreement with 2-D FE results from pinned
to rigid joints (kθ : 0 → ∞). For pinned joints, the 1-D micropolar response is close that of a
classical Euler–Bernoulli beam with a total bending stiffness of 2EIf . In Fig. 7(b), all models are
geometrically linear and the purpose here is to compare some features of models but not to provide
physically accurate results for very large displacements.

Figures 7(c) and 7(d) display the periodic normal force and bending moment diagrams for
the top face of the beam. The overall correspondence between the localized 1-D results and the
2-D beam frame response is good. The differences between the 1-D and 2-D responses are most
notable near the beam supports. In general, it is difficult to impose the boundary conditions
and to model the boundary behavior in 1-D exactly in the same way as in 2-D and this may
cause some discrepancies between the solutions. Nevertheless, the present micropolar approach
that considers antisymmetric shear behavior (Fig. 1) provides a considerable improvement in this
respect compared to classical and couple-stress ESL models [22]. Figures 8(a) and 8(b) show the
normal stress on the upper surface of the top face calculated from the normal force and bending
moment by Eq. (54). We can see that as the beam becomes longer, the boundary behavior is
confined to a smaller area relative to the total beam length and the overall agreement between 1-D
and 2-D results improves. The envelope curve provides a simple way to estimate the maximum
stresses along the beam. On a practical note, the yield strength of the faces is between 302–322
MPa [39] and the calculated stresses are well below this range.
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5.3. Four-point bending of a web-core panel

Next we consider a meter-wide panel which is 1.8 meters long (15 unit cells). The panel is
in four-point bending and only a symmetric half of it is modeled by using two micropolar beam
elements. The in-between node subjected to a vertical point load F = 1000 N is located at x = 0.6
m. The constrained degrees of freedom are u1 = w1 = u3 = φ3 = ψ3 = 0. Although the micropolar
axial displacement is zero along the beam, the micropolar cross-sectional rotation produces axial
displacements in the periodic face sheet response.

0 0.12 0.24 0.36 0.48 0.6 0.72 0.84

0.0

1 10 100 1000 104 105 106

0

0 0.12 0.24 0.36 0.48 0.6 0.72 0.84
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0

0 0.12 0.24 0.36 0.48 0.6 0.72 0.84

0
10
20
30

F

Euler-Bernoulli:

kθ = 53500 Nm
2D FE: 1.97 mm

Present: 2.02 mm
Experiment: 2.02 mm

Figure 9: Four-point bending of a meter-wide web-core panel modeled by a symmetric half subjected to point load
F = 1000 N. (a) Transverse deflection along the beam. (b) Maximum deflection for varying joint stiffness. (c)
Localized normal force and bending moment diagrams for the top face of the beam. (d) Top surface normal stress.
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Figure 9 is similar to Figs. 7 and 8. Figures 9(a) and 9(b) show that the 1-D micropolar-
based periodic displacement response is in good agreement with both experimental [39] and 2-D
FE results. Figure 9(c) displays the normal force and bending moment diagrams. In the middle
section of the panel where the periodic bending moment is constant, the micropolar transverse
deflection does not include a cubic term (x3). Thus, the cubic interpolations have been removed
from the localization (52) to obtain constant bending moments. The stress predictions by the 1-D
approach in Fig. 9(d) are accurate compared to the 2-D reference solution with only some minor
differences in the vicinity of the pinned support and the point load.

5.4. Natural frequencies of web-core beams

Figure 10 shows the natural vibration frequencies of cantilever and simply-supported web-
core beams calculated using the derived 1-D micropolar beam elements and 2-D FE beam frames
modeled by Euler–Bernoulli beam elements. Like in Fig. 6, the beams are 50 mm wide. Both
flexible (kθ = 2675 Nm) and rigid joints are considered. The agreement between the 1-D and
2-D results is good for the first eight bending modes. In practical applications, the fundamental
frequencies are often of main interest and these are embedded into the figures. For example, for
the simply-supported beam the relative errors between the 1-D and 2-D results are around 1% for
the fundamental frequencies.

