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ABSTRACT: Developing novel simple and ultrasensitive strategies for detecting microRNAs 

(miRNAs) is highly desirable because of their association with early cancer diagnostic and 

prognostic processes.  Here a new chronocoulometric sensor, based on semiconducting 2H MoS2 

nanosheets (MoS2 NSs) decorated with a controlled density of monodispersed small gold 

nanoparticles (AuNPs@MoS2), was fabricated via electrodeposition, for the highly sensitive 

detection of miRNA-21. The size and interparticle spacing of AuNPs was optimized by 

controlling nucleation and growth rates through tuning of deposition-potential and Au-precursor 

concentration and by getting simultaneous feedback from morphological and electrochemical 

activity studies. The sensing strategy, involved the selective immobilization of thiolated capture 

probe DNA (CP) at AuNPs and hybridization of CP to a part of miRNA target, whereas the 

remaining part of the target was complementary to a signaling non-labelled DNA sequence that 

served to amplify the target upon hybridization. Chronocoulometry provided precise 

quantification of nucleic acids at each step of the sensor assay by interrogating [Ru(NH3)6]
3+ 

electrostatically bound to phosphate backbones of oligonucleotides. A detailed and systematic 

optimization study demonstrated that the thinnest and smallest MoS2 NSs improved the 

sensitivity of the AuNP@MoS2 sensor achieving an impressive detection limit of 100 aM, 

which is 2 orders of magnitude lower than that of bare Au electrode and also enhanced the DNA-

miRNA hybridization efficiency by 25%. Such improved performance can be attributed to the 

controlled packing density of CPs achieved by their self -assembly on AuNPs, large interparticle 

density, small size and the intimate coupling between AuNPs and MoS2. Alongside the 

outstanding sensitivity, the sensor exhibited excellent selectivity down to femtomolar 

concentrations, for discriminating complementary miRNA-21 target in a complex system 

composed of different foreign targets including mismatched and non-complementary miRNA-
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155. These advantages make our sensor a promising contender in the point of care miRNA 

sensor family for medical diagnostics. 
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▪ INTRODUCTION 

Micro RNAs (miRNAs) is a class of short (about ~19–23 nucleotides) single-stranded non-

coding RNAs that regulate gene expression and cellular processes.1-3 Studies have demonstrated 

that abnormality in miRNA expression is closely related to initiation and progression of cancers. 

For example, overexpressed circulating level of miRNA-21 was considerably higher in plasma 

specimens of patients suffering from breast, cervical, lung or pancreatic cancer compared to 

healthy controls. As a result, miRNA-21 has become one of the clinically important diagnostic 

biomarkers for cancer screening and disease progression.1 However, the relatively low level of 

miRNAs expression, their small size and their inherent degradable nature make direct 

quantification particularly challenging, necessitating the development of new platforms for their 

accurate and straightforward quantification in clinical samples. Among these, electrochemical-

based platforms hold promise, due to their advantages of fast analysis, cost-effectiveness, and 

simplicity of operation. 

It is well established that, the physical structure of a DNA probe layer immobilized on the 

electrode surface is critical in defining the overall performance of the sensor in terms of 

selectivity, sensitivity and reproducibility. Although the self-assembly of thiolated DNA at the 

surface of a gold electrode, exploiting the well-established Au-S chemistry, is a widely employed 

immobilisation approach,4-5 it remains challenging to precisely control the orientation and 

conformation of surface-tethered oligonucleotides and finely tune the hybridization efficiency. 

Theoretical studies employing thiolated DNA on gold flat surfaces have predicted that efficient 

hybridization occurs with large inter-probe distances and upright conformations;4-6 densely 

packed probe surfaces should be avoided as they restrict the accessibility of target DNA 
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molecules due to steric effects.5-6 In practice, the assembly of DNA is influenced by several 

factors including interactions between nitrogen atoms of DNA bases and the Au surface. 

Intuitively one would expect that, the surface coverage of DNA-probe recognition layer can be 

regulated through a controlled gold nanoparticle (AuNP) distribution of small particle size, 

narrow size variation and appropriate particle separation, instead of employing flat gold surfaces, 

with multiple anchoring points. Our work verifies this hypothesis, by controlling the size and 

interparticle spacing of AuNPs through judicious choice of electrodeposition conditions and by 

getting simultaneous feedback from morphological and electrochemical activity studies. 

Molybdenum disulfide (MoS2) is an important member of transition-metal dichalcogenides 

(TMDC), with unique layered structure, consisting of a single layer of Mo atoms sandwiched 

between two layers of S atoms in a trigonal prismatic arrangement. The weak Van der Waals 

interactions between the MoS2 sheets make it possible to exfoliate the bulk MoS2 to a few-layers 

or even to a single-layer crystalline sheet, via mechanical,7-8 chemical routes or a combination of 

both.9-14 The decoration of a few-layer MoS2 nanosheets (MoS2 NSs) with noble metal 

nanoparticles (NPs), such as Au, Ag, Pt, has become a popular and effective way to functionalize 

the 2D MoS2-surface and enhance its sensing performance.2-3, 14-18 So far, the application of 

MoS2 or gold decorated MoS2 NSs (AuNPs@MoS2 NSs) for miRNA-21 detection is limited to a 

few studies, mainly classified to fluorescence-quenching,12-13, 19-21 surface-enhanced Raman 

scattering,17 and electrochemical2-3, 15 based detection methods. Interestingly, in most of the 

previous studies on AuNPs@MoS2 hybrids,2-3, 11, 17-18, 22 the MoS2 NSs were exfoliated via the 

popular lithium intercalation route.9 This exfoliation approach results in MoS2 layers of metallic 

phase, with a high population of defects in the basal plane,11, 18, 23 which can act either as 

nucleation sites for the growth of high density of AuNPs with a large variance in particle size or 
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as anchoring sites for non-specific adsorption.  Uncontrolled AuNP growth on MoS2 NSs is a 

limitation for its use in nucleic acid sensing, as it favors a highly packed assembly of DNA probe 

immobilization, which restricts the accessibility of target molecules.  Sonication of bulk single 

crystals in appropriate solvents provides MoS2 NS of semiconducting 2H phase.12, 14, 16, 21, 24 

However, their decoration with AuNPs via chemical reaction routes is limited at the edges, due 

to the absence of defects in the basal plane, restricting dramatically their use.16, 25 Hence, 

alternative methods for the controlled synthesis of AuNPs on defect free MoS2 NSs should be 

sought; however this area is an almost unexplored terrain. In this contribution, we show that 

these requirements can be met under well controlled electrochemical deposition (ECD) 

conditions.15, 26-31 ECD is also free of critical drawbacks such as the formation of “free” AuNPs, 

which usually coexist with AuNPs@MoS2 hybrids in solution-based routes.11, 22, 24, 32-33 
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Figure 1. Fabrication of miRNA-21 sensor and detection strategy. Coating of MoS2 

nanosheets (MoS2 NSs) on commercial screen-printed gold electrodes (SPGEs) (1); decoration 

of MoS2 NSs with AuNPs (to create AuNPs@MoS2 NSs) following an optimized 

chronoamperometric (CA) route (2); assembly of ssDNA capture probe: anti-miRNA-21 (CP), 

miRNA-21 target (TR) and signal amplification probe (AP) on AuNPs@MoS2/SPGE sensor (3-

5); chronocoulometric (CC) detection of miRNA (TR) by monitoring [Ru(NH3)6]
3+ (RuHex) 

electrostatically bound to phosphate backbones of oligonucleotides (6). 
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Herein, we report a simple and sensitive electrochemical platform for miRNA-21 detection 

using a screen-printed gold electrode (SPGE) modified with MoS2 NSs decorated with a 

controlled density of monodispersed AuNPs (AuNPs@MoS2 NSs) achieved by 

chronoamperometric (CA) electrodeposition. Utilizing SPGPE as a base platform offers the 

possibility of building a portable and disposable miniaturized electrode system suitable for both 

electrodeposition of AuNPs and subsequent bio-functionalization, for laboratory and onsite-

clinical-measurements. Figure 1 illustrates schematically the fabrication of the sensor and the 

detection strategy (described in the Supporting Information (SI), Section S2), which involves 

selective immobilisation of thiolated capture probe ssDNA (CP) at AuNPs@MoS2 and 

hybridisation of the immobilized CP to a part of miRNA target (TR), whereas the remaining part 

of TR is complementary to a ssDNA sequence (AP; Amplification Probe) that serves to amplify 

the hybridization signal (Table S1). We employ chronocoulometry to quantify the amount of 

nucleic acids at each step of the detection strategy by monitoring [Ru(NH3)6]
3+ (RuHex) 

electrostatically bound to phosphate backbones of DNA or DNA-RNA hybrids. A detailed 

optimization study on both AuNP deposition and immobilization steps achieved an impressive 

detection limit of 100 aM,  which is 2 orders of magnitude lower than that of bare Au electrode 

and also enhanced the DNA-miRNA hybridization efficiency by 25%. Moreover, this newly 

developed biosensor was highly specific toward the target sequence miRNA-21 demonstrating 

the ability to differentiate between sequences that differed even by a single base, along with a 

clear distinction in a medium consisting of many interfering targets mixed together. 

