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The accurate calculation of excited state properties of interacting electrons in the condensed phase is an im-
mense challenge in computational physics. Here, we use state-of-the-art equation-of-motion coupled-cluster
theory with single and double excitations (EOM-CCSD) to calculate the dynamic structure factor, which can
be experimentally measured by inelastic x-ray and electron scattering. Our calculations are performed on the
uniform electron gas at densities corresponding to Wigner-Seitz radii of rs = 5, 4, and 3 corresponding to the
valence electron densities of common metals. We compare our results to those obtained using the random-phase
approximation, which is known to provide a reasonable description of the collective plasmon excitation and
which resums only a small subset of the polarizability diagrams included in EOM-CCSD. We find that EOM-
CCSD, instead of providing a perturbative improvement on the RPA plasmon, predicts a many-state plasmon
resonance, where each contributing state has a double-excitation character of 80% or more. This finding amounts
to an ab initio treatment of the plasmon linewidth, which is in good quantitative agreement with previous di-
agrammatic calculations, and highlights the strongly correlated nature of lifetime effects in condensed-phase
electronic structure theory.

Introduction. The uniform electron gas (UEG) is a
paradigmatic model of interacting electrons in the condensed
phase [1, 2]. Finite-order perturbation theory for the ground-
state correlation energy exhibits a divergence due to the
UEG’s metallic character and long-ranged Coulomb inter-
actions. These divergences are famously removed by the
infinite-order resummation of time-independent particle-hole
ring diagrams known as the random-phase approximation
(RPA) [3, 4]. As a dynamical theory of the density response
function, the RPA corresponds to a resummation of all time-
dependent ring diagrams and forms the microscopic basis for
screening the Coulomb interaction, as is done, for example,
in the GW approximation [5]. In the UEG, the RPA strongly
modifies the noninteracting polarizability, most significantly
predicting the existence of a collective plasmon excitation.
Outside of the particle-hole continuum, the RPA plasmon is
a coherent, dispersive excitation with infinite lifetime; inside
the particle-hole continuum, it acquires a lifetime due to Lan-
dau damping.

A number of calculations have attempted to improve on
the RPA treatment of the UEG density response function,
in order to uncover signatures of electron correlation and to
test new theoretical tools. Previous works extend the RPA
through the selective inclusion of a static or dynamic lo-
cal field correction [7–13], which is closely related to time-
dependent density functional theory. However, fully ab initio
nonperturbative techniques are now reaching a point of ma-
turity where they can be applied in an unbiased manner to
large, condensed-phase systems. Here, we use equation-of-
motion coupled-cluster theory with single and double excita-
tions (EOM-CCSD) [14–18] to calculate the density response
function of the UEG and to compare to that predicted by the
RPA. As shown previously [6, 19], EOM-CCSD rigorously
resums a larger class of time-dependent diagrams than those

included in the RPA. In particular, beyond the RPA ring di-
agrams, the EOM-CCSD response function includes all lad-
der diagrams, mixed ring-ladder diagrams, and exchange di-
agrams, as well as large classes of diagrams associated with
two particle-hole pairs (i.e. double excitations in the excited-
state wavefunction). The CC formalism is appropriate for
periodic systems because it has total energies that are size-
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FIG. 1. Schematic of the main methods and results of the this work.
EOM-CCSD diagonalizes a similarity-transformed Hamiltonian in
the 1p1h and 2p2h configuration space; diagonalization within the
1p1h space gives the RPA result (plus minor corrections [6]), which
yields a collective plasmon split off from the remaining ph contin-
uum. The interaction of these states with 2p2h configurations pro-
duces new eigenstates, as shown in the bottom left. The single plas-
mon state is mixed into many eigenstates, giving it an effective life-
time, although each individual eigenstate has predominantly 2p2h
character. As shown at the right, this leads to a plasmon dispersion
that is slightly higher than that of the RPA, in contrast to the known
exact behavior, but with a proper correlation-induced lifetime.
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extensive [17]. Recent years have seen intense activity on the
applications of perturbation theory, RPA, and CC theory to re-
alistic materials, with encouraging results [20–28]. However,
excited-state CC techniques [14, 18] have been studied signif-
icantly less in the solid-state, despite their attractive proper-
ties. For example, unlike quantum Monte Carlo approaches,
EOM-CCSD directly constructs spectral functions on the real
frequency axis, and does not require analytic continuation. To
the best of our knowledge, this work represents the first calcu-
lation of neutral excitation spectra of a periodic, condensed-
phase system using EOM-CCSD. This technological advance
opens the door for highly accurate simulations of excitonic
and plasmonic phenomena in atomistic materials.

