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Abstract

Values of water permeability for cementitious materials reported in the literature show a
large scatter. This is partially attributed to the fact that materials used in different studies
are different. To eliminate the effects of cements, specimen preparation, curing conditions and
other batch effects, this study employs a long cylindrical cement paste to prepare all speci-
mens for a variety of permeability determination methods, such as beam bending, sorptivity,
Katz–Thompson and Kozeny-Carman equations. Permeabilities determined by these methods
are then used in a moisture transport model. Compared with the measured mass loss curves,
we found that permeability determined by the beam bending method provides much closer re-
sults to the measured ones than other methods. The difference results from that the saturated
specimen is used in the beam bending method while specimens in other methods are dried
(or rewetted). As already shown in the literature, the microstructure of the dried or rewet-
ted specimens is altered and different to the original microstructure of the water saturated
specimens. . . .

1 Introduction

The durability of concrete structures is always closely related to the moisture transport properties
in cementitious materials. The liquid uptake when concrete is in contact with liquid water (e.g.,
groundwater, rain) can induce the penetration of aggressive agents (e.g., chloride ions) through
the concrete cover. A common natural condition - drying/wetting cycles - can increase the rate
of chloride ingress compared to the saturated condition [1]. Carbon dioxide may transport within
the gaseous phase in concrete and decrease pH of the pore solution. All these processes are able to
result in corrosion to the rebars and deterioration of concrete. For this reason, moisture transport
becomes a crucial theme when evaluating the durability.
Moisture transport in partially saturated porous media such as cementitious materials is mainly
governed by the transport of three phases: liquid water, water vapour and dry air. The previous
studies have shown that dry air has very low contribution to the mass of moisture transport and
only causes fluctuating air pressure in the material [2, 3]. This conclusion was also drawn by the
asymptotic analysis performed by Coussy and Thiéry [4, 5]. In addition, considering that the liquid
phase remains incompressible and total gas pressure is constant, the mass balance equations of
moisture transport can be represented by a simplified equation, including only liquid water and
vapour [6, 7]. Mainguy et al. [2] further simplified the model for specific conditions, by considering
only liquid water and neglecting the vapour diffusion. They found that such a model can give
results for simulating drying mass loss curves very similar to the multiphase model. Hence, the
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transport coefficient - water permeability that governs the liquid water transport becomes extremely
important. For a given material, the ideal situation to perform moisture transport simulations is
that Kl is experimentally determined and then used in the moisture transport model.
In most literature, water permeability Kl with a unit of m2 is considered as an intrinsic property of
the porous material, meaning that Kl only depends on the microstructure and should be valid for
other fluids. That is why in some papers Kl is named as “intrinsic” permeability (e.g., [2, 7, 8]).
Nevertheless, “intrinsic” permeabilities measured by gases (oxygen and nitrogen [9]) and solvents
(methanol [10] and isopropanol [11, 12]) are often found to be greater than Kl. Reasons for this
will be discussed later. To avoid the confusion, in this paper, the terminology of water permeability
instead of intrinsic permeability is used hereafter.
For cementitious materials, the determination of water permeability is an active research field
reported in a voluminous literature. The permeability can be determined either directly by experi-
ments or indirectly by theoretical models based on other measured data. Conventional methods to
measure Kl are classified as flow-through techniques as they measure the flux under steady state
condition for fully saturated specimens, with the geometry of either truncated cones [13] or cylin-
ders/disks [14, 15, 16, 17, 18, 19, 12]. During measurements, the side of the specimen must be
sealed and liquid water is injected from one face by applying extra pressure so that the outflow can
be only observed on the opposite face. When the flow in the porous body reaches steady state, the
flow rate is then used to calculate Kl according to Darcy’s law. These methods are not difficult
to do, although they may take a long time to reach steady state flow (e.g., several weeks) for low
permeable materials. To reduce the measurement time, it was suggested to increase the applied
pressure [19], but this may risk altering the structure of materials and increase the water leak at
the interface between the specimen and the pressure cell. Instead of applying continuous constant
pressure, pressure relaxation methods involve increasing pressure on one side and observing the
decrease of pressure due to liquid being pushed to another side (e.g., [20]). These methods are
rapid but they still need high pressure and thus have the same problems as the other conventional
flow-through methods.
Recent studies used hollow cylinders [21, 22, 23] which measured radial flow of water under applied
pressure. The main advantage of this kind of method is that the total area which allows fluids
flowing through is much larger than the disc specimens; therefore, the measurements showed higher
accuracy and repeatability [21, 23], whilst the large area may have higher chances to face the effect
of heterogeneity, which means that any cracks or area having greater water flow can significantly
change the results. Another method is the dynamic pressurization (DP) which keeps the specimen
in a sealed vessel and suddenly increasing or decreasing pressure [24, 25]. By alternatively pressuring
and depressuring, the effect of air voids in the unsaturated specimen can be gradually removed [25].
Indirect methods, requiring other data that can be used to calculate Kl, are referred as porome-
chanical (dynamic pressurization) techniques which monitor the time-dependent deformation of a
specimen related to fluid flow in the pore network induced by externally applied stress or temper-
ature change. The beam bending (BB) method is one such rapid indirect methods [26, 27, 28, 29]
which was originally developed for soft gels and later was applied to cementitious materials. This
method is based on the principle of exerting a certain strain to a long and slender specimen to obtain
a relaxation curve, which is considered including both hydrodynamic and viscoelastic effects. By
fitting this relaxation curve, Kl can be determined. This method has very clear requirements for
the geometry of the specimen which makes it less applicable for concretes due to needing inconve-
niently large specimens to obtain a representative volume including aggregates. A method so-called
thermopermeametry (TPA) was also introduced to cementitious materials on the basis of research
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about gels [30, 31, 32, 33]. Given that the thermal expansion of liquid is always much greater than
that of the solid phase, this method can determine Kl by measuring the rate of strain relaxation as
liquid water flows out of the material after a temperature change.
Measurements of Kl are very sensitive to saturation conditions since the fully saturated condition is
not easy to achieve. The presence of air voids or entrapped air in non-fully saturated materials may
have a great influence on the measured results of the poromechanical methods and long delays in
reaching equilibrium in conventional methods [34]. To ensure the fully saturated condition, various
approaches were used in the literature, such as curing the specimen in water/limewater [23, 12],
vacuum saturation [35] and pressurizing saturation [28, 29]. The time needed to fully saturate
a porous body increases with the square of its smallest dimension. For the direct methods, the
thickness of a disc specimen ranges from 25 to 70 mm (see the review in [19]) depending the size
of aggregates as El-Dieb and Hooton [15] suggested that the specimen thickness should be 3 times
as large as the aggregate size and a recent study [36] even reported that the specimen needs to
be about 10 times as thick as the aggregates; therefore, a specimen may be extremely difficult
to saturate. By contrast, the specimen in BB measurements is much easier to saturate since the
method is limited to paste and mortar, so the diameter of the cylinder can be smaller than the
concrete specimens used in the conventional methods.
In addition to experimental measurements, water permeability can be inferred by using information
related to the microstructure, such as pore size distribution (PSD), porosity, tortuosity, connectivity,
etc. A relationship was first proposed by Kozeny in 1927 [37] and later modified by Carman [38, 39]
which is commonly known as the Kozeny–Carman (KC) equation. This equation was developed
after considering a porous material as an assembly of capillary tubes for which the Navier–Stokes
equation can be applied. It yielded Kl as a function of the porosity, the specific surface, and the
shape and tortuosity of channels. It has been found that the KC equation is approximately valid
for sands but not for clays [40]. Wong et al. [41] adopted a modified KC equation incorporating
tortuosity and constrictivity to predict the oxygen permeability for concrete and they concluded
that this equation overestimated the permeability by about one order of magnitude.
Based on mercury intrusion porosimetry (MIP) data for assessment of the percolation radius of the
microstructure and resistivity measurements to determine the formation factor (inversely propor-
tional to the product of porosity and tortuosity), the Katz-Thompson model [42] (KTI model) has
proven useful for estimating the permeability of sedimentary rocks. Another version of this model
avoids the use of resistivity measurements by assessing the formation factor only using mercury
intrusion (KTII model) [43]. Baroghel-Bouny et al [44] showed that the KTI relationship slightly
overestimates the permeability for concretes and mortars. The investigations of KTII performed
by El-Dieb and Hooton [45] illustrated that this model leads to a more pronounced overestimation;
the correlation can even be quite low for cementitious materials. Recent study by Zhou et al. [9]
showed that KTII can provide similar results to measure nitrogen gas permeability with Klinkenberg
correction, but it is about 2-4 orders of magnitudes higher than water permeability.
Other methods based on theoretical models are also reported in the literature. For instance, a
practical method is to use measured sorptivity to assess Kl [12] because sorptivity measurements
are much easier to perform than the above-mentioned permeability measurements. The first author
of this paper introduced two methods to indirectly determine water permeability [8]. One is called
“inverse analysis” that utilizes a numerical moisture transport model to back calculate Kl based on
the measured drying mass loss curve. The other one employs the measured diffusivity curve to fit
Kl by a general expression including both liquid transport and vapour diffusion.
As stated above, various methods using different specimen geometry or theoretical models in the
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literature to determine Kl show that the reported permeability values have great dispersion, ranging
from 10−22 to 10−17 m2 for materials with the same water-to-cement ratio (see review in [8]). Even
though researchers are apt to compare these values from different studies, Kl determined by various
methods is not directly comparable, because:
(1) the cements are different (the chemical composition of cements from different cement plants
vary),
(2) specimen preparation procedures are different (although the same preparation procedure is
claimed in different studies, the variations of experimentalists, equipment, environment, etc, are
unavoidable),
(3) and specimens curing methods are different.
To eliminate these artificial effects, the present study employs a slender specimen for various meth-
ods to determine water permeability Kl. This long cylinder was initially prepared for the BB
method. After the BB measurements, it was cut into several short cylinders and many slices. Some
of short cylinders were used in sorptivity measurements and the others were used in drying exper-
iments which provided the calibration data for a moisture transport model. Slices were used to
measure the desorption isotherm which serves as the input data for the numerical model. Mean-
while, a small part of this slender cylinder was crushed to prepare specimens for MIP, nitrogen
adsorption (NAD) and thermogravimetric analysis (TGA) tests.
The structure of this paper is given as follows. Firstly, a moisture transport model with Kl as
the only undetermined parameter will be introduced, and then methods used to determine Kl will
be briefly described. Experiments are carried out to obtain data for permeability determination
methods and the moisture transport model. Finally, results from these methods will be compared
and discussions on these methods will be presented.