Among the electrochemical based detection routes, we have employed the chronocoulometry 

(CC) technique as the detection method of choice, first proposed by Steel et al.34 Literature 

reports have revealed that CC can be highly effective compared to any voltammetric methods in 
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discriminating against background contribution at relatively high potentials; hence it can be used 

to generate a significantly more intense signal with higher resolution.4, 34-35 CC is a fast 

(hundreds of milli-seconds) and non-destructive technique, particularly useful for analytes like 

DNA or RNA, which are prone to degradation even in relatively mild environments. So far, the 

principle and employment of CC based sensing approach has been established and optimized for 

DNA on planar Au electrode systems.4, 6, 34-35 The work presented here is the first study that 

provides a detailed account on the optimization and employment of CC technique for the 

detection of miRNA on semiconductor/AuNP sensor.    

 

▪ RESULTS AND DISCUSSION 

Electrochemical Deposition of Gold Nanoparticles on MoS2 Nanosheets. 

Our initial studies revealed that the electrochemical pretreatment of the MoS2/SPGE working 

electrode in H2SO4 was crucial for achieving well-controlled reproducible AuNP deposition. (SI, 

Section S3, Figures S2). Similarly, it was evident from our studies that the electrodeposition 

process is better controlled under a static applied potential (CA route) than that under dynamic 

potential scan (like CV method), resulting in homogeneous distribution of small AuNPs (SI, 

Section S4, Figure S3). We investigated the effects of applied potential and concentration of 

HAuCl4 solution on the CA process as described below. 
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Effect of Applied Potential (Vapp). The applied potential, Vapp, is considered one of the 

main factors that govern the Au electrodeposition process, affecting the size and monodispersity 

of the resultant nanoparticles. It has been established, that negative overpotentials relative to 

standard potential for AuCl4
- reduction to Au0, (+0.8 V versus Ag/AgCl (sat. KCl)) favor the 

creation of new nucleation sites over the growth of previously created nuclei.26-29 Figures 2(a-d) 

demonstrate the effect of Vapp on the AuNPs electrodeposited on MoS2/SPGE, when varying the 

Vapp potential from +0.1 to -0.2 V. It is observed that the application of decreasing Vapp 

potentials, leads gradually to a larger number of nucleation sites and hence to larger density of 

smaller, evenly distributed AuNPs, corroborating earlier work.27-28 

Two growth modes are evident, depending on the Vapp potential. For positive Vapp values 

(+0.1V, 0V), the growth of a small number of initial nuclei is favored over the establishment of 

new nucleation sites as indicated by the large particle size and low packing density in Figures 

2(a-b), consistent with earlier reports.27-28 Statistical analysis, performed on the SEM images, 

presented by the particle size histogram in Figure 3a, confirms the observation. AuNPs grown at 

+0.1 V (least negative overpotential) result in large agglomerated particles (mean diameter, Dm  

262 nm) with low particle density (ND: particle number density  1.18 particles/μm2). Notably, 

the large standard deviation of NP-size, (SD > 108 nm) represents an irregular size distribution 

of AuNPs, and the presence of aggregated Au particles. 
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Figure 2. Morphological characterisations of AuNPs@MoS2 hybrids. SEM images of AuNPs 

electrodeposited via chronoamperometry (CA) on the MoS2/SPGEs electrodes (a-d) at different 

Vapp: [(a) +0.1 V, (b) 0.0 V, (c) -0.1 V, (d) -0.2 V] with 𝑪𝑨𝒖𝑪𝒍𝟒−: 1 mM; and (e-h) at different 

𝑪𝑨𝒖𝑪𝒍𝟒−: [(e) 1.0, (f) 0.5, (g) 0.1, and (h) 0.05 mM] at Vapp: -0.1 V. Vapp: Applied Potential, 

(b) (f)

(a) (e)

(d) (h)

(c) (g)

Effect of ECD Potential, Vapp Effect of HAuCl4 Conc., CAuCl4
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𝑪𝑨𝒖𝑪𝒍𝟒−: Concentration of HAuCl4 in 0.5 M H2SO4. MoS2 Loading: 50 g. Potential scan-

duration: 360 s. Scale bar: 1m. 

 

 

Figure 3. Statistical analysis of morphological parameters. Particle size histograms of AuNPs 

electrodeposited via CA on the MoS2/SPGEs electrodes at various (a) Applied Potentials, Vapp 

(with 𝑪𝑨𝒖𝑪𝒍𝟒−: 1 mM), and (b) HAuCl4 Concentrations, 𝑪𝑨𝒖𝑪𝒍𝟒−: (at Vapp: -0.1 V). Statistical 

analysis has been performed on at least 34 independent SEM images for each sample. The 

statistical parameters of each sample are mentioned in its respective histogram: ND: Particle 

Number Density, Dm: Mean Diameter of AuNP, and SD: Standard Deviation of NP-size. 
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In contrast, the application of negative Vapp values (-0.1V, -0.2V) favors instantaneous 

nucleation, facilitating the formation of higher density small size particles (Figures 2c-d). The 

particle size histogram (Figure 3a) reveals that the Au-ECD at -0.2 V could reduce the size (Dm  

120 nm) of AuNPs by more than 2 times and improve the ND (4.55 particles/μm2) by nearly 4 

times. Notably, the SD value drops down to 30 nm indicating reduced size dispersion. 

On the other hand, at augmented negative potentials, such as Vapp = -0.3 V, the AuCl4
- → 

Au0 reduction rate became high enough, resulting in aggregation (SI, Section S5, Figure S5). 

 

Effect of HAuCl4 Concentration (𝑪𝑨𝒖𝑪𝒍𝟒−). As discussed previously in order to produce a 

high particle density, a large negative nucleation overpotential should be applied. This results in 

a high nucleation density but also a fast growth rate.30-31 Fast growth rate is problematic as it 

results in a rapid expansion of the diffusion zone around the growing nucleus. Diffusion zone is 

the area of electrolyte around the nucleus that has a reduced concentration of metal ions present 

compared to the bulk electrolyte, because ions are been reduced and merged into the growing 

nuclei. As these diffusion zones expand, adjacent zones eventually merge. Nuclei, whose 

diffusion zones have coupled, experience retarded growth compared to nuclei with isolated 

diffusion zones. As a result, diffusion zone coupling results in different growth rates, hence a 

range of particle sizes is being created. A large particle size distribution can result in 

considerable problems in terms of sensitivity and reproducibility of sensor performance. So 

efforts to eliminate the depletion region around each nucleus would eliminate interparticle 
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diffusion coupling and hence allow the formation of nanoparticles with uniform size. Our 

strategy to keep diffusion zone coupling to a minimum involves slow growth rate via low 

concentrations of the gold precursor. 

The radius of the depletion region around each nucleus varies proportionally with the bulk 

concentration of metal ions (here, AuCl4
-).26, 30-31 High concentrations of HAuCl4 (𝑪𝑨𝒖𝑪𝒍𝟒−), give 

rise to fast growth rate, thereby permitting inter-particle diffusion zone coupling to occur, 

resulting in various size distributions. In contrast, at lower concentrations of HAuCl4, growth rate 

of nuclei is slowed, thereby keeping diffusion zone coupling to a minimum, thus leading to the 

formation of smaller diameter monodisperse AuNPs. 

Figures 2(e-h) demonstrate the effect of 𝑪𝑨𝒖𝑪𝒍𝟒− on the AuNPs electrodeposited on 

MoS2/SPGE at an applied voltage of -0.1V. As 𝑪𝑨𝒖𝑪𝒍𝟒− decreases, SEM images display 

progressively smaller AuNPs with lower packing density and improved size distribution, with 

the best values attained at 𝑪𝑨𝒖𝑪𝒍𝟒−  0.1 – 0.05 mM (Figures 2g and 2h). The particle size 

histogram plots (Figure 3b) reveal that by reducing the 𝑪𝑨𝒖𝑪𝒍𝟒− from 1.0 to 0.05 mM, the AuNPs 

size (Dm) reduces by  nearly 3 times, while the SD value drops down to only 9.36 nm, reflecting 

an improved degree of monodispersion on the resultant AuNPs. 