Theory. Our calculations are performed in a finite simula-
tion cell with periodic boundary conditions in the canonical
ensemble at zero temperature. The simulation cell contains
N electrons in a volume Ω = L3. The electron density is
n = N/Ω and the Wigner-Seitz radius, measuring the average
size of a sphere occupied by one electron, is rs = [3/(4πn)]1/3.
The pairwise Coulomb interaction is treated with the periodic
Ewald interaction [29–31] assuming a compensating back-
ground charge. The one-electron basis functions are plane
waves, ψk(r) = Ω−1/2 exp(ik · r) where k = (2π/L)[l,m, n]
and l,m, n are integers. For closed-shell electron configura-
tions, the spectrum of the finite UEG is always gapped, but
becomes increasingly metallic at large system sizes. In the
correlated calculations to follow, we use N = 66 electrons in a
single-particle basis of 81 plane-wave orbitals, corresponding
to a density-dependent kinetic energy cutoff. This system size
is comparable to those used in ground-state quantum Monte
Carlo [32–37] and quantum chemistry [38–44] calculations on
the UEG, for which finite-size and basis set effects have been
studied more methodically. The computational cost of these
CCSD calculations scales like N2M4. For these parameters,
the ground-state CCSD calculation, which is only performed
once for each value of rs, is relatively cheap. Although EOM-
CCSD has the same formal scaling, the calculation of the dy-
namic structure factor is our bottleneck, because of the many
frequency points and challenges associated with the solution
of a system of linear equations. We have performed simple
finite-size analysis and believe that our conclusions remain
valid in the thermodynamic limit.

Our primary observable is the dynamic structure factor
S (q, ω) = −π−1ImΠ(q, ω), where Π(q, ω) is the polarizabil-
ity, i.e. the Fourier transform of the retarded density response
function,

Π(q, ω) = −i
∫ ∞

0
dteiωt〈Ψ0|[ρ(q, t), ρ†(q, 0)]|Ψ0〉, (1)

with ρ†(q) =
∑

k a†
k+q

ak. For the noninteracting electron
gas, the polarizability can be simply computed, Π0(q, ω) =∑

k[nk − nk+q]/[~ω − (εk+q − εk) + iη]. The noninteracting
structure factor has a particle-hole continuum with boundaries
determined by the Fermi occupancy functions nk. The exact

polarizability can be formally given by

Π(q, ω) =
Π0(q, ω)

1 − v(q)[1 −G(q, ω)]Π0(q, ω)
, (2)

where G(q, ω) is a dynamic local field factor. The RPA polar-
izability, which resums all time-dependent ring diagrams, is
obtained for G(q, ω) = 0 and exhibits a pole associated with
the collective, plasmon excitation. As long as the plasmon en-
ergy falls outside of the particle-hole continuum, the RPA pre-
dicts it to have an infinite lifetime; in other words, even in the
thermodynamic limit, the RPA plasmon is a single quantum
state. Inside the particle-hole continuum, the plasmon inter-
acts with quasiparticle excitations, leading to Landau damp-
ing and a finite lifetime. In the long-wavelength limit, the
RPA is exact [2] and the plasmon dispersion approaches the
classical plasma energy ωP(q → 0) =

√
4πn. At finite q, the

exact plasmon dispersion is unknown; however, by analyzing
the limiting behaviors and conservation laws, one can argue
that the exact plasmon dispersion lies below that predicted by
the RPA [2]. Therefore, an exact treatment of the UEG is
expected to produce a plasmon with a displacement to lower
energies and with a finite lifetime, both due to interaction with
multipair excitations beyond the RPA.