2 Moisture transport model

2.1 Governing equations

Even though the multiphase model can be simplified as a single-phase model with liquid water [2],
the authors also pointed out that this simplified approach is only suitable for the case of drying of low
permeability materials with the initial condition close to saturation and exposed to a high relative
humidity (RH) boundary condition. In that situation, liquid water governs mass transport [3, 46],
while in a lower RH range vapour diffusion is non-negligible. The model selected here to simulate
moisture transport in cementitious materials is the semi-simplified version of the multiphase model -
including the transport of both liquid water and water vapour - which considers that gas pressure is
constant and the liquid phase remains incompressible. The governing equation for the mass balance
is written as [6, 7, 8]

ρl
∂S

∂t
=

1

φ
div (Jl + Jv) (1)

where S is the degree of saturation, ρl (kg · m−3) is the density of liquid water, φ is the porosity of
the porous material, and Jl and Jv (kg · m−2 · s−1) are the fluxes of liquid water and water vapor,
respectively.
Liquid water transport consists of both contributions of capillary viscous movement of free water and
the transport of physically-adsorbed water molecules in a single Darcy relation in which capillary
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pressure and relative permeability are derived from the sorption curves over the whole range of RH
through the liquid water saturation S (-). Moreover, the viscosity of pure water is used for both
free water and bound water. The driving force for liquid transport is the gradient of liquid pressure
Pl (Pa) [2, 6]:

Jl = −ρl
Klkrl(S)

η
gradPl (2)

where η (Pa · s) represents the dynamic viscosity of liquid water, and krl (-) is the relative liquid
permeability which is generally treated as a function of S.
The flux of vapor Jv is described as a diffusion-like process with the vapor density ρv (kg · m−3) as
the main variable [2, 3].

Jv = −Dv0f(S, φ) grad ρv (3)

where Dv0 (m2 · s−1) is the free vapor diffusion coefficient in the air. The parameter f(S, φ) repre-
sents the resistance factor for gaseous diffusion and is related to the connectivity and tortuosity of
the pore network.
In this moisture transport model, the thermodynamic equilibrium between the liquid and vapor is
assumed. The equilibrium state is governed by Kelvin’s law which is written in the following form:

Pc = −ρlRT
Mv

ln RH (4)

where R = 8.314J · K−1 · mol−1 is the gas constant, T (K) is the absolute temperature and Mv

(kg · mol−1) is the molar mass of water molecule. Capillary pressure in the macroscopic scale is
defined as the difference between gas pressure the liquid phase pressure (Pc = Pg − Pl). The
relationship of Pc as a function of S is known as the capillary pressure curve. For cementitious
materials, this curve is indirectly measured by means of sorption experiments performed at constant
temperature (so-called water vapor sorption isotherms) [47]. Various equations can be found in
the literature to describe sorption isotherms [48]. One well-known equation was proposed by van
Genuchten (VG equation) [49],

Pc(S) = α
(
S−1/m − 1

)1−m
(5)

where α (Pa) and m are two fitting parameters.
The flux boundary condition (also known as convective condition [50]) is used to account for an im-
perfect moisture transport between the environment and the surface of the material. The expression
is given as [35]

q = (Jl + Jv)x=0 = φS0E(P 0
v − P e

v ) (6)

This boundary condition includes a material property (porosity φ), a parameter related to the
environment (external vapor pressure P e

v ), the moisture state within the material near the surface
(P 0

v and its related liquid-water saturation S0) and the interaction between the ambient environment
and the material (through the emissivity E). The term φS0 takes into account the reduction of
wet surface when exposed to the environment. The emissivity E (kg · m−2 · s−1 · Pa−1) has been
assessed from experiments which proposed a value around 2.58 × 10−8 kg · m−2 · s−1 · Pa−1 [51, 35]
for a laboratory environment where RH and temperature are maintained constant (atmospheric
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pressure, RH = 50 ± 5% and T = 293 K).
Putting Eqs. (2) - (5) back into the mass balance equation, Eq. (1), and combining the initial and
boundary conditions (see Eq. 6), the moisture transport problem can be solved.