 

Electrochemical Characterization of AuNPs@MoS2 Hybrid Nanosheets. The effects of 

Vapp and 𝑪𝑨𝒖𝑪𝒍𝟒− were further characterized (Figure 4) in order to optimize the AuNP 

electrodeposition strategy, by estimating two electrochemical parameters Qdp and Qox. Here, Qdp  

represents the total charge involved during the Au(III) reduction to AuNPs formation,28-29 
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estimated by integrating the corresponding current transient curves obtained by CA (SI, Section 

S6, Figure S6a). The electrodeposited AuNPs are further characterized by performing CV 

experiments in a 0.5 M H2SO4 solution (Figure S6b),29 The Qox  denotes the charges related to 

the reduction of Au-oxides, estimated by integrating the area under the corresponding reduction 

peak.28-29 

 

 

Figure 4. Electrochemical characterisations of AuNPs@MoS2 electrodes. Effects of (a) 

applied potential (Vapp) and (b) HAuCl4 concentration (𝑪𝑨𝒖𝑪𝒍𝟒−) on Qox/Qdp ratio and HE%. The 

Qox/Qdp ratio represents the yield of electro-active AuNPs for the AuNPs@MoS2 hybrids. The 

HE% = [(Q  100) / QCP] represents the hybridization efficiency, where Q = [QCP-TR-AP − 

QCP]. Error bars represent the standard deviations estimated from at least three independent 

measurements. 
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Au electrodeposition should follow the relation: AuOx/Au = 1.5 × Qox/Qdp; the factor of 1.5 

arises because 3 electrons are exchanged during Au(III) reduction, while only 2 electrons are 

involved in Au-oxide formation. Figures 4a and 4b demonstrate the dependence of Qox/Qdp ratio 

on Vapp and 𝑪𝑨𝒖𝑪𝒍𝟒− respectively. 

As shown in Figure 4a, AuNPs@MoS2 hybrids electrodeposited at a high cathodic 

overpotential, with Vapp = -0.1 V, exhibiting uniformly distributed, relatively monodisperse small 

AuNPs (Dm  161 nm with SD of 33 nm; Figure 3a), possess the highest value for the Qox/Qdp 

ratio. Nevertheless, it is quite surprising that the AuNPs electrodeposited at Vapp = -0.2 V exhibit 

a fall on Qox/Qdp ratio, even though they possess a higher density and smaller particle size (ND  

4.6 particles/m2, Dm  120  30 nm; Figure 3a) than those deposited at Vapp = -0.1 V (ND  3.2 

particles/m2). The lower Qox, hence the lower Qox/Qdp, suggests instability of the deposited 

nuclei. It can be deduced that the as-deposited nuclei could be rearranged, while oxidized or even 

dissolved back in the solution before their reduction takes place during the backward scan. 

Figure 4b illustrates that the effect of 𝑪𝑨𝒖𝑪𝒍𝟒− on Qox/Qdp ratio. As 𝑪𝑨𝒖𝑪𝒍𝟒− decreases, the 

Qox/Qdp becomes highest at 𝑪𝑨𝒖𝑪𝒍𝟒− = 0.1 mM. Further reduction of 𝑪𝑨𝒖𝑪𝒍𝟒−  (= 0.05 mM) lowers 

the Qox/Qdp since it suffers seriously from very low ECD-yield of AuNPs. Based on the above 

results the optimized Au ECD conditions of the  AuNPs@MoS2 based sensor are as follows: Vapp 

= -0.1 V, 𝑪𝑨𝒖𝑪𝒍𝟒− = 0.1 mM and MoS2 loading = 50 g. 

 

Elemental Characterisation of AuNPs@MoS2 Hybrids. The elemental characterization 

of AuNPs@MoS2 hybrids was performed via X-ray photoelectron spectroscopy (XPS), and high-
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resolution spectra are illustrated in Figure 5 and Figure S8 (SI, Section S7). The wide survey 

scan of AuNPs@MoS2 hybrid exhibits characteristic peaks for the main elements of Mo, S and 

Au. In addition to those elements, the presence of C and O elements is evident, originating from 

the solvent and the atmosphere. Calculated from the integrated areas of respective high 

resolution XPS spectra, the stoichiometric ratio of Mo to S was found to be close to 1:2 (1 : 2.10 

± 0.038), demonstrating the expected MoS2 phase. 

 

 

Figure 5. Elemetal characterisation of AuNPs@MoS2 hybrids nanosheets. High-resolution 

XPS spectra of AuNPs@MoS2 and pristine MoS2 NSs drop-casted on SPGEs: (a) Mo4+ 3d, (b) 

S2- 2p, and (c) Au 4f. All spectra are corrected by Shirley background and calibrated with 

reference to the C 1s line at 284.5 ± 0.2 eV associated with graphitic carbon. For AuNPs@MoS2 

hybrid NSs, the AuNPs is electrodeposited via CA for 360 s: Vapp: -1.0 V. 𝑪𝑨𝒖𝑪𝒍𝟒−: 0.1 mM 

HAuCl4 in 0.5 M H2SO4. MoS2 Loading: 50 g. 
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For AuNPs@MoS2, the Mo 3d XPS spectrum (Figure 5a) shows doublet peaks at 229.38 and 

232.53 eV attributed to Mo4+ 3d5/2 and Mo4+ 3d3/2 orbitals, respectively. Similarly doublet peaks 

around 162.34 and 163.53 eV, observed in Figure 5b, belong to S2- 2p3/2 and S2- 2p1/2 orbitals, 

respectively. These peak positions are indicative of Mo4+ and S2- oxidation states in 2H phase of 

pristine MoS2 NSs,7, 36 indicating that the hybridization of MoS2 NSs with AuNPs does not affect 

the crystallinity and chemical stability of MoS2. Figure 5c shows the Au 4f spectrum, with 

doublet peaks positioned around 84.28 eV (Au 4f7/2) and 87.95 (Au 4f5/2), providing direct 

evidence for the reduction of the Au-precursors and hence the formation of AuNPs on MoS2 

NSs.8, 36  

Interestingly, in the AuNPs@MoS2, both Mo4+ and S2- peaks (Figures 5a and 5b) exhibit an 

obvious red-shift to lower binding energies compared to that of pure pristine exfoliated MoS2 

NSs, indicating a down-shift of the Fermi level in MoS2 due to p-type doping.37-38 Here, the 

AuNPs act as a p-type dopant in MoS2 since the AuCl4
- ions in solution can strongly withdraw 

electrons from MoS2 layers and reduce to AuNPs.23, 37-38 

 

Electrochemical Optimization Studies for miRNA-21 detection. 

Initially the hybridization of the capture probe (CP) with the target miRNA sequence (TR), on 

the fabricated the AuNPs@MoS2/SPGE platform, was confirmed by the presence of well 

resolved voltammograms of methylene blue redox signal, which was used an electrochemical 

indicator (SI, Section S8). 
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Optimization of RuHex Concentration (CRuHex): Adsorption Isotherm of RuHex. A 

necessary and crucial step of the chronocoulometric detection was the determination of RuHex 

concentration at which the saturation condition could be achieved. At saturation condition, a 

complete charge compensation of the phosphate residues by redox cations was achieved i.e. one 

[Ru(NH3)6]
3+ cationic redox marker was electrostatically trapped for every three nucleotide 

phosphate groups.34 

The influence of RuHex concentration (CRuHex) at the CP-MCH-electrodes is shown in 

Figure 6. It is observed that the charge of surface-adsorbed RuHex, Qad in the presence of CP, 

initially increases with CRuHex reaching saturation at CRuHex  10 M on AuNPs@MoS2/SPGEs 

(Figure 6a). Interestingly, at bare SPGEs, the adsorption saturation of RuHex is achieved at 

CRuHex  40 M, which agrees reasonably well with the reported literature.4, 6, 34-35, 39 The lower 

saturated charge values Qad at AuNPs@MoS2/SPGEs, compared to SPGE, can be understood in 

terms of the lower and controlled attachment of the thiolated CP on AuNPs leading to a lower 

negative charge density. 

Adsorption isotherms for RuHex, at both AuNPs@MoS2/SPGEs and bare SPGEs in the 

presence of CP, are presented in Figure 6b, satisfying the Langmuir adsorption model34, 39 (SI, 

Section S9). From the linear fitting, the saturated coverage Qsat values are estimated as 1.73 and 

3.68 C, for the AuNPs@MoS2/SPGEs and SPGE. Correspondingly, the estimated values of 

surface coverage density of CP probes (CP = DNA = 0(z/m)NA) for the CP-MCH-

functionalized SPGE sensor agrees reasonably well with the reported values (CP  1 – 10 1012 

molecules/cm2) for the shorter DNA-SAMs at the Au-electrodes.4, 6, 34-35, 39 The 2-times higher 
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Qsat value at the bare SPGE (CP  31012 molecules/cm2) indicates almost 2-times higher CP 

values, compared to the AuNPs@MoS2/SPGEs (CP  1.41012 molecules/cm2). 