In recent work, one of us (T.C.B.) showed that the po-
larizability diagrams summed in the RPA are a strict sub-
set of those included in the EOM-CCSD polarizability [6].
However, because our analysis will make use of the EOM-
CCSD excited-state wavefunctions, we briefly review the
plasmon wavefunction implied by the RPA and by the simpler
Tamm-Dancoff approximation (TDA) [45]. In the TDA, we
consider all allowed single-excitation, one-particle+one-hole
(1p1h) states, |ΨTDA(q)〉 =

∑′
k rk+q

k
a†
k+q

ak|0〉, where here and
throughout the primed summation enforces that k is an occu-
pied state and k + q is an unoccupied state in the mean-field
reference |0〉. Neglecting electron-hole exchange and solving
the configuration interaction problem leads to the identifica-
tion of the plasmon wavefunction

|ΨP
TDA(q)〉 = N(q)

′∑
k

1
ωTDA(q) − (εk+q − εk)

a†
k+q

ak|0〉, (3)

where N(q) is a normalization factor. The TDA plasmon en-
ergy ωTDA(q) is the largest root of the secular equation,

1 = v(q)
′∑
k

1
ωTDA(q) − (εk+q − εk)

, (4)

where v(q) = 4π/q2. The TDA plasmon wavefunction is a
coherent superposition of all allowed 1p1h excitations, with
equal positive weights in the q → 0 limit, N′ρq |0〉. Though
physically transparent, the TDA yields a plasmon energy with
an unphysical divergence as q → 0. This behavior is fixed
in the RPA, which resums ring diagrams in both the forward
and backward time directions. The backward propagations are
consistent with correlation in the ground-state wavefunction.
Following the recent result of Ref. 6, the RPA wavefunctions
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(a) Noninteracting (N → ∞) (b) RPA (c) EOM-CCSD
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FIG. 2. Dynamic structure factor of the uniform electron gas at rs = 4 obtained in the thermodynamic limit for the noninteracting theory
(a) and for the finite system from the RPA (b) and EOM-CCSD theory (c). Finite-sized calculations have N = 66 electrons with M = 81
plane-wave basis functions. Solid and dashed black lines indicate the boundaries and maximum intensity of independent-particle excitations
and the dispersion of the plasmon calculated in the RPA. A broadening of η = 1 eV is used in the RPA and EOM-CCSD calculations.

can be written as a coherent superposition of single excitations
on a correlated ground-state wavefunction |Ψ0〉 = eT2 |0〉,

|ΨRPA(q)〉 =

′∑
k

rk+q
k

a†
k+q

akeT2 |0〉, (5)

where T2 =
∑′

k1k2q
tq
k1,k2

a†
k1+q

a†
k2−qak2 ak1 is a double-

excitation operator with amplitudes tq
k1,k2

satisfying the ring-
CCD (RPA) equations [6, 46, 47]. It is simple to show that the
RPA plasmon amplitudes rk+q

k
have the same form as those of

the TDA,

|ΨP
RPA(q)〉 = N(q)

′∑
k

1
ωRPA(q) − (εk+q − εk)

a†
k+q

akeT2 |0〉
(6)

but with the improved RPA plasmon dispersion ωRPA(q).
Therefore, we conclude that the RPA plasmon wavefunction
is characterized by a constructive superposition of single ex-
citations on a CCD ground state.

Electronic states with dominant single-excitation character
are known to be improved by the inclusion of double excita-
tions corresponding to two-particle+two-hole (2p2h) configu-
rations. In periodic EOM-CCSD, the excited-state wavefunc-
tions are given by

|ΨCC(q)〉 =

[ ′∑
k

rk+q
k

a†
k+q

ak

+

′∑
k1,k2,k3

rk3,k1+k2−k3+q
k1,k2

a†
k3

a†
k1+k2−k3+q

ak2 ak1

]
eT2 |0〉,

(7)

and thus include both single and double excitations with re-
spect to the correlated ground-state wavefunction (T2 is ob-
tained from the full CCSD equations and T1 is zero for the
UEG). Therefore, EOM-CCSD is expected to provide an im-
proved description of the plasmon, whose entire theoretical
description to date has relied upon a single-excitation pic-
ture. This formalism is equivalent to the diagonalization of

the similarity-transformed Hamiltonian matrix in the basis of
1p1h and 2p2h configurations, as shown in Fig. 1.

Detailed expressions for the RPA, TDA, and EOM-CCSD
polarizability are given in the Supplemental Material [].

Results. In Fig. 2, we show the dynamic structure factor at
rs = 4 calculated using the noninteracting theory in the ther-
modynamic limit (a) as well as the RPA (b) and EOM-CCSD
(c) results for N = 66 electrons with M = 81 plane-wave ba-
sis functions. Ignoring symmetries, the EOM-CCSD Hamil-
tonian includes more than 2 × 106 many-body states. Due
to the finite system size, in all calculations we use a broad-
ening of η = 1 eV. The simulation data are unavailable at
large q because of the finite basis set and at small q because of
the finite system size. In particular, for an N-electron simula-
tion, the smallest accessible value of the momentum transfer
is q = 2π/L ≈ 2.03qF/N1/3, where qF is the Fermi wavevec-
tor; for N = 66 electrons, this corresponds to q ≈ qF/2. In
the Supplemental Material [], we present a thorough study of
finite basis effects and finite size effects at the RPA level, for
which large calculations are affordable; we confirm that the
properties studied here are not strongly affected.