2.2 Transport coefficients

The resistance factor in Eq. (3) represents the reduction of accessibility for water vapor diffusion
which is due to the presence of the solid and liquid phases, the tortuous path for diffusion, the differ-
ent connectivities in the pore network, etc. Because of limited experimental results, the expression
of f(S, φ) is generally derived from theoretical concepts. For example, Millington and Quirk [52]
deduced an equation for granular materials (soils):

f(S, φ) = φxD (1 − S)xD+2 (7)

Millington and Quirk [52] proposed that parameter xD was fixed at 4/3. However, granular materials
are more porous than cementitious materials, so resistance to water-vapor diffusion may be more
significant for cementitious materials. Thiéry et al. [53] suggested xD = 2.74 based on the fitting of
experimental data for cement pastes and mortars taken from Papadakis et al. [54]. The comparison
of f(S, φ) calculated by these two proposed values of xD shows that Thiéry’s suggestion provides
smaller f(S, φ) values (higher resistance) which may be closer to the real conditions of cementitious
materials than the original xD value for granular materials [8].
Another important transport coefficient is the relative permeability krl. For cementitious materials,
measuring the permeability to liquid-water for different RH is very difficult due to the fact that
advective liquid transport and vapor diffusion always occur together; therefore, measured results
include both transport mechanisms [6]. Owing to these reasons, it is acceptable to assume that krl
is a unique function of S. One well-known model is the van Genuchten – Mualem equation (VGM)
which was first reported by van Genuchten [49]. It is formulated as a simple analytical relation

krl(S) = S`
[
1 −

(
1 − S1/m

)m]2
(8)

In Eq. (8), m is the same as in Eq. (5). The term S` is a correction factor which accounts for the
influence of tortuosity. Different suggestions of parameter ` have been proposed by researchers [55,
56]. In Mualem’s research, ` varies between -1 and 3, and the value 0.5 was considered as the best
choice. This value has also been used for cementitious materials [2, 57].

3 Determination of liquid permeability

Methods chosen here for the determination of Kl are primarily based on whether these methods can
share the same specimen and whether this specimen can be used to obtain input and calibration
data for the moisture transport model. The pivotal factor is the geometry of the specimen for
these experimental methods. The KC and KTII equations need the crushed specimens to measure
PSD, so they do not require a geometry for preparing specimens, and the same is true of the
desorption isotherm measurements which only need small pieces. The ideal geometry for the drying
experiments and the sorptivity measurements is a cylinder which is also convenient for performing
1D simulations. Owing to the large specimen size in the traditional flow-through methods, they
suffer from the fact that the specimen can not easily be fully saturated. Considering the availability
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of equipment as well, we finally selected the following methods to determine Kl: beam bending,
sorptivity, KC and KTII equations.

3.1 Beam bending

Three-point beam bending has been developed as a method to measure the liquid permeability of
a porous body [26, 27, 28, 29]. This method can provide permeability results within a few minutes
to a few hours, whereas conventional techniques often require days and weeks. When a saturated
porous material is bent, pressure gradients are created in the liquid, which flows within the pores
to equilibrate the pressure. This phenomenon can be exploited to measure permeability, because
a poroelastic analysis indicates the expected rate of change of the force W (t) needed to sustain
a constant deflection of the beam as the pore pressure relaxes [26]; by comparing the measured
relaxation kinetics to the theoretical curve, the permeability Kl can be extracted.
When a saturated porous rod is subjected to bending, the flow in the porous medium is assumed to
obey Darcy’s law. The hydrodynamic relaxation is the process by which the liquid flow reestablishes
ambient pressure throughout the specimen. The relaxation function R(t) is given by normalizing
the force exerted on the specimen W (t) by the initial force W (0).

R(t) =
W (t)

W (0)
= 1 − A+ ASr(t) (9)

where the constant A is

A =

(
1 − 2νp

3

)(
1 − Bp

Bs

)2

1 − Bp

Bs

+ (1 − φ)

(
Bp

Bl

− Bp

Bs

) (10)

where B = E(3(1 − 2ν)) is the bulk modulus. ν is the Poisson’s ratio which is taken as 0.2 for
cementitious materials [28, 29]. Subscripts p, l and s represent properties of porous body, liquid
phase and solid phase, respectively. For a cylindrical specimen, the relaxation function can be
approximated as

Sr(t) = exp

[
− 8

π1/2

(
θ1/2 − θ5/2

1 − θ1/2

)]
(11)

where the reduced time is defined as

θ =
t

τR
(12)

where the hydrodynamic relaxation time τR is defined as (with the approximation Bp/Bs ≈ φ2 for
cement pastes [28])

τR =

[
2(1 + νp)

3Bp

+
1 − φ

Bl

− 1

Bs

(
φ2 − 5φ+ 8

5

)](
ηr2

Kl

)
(13)

where r (m) is the radius of the cylindrical rod.
In the experiments, a constant displacement δ is suddenly applied to the rod within the linear
elastic range and the force decay over time is continuously measured. The measured curve is then
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fitted by Eq. (9) with A and τR as free parameters. From the plateau of the force relaxation curve,
Young’s modulus of the porous body can be calculated.

Ep =
L3(1 − A)W (0)

12πr4δ
(14)

where L (m) is the support span.
According to the analytical solution for viscoelastic materials in [26], the total relaxation of the
slender specimen is the product of the hydrodynamic R(t) and the viscoelastic ΨV (t) relaxation
functions.

W (t)

W (0)
= R(t)ΨV (t) (15)

This equation is valid for cases that the viscoelastic relaxation time τV is an order of magnitude
longer than hydrodynamic relaxation time τR. For a short-term measurement (e.g., a few hours),
the viscoelatic relaxation function can be formulated by an exponential function.

ΨV (t) = exp

[
−
(
t

τV

)bV
]

(16)

where bV ⊆ [0, 1] is a constant. The properties of liquid are taken from paper [28]; thus, the fitting
parameters can be determined and then used to extract Kl.

3.2 Sorptivity method

Sorptivity is defined as “a measure of the capacity of the medium to absorb liquid by capillar-
ity” [58]. It can be easily measured by simple experiments. Considering that the initial stage of
mass changes in an absorption test is mostly controlled by capillary suction, sorptivity Sp (m/s1/2)
can be determined by the cumulative volume of water crossing the specimen surface [59]

∆m

Arρl
= Spt

1/2 + a (17)

where ∆m (g) is the measured mass change of the specimen, Ar (m2) is the area of the specimen’s
cross-section, and a is a parameter associated with the end effect (such as buoyancy, lateral invasion).
Using sorptivity directly to determine permeability is rarely discussed in the literature. Nevertheless,
the determination of water diffusivity from sorptivity has been studied for several decades [60, 61,
62]. The relation between water diffusivity Dl and permeability Kl is

Kl = Dl0µθs

∣∣∣∣dSl

dPl

∣∣∣∣
Sl=1

(18)

where Dl0 (m2/s) and θs

∣∣∣dSl

dPl

∣∣∣
Sl=1

are water diffusivity and water capacity of the porous material at

saturated condition (Sl = 1), respectively, and g=9.81 m/s2 is the gravitational acceleration.
For cementitious materials, Zhou [63, 12] proposed the following equation for Dl0

Dl0 = τDexp(n)

(
Sp(θi)

θs − θi

)2

(19)
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where θs and θi are saturated and initial water contents, respectively, and n is a shape parameter
related to the initial saturation Sl,0 and can be expressed as n = n0(1 − Sl,0) (n0 is the shape
parameter for initially dried specimen). The coefficient τD can be either fitted by experimental data
or calculated by [64]

τD =
n2

(2n− 1) exp(n) − n+ 1
(20)

The water capacity θs
dSl

dPl
is generally calculated from the sorption isotherm, while most isotherm

equations show that the water capacity at saturated condition is infinity (e.g., Eq. (5)) or zero, which
leads to meaningless Kl in Eq. (18). Zhou [65] proposed a new equation for sorption isotherms.