 

 

Figure 6. Effect of RuHex concentration (CRuHex) and optimization of CC-detection. (a) 

Adsorption isotherm of RuHex for capture DNA probe (CP) immobilized on bare and 

AuNPs@MoS2 coated SPGEs. Qad = QCP = (QRuHex – Qblank) and CRuHex = RuHex concentration. 

(b) Plots of CRuHex/Qad versus CRuHex, demonstrating the linear fitting of the binding data to the 

Langmuir adsorption isotherm. 

 

Furthermore, the linear fitting of the isotherms (Figure 6b) reveals that the association 

constant K of RuHex at the AuNPs@MoS2/SPGEs (1.43 M-1) is nearly double in magnitude 

than that (0.83 M-1) at the bare SPGEs. The observation suggests that association of 

[Ru(NH3)6]
3+ with CP improves significantly at the hybrid electrode. This finding is directly 

related to CP. At bare SPGE the high CP regimes suffer from steric hindrance, which translates 
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into a weaker binding affinity of cationic RuHex redox complex for DNA probe. This 

explanation is consistent with the binding constants values reported in literature, which are either 

slightly weaker for dsDNA (K = 1.3 M-1) than for ssDNA (K = 2.2 M-1) or are weaker for 

longer length DNA compared to shorter length DNA.34, 39-40 

Based on our results presented in Figure 6, it can be concluded that a CRuHex  10 M (14.5 

M was chosen) is sufficient for the CC detection of miRNA at the AuNPs@MoS2/SPGEs, 

whereas for bare SPGEs-based sensors a CRuHex  50 M is appropriate. 

 

Optimization of Sensing Strategies. The miRNA detection as outlined in schematic 

diagram in Figure 1 involves the following optimization protocols: i) electrodeposition 

conditions of AuNPs, ii) concentration of capture DNA probes (CCP), and iii) hybridization 

strategies of CP with the target miRNA (TR) and the signal amplified DNA probe (AP). 

Overall, the CC detection performance is defined by the hybridization efficiency HE% values, as 

the signature of the CP−TR−AP hybridization effectiveness. 

Effect of Au ECD parameters. Figures 4a and 4b display the dependence of HE% value on 

applied potential (Vapp) and HAuCl4 concentration (𝑪𝑨𝒖𝑪𝒍𝟒−), respectively. The effect of Vapp on 

HE% follows a similar trend as the dependency of Vapp on Qox/Qdp ratio (Figure 4a). HE% 

achieves the best values around the Vapp  -0.1 V, at which the electrodeposited AuNPs possess a 

small particle size (Dm  160 nm) with uniform distribution and a packing density (ND) of 3.2 

particles/m2; at the same time they provide the best yield of electrochemical activity (Qox/Qdp 

ratio). Figure 4b reveals that HE% improves monotonously as the 𝑪𝑨𝒖𝑪𝒍𝟒− decreases and reaches 
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saturation at a concentration of 0.05 mM. On the other hand the Qox/Qdp ratio attains the best 

value at 0.1 mM.  Hence, taking into account trends for both HE% and Qox/Qdp ratio, the 

following optimized conditions were chosen for Au ECD for the fabrication of the sensor: Vapp = 

-0.1 V and 𝑪𝑨𝒖𝑪𝒍𝟒− = 0.1 mM, with MoS2 loading of 50 g. 

DNA–miRNA hybridization strategy. The optimization strategy for the hybridization of CP 

with TR and AP is illustrated in the SI (Section S10 and Figure S11). The following terminology 

has been employed (SI, Table S3): (1) CP => TR => AP involves 3-steps:  CP-immobilization 

followed by CP−TR hybridization and lastly by TR−AP hybridization; (2) CP => (TR + AP) 

involves 2-steps: CP-immobilization followed by the simultaneous hybridization of CP with TR 

and AP; and (3) CP => (TR−AP) involves 2-steps: CP-immobilization followed by 

hybridization of CP with previously hybridized TR and AP targets (TR−AP). It is clear from 

Figure S11 that the protocol P#3, CP => (TR−AP), yields the best hybridization efficiency. The 

HE% value improves by almost 30% compared to the sequential protocol (P#1). 

Importance of signal amplified probe (AP). To verify the augmented function of the signal 

amplified probe (AP) in our proposed detection strategy, a miRNA-21 detection test was 

performed employing two different capture probes CP and f-CP (SI, Section S11 and Figure 

S12), with a target concentration of 10 fM. The f-CP probe is fully complementary to the target 

TR (Table S4) whereas CP is complimentary to a part of TR only, the remaining of TR is 

complementary to AP. Evidently, the 1-step hybridization of f-CP with TR (AP#0) cannot 

achieve the same hybridization efficiency, achieved by the 2-steps-protocol (CP–TR 

hybridization followed by TR–AP hybridization, CP => TR => AP). The involvement of AP 

can improve the HE% from 7% (for AP#0) to 10% (for AP#3) at the AuNPs@MoS2/SPGE 
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sensor. Moreover, adopting the best hybridization protocol, that involves hybridization of 

immobilized CP with previously hybridized TR and AP targets, CP => (TR−AP), as described 

earlier in (Section S10, Figure S11), the efficiency can be improved further to 17% (AP#4) 

confirming the effectiveness of the amplification probe. Furthermore, both AuNPs@MoS2/SPGE 

and AuNPs@SPGE sensors, exhibit a similar trend (Figure S12), which supports enhanced 

impact of the signal amplified probe (AP). 

Effect of CP concentration and hybridization time. Further optimization studies conclude 

that the response signal of RuHex-assisted detection could be improved by: (1) lowering 

concentration of CP (CCP) and (2) optimising the time (TH) for the hybridization of CP with 

(TR−AP) targets. The best values for CCP are in the range of 0.3  0.1 M. It is well known that 

the excessive probe DNA density (CP) would generate greater steric hindrance and reduce the 

hybridization efficiency (HE%). Similarly, the HE% exhibits significant improvement with the 

initial increase in TH. However at much longer TH (> 45 mins), the HE% value becomes 

insensitive to the TH value. 

 

Chronocoulometric Detection of miRNA-21.  

The chronocoulometric (CC) detection of miRNA-21 at the AuNPs@MoS2/SPGE sensor was 

performed as a function of target concentration (CTR) employing the Q = [QCP-TR-AP − QCP] and 

the HE% = [(Q  100) / QCP] as sensing parameters (Figure 7).   

Two different MoS2 NSs products (Figure 7) are compared for the fabrication of the sensor: 

MoS2(1k) which consists of large and thick MoS2 platelets (AuNPs@MoS2(1k)/SPGE) and 
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MoS2(10k) consisting of thin and small nanosheets (AuNPs@MoS2(10k)/SPGE). A 

representative AuNPs-coated bare SPGE (AuNPs@SPGE) was also employed for comparison 

purposes. 

 

 

Figure 7. Chronocoulometric (CC) detection of miRNA-21. Logarithmic plot for (a) CC 

signal (Q) and (b) corresponding hybridization efficiency (HE%) versus  target miRNA (TR) 

concentration (CTR) for the CP-immobilized on AuNPs (AuNPs@SPGE) and AuNPs@MoS2 

modified SPGEs employing MoS2 nanosheets produced at centrifugation speeds of 1 k 

(AuNPs@MoS2(1k)/SPGE) and 10 k rpm (AuNPs@MoS2(10k)/SPGE).  

 

Q displays identical trends with TR concentration for all three sensors, exhibiting an initial 

rise and finally a plateau (Figure 7a). In the absence of TR (at CTR = 0 M), relatively larger 

values of Q are recorded at the AuNPs@SPGE sensor due to higher surface density of CP 

(CP). In contrast, both AuNPs@MoS2(10k)/SPGE and AuNPs@MoS2(1k)/SPGE sensors 
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exhibit lower QCP (at CTR = 0 M) because of a lower CP. The misleading underperformance of 

the AuNPs@MoS2/SPGE, originating from the difference in the initial QCP values (at CTR = 0 

M), can be avoided by employing the HE% parameter (Figure 7b). 

Actually, the AuNPs@MoS2/SPGE sensor exhibits enhanced HE% values compared to the 

AuNPs@SPGE sensor. Interestingly, the AuNPs@MoS2(10k)/SPGE sensor possessing the more 

electroactive MoS2(10k) NSs exhibits the best HE% (88%) followed by the 

AuNPs@MoS2(1k)/SPGE, while the AuNPs@SPGE sensor can only achieve a HE% of 70%. 