The present 1-D micropolar beam model can capture the global but not the local bending
modes of web-core beams. Examples of both mode types are illustrated in Fig. 11 by 2-D FE
beam frame results. In the present case, the local bending modes appear at considerably higher
frequencies than the global modes and, thus, are of little practical significance. Further details on
the local and global vibrations of laser-welded sandwich plates can be found in a recent paper by
Jelovica et al. [48].
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Figure 10: Natural vibration frequencies of (a) cantilever and (b) simply-supported web-core beams.
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2-D FE cantilever beam frame (Abaqus)

Third global bending mode: 67.813 Hz

First local bending mode: 682.33 HzFixed end

Figure 11: Comparison of 2-D global and local bending modes of a cantilever web-core beam with flexible joints.

6. Concluding remarks

Constitutive equations for a 1-D micropolar Timoshenko beam made of a web-core lattice ma-
terial were developed by a two-scale energy method. The 1-D micropolar beam gives dimensionally
reduced homogenized solutions to 2-D web-core beam frame problems. It was shown that the 1-D
micropolar solutions can be localized in a straightforward way to obtain periodic classical stresses
for 2-D web-core structures that have moderately flexible joints.

Unlike classical or couple-stress equivalent single layer (ESL) approaches, the micropolar 1-D
ESL beam model can capture antisymmetric shear behavior which occurs especially near beam
supports and point loads. We stress that the constituents of a 2-D web-core beam frame do not
exhibit any antisymmetric shear strains, but when the 2-D problem is reduced to a 1-D ESL beam
problem, the antisymmetric behavior needs to be considered.

In recent years, many papers have been published on microstructure-dependent beams that
contain an internal length scale as a material parameter (see, e.g., [49–52]). In these studies it
is basically assumed that the microstructure, whatever it may look like, conforms to the chosen
constitutive model. The model parameters are usually determined, with adequate success, by
fitting model calculations to experimental data without paying heed to the mechanics of the actual
microstructure. In contrast to this approach, the present constitutive modeling method for a lattice
material did not assume a material model in advance but instead the derivation of the constitutive
equations was founded on the actual microstructure. All constitutive parameters emanated from
the microstructure at hand. This leads to the conclusion that complex lattice materials can actually
have numerous length scale and other material parameters.

The present study dealt with structural components that relate to ship decks, and also to
bridges and buildings, highlighting the fact that non-classical continuum mechanics theories have
plenty of applications also above the usual nano and micron scale considerations. The applicability
of the formulated two-scale constitutive modeling method is determined largely by the periodicity
of the structure at hand, not by its size.
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Supplementary file

The general solution to the governing beam differential equations and the formulation of the
shape functions for the beam finite element are given in an online supplementary Mathematica file
MicropolarShapeFunctions.

Appendix A. Transformation matrices

The displacement and strain transformation matrices in Eq. (12) are

Tu =


1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0
h
2 − l

2 1 h
2

l
2 1 −h

2
l
2 1 −h

2 − l
2 1


T

(A.1)

and

Tε =


− l

2 0 0 l
2 0 0 l

2 0 0 − l
2 0 0

hl
4 0 0 −hl

4 0 0 hl
4 0 0 −hl

4 0 0

−h
4 − l

4 0 −h
4

l
4 0 h

4
l
4 0 h

4 − l
4 0

h
4 − l

4 0 h
4

l
4 0 −h

4
l
4 0 −h

4 − l
4 0

0 0 − l
2 0 0 l

2 0 0 l
2 0 0 − l

2



T

(A.2)

respectively. The velocity transformation matrix in Eq. (38) is

Tu̇ =


1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

−h
2 0 0 −h

2 0 0 h
2 0 0 h

2 0 0

0 0 1 0 0 1 0 0 1 0 0 1


T

(A.3)

The unit cell (see Fig. 4) consists of four beam elements. The faces are modeled by normal Euler–
Bernoulli beam elements which are connected to the nodes 1 → 2 and 4 → 3 (i.e. 1st node →
2nd node). The webs are modeled by Euler–Bernoulli beam elements which have rotational springs
at their ends [38] and are connected to the nodes 2→ 3, 1→ 4.