Sl =

[
1 − c1 + c1 exp

(
Pc

c2

)]−1

(21)

where c1 and c2 (Pa) are two fitting parameters. Thus, dSl

dPl
is the derivative of this function at

Sl = 1. ∣∣∣∣dSl

dPl

∣∣∣∣
Sl=1

=
c1
c2

(22)

Putting Eqs. (19) and (22) back to Eq. (18), Kl can be calculated by the measured sorptivity Sp.

3.3 Katz–Thompson (KT) equations

Many attempts have been made to link the transport properties of porous media and their mi-
crostructure. One of the theories that have been widely used is Katz-Thompson (KT) theory which
was initially developed to predict the permeability of sedimentary rocks. The percolation theory was
employed in KT relation, that introduces the characteristic length as one of main inputs (KTI) [42].

Kl =
d2c

226

(
σ

σ0

)
(23)

where dc is the characteristic dimension of pore space, which corresponds to the peak in the deriva-
tive of PSD, σ is the electrical conductivity of the saturated porous material and σ0 is the conduc-
tivity of pore solution. The coefficient 1/226 is used for general porous mateirals, but for concrete
different values were suggested (e.g., 1/8 for the lightweight concrete [66]). In this study, the modi-
fied values are not used because 1/226 is an analytical constant by assuming cylindrical pores in the
MIP measurements [67], so it should not vary with materials. The conductivity was used to reflect
the tortuosity of the pore network but it must be measured separately. Katz and Thompson [43]
proposed an expression for the conductivity term (σ/σ0) which can be estimated from MIP data
(KTII).

σ

σ0
=
demax

dc
φV (demax) (24)

where demax is the electrical conductivity characteristic dimension that produces the maximum con-
ductance. For a very broad PSD, demax is estimated by demax = 0.34dc [43]. V (demax) is the fractional
volume of connected pore space with pore size larger than demax. dc is normally taken as the critical
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(or breakthrough) pore diameter, representing the minimum radius which is geometrically contin-
uous throughout hydrated cement paste.
By using Eq. (24), without adjusting parameters, Katz and Thompson concluded that permeability
and σ/σ0 can be predicted from the same MIP data [43]. They found that the calculated σ/σ0
showed good agreement with the directly measured values for sedimentary rocks.

3.4 Kozeny–Carman (KC) equation

Considering that the flow in one-size straight tubes obeys Navier–Stokes (N-S) equation, Ha-
gen–Poiseuille equation is an exact solution to the N-S equation. Meanwhile, Darcy’s law can
give the flux through these tubes. The comparison of Hagen–Poiseuille equation with Darcy’s law
yields water permeability Kl as a function of the porosity φ, the specific surface S (m2/kg), and
tortuosity of channels τ . One widely used version was proposed by Walsh and Brace [68].

Kl =
φ3

2τ 2S2ρ2s
(25)

where ρs (kg/m3) is the bulk density of the dried material. As stated above, Eq. (25) is developed
for tubes having the same cross-sections. To account for the various sizes of pores, an equation
adapted by Walsh and Brace [68] can be used here.

φ

τ 2
=

σ

σ0
(26)

where the term σ/σ0 is formulated in Eq. (24). A similar equation for cementitious materials was
also proposed by Wong et al. [41] who introduced a constrictivity factor and proposed a modified
equation for permeability, but they found that the equation largely overestimated permeability.
By plugging Eq. (26) into Eq. (25), we thus have the version of KC equation that will be used in
this study.

Kl =
φ2

2S2ρ2s

(
σ

σ0

)
(27)

Since the tortuosity and porosity factors are included in this equation, it is supposedly representative
of the pore structure in a porous material.

4 Experiments

Measurements can be affected by many factors, such the type of cement, mixture procedure, the
size of specimens, curing condition, etc. To avoid these artificial factors, we prepared all specimens
in one batch. For most measurements (beam bending, sorption isotherm, drying, MIP, sorptivity),
specimens are obtained from the same cylinder to minimize the influence of batch differences. The
cement used in this study was a Type I ordinary Portland cement (OPC) from Buzzi Unicem, USA.
Chemical and mineralogical data were given in [69].
The specimen preparation basically followed the procedure reported in [28]. The cement paste with
water-to-ratio of 0.5 is used in this study. After adding deionized water into cement powder, the
material was hand mixed for 1 minute and then mixed by a vortex mixer (Stuart Vortex Mixers
SA8) for additional 3 min. Before casting paste in the polystyrene pipettes, which were lubricated
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by petroleum jelly, the fresh paste was deaired for about 4 min. Two sizes of cylindrical specimens
were prepared, 8 and 16 mm in diameter. After 48 h curing, cylinders were removed from the
pipettes, wiped with lab tissues, and stored in limewater for further curing.

4.1 Measurements for Kl methods

4.1.1 Beam bending

After one year, both 8 and 16 mm-diameter specimens were subjected to the beam bending mea-
surements. Specimens were taken out and pressurized in a limewater-filled tube for one day to
ensure that specimens were fully saturated prior to the tests. The test procedure has been well
illustrated in the literature [28, 29, 70] and a brief introduction is given here. The pushrod, which
directly touched the slender specimen during tests, was controlled by a stepper motor to apply the
sudden displacement. A linear-variable differential transformer (LVDT) was used to measure the
deflection. A 250 g load cell was used to measure the load force. Since the relaxation is most rapid
in the beginning, the data were recorded at logarithmic time intervals. The slender specimen was
placed in a stainless steel container which was filled with limewater. Two V-shape steel supports
were used to ensure good alignment of the cylindrical specimen and to avoid any movement during
tests. The assembly was placed in an incubator to maintain constant temperature. The displace-
ment applied depends on the radii of the specimen r and the support span L. To have accurate
results, the span L must be longer than ten times the specimen diameter (L > 20r).

4.1.2 Sorptivity

After BB tests, one of the 16 mm-diameter cylindrical specimens without any defects (mainly air
voids, which can only be checked after cutting) was used to prepare specimens for other measure-
ments. About 5 mm from each end of the cylinder was removed and discarded. The remaining
part was gently cut by a diamond saw into many slices (about 1 mm thick) and several 20 mm
long cylinders. Some short cylinders were used for the measurement of sorptivity. These cylinders
were preconditioned for three months in cups with constant RHs (97%, 85%, 63% and 53%) which
were achieved by using saturated salt solutions (see Table 1 for details). In the sorptivity mea-
surements, only one end of the short cylinder can contact water. To minimize moisture exchange
between the specimen and its surroundings, the side of the cylinder was sealed with the adhesive
aluminum sheet and the other end was loosely covered to let gas escape when water penetrates
from the opposite end. About 1 mm of the side surface at the end that contacts water was not
sealed by the aluminum sheet. This can avoid the aluminum sheet contacting water and creating
errors during measurements. An electronic balance (Denver Instrument) with accuracy ± 0.001 g
was connected with a data acquisition system (DAQ) to automatically record the mass change (see
Fig. 1 for details). The top of the balance was covered to eliminate the air flow effect in the lab.
A screwed fixture under the balance was used to grasp the specimen. Data recording every second
started just after the specimen was fixed. A beaker with water was seated on a small lift that can
be manually elevated until water just touches the bottom end of the specimen. The beaker was
large enough (about 30 cm in diameter) to ensure that the drop of water level during measurements
can be neglected. The beaker was covered by the plastic film and only a hole in the center was left
for the specimen to pass through. Because the ambient RH is different to RHs for preconditioning,
the time between taking the specimen out the cup and the beginning of the test should be as short
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as possible. Data logging continuously ran about 20 h but only the measured mass change curve at
the initial stage was used to calculate sorptivity.