The linear regimes of the HE% (also, Q) versus the logarithm of CTR for the 

AuNPs@MoS2(10k)/SPGE, AuNPs@MoS2(1k)/SPGE, and AuNPs@SPGE sensors are 

estimated as [100 aM  1 pM], [1 fM  10 pM] and [10 fM  10 pM], respectively. The 

“sensitivity” values are estimated from the linear fitting of these “linear regimes” as : 0.161  

0.007, 0.203  0.012 and 0.203  0.016 C/log(M), respectively. 

Interestingly, the AuNPs@MoS2(10k)/SPGE sensor exhibits the best  “experimental” limit of 

detection (LoD),  of 100 aM, followed by the AuNPs@MoS2(1k)/SPGE, (LoD  1 fM) and  

AuNPs@SPGE (LoD  10 fM) sensors. 

During the miRNA-21 detection study, the measurement error was estimated from the 

standard deviation of at least three independent experiments (n ≥ 3), at every concentration of 

the miRNA target (CTR). The relative standard deviation (RSD), obtained for the 

AuNPs@MoS2/SPGE sensors, was 8.2%, slightly higher than that of AuNPs@SPGE sensor 

(6.5%). The lager RSD value is believed to originate from variations in coating surface areas 

associated with the drop-casting process of MoS2 NSs. 
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Selectivity of AuNPs@MoS2/SPGE miRNA Sensor. To evaluate the specificity of the as-

proposed AuNPs@MoS2/SPGE sensor, the interference from  non-complementary target such as 

miRNA-155, as well as from base mismatched strands with the same concentration (10 fM) as 

that of the target (miRNA-21 = T1) were investigated (Table S5). The study, presented in Figure 

8 (SI, Section S12), clearly reveals that all 3 sensors (utilizing MoS2(10k), MoS2(1k), and no 

MoS2 NSs) become highly sensitive in the presence of complementary target T1. All the sensors 

can also sense the single-base mismatched target (T2), nevertheless at considerably lower signal. 

The HE%, measured at the AuNPs@M-10k/SPGE, for T2 is only 27% of that for T1, utilizing 

concentrations in the femtomolar range. 

Interestingly, in the presence of either three-base mismatched (T3) or non-complementary 

target (miRNA-155: T4), no measurable signal was observed, which is a clear indication of an 

excellent sequence specificity of the proposed miRNA-sensor. 

In the final experiment, performed in a complex medium with a mixture of all the targets 

(Mix-T = T1+T2+T3+T4, each target of 10 fM concentration), the AuNPs@MoS2(10k)/SPGE 

sensor exhibits the best HE% (26.8%) followed by the AuNPs@MoS2(1k)/SPGE (HE% 

11.4%), while the AuNPs@SPGE sensor can only achieve a HE% of 2.4% (Figure 8).  

 



 27 

  

Figure 8. Selectivity of AuNPS@MoS2/SPGE sensor: Hybridization Efficiency, HE%, 

measured at the CP-immobilized AuNPs@MoS2/SPGE and AuNPs@SPGE sensors, in the 

presence of: miRNA-21 (T1: TR); Single-base mismatched strand (T2: 1MM); Three-base 

mismatched strand (T3: 3MM); and the interfering non-complementary target (NCT) (T4: 

miRNA-155), with the same concentration of 10 fM. CP is the anti-miRNA-21. Error bars 

represent the standard deviations estimated from at least three independent measurements. 
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A new simple and sensitive electrochemical platform based on AuNPs@MoS2 hybrid nanosheets 

coated on commercial disposable gold screen-printed electrode (SPGEs) has been developed for 

the detection of miRNA-21 using a chronocoulometric (CC) approach. The work consists of two 

major strands: (i) the controlled synthesis and tuning of AuNPs on MoS2 NSs via CA 

electrochemical deposition (ECD); and (ii) the design of a simple new bioassay involving a label 

free signaling amplification probe for the chronocoulometric quantification of miRNA biomarker 

employing the AuNPs@MoS2 platform. 

Control on AuNP density and size was achieved, by regulating the kinetics of nucleation and 

growth through tuning of deposition-potential (Vapp) and Au-precursor concentration (𝑪𝑨𝒖𝑪𝒍𝟒−). 

By a combination of a statistical morphological and an electrochemically activity analysis, 

almost monodispersed AuNPs with small size (< 90 nm) and appropriate interparticle spacing 

were easily accomplished on the MoS2 NSs. The CA Au-ECD method preserved the crystalline 

quality of the MoS2 NSs and induced a p-type doping. 

Following the AuNP optimization study, a detailed parametric CC study was undertaken to 

optimize each immobilization step. Our AuNPs@MoS2/SPGEs sensor not only improved the 

LoD by 2 orders (100 aM) but also enhanced the HE% to 88%, when compared to bare 

AuNPs@SPGEs (LoD  10 fM, HE%  70%).  Interestingly, the role of thin and small MoS2 

NSs was elucidated by demonstrating better sensing performance than that of thicker and larger 

counterparts. This work forms the first detailed and systematic study on sensitive CC detection 

of miRNA employing AuNPs/MoS2 hybrids. The detection sensitivity is comparable to that 

obtained from systems based on complicated time consuming labelled amplification techniques. 

Here our design is based only on a simple non-labeled signaling probe (AP), which is cheap and 
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easy to operate, avoiding complicated fabrication steps. The low detection limit originates from 

the controlled packing density of CPs, achieved by their self -assembly on AuNPs, and the 

intimate coupling between AuNPs and MoS2. Our methodology provides important guidelines 

for the sensitive detection of miRNA cancer diagnostics. 

 

▪ EXPERIMENTAL SECTION 

Synthesis of MoS2 Nanosheets. MoS2 NSs were synthesized by the grinding ionic liquid 

assisted exfoliation method followed by size selection ultra-centrifugation steps as reported in 

our earlier publication.7 MoS2 NSs pelleted at 1000 rpm and 10,000 rpm are abbreviated as 

MoS2(1k) and MoS2(10k) respectively. MoS2 inks were prepared by dispersing 5 mg of MoS2 

NSs in 1 ml DMF and 50 μl of Nafion solution under adequate ultrasonication. 

 

Chronocoulometry Detection of miRNA-21. The chronocoulometry (CC) is used here as 

the main technique for the detection of miRNA-21, by quantifying the saturated amount of 

charge compensated RuHex redox marker at the hybridized electrode system (Step 6 in Figure 

1). The overall principle of CC DNA detection is based on determination of surface-confined 

redox species like [Ru(NH3)6]
3+ (RuHex) at the DNA-electrode system,1, 4, 6, 34-35, 41-42 where the 

cationic redox markers, RuHex, can electrostatically interact with the negative phosphate groups 

of the DNA or RNA. The numerical analysis of the CC data was performed through Anson plots 

as demonstrated in the SI (Figure S1) and described in Section S2. In a typical CC experiment 

the following steps were followed. At first CC was performed in blank TE buffer. From the 
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Anson Plot (CC-plot), which provides the measured charge (Q) versus the square-root of time 

(t1/2), the double-layer charge term (Qdl) was estimated from the y-axis-intercept (Qblank = Qdl). 

Next, the surface-confined redox marker, RuHex, was introduced to the TE buffer solution at a 

concentration that provided saturation with the probe DNA layer. The adsorption isotherm of 

RuHex was investigated to optimize the RuHex concentration (CRuHex) and the CC-conditions. In 

the presence of RuHex, the y-axis-intercept of the CC-plot gave the QRuHex value. The value of 

surface excess of RuHex, Qad = (QRuHex − Qblank) = nFA0, was calculated from the difference in 

the CC intercepts in the absence (Qblank) and presence (QRuHex) of RuHex.   

For the miRNA-detection performance study, the concentration of miRNA-21 targets (CTR) was 

varied. For CC-based miRNA detection, the change in signal, Q (= (QCP-TR-AP − QCP)) and the 

corresponding hybridization efficiency, HE% (= (Q  100) / QCP) were treated as the sensing 

parameters: where, QCP and QCP-TR-AP represent the Qad values measured after CP 

immobilization and after its hybridization with TR and AP, respectively. 
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S1. Experimental Section. 