Despite the finite system size, the plasmon peak at q = qF/2
is separated from the particle-hole continuum and can be con-
fidently assigned and analyzed. In Fig. 3, we show the dy-
namic structure factor at q = qF/2 calculated using vari-
ous theories for the 66-electron system. The correlated the-
ories are consistent with expected behavior, showing a redis-
tribution of oscillator strength from the particle-hole contin-
uum into the plasmon resonance. Interestingly, the EOM-
CCSD spectrum maintains a non-negligible intensity in the
low-energy region, which can also be seen in Fig. 2(c). The
energies of the RPA and TDA plasmons are close to their val-
ues in the thermodynamic limit. However, contrary to expec-
tations, the EOM-CCSD plasmon is located at a higher energy
than the RPA plasmon, in disagreement with the known exact
behavior.

To understand this behavior, we analyze the wavefunction
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FIG. 3. Dynamic structure factor of the UEG at rs = 4 with N = 66
electrons in M = 81 plane-wave basis functions at q ≈ qF/2. A
broadening of η = 1 eV is used in all calculations.

character of the states contributing to the plasmon peak. Un-
like the TDA or RPA, for which the plasmon peak comes
from a single quantum state, EOM-CCSD predicts a plasmon
peak that is composed of many states, i.e. it has a physical
linewidth due to interactions with multipair configurations.
This correlation-induced linewidth is masked by the use of
the relatively large line broadening factor η = 1 eV. To char-
acterize these states, we use an energy-targeting algorithm that
locates interior eigenvalues of the EOM-CCSD Hamiltonian.
Remarkably, we find that all states contributing to the plas-
mon peak have a significant double-excitation (two-partice,
two-hole) character; the state that contributes most strongly
to the plasmon peak has only 17% single-excitation character
and 83% double-excitation character. This result is in appar-
ent contrast to the usual picture of the plasmon as a single
quantum state that is well-described as being dominated by
single excitations, but is consistent with a many-body lifetime
of such a single quantum state. The wavefunction character of
the contributing many-body states also explains the incorrect
behavior of the plasmon dispersion: EOM-CCSD is known
to overestimate the excitation energy of states with signifi-
cant double-excitation character. A quantitative prediction of
the plasmon energy would require the use of triple excitations
(three-particle, three-hole configurations) to allow orbital re-
laxation in the presence of double excitations.

To test these conclusions, we calculated the dynamic struc-
ture factor at higher and lower densities. In Fig. 4, we show
the dynamic structure factors calculated at q = qF/2, for
rs = 3 and rs = 5. Consistent with our findings at rs = 4, we
see that the EOM-CCSD plasmon is situated in between those
of the RPA and TDA, but with a broad lineshape and back-
ground due to strong mixing with multipair excitations. At
higher density (smaller rs), the importance of the Coulomb in-
teraction is reduced, the RPA is more accurate, and the wave-
functions are less strongly correlated. Also, the plasmon is
shifted to higher energies. However, the plasmon at the min-
imum value of q accessible in our 66-electron simulation be-
comes closer to the particle-hole continuum and lifetime ef-
fects are expected to increase. At a given value of q/qF, the

linewidth is roughly proportional to the plasmon energy [48],
and thus we expect to see an increased plasmon linewidth for
decreasing rs, despite the decrease in electron correlation. As
mentioned above, the physical linewidth is masked by the use
of a relatively large broadening η = 1 eV, which was cho-
sen to minimize finite-size effects in the particle-hole contin-
uum. In order to estimate the interaction-induced linewidth,
we re-calculated the dynamic structure factor near the plas-
mon peak using a much smaller broadening η = 0.1 eV, shown
in the bottom panel of Fig. 4. With decreasing rs, the plasmon
peak acquires significant spectral structure indicative of con-
tributions from multiple many-electron states. By fitting to
a Lorentzian lineshape, we extract an approximate plasmon
linewidth, which is found to be Γ1/2 = 0.17, 0.22, 0.35 eV
for rs = 5, 4, 3. We emphasize that the RPA linewidth is
precisely the numerical broadening Γ1/2 = η = 0.1 eV for all
values for rs at this momentum.