Figure 1: Illustration for sorptivity measurements.

4.1.3 MIP, NAD and TGA

A small part of the slender specimen was used to prepare specimens for MIP, NAD and TGA
measurements. As reported in our previous studies, different drying methods have significant effects
on the microstructure [71, 69], so two drying methods were compared in this study: oven drying at
60◦C while flushing with N2 and isopropanol (IPA) replacement followed by drying under flowing
N2 at room temperature. The details of these two drying methods can be found in [69]. Part of the
rod was crushed into lumps (about 3 mm) which were subjected to different drying methods and
fine powders were used for the first TGA test (labelled with “No drying”). After drying, lumps were
further crushed and sieved. Particles with size < 0.6 mm were used for the TGA measurements, size
between 0.6 and 1.2 mm were used for the NAD tests and size about 3 mm were used for the MIP
measurements. TGA measurements were performed by PerkinElmer R© Pyris 1, in which specimens
were heated from room temperature to 1000 ◦C. The measured mass change between 105 ◦C and
1000 ◦C was used to calculate the degree of hydration (DoH). The detailed procedure and equation
were reported in our previous studies [72, 71, 69]. The NAD measurements were conducted using
an ASAP 2010 apparatus, from Micromeritics (see [71] for more details). The Micromeritics 9410
apparatus was used for MIP tests (see [73] for details).

4.2 Measurements for moisture transport model

4.2.1 Sorption isotherm

The desorption isotherm was measured by using saturated salt solutions to establish ten different
RHs (see Table 1). At each RH, three thin slices (initially saturated) with thickness around 1 mm,
which were cut from the 16 mm-diameter cylindrical specimen, were used to determine the water
content. There was about 50 ml saturated salt solution in a 200 ml cup and a plastic mesh was
installed in the middle that specimens were placed on. There was a small hole in the lid of the
cup, so that the hang wire could pass through and the lower end was hooked to a specimen pan
containing one slice. A rubber stopper was used to seal the hole in the lid between measurements.
When measuring the mass of the slice, one just needs to remove the rubber stopper and connect
the upper end of the hang wire with the electronic balance. Thus, the mass change of the specimen
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could be regularly monitored with minimal disturbance caused by opening the cup. Note that
water content at different RHs was measured by using different specimens, this can greatly reduce
measuring time compared with the stepwise method for the same specimen (e.g., [47]).

Table 1: Salts used to control different RHs.
RH % 11 22 33 44 53 63 75 85 92 97
Salt Lithium

Chlo-
ride

Potassium
Ac-
etate

Magnesium
Chlo-
ride

Potassium
Carbon-
ate

Magnesium
Ni-
trate

Sodium
Bro-
mide

Sodium
Chlo-
ride

Potassium
Chlo-
ride

Potassium
Ni-
trate

Potassium
Sulfate

FormulaLiCl KCH3COOMgCl2 K2CO3 Mg(NO3)2NaBr NaCl KCl KNO3 K2SO4

4.2.2 Drying tests

Drying tests at RH = 22, 53, and 63 % were performed on the short cylindrical specimens that
were first preconditioned at RH=97% rather than starting from the saturated condition. The
preconditioning was done by putting the initially saturated short cylinders in a cup with 97% RH
and keeping at 40 ◦C for about three days. The cup was then moved to the room temperature for one
month. The high temperature used here can speed up water evaporation and reduce preconditioning
time. After preconditioning, it was assumed that moisture uniformly distributed in the specimen.
The cylinders were then sealed by the adhesive aluminum sheet on the side and only two ends were
exposed to the corresponding RH environment. The cups with the same design as the desorption
isotherm measurements were used for drying tests. The masses of these specimens were regularly
weighted for about three months.
After tests, some short cylinders (from sorptivity measurements and drying tests) were dried in
an oven at 60 ◦C to obtain the mass at dryness. Since the geometry of these cylinders were well
defined, the mass difference between the dried and saturated states can be used to determine the
porosity.

5 Results

5.1 Kl determined by different methods

Specimens with two diameters (8 and 16 mm) were used in the beam bending tests and one example
for the larger specimen is shown in Fig. 2. Good agreement between measured and fitted relaxation
curves can be seen in this figure with well separated hydrodynamic and viscoelastic relaxation
curves. The inflection point represents the end of the hydrodynamic relaxation and is clearly shown
at about 1000 s. This time is much delayed compared with those reported in [28, 29] because the
material in the present study is older. Consequently, the measured permeability (shown in Table 2)
is lower than those in [28, 29].
Table 2 shows data form the BB tests for two specimens. If the flow is radial, Eq. (13) indicates
that the hydrodynamic relaxation time depends on the square of the radius. As shown in Table 2,
τr for the 16-mm specimen is about 4 times the average τr for 8-mm specimena. This means that
the results scaled with the specimen size are in agreement with the theory.
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Figure 2: Measured and fitted relaxation curves for BB tests (2r=16 mm).

Table 2: Parameters in the beam bending method for different size of specimens.
Specimen
diameter

Ep(GPa)bτR(s) Kl (10−21m2)

16 mm 23 20410 0.679

8 mm(1st) 23 8469 0.4

8 mm(2nd) 23 2189 1.4

Even though the sorptivity tests ran about 20 h, after a certain period (about 10 h in this study),
the rate of mass increase started to drop because the water penetration front reached the top of the
specimen. At the initial stage, water uptake is supposed to be a nearly linear function of the square
root of time as indicated in Eq. (17). In this study, we only took the linear part of the measured
curves to fit sorptivities for specimens with various initial water contents. Fitted and measured
results are compared in Fig. 3 showing very good fittings.
The fitted sorptivities for all tests are given in Table 3 which clearly shows the decease of Sp with
the increase of the initial water content. This is very reasonable when the specimen has less water
in the pore network (large pores are not filled with liquid water), the initial capillarity is much
stronger than specimens having more water inside, and thus water uptake is much faster at the
initial stage. The parameter n0 in Eq. (19) is a material-dependent parameter. Since only one
material is studied here, we take n0 = 6 for all tests [64]. Note that this value is smaller than those
in [12] (6.2 ∼ 7.6) for concretes. The calculated permeabilities based on measured sorptivities in
Table 3 show a very small variation with all values in the same order of magnitude.
A clear tendency is seen for initial RH from 53 - 85 % as the calculated Kl decreases due to the
decrease of sorptivity. Nevertheless, Kl for initial RH = 97% is much higher these for the other
initial RHs. The primary reason is that 97 % RH only can remove water in the large capillary pores

aIt generally plots the τR vs. r2 curve, which shows that two tests for 8 mm specimens scatter around a line that
passes through the origin, but the average value of τR is on the same line with the 16 mm specimen.

bThe Young’s modulus is taken from [74] which reported 22.8±0.5 GPa for the mature cement paste. In fact,
the value of Ep does not affect the calculated permeability which is mainly dependent on the inflection point of the
measured force relaxation curve. τR is the parameter controlling the position of the inflection point. For cementitious

materials, in which Bp and Bs >> Bl [75], Eq. (13) can be approximately replaced by τR ≈
(

1 − φ

Bl

)(
ηr2

Kl

)
. It is

clear that Kl is primarily dependent on the mechanical property of liquid.
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Figure 3: Measured and fitted sorptivity experimental curves (symbols are measured and lines are
fitted). The number of measured data is reduced to clarify.