Materials. Molybdenum (IV) sulphide (MoS2) powder (<2 μm, 99.0%), Gold(III) chloride 

hydrate (HAuCl4.xH2O, 99.999% metal basis), Tris (2-carboxyethyl) phosphine hydrochloride 

(TCEP), 6-Mercapto-1-Hexanol (MCH, 97%), and Hexaammineruthenium(III) chloride 

([Ru(NH3)6]
3+, RuHex) were purchased from Sigma-Aldrich. Solvents/media like N,N-

dimethylformamide (DMF, ≥99.9%), Acetone (≥99.8%), room temperature ionic liquid (RTIL), 

1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6, ≥97.0%),  and TE buffer 

solution (10mM Tris–HCl, 1mM EDTA, pH 7.4) were also supplied from Sigma-Aldrich. 

The Thiol-modified capture ssDNA probe (CP: anti-miRNA-21), the target miRNA-21 (TR), 

and the signal amplified ssDNA probe (AP) were purchased from Ella Biotec (Table S1). 

Ultrapure water (resistivity of 18.2 MΩ·cm, Millipore) was used to prepare all aqueous 

solutions. 

Table S1: Sequences of Oligonucleotides used 

Oligonucleotides used Sequence (from 5 to 3) 

CP Thiol-modified Capture Probe DNA 5-Thiol- TCA ACA TCA GT -3 

TR Target RNA : miRNA-21 5- UAG CUU AUC AGA CUG AUG UUG A -3 

AP Signal Amplified Probe DNA 5- CTG ATA AGC TA -3 

 

Immobilization buffer (I-buffer): 10 mM Tris-HCl + 1 mM EDTA + 0.1 M NaCl + 10 mM 

TCEP (pH 7.4). Electrochemistry buffer (E-buffer): 10 mM Tris-HCl (pH 7.4). Washing buffer 

(W-buffer): 10 mM Tris-HCl (pH 7.4). Hybridization buffer (H-buffer): 10 mM Phosphate 
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buffer + 0.25 M NaCl (pH 7.4). MCH solution: 1 mM 6-mercapto-1-hexanol (MCH) in water. 

RuHex solution: 10 mM Hexammineruthenium(III) chloride [Ru(NH3)6]
3+ in water. 

Mechanical grinding of MoS2 platelets was performed by an agate mortar and pestle grinder 

system (RM200, Retsch GmbH) and the size selection sequential centrifugation steps by a 

Thermo Scientific Sorvall ST-16 Centrifuge system. Au decorated MoS2 based electrodes were 

fabricated using commercial disposable screen printed gold electrodes (SPGEs) from DropSens 

(DS-C220AT) as a supporting electrode. SPGEs were built with a gold working electrode (Au-

WE) of 4 mm diameter, a gold counter electrode (CE) and a silver pseudo reference electrode 

(RE). 

 

Methods and Instruments. Surface morphology of all the samples were studied using a 

Scanning electron microscope (SEM, FEI Quanta 200 2D) at an accelerating voltage of 15kV. 

For SEM observations, MoS2 coated SPGEs (MoS2/SPGE) or Au electrodeposited 

(AuNPs@MoS2/SPGE) were loaded directly inside the SEM-chamber. 

X-ray photoelectron spectroscopy (XPS) analysis was carried out using a Kratos AXIS ultra 

DLD with an Al Kα (h = 1486.6eV) x-ray source. Elemental quantification was performed after 

Shirley background correction of all the spectra and calibration of the binding energies with 

respect to the C 1s line at 284.5 ± 0.2 eV associated with graphitic carbon. 

Electrochemical deposition (ECD) of AuNPs and electrochemical characterizations were 

performed by an Autolab, PGSTAT/FRA system, on the as-purchased bare SPGEs, or fabricated 

MoS2/SPGE, and AuNP@MoS2/SPGE. All washing and electrochemical sensing steps were 
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performed in TE buffer solution (pH 7.4). For all ECD processes and characterizations, a 40 μl of 

electrolyte was employed, in order to cover the whole sensor-zone including the counter and 

reference electrode areas. 

Electrochemical Sensing Methods. All electrodes, before and after probe immobilization 

and/or hybridization steps were characterized by Cyclic (CV), Linear Sweep LSV) and 

Differential Pulse Voltammetry (DPV). If not specified, CVs were recorded within the potential 

range from −0.75 V to +0.2 V, at a scan-rate of 50 mV/s. LSVs were carried out within +0.5 V to 

−0.8 V potential range, at a scan-rate of 5 mV/s. DPVs were performed within the potential 

range from −0.75 V to +0.2 V under a pulse amplitude of 50 mV, pulse width of 0.05 s, pulse 

period of 0.2 s and an increasing potential of 4 mV. 

For the electrochemical detection of miRNA-21, Chronocoulometry (CC) was conducted at a 

pulse period of 250 ms to quantify capture probe (CP) DNA surface density and monitor miRNA 

hybridization. For CC measurements at AuNPs@MoS2/SPGEs, the pulse width was extended to 

800 mV (applied potential from +0.2 V to -0.6 V), employing 14.5 μM of RuHex to completely 

neutralize the negative charges of CP for efficient quantification. Accordingly, at the bare 

SPGEs or AuNPs@SPGEs, the pulse width was kept at 700 mV (applied potential from +0.2 V 

to -0.5 V), using 50 μM of RuHex. 

 

Synthesis of MoS2 Nanosheets. The exfoliation method for the synthesis of MoS2 

Nanosheets (MoS2 NS) involves the mechanical grinding of MoS2 platelets in a minute quantity 

of room temperature ionic liquid (RTIL) to produce a gel. During grinding, the RTIL protects 
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every newly exposed MoS2 surface by adsorbing onto the surface, keeping the sheets separated 

and avoiding restacking. Following grinding, the resulting gel is subjected to multiple washing 

steps in a mixture of DMF and acetone, to remove the RTIL and is isolated using centrifugation 

at high speed (10,000 rpm). Finally, the clean ground product, consisting of an assortment of 

sheets of various sizes and thicknesses, is dispersed in pure DMF (via short sonication time) and 

subsequently is subjected to sequential centrifugation steps involving  progressively increasing 

centrifugation speeds from 500 to 10,000 rpm, to isolate different grades of MoS2 NSs. As we 

have demonstrated in a series of previous papers the sequential centrifugation of the supernatant 

at progressively higher centrifugation speeds allows the isolation of thinner and smaller 

nanosheets.1-4 Large and thick platelets are pelleted at low speeds and small durations, generating 

high yield. However, the yield of smaller and thinner nanosheets is smaller and requires longer 

centrifugation times at high speeds. The nanosheets are free of defects in the basal plane and 

retain the semiconducting phase (2H) of the bulk starting material. MoS2 NSs pelleted at 1000 

rpm and 10,000 rpm are abbreviated as MoS2(1k) and MoS2(10k) respectively. MoS2 inks were 

prepared by dispersing 5 mg of MoS2 NSs in 1 ml DMF and 50 μl of Nafion solution under 

adequate ultrasonication. 

Synthesis of AuNPs@MoS2 Hybrids on SPGEs. Prior to the sensor preparation, the gold 

working electrode of the commercial SPGE (Au-WE) was pretreated electrochemically in 0.5 M 

H2SO4 aqueous solution by potential cycling (CV) in a range of -0.3 to +1.5 V at a scan-rate of 

100 mV/s until the CV characteristic of a clean Au electrode was obtained. Then, the Au 

electrode was washed thoroughly with redistilled deionized water and dried under nitrogen gas. 

The actual working electrode (WE) was fabricated by drop-drying the desired volume of the 

MoS2 ink onto the Au-WE (Figure 1, Step 1). For a typical ECD process, a 10 μl of MoS2 ink (5 
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mg/ml) was used to attain the desired catalyst-loading of 50 μg (398 μg/cm2). Preceding Au 

electrodeposition, the working electrode (MoS2/SPGE) was pretreated electrochemically in 

aqueous electrolyte (1x PBS or 0.5 M H2SO4 solution) via cyclic voltammetry (CV), in the 

potential range of -0.2 to +0.9 V at a scan-rate of 100 mV/s, until the voltammograms became 

stable and repetitive; followed by thorough washing with redistilled deionized water. 

Subsequently, AuNPs were deposited onto MoS2/SPGE using either static chronoamperometry 

(CA) or dynamic cyclic voltammetry (CV) methods, in 0.5 M H2SO4 solution containing 

HAuCl4 gold precursor (Step 2 in Figure 1). For all ECD processes and characterizations, a 40 μl 

of electrolyte was dropped on the WE of SPGE, in order to cover the whole sensor-zone. 