Previous diagrammatic calculations on the electron gas
have made predictions of the plasmon linewidth [48–51]. At
leading order in q, the plasmon linewidth at our studied value
of q = qF/2 is given by Γ1/2 = bωP/4, where b is calculated by
the theory. The results of Ref. 48 are based on a pair factoriza-
tion of the four-particle Green’s function, G4 ≈ G2 ·G2. When
the noninteracting G2 is used in the factorization, b is on the
order of unity; when the RPA-screened G2 is used in the fac-
torization, b is significantly reduced to 0.1 or less [48]. Using
b = 0.1 predicts a linewidth of Γ1/2 = 0.10, 0.15, 0.23 eV for
rs = 5, 4, 3, in surprisingly good quantitative agreement with
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FIG. 4. The same as in Fig. 3, but for rs = 3 (top left) and rs = 5
(top right). At higher densities (smaller rs), the plasmon peak at
q = qF/2 is much closer to the particle-hole continuum, leading to
the enhanced broadening of the EOM-CCSD plasmon, which can be
resolved with a smaller numerical broadening of η = 0.1 eV (bot-
tom). Dashed lines demonstrate a Lorentzian fit where Γ1/2 is the
half-width at the half-maximum.
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our EOM-CCSD results. We note that the polarizability dia-
grams responsible for lifetime effects in EOM-CCSD go be-
yond the factorization approximation and include interactions
between particle-hole pairs [6], although the screening of such
interactions does not include all time-orderings included in the
RPA [52].

Conclusions. We have demonstrated that EOM-CCSD is
a promising method for the study of electronic spectra in
condensed-phase systems. Most significantly, the inclusion
of double excitations in EOM-CCSD enables the ab initio cal-
culation of interaction-induced lifetimes of quasiparticle reso-
nances. Here, the wavefunction-based nature of EOM-CCSD
allowed a precise characterization of the many-body quan-
tum states contributing to the plasmon resonance, which were
found to have significant double-excitation character.

The low single-excitation character of the states contribut-
ing to the plasmon resonance is consistent with the char-
acterization of the plasmon as a quasiparticle excitation,
i.e. the quasiparticle weight of the entire plasmon resonance
is conserved, but necessarily shared by the many quantum
states contributing. This observation has important impli-
cations for ab initio calculations of condensed-phase spec-
tra: the hybridization responsible for non-negligible electronic
linewidths directly implies a large double-excitation charac-
ter, which may lead to an overestimation of excitation ener-
gies. This may be responsible for the slight overestimation
of the energy of the plasmon satellite peaks observed in a
previous application of EOM-CCSD to the one-particle spec-
tral function of the UEG [27]. Future work in this direction
should pursue the use of triple excitations in order to real-
ize an ab initio method capable of predicting accurate ener-
gies and lifetimes of condensed-phase quasiparticle excita-
tions. Comparison to other post-RPA methods, such as the
real-time Kadanoff-Baym approach [53] or the Bethe-Salpeter
equation [54] would also be interesting. Additionally, stud-
ies at larger system sizes and in larger basis sets will allow
the investigation of the modified plasmon dispersion inside
the particle-hole continuum as well as the asymmetry and fine
structure of the dynamic structure factor [55].

The multi-pair nature of the plasmon uncovered here also
has a number of experimental implications, despite the fact
that phonons and interband scattering can obscure the plas-
mon’s correlation-induced lifetime [51, 56]. In one direc-
tion, the physics described here is potentially important for
cold-atom experiments, which provide isolation from a ther-
malizing environment and access to electronic relaxation pro-
cesses [57]. Additionally, we expect that the physics described
here can be observed in nanomaterials, such as graphene plas-
monics [58] or zero-dimensional quantum dots. In these
latter examples, a phonon bottleneck may inhibit phonon
emission [59], leading plasmons and excitons to decay into
multi-pair excitations, i.e. an inverse Auger effect. This phe-
nomenon is at the heart of multiple exciton generation [60]
and singlet exciton fission [61].

All calculations were performed with the PySCF software

package [62], using resources provided by the University of
Chicago Research Computing Center. This work was sup-
ported by the Air Force Office of Scientific Research un-
der award number FA9550-18-1-0058. T.C.B. is an Alfred
P. Sloan Research Fellow. The Flatiron Institute is a division
of the Simons Foundation.
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