(> 35 nm according to Young-Laplace and Kelvin equations), so the small capillary and gel pores
are not affected under this drying condition. Theoretically, water transport in all pores should be
included in the measurements; this is, a completely dried specimen is more representative than
a partially dried specimen, while drying can change the virgin microstructure. The compromise
between drying condition and microstructural change must be well analyzed prior to performing
sorptivity measurements. In addition, we found that Kl for initial 97 % RH is very sensitive to the
choice of sorption isotherms. For instance, Kl determined by using the measured saturation is about
2 times greater than that by using saturation calculated by the VG equation. Therefore, results
presented in Table 3 use the measured sorption data. This also implies that the use of specimens
with high initial water content is inappropriate for the sorptivity method.

Table 3: Results from sorptivity tests.
RH (%) 53 63 85 97

Sp
(10−5m/s0.5)

3.03 2.56 0.866 0.108

Kl (10−21m2)c 165 153 104 503

Results from MIP, NAD and TGA are provided in Table 4 for specimens dried by different methods.
After one year hydration, about 11% cement is still unhydrated, which is largely due to the fact that
the cores of some cement grains have less accessibility to water because of the shell around them
and the complex pore network in cementitious materials. The specimen dried by N2 at 60 ◦C shows
a slight lower DoH than the undried specimen. This is because 60 ◦C leads to the decomposition
of some hydration products (mainly ettringite) and the loss of chemically bond water [71]. The
isopropanol replacement shows higher DoH than others. This difference could be attributed to
stronger interactions of IPA (probably strong physical adsorption) with hydration products (mainly
calcium hydroxide), so that IPA is gradually released during heating in the TGA [71]. Drying
effects are also clearly shown in the surface area measured either by N2 BET or by MIP. They

cSaturation and water content in Eq. (19) are taken from the measured sorption isotherm rather than calculated
by the VG or Zhou’s equations.

15



both show that IPA replacement provides higher surface area than nitrogen drying at 60 ◦C. It is
generally believed that IPA replacement preserves the fine microstructure, while the capillary force
induced by water evaporation during the flowing nitrogen drying can cause the collapse of the fine
microstructure. In addition, the N2 BET surface area is always higher than MIP as reported in the
literature [76]. This results from the fact that mercury is not able to enter the fine pores that need
high intrusion pressure which may damage the fine pore structure. This difference is also illustrated
by the porosity measured by the mass difference and MIP in Table 4.
The permeability values in Table 4 are calculated based on MIP data. NAD data are not used here
because the calculated incremental PSD monotonically increases with the pore size and therefore
the critical pore diameter can not be identified. Kl provided by the KC equation is about three
times as low as that by KT equation for both drying methods. The version of KT equation used
in this study (KTII, see Eq. (24)) is much simplified compared to the original one (KTI in [42]).
KTII mainly relies on the measured critical pore size dc and therefore the accuracy and robustness
of KTII are also lower. The modified KC equation, by contrast, including the effects of surface area
and density of solids, may be more representative for porous properties of a material.

Table 4: Results from MIP, NAD and TGA, and calculated Kl by KC and KT methods.
Specimen DoH S(N2

BET)
(m2/g)

S(MIP)
(m2/g)

dc
(µm)

φ ρs
f

(g/ml)
Kl(KC)
(10−21

m2)

Kl(KT)
(10−21

m2)

No Drying 0.886 - - - 0.358d - - -

N2 60◦C 0.842 108 57.4 0.05 0.250e 1.569 81.2 233

IPA replace-
ment

0.899 124 64.7 0.04 0.244e 1.602 50.7 134

It is clear that these Kl values determined by various methods show a large scatter even though
all tests were based on exactly the same material. The permeability Kl determined by the BB
method is much lower than other methods. One possible reason is that the specimen used in
the BB method is fully saturated and specimens are dried to some extend in the other methods.
As reported in the literature [77, 71], any drying can alter the morphology of C-S-H gel and the
microstructure of material to a certain degree. From this point, we expect that the BB method
is able to provide Kl much closer to the “true” one than the other methods. The permeabilities
from KT and sorptivity methods are very close and higher than KC. The reason for the difference
between the sorptivity method and the others is unknown to us, and more work needs to be done
for the sorptivity method since the microstructural changes during water absorption in cementitious
materials are not considered by the sorptivity method.

5.2 Comparison of Kl from different methods

Measured and fitted desorption isotherms by Eqs. (5) and (21) are shown in Fig. 4. Fitted parame-
ters for Eqs. (5) and (21) are provided in Table 5. The calculated adjusted determination coefficient
R2

adj (equation can be found in [48, 46]) are very close to 1, indicating that both equations have a
good applicability for the studied cementitious material.

dMeasured by the mass difference of a specimen between saturated and dried (60◦C) states.
eMeasured by MIP.
fCalculated based on MIP data.
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Table 5: Fitted parameters for the measured desorption isotherm.
Equation VG (Eq. (5)) Zhou(Eq. (21))

Parameter
α (Pa) m c1 (Pa) c2
4.39E7 0.423 2.66E8 1.964

R2
adj 0.994 0.992

In Fig. 4, the VG equation shows slightly better fitting at high RH, while Zhou’s equation is slightly
better at low RH.
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Figure 4: Measured and fitted desorption isotherm.

In the moisture transport model introduced in Section 2, Kl is the only unknown, so values cal-
culated by the above methods can be used. By comparing the simulated mass loss curves using
these Kl values with the measured ones, we can tell which Kl determination method is suitable for
this moisture transport model. For the BB method, Kl measured for the 16-mm specimen is used
for simulation since the drying tests were done for the specimens with the same size. For KC and
KTII equations, Kl determined by the specimen dried by IPA replacement is chosen because we
have shown that IPA replacement can better preserve the delicate microstructure of cementitious
materials than the flowing nitrogen drying. For the sorptivity method, Kl values determined from
specimens preconditioned at RH = 53 and 63% are directly used for drying tests with the corre-
sponding RHs. For drying at RH = 22%, there is no corresponding sorptivity measurement, so we
take the Kl value of the sorptivity measurement for initial RH = 53% (1.65×10−19 m2).
Comparison of measured and simulated mass loss curves in Fig. 5 clearly demonstrates that Kl

determined by the BB method is able to provide the curves closest to the measured ones regardless
of the drying condition. Although permeabilities by KC, KTII and sorptivity methods are different,
the mass loss curves calculated by them are very close, because these permeabilities are so high
that they cause mass loss quickly reaching the plateau. Therefore, the similar conclusion as the
literature can be drawn that KC and KTII equations overestimate Kl by 1-2 orders of magnitudes
[44, 45, 9]
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(a) Drying test at RH=22%.
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(c) Drying test at RH=63%.

Figure 5: Comparison of measured and simulated mass loss curves.