Assembly of CP–TR–AP on AuNPs@MoS2/SPGE. Following the Au-electrodeposition 

(Au-ECD), the AuNPs@MoS2/SPGE working electrode was pretreated electrochemically in 0.5 

M H2SO4 aqueous solution by potential cycling (CV) in the potential range of -0.2 to +0.9 V at a 

scan-rate of 100 mV/s until the cyclic voltammograms became stable; this pretreatment served to 

clean and activate the WE part.5-6 Next, the electrode was washed carefully with 1x PBS solution 

and dried in ambient. Subsequently, a 10 μL of probe solution, consisting of CP (anti-miRNA-

21, 1 μM) with 10 mM TCEP, was dropped on the cleaned AuNPs@MoS2/SPGE working area, 

and incubated for 18 h at 4 C (Figure 1, Step 3). Following the self-assembly of CP, the non-

specific binding areas were passivated with 1 mM MCH (10 μL) for 1 h at room temperature 

(Figure 1, Step 4). At the final step, prior to the electrochemical sensing or characterizations, the 

CP-MCH functionalized AuNPs@MoS2/SPGE was cleaned with 1x PBS several times and 

stored at 4 C. The hybridization procedure was performed by dropping the target miRNA-21 

(TR, 5 μL, predefined concentration) and the signal amplified AP probe (5 μL, predefined 

concentration) onto the CP-MCH-AuNPs@MoS2/SPGE working area and incubating for 30120 
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min at room temperature (Figure 1, Step 5). Lastly, the hybridized electrode was rinsed with 1x 

PBS solution to remove non-specifically adsorbed TR or AP. 
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S2. Numerical Analysis of Chronocoulometry Data. 

The numerical analysis has been performed based on the Anson plots demonstrated in Figure S1: 

 

Figure S1. Conversion of chronocoulometry data to Anson plot. Example of a typical Anson 

plot exhibiting the analysis method for the estimation of DNA coverage on 

AuNPs@MoS2/SPGEs: Qdl = double-layer charge at the electrode/electrolyte interface. Qad = 

charge of surface-adsorbed RuHex. DNA = 0(z/m)NA = surface-coverage of DNA. 

 

The total measured charge Q follows the integrated Cottrell expression as a function of time t: 

Q = (2nFAD0
1/2C0).(t/)1/2 + Qdl + Qad     (1) 

From Faraday’s law, 

Qad = (QRuHex − Qblank) = nFA0      (2) 
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Here, n: number of electrons per molecule for reduction = 1 (in this case); F: Faraday 

constant (C/equiv); A: electrode area = 0.126 cm2 (for a WE of 4 mm diameter); D0: diffusion 

coefficient (cm2/s), and Co: bulk concentration (mol/cm2). 

As shown in Fig. S1, the Qdl and Qad were estimated from the CC intercepts at t = 0 in the 

absence and presence of RuHex, respectively. 

The saturated surface excess of redox marker was converted to DNA surface coverage 

density by 

DNA = 0(z/m)NA        (3) 

where m = number of bases in the DNA sequences = 11; z = charge of the RuHex = 3; and 

NA = Avogadro’s number (/mol). 

For chronocoulometric detection of TR, the Q was treated as the sensing parameter: 

Q = (QCP-TR-AP − QCP)       (4) 

Corresponding Hybridization Efficiency, HE% was estimated by: 

HE% = (Q 100) / QCP       (5) 

where,  QCP and QCP-TR-AP represent the Qad values, measured at the AuNPs@MoS2/SPGEs, 

after the capture DNA probe (CP) immobilization and after its hybridization with the target 

miRNA (TR), respectively.  

  



 50 

S3. Effect of Pre-treatment of MoS2/SPGEs on Au–ECD. 

 

Figure S2. Effect of pretreatment of MoS2/SPGEs on Au-ECD. SEM images of AuNPs 

electrodeposited via CV on the MoS2/SPGEs, which are pre-treated in (a-b) 1x PBS and (c-d) 0.5 

M H2SO4 aqueous solution respectively. Pre-treatment conditions: potential cycling (CV) from -

0.2 to +0.9 V at a scan-rate of 100 mV/s for 10 cycles. AuNPs electrodeposition was performed 

via CV under potential scan-range: +0.9 to 0.0 V, at a scan-rate of 100 mV/s, for 10 cycles, in 1 

mM HAuCl4 in 0.5 M H2SO4. MoS2 Loading: 50 g. 

 

(d)(c)

(b)(a)
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Pretreatment of the MoS2/SPGE working electrode was crucial for achieving reproducible NP 

deposition as it served the dual purpose of both cleaning of organic solvent residue (DMF) and 

also activating the electrode surface for subsequent AuNP formation. 

Generally, in the case of biosensor-electrodes, aqueous solution of neutral pH, such as PBS 

or TE buffer (pH 7.4) is an obvious choice of electrolyte for such pre-treatment. Prior to Au 

electrodeposition, the working electrode (MoS2/SPGE) was pretreated electrochemically in 

aqueous electrolyte by CV until the cyclic voltammograms became stable and repetitive. 

Interestingly, our studies revealed that electrochemical pre-treatment (CV) in PBS solution lead 

to a low density of large AuNPs (Figures S2a and S2b). On the contrary, when the MoS2/SPGE 

working electrode was pretreated in 0.5 M H2SO4 (Figures S2c and S2d) a high density of small 

particle size was evident under the same ECD-conditions, demonstrating better control in Au-

electrodeposition. 
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S4. Comparison of Electro-deposition Methods:  cyclic voltammetry vs. 

chromoamperometry. 

 

Figure S3. Comparison of cyclic voltammetry (CV) and chronoamperometry (CA) electro-

deposition methods. SEM images of AuNPs electrodeposited on MoS2/SPGEs via (a-b) cyclic 

voltammetry and (c-d) chronoamperometry routes, respectively. Electrolyte: 1 mM HAuCl4 in 

0.5 M H2SO4. MoS2 Loading: 50 g. (a-b) CV route: from +0.9 to 0.0 V, scan-rate: 100 mV/s, 

10 cycles. (c-d) CA route: at 0.0 V, for 360 s. For both CV and CA, 0.0 V was chosen as the 

deposition potential, and the total duration of deposition was 6 min. 

 

(d)(c)

(b)(a)
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A literature survey identified that AuNPs can be formed by using almost all kinds of 

electrochemical techniques, which can be classified in two main categories: static and dynamic. 

Static methods include chronoamperometry (CA) or galvanostatic (GS) approaches by applying 

an explicit potential or current for a specific duration, whereas dynamic methods include cyclic 

voltammetry (CV) by scanning the potential in a specified range using appropriate scan-rate and 

number of scan-cycles. 

It was vividly evident from our studies that the CV based ECD approach (Figures S3a and 

S3b) clearly suffers from coalescence phenomenona. On the contrary, the CA route can provide 

much better control in Au ECD, with homogeneous distribution of small AuNPs onto 

MoS2/SPGE, as observed in Figures S3c and S3d. Similar observations have been reported 

earlier by Hezard et al.5 for AuNPs-deposition on bare GC electrode. 

 

Effect of potential scan-rate during CV electrodeposition. It was observed that, low 

potential scan-rates during CV-ECD could lead to a higher number density of AuNPs with 

smaller overall particle-size (Figure S4). It is presumed that at low scan-rates, the nucleation rate 

dominates over the growth rate, hence the number density of AuNPs increases, while the NPs-

size deceases. However, even at a low scan-rate of 10 mV/s (Figure S4a), the CV-deposited 

AuNPs were inferior to the CA-deposited NPs in terms of both size and distribution. It was 

concluded that the electrodeposition process was better controlled under a static applied potential 

than that under dynamic potential scan. 
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Figure S4. Effect of potential scan-rate during CV electrodeposition of AuNPs on MoS2 

NSs. SEM images of AuNPs electrodeposited on the MoS2/SPGEs via cyclic voltammetry (CV) 

at different potential scan-rates: (a) 10, (b) 50, (c) 150, and (d) 250 mV/s. Potential scan-range: 

+0.9 to 0.0 V, scan-duration: 6 min. Electrolyte: 1 mM HAuCl4 in 0.5 M H2SO4. MoS2 

Loading: 50 g. 

 

  

(d)(c)

(b)(a)
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S5. Effect of Applied Potential Vapp = -0.3V. 

 

Figure S5. Effect of applied potential Vapp. (a) SEM images of AuNPs electrodeposited via 

chronoamperometry (CA) on MoS2/SPGEs at an applied potential, Vapp = -0.3 V. Potential scan-

duration: 360 s. Electrolyte: 1 mM HAuCl4 in 0.5 M H2SO4. MoS2 Loading: 50 g. (b) Statistical 

analysis: corresponding particle size histograms of AuNPs electrodeposited on the MoS2/SPGEs. 

ND: Particle Number Density, Dm: Mean Diameter of AuNP, and SD: Standard Deviation of NP-

size. 
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S6. Electrochemical Characterization of AuNPs@MoS2 Hybrid. 