Appendix B. General solution to equilibrium equations

When the constitutive matrix (28) is used in the constitutive equations (21), the equilibrium
equations (5) read

C11u
′′
x + C12φ

′′ + C15ψ
′′ = 0, (B.1)

C12u
′′
x + C22φ

′′ + C25ψ
′′ − C33(u′y + φ) + 2C34(φ+ ψ) + C44(u′y − φ− 2ψ) = 0, (B.2)

C33(u′′y + φ′) + 2C34(u′′y − ψ′) + C44(u′′y − φ′ − 2ψ′) = −q, (B.3)

C15u
′′
x + C25φ

′′ + C55ψ
′′ + 2C34(u′y + φ) + 2C44(u′y − φ− 2ψ) = −m. (B.4)
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In addition, we have

(C12 − C15)u′′′x + (C22 − C25)φ′′′ + (C25 − C55)ψ′′′ = m′ − q (B.5)

from
M ′′x − P ′′xz = m′ − q. (B.6)

The general solution procedure that leads to Eqs. (29)–(32) contains lengthy explicit expressions
and is not presented here in full. It is convenient to use mathematical software such as Maple
or Mathematica to derive the solution. The relevant steps of the solution can be summarized as
follows:

1. Solve (B.1), (B.3) and (B.5) for u′′x, u′′y and ψ′′′, respectively.

2. Differentiate (B.4) three times with respect to x and then in combination with the previous
step obtain an uncoupled fifth-order differential equation for φ that yields Eq. (31).

3. Differentiate (B.4) once with respect to x to obtain an uncoupled first-order differential
equation for ψ. The solution for ψ includes a constant, say, D1 to be solved later.

4. Substitute φ and ψ into (B.1) and solve the equation for ux. The result is Eq. (29).

5. Solve (B.2) for u′y and substitute the result into (B.4) and then solve D1. Final form of
Eq. (32) is found.

6. Integrate u′y from previous step to obtain Eq. (30). The resulting integration constant is c3.

The constant coefficients αj and βj (j = 1, 2, 3) in the solution (29)–(32) are

α1 =
C12(C55 − C25) + C15(C22 − C25)

C11(C25 − C55) + C15(C15 − C12)
, (B.7)

α2 =
C11(C22 − C25) + C12(C15 − C12)

C11(C55 − C25) + C15(C12 − C15)
, (B.8)

α3 =
ζ1 − ζ2

2C11

(
C2

34 − C33C44

) , (B.9)

where

ζ1 = (C12 − C15) [C15(C33 − C44) + 2C12(C34 + C44)] , (B.10)

ζ2 = C11 [C25(C33 − 2C34 − 3C44) + 2C22(C34 + C44) + C55(C44 − C33)] . (B.11)

and

β1 =
2
√
C33C44 − C2

34

√
C11(C22 − 2C25 + C55)− (C12 − C15)2

√
C33 + 2C34 + C44

√
C11

(
C22C55 − C2

25

)
+ C12(2C15C25 − C12C55)− C2

15C22

, (B.12)

β2 =
C33 − C44 − 2(C34 + C44)α2

C33 + 2C34 + C44
, (B.13)

β3 =
ζ3 − ζ4

C11

(
C2

34 − C33C44

) , (B.14)

where

ζ3 = (C12 − C15) [2C12C44 + C15(C34 − C44)] , (B.15)

ζ4 = C11 [2C22C44 + C25(C34 − 3C44) + C55(C44 − C34)] . (B.16)
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The particular solutions to be added to the homogeneous solution in the case of uniformly dis-
tributed loads q(x) = q0 and m(x) = m0 are

qux =
q0(C15 − C12)x3

ζ5
, quy =

q0C11(6β3 − x2)x2

4ζ5
, (B.17)

qφ =
q0C11x

3

ζ5
, qψ =

q0C11(3α3x− x3)

ζ5
(B.18)

and

muy =
m0(C44 − C34)x

2(C2
34 − C33C44)

, mψ =
m0(C44 − C34)

4(C2
34 − C33C44)

, mux = mφ = 0, (B.19)

where
ζ5 = 6[(C12 − C15)2 − C11(C22 − 2C25 + C55)]. (B.20)

For example, qux and quy are added to the right-hand side of Eqs. (29) and (30), respectively.
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