6 Discussion

6.1 Inverse analysis

In fact, Kl in the moisture transport model can be determined by back calculation from the measured
mass loss curve at a constant RH. This method was known as “inverse analysis” in the previous
studies [78, 2, 79, 7, 8]. As discussed in [7, 8], the initial moisture state of calculations corresponds
to the state after self-desiccation which is about the same RH used in this study for the preparation
of specimens for drying tests. The previous study reported that the inversely determined Kl for the
same material dried at two RHs is very close [7], which proves that the moisture transport model used
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here is able to provide the consistent results for Kl. Moreover, water saturation profiles simulated
by this moisture transport model match the measured ones very well. This further strengthens our
confidence in using the moisture transport model in Section 2 for inverse calculation of Kl.

0 20 40 60 80 100

Time (d)

0

0.2

0.4

0.6

0.8

1

M
as

s 
lo

ss
 (

g)
RH=22%
RH=53%
RH=63%

Figure 6: Comparison of measured and simulated mass loss curves for drying at three different RHs.

The fitted mass loss curves for drying at three different RHs are shown in Fig. 6. By only ad-
justing Kl in the moisture transport model (of course boundary condition must be changed to the
corresponding drying condition), we are able to obtain very good fitting with the measured curves.
Permeabilities inversely determined by fitting the measured mass loss curves are given in Table 6.
The values of Kl for three different drying conditions are very close with difference less than a
factor of two. Compared with permeabilities determined by the above methods, the inverse anal-
ysis shows Kl values much lower than those from KC, KTII and sorptivity methods and slightly
higher than that from the BB method. This confirms our hypothesis that the BB method, using
the saturated specimen, is able to provide Kl suitable for the moisture transport model employed
here. As mentioned above, the good capability of the BB method is because the saturated speci-
men retains the original microstructure of cementitious materials while the microstructure of dried
specimens in other methods is altered. There is no correction for the microstructural change in the
KC and KTII equations. In the sorptivity method, the correction may be partially considered in
the measured desorption isotherm. Nevertheless, during water absorption, the C-S-H gels undergo
swelling, recovery and rearrangement [80, 81, 9], which are not taken into account in the sorptivity
method. For the moisture transport model, the microstructural change is not directly considered
by any equation, while the input data - the measured desorption isotherm - actually includes this
information. Unlike the sorptivity method, the inverse analysis is not affected by the wetting of
C-S-H gels.

Table 6: Permeabilities determined by the inverse analysis.
Drying RH
(%)

22 53 63

Kl (10−21 m2) 2.2 1.5 1.9
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6.2 Influence of vapour diffusion

Theoretically, Kl should be independent of the external drying conditions. The previous study [8]
argued that the discrepancy between Kl determined at different RHs was thought to be affected
by the preparation of different specimens of the same mix design. Nonetheless, the batch effect is
minimized in this study. One of possible reasons is that the effect of vapor diffusion varies with
the drying condition, because it was found that vapor diffusion gradually becomes more important
with the decrease of external RH [46]. In the above analysis, we assumed that xD = 2.74 in Eq. (7)
is suitable for all cases. To evaluate this assumption, we take different values for xD (the main
parameter controlling the rate of vapor diffusion) to simulate the drying mass loss curve: xD = 1.33
was proposed by Millington and Quirk [52], xD = 2.74 is suggested by Thiery et al. [82], and
xD = 4.47 is the value that we found for cementitious materials [8] based on calibration by the
measured Deff curve [6]. Results of three drying conditions are compared in Fig. 7. It is clear that
the influence of xD is closely related to the drying condition, as it is more significant for drying at
low RHs. The influence decreases with the increase of external RH and eventually at RH = 63%
the influence vanishes.
It was reported that xD varies with materials [8] and a universal value that can be used for all
cementitious materials could not be found. Since there is no generally accepted value for xD, it is a
good practice to choose the drying condition that has the negligible effect of vapor diffusion on the
total mass loss. The goal here is to understand the range of RH under which the influence of vapor
diffusion in the moisture transport model is negligible. Actually, this can be assessed by calculating
the effective diffusion coefficient considering the moisture transport as a pure diffusion-like process.
Based on Eqs. (1), (2) and (3), the effective diffusion coefficient Deff is written as

Deff = krl
Kl

φηl

dPc

dS
+

(
Mv

ρlRT

)2

Dv0f(S, φ)
PvsRH

φ

dPc

dS
(28)

The plot of Deff vs. RH is shown in Fig. 8 which displays a bumpy curve with one peak at low RH
and one at RH close to 1. The lowest point between them is found at RH ≈ 43%, which is considered
as the demarcation between the liquid and vapor transport. Below this point, vapor diffusion
dominates the moisture transport; above this point, the advection of liquid becomes significant.
Clearly, RH = 53% and 63% are located in the liquid water dominant region. However, RH = 53%
is very close to the demarcation point and liquid transport is not considerably higher than vapor
diffusion, so that we can still see the influence of xD on the calculated mass loss curve (see Fig. 7b).
From this point of view, we are able to say that Kl determined by the drying test at RH=63%
is more accurate than values obtained by drying at lower RHs. Therefore, our recommendation is
that if one wants to use the inverse analysis method to determine Kl, it is better to avoid using
measured mass loss curves at low RHs (i.e., below the demarcation point on the effective diffusion
coefficient curve).
Another implication from this discussion is that an appropriate model that targets on the whole
range of RH must include the contribution from both liquid and vapor. Some models in the
literature that consider the effective diffusion coefficient/diffusivity as a monotonically increasing
function with water content/degree of saturation are not suitable for moisture transport at low
RHs, because they basically ignore the transport of water vapor.
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Figure 7: Comparison of the effect of vapor diffusion on simulated mass loss. The case of xD = 4.47
is used in this study to inversely determine Kl.

6.3 Overestimation of KC and KT equations

In agreement with most literature, this study finds that the KC and KT equations overestimate
Kl of cement pastes. Halamickova et al. [83] pointed out that the KT relations may work better
for systems with highly interconnected capillary pore networks than for systems where the fine
nanostructure of gel pores dominates the transport, as is the case in most cementitious materials.
This can help to explain why the permeability calculated by the KT equations is larger. Indeed,
as originally explained by Katz and Thompson, their theory is valid for materials with large pores
and mono-modal PSD centered in the capillary range [84].
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Figure 8: Calculated Deff curve (Kl = 1.9× 10−21 m2 and xD = 2.74). Note that Deff is material-
dependent and thus for other materials the shape of the curve should be different to the one in this
figure.

In addition to the inherent reasons, there are some deficiencies in the measured data for KC and
KT equations:

1) The data used in these equations are measured by MIP, which is not sensitive to the small
pores. Pores in hydrated materials can be generally divided into capillary pores and gel pores.
Capillary pores are easily detected by MIP, but not gel pores, whose contribution to the
permeability of cementitious materials is non-negligible [75]. The contribution of small pores
to the PSD is not fully included in MIP data and therefore measured surface area is much
lower than other techniques, so that it leads to a higher Kl in the KC equation.

2) Another basic problem with MIP is that the specimens are dried before measurements. As
pointed out in the literature, the microstructure of the material is altered whatever the selected
method for drying (oven-drying, vacuum drying, freezing drying or solvent exchange) [72]. The
different measured PSD curves for two drying methods in the present study also show that
the pretreatment conditions have an influence on the measured PSD.

3) The choice of the critical diameter also contributes the difference. The critical pore diameter
was defined as the pore size above which a connected path can form from one side of the
specimen to the opposite side. It is reflected by the inflection point of the cumulative mercury
intrusion cure. The determination of the critical diameter holds an accuracy of ±15% [67].
According to the definition of the critical diameter, it is most likely the characteristic pore
diameter of gel pores dgp, which is much smaller than dc [85]. If dgp is used in Eqs. (23) and
(26), the predicted permeability should be about one or two orders of magnitudes lower, and
much closer to the values from the BB and inverse analysis methods. However, the choice is
not arbitrary and is controlled by the critical porosity φc which varies with materials.

Hence, if the measured microstructure is more representative of the original one, it is expected
to yield more accurate Kl. Experimental methods that can measure the PSD of the saturated
specimen are suggested for the future studies, such as nuclear magnetic resonance (NMR) and
thermoporometry.
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6.4 Permeability measured by other fluids

The permeability is often measured by other gases and liquids in the literature. For gas permeability
measurements, specimens must be dried or partially dried. The problem is that the morphology
of C-S-H can be significantly changed by drying. By observing under the environmental scanning
electron microscope (ESEM), Fonseca and Jennings [77] reported that a slow drying, such as drying
at high RH for several days, creates a bumpy morphology around the cement grain, which is very
different to the needle-like structure in the rapidly dried specimens. Based on the comparison of
different drying methods, Zhang and Scherer [71] and Zhang et al. [69] found that no matter which
drying method is used, as long as water is removed from the pore network, the morphology of
hydration products is altered and thin sheets between fine fibers are created. These effects, either
forming bumpy surface or creating thin sheets, will increase the complexity of the microstructure.
Together with coarsening the pore size distribution (e.g., [9]) and inducing micro-cracks (e.g., [86]),
the transport properties would be affected. Therefore, we should not directly compare permeabilities
measured by water with that by gases, because the microstructure of the specimens is different to
each other.
Loosveldt et al. [10] found that water permeability was systematically lower (by 1 - 2 orders of
magnitudes) than that of argon gas, and ethanol permeability was between them. A similar conclu-
sion was reported by Zhou et al. [12] that ethanol permeability is about 2 - 3 orders of magnitudes
higher than water permeability and close to the gas permeability with the correction of Klinkenberg
slippage effect. However, these results are questionable. First, ethanol has been proved to react
with hydration products (essentially calcium hydroxide) [72]. Second, ethanol permeability was
measured after gas permeability measurements on the same specimen. As mentioned above, the
microstructure of dried specimen has been altered compared to the original water-saturated one. A
more acceptable way is to do solvent exchange with the water-saturated specimen before measuring
the solvent permeability. By using this procedure, Hearn [11] reported that there is only slight
difference between water and IPA permeabilities. The difference is due to water having stronger
chemical interactions than IPA with the hydration products. Nevertheless, recent studies by Zhou
et al. [9] reported that IPA permeability is about 2 - 3 orders of magnitudes higher than water
permeability. They found that the peaks of PSD measured by NMR shift to high pore size range
for IPA treated specimens, meaning that the microstructure is coarsened by IPA replacement. It is
hard to believe that IPA replacement causes permeability 2 - 3 orders of magnitudes higher than
the one measured with water saturated specimen since IPA replacement was shown as a preferable
drying method to preserve the microstructure [87, 88, 72, 69]. The most possible reason is that some
microcracks are induced during solvent exchange as reported in our previous study [71] that the
damage is more serious for a large specimen (≥ 8 mm in diameter). The thickness of the specimen
in [9] is 20 – 25 mm, so damages most likely happened during exchanging with IPA. Another fact
that can lead to damage during IPA replacement is the exchange duration. Vichit-Vadakan and
Scherer [28] reported that after about a 6-week exchange the measured porosity of cement paste
dramatically increased to the same value as the oven dried specimen at 105 ◦C, and they suspected
damages because of the long exchange duration.
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7 Conclusion

To eliminate the artifacts (e.g., types of cements, specimen preparation and curing conditions) in
the measurement of water permeability, this study prepared all specimens from a long cylinder for a
variety of permeability determination methods. specimens from the same cylinder were also used for
experiments to obtain the input and calibration data for a moisture transport model. By comparing
the simulated and measured mass loss curves, we found that the KC, KTII and sorptivity methods
yield significantly greater values of Kl which lead to overestimation of the mass loss. Permeability
determined by the BB method provides a mass loss curve slightly lower than measured one, but it
is the closest one among the compared methods.
The overestimation of the KC, KTII and sorptivity methods results from the fact that specimens
used in these methods must be dried before the tests. As shown in our previous studies, any drying
(either fully or partially) can significantly alter the microstructure of the material. In addition,
MIP is not an appropriate method to detect the small pores in cementitious materials; thus, the
measured surface area and critical pore size are far from the “true” ones in the water-saturated
specimen. In addition, by comparing sorptivity measurements for different initial water content, we
found that the use of specimens with high initial water content is inappropriate for the sorptivity
method.
The permeability values inversely determined by the moisture transport model based on the mea-
sured mass loss curves are very close to those measured by the beam-bending method. The most
important notice put forward in this study for the use of the inverse analysis method is that drying
tests must be done at high RHs (63% in this study) to reduce the effect of vapor diffusion on the
determination of water permeability.
This study has tried to minimize the batch effect, but permeabilites determined by a variety of
methods are still much different to each other. This may indicate that the effect of choosing the
water permeability determination method is more important than eliminating the batch effect.
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des bétons - Analyse des différents modes de transfert hydrique, Revue européenne de génie
civil 11 (2007) 541–577.

[83] P. Halamickova, R. J. Detwiler, D. P. Bentz, E. J. Garboczi, Water permeability and chlo-
ride ion diffusion in portland cement mortars: Relationship to sand content and critical pore
diameter, Cement and Concrete Research 25 (1995) 790–802.

[84] D. L. Johnson, J. Koplik, L. M. Schwartz, New pore-size parameter characterizing transport
in porous media, Physical Review Letters 57 (1986) 2564–2567.

[85] K. K. Aligizaki, Pore structure of cement-based materials: testing, interpretation and require-
ments, Taylor & Francis, London and New York, 2006.

[86] C. de Sa, F. Benboudjema, M. Thiery, J. Sicard, Analysis of microcracking induced by differ-
ential drying shrinkage, Cement and Concrete Composites 30 (10) (2008) 947–956.

[87] L. Konecny, S. J. Naqvi, The effect of different drying techniques on the pore size distribution
of blended cement mortars, Cement and Concrete Research 23 (1993) 1223–1228.

[88] J.J.Beaudoin, Validity of using methanol for studying the microstructure of cement paste,
Materials and Structures 20 (1987) 27–31.

30


	1 Introduction
	2 Moisture transport model
	2.1 Governing equations
	2.2 Transport coefficients

	3 Determination of liquid permeability
	3.1 Beam bending
	3.2 Sorptivity method
	3.3 Katz–Thompson (KT) equations
	3.4 Kozeny–Carman (KC) equation

	4 Experiments
	4.1 Measurements for Kl methods
	4.1.1 Beam bending
	4.1.2 Sorptivity
	4.1.3 MIP, NAD and TGA

	4.2 Measurements for moisture transport model
	4.2.1 Sorption isotherm
	4.2.2 Drying tests


	5 Results
	5.1 Kl determined by different methods
	5.2 Comparison of Kl from different methods

	6 Discussion
	6.1 Inverse analysis
	6.2 Influence of vapour diffusion 
	6.3 Overestimation of KC and KT equations
	6.4 Permeability measured by other fluids

	7 Conclusion 