Electrochemical characterizations of AuNPs. 

 

Figure S6. Electrochemical characterisation of electrodeposited AuNPs on MoS2 

nanosheets (NSs). (a) Representative current transients recorded at a MoS2/SPGE electrode 

during Au electrodeposition via chronoamperometry (CA). (b) Representative CV spectra of 

pristine MoS2/SPGE and AuNPs@MoS2/SPGE, in 0.5 M H2SO4 at 100 mV/s vs. Ag pseudo RE. 

 

Figure S6a represents typical current transients recorded at a MoS2/SPGE (MoS2 Loading: 50 

g) during Au electrodeposition via CA, in 0.1 mM HAuCl4 in 0.5 M H2SO4. 

The amount of charge involved for the AuNP formation, abbreviated as Qdp was estimated by 

integrating the corresponding current transient curves obtained by CA.5, 7 

Figure S6b shows that the hybrids exhibit a typical characteristic voltammogram of gold 

electrodes in a 0.5 M H2SO4 solution, according to the following reaction:5 
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Au + H2O  AuO + 2H+ + 2e−       (6) 

Following the oxidation of AuNP-surface during the forward scan (manifested by an anodic 

peak around 0.83 V vs. Ag RE), the reduction of these oxides occurs during the backward scan 

as evidenced from a well-defined reduction peak at ca 0.49 V (Figure S6b). 

The electrodeposited AuNPs were further characterized by evaluating the charges related to 

the reduction of Au-oxides, abbreviated as Qox, by simply estimating the area under the 

corresponding reduction peak.5, 7 

 

Redox activity of Fe(CN)6
3-/4- at AuNPs@MoS2/SPGE. 

 

Figure S7. Electrochemical Redox Activity. Representative CV responses and (inset) effect of 

scan-rates on the redox peak currents corresponding to Fe(CN)6
3-/4- redox activities, for pristine 

MoS2 and AuNPs@MoS2 hybrids. Vapp: -1.0 V, Potential scan-duration: 360 s. 𝑪𝑨𝒖𝑪𝒍𝟒−: 0.1 mM 

HAuCl4 in 0.5 M H2SO4. MoS2 loading: 50 g. 
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Electrochemical characterization on the redox activity of Fe(CN)6
3-/4- at the 

AuNPs@MoS2/SPGE and MoS2/SPGE revealed the higher electrocatalytic efficiency of 

AuNPs@MoS2 hybrids over that of bare MoS2 NSs. The well-defined anodic and cathodic peaks, 

produced by the oxidation and reduction of Fe(CN)6
3-/4- redox probe, are significantly enhanced 

following the AuNPs electrodeposition (Figure S8). Furthermore, the linear relationship of the 

redox peak currents (Ip) with the square root of scan-rates (1/2) of potential (inset of Figure S8), 

suggests diffusion-controlled mass transport, following the Randles-Sevcik equation: 

Ip = (2.69 × 105) n3/2 A D1/2 C ν1/2       (7) 

where n is the number of electrons participating in the redox reaction. D and C are the 

diffusion coefficient (7.6 × 10-6 cm2/s) and the concentration (mol/cm3) of K4Fe(CN)6 in 

solution. A represents the electroactive surface area of the electrode or ESA (cm2). 

Through the linear fitting, it was estimated that the ESA of AuNPs@MoS2 hybrid NSs is 

almost 4.4 times higher than that of pristine MoS2 NSs. The improved performance provided by 

AuNPs is attributed to improved conductivity, enhanced electroactive sites for the redox activity 

and their intimate coupling with the MoS2 NSs favoring efficient electron-transfer pathway from 

the redox-event to the gold SPE current-collector. 
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S7.  XPS study on AuNPs@MoS2 Hybrids Nanosheets. 

 

Figure S8. Elemental characterization of AuNPs@MoS2 hybrids NSs. High-resolution XPS 

spectra of AuNPs@MoS2 (top) and pristine MoS2 NSs (bottom) drop-casted on SPGEs: (a-b) 

Mo4+ 3d, (c-d) S2- 2p, and (e-f) Au 4f. All spectra are corrected by Shirley background and 

calibrated with reference to the C 1s line at 284.5 ± 0.2 eV associated with graphitic carbon. For 

AuNPs@MoS2 hybrid NSs, the AuNPs are electrodeposited via chronoamperometry for 360 s: 

Vapp: -1.0 V. 𝑪𝑨𝒖𝑪𝒍𝟒−: 0.1 mM HAuCl4 in 0.5 M H2SO4. MoS2 Loading: 50 g. 
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S8. Confirmation of Sensor-fabrication Strategy: Immobilization / Hybridization 

steps. 

 

Figure S9. Monitoring the activity of capture DNA probe (CP) immobilized on bare and 

modified SPGEs. (a) DPV profiles confirmed the hybridization of TR and DP with CP, via the 

redox signal of methylene blue (MB) labeled DP on AuNPs@MoS2/SPGE. (b) DPV spectra on 

the bare SPGE confirmed the immobilization of CP and its hybridization with TR and DP. 

 

Table S2: Oligonucleotides used for the confirmation of Immobilization / Hybridization steps 

Oligonucleotides used Sequence (from 5 to 3) 

CP Thiol-modified Capture Probe DNA 5-Thiol- TCA ACA TCA GT -3 

TR Target RNA : miRNA-21 5- UAG CUU AUC AGA CUG AUG UUG A -3 

DP MB-labeled Detection Probe DNA 5- CTG ATA AGC TA -MB -3 
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As an initial step to confirm the hybridization of the capture probe (CP) with the target miRNA 

sequence (TR), on the fabricated the AuNPs@MoS2/SPGE platform, “methylene blue (MB)” 

was applied as an electrochemical indicator (denoted as detection probe, DP). In other words, in 

Figure 1, the unlabeled signal amplified ssDNA probe (AP) has been replaced by the MB-

labeled ssDNA probe, (DP). 

Employing DPV technique, Figure S9a displays the redox characteristics of MB and hence 

the “hybridization” event at the CP-MCH functionalized AuNPs@MoS2/SPGE sensor. For 

comparison, as shown in Figure S9b, the DPV study was also performed on the bare SPGE 

sensor, which had also been subjected to the same protocol of surface-modification, 

immobilization and/or hybridization. It is clear from such a comparison, that the 

AuNPs@MoS2/SPGE sensor exhibits well-defined and well-resolved voltammograms of MB 

redox signal, compared to the bare SPGE sensor. 

Notably, both bare SPGE and AuNPs@MoS2/SPGE show an obvious peak after the CP-

MCH functionalization (indicated by red arrows in Figures S9a and S9b). On a careful 

inspection, it can be found that this peak pre-exists on the unmodified electrodes (indicated by 

black arrows in Figure S9), prior to CP-immobilization, only little shifted to negative potentials. 

Hence, this DPV signal most probably originates from an intrinsic redox phenomenon related to 

gold-surface of bare or AuNPs@MoS2 modified SPGEs. Interestingly, CP-MCH immobilization 

led to certain “passivation” effect as evident from the suppression of DPV-background, which in 

turn results in the prominent appearance of the DPV-signal from Au-surface or AuNPs@MoS2. 
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S9. Effect of RuHex Concentration (CRuHex). 

Adsorption isotherm of RuHex. 

The influence of CRuHex on CC-detection at CP-immobilized electrodes was investigated, as 

shown in Figure 6. It is observed that Qad initially increases with CRuHex on bare Au-SPE (SPGE) 

and AuNPs@MoS2/SPGEs, where the capture DNA probe (CP) was immobilized under 

identical conditions (Figure 6a). The surface excess adsorption isotherm for RuHex, on both bare 

Au-SPE (SPGE) and AuNPs@MoS2/SPGEs electrodes is plotted as a function of CRuHex in 

Figure 6b; satisfying the Langmuir adsorption isotherm expression:8-9 

CRuHex/Qad = 1/KQsat + (1/Qsat)CRuHex     (8) 

where, Qsat is the reduction charge of RuHex with saturated adsorption, K is the association 

constant of RuHex with DNA. 

 

Voltammetric responses of RuHex: Effect of CRuHex. 

Figure S10 demonstrated electrochemical voltammetric responses as a function of RuHex 

concentration (CRuHex). CP-immobilized on MoS2 NSs exhibit a signature response for the redox 

activity of RuHex, distinctly different from the well-reported CP-immobilized Au-sensors.8-12 

Both the cyclic (CV) and linear-sweep (LSV) voltammetric responses of RuHex, recorded 

during the adsorption isotherm studies (presented in Figure 6), reveal two kinds of redox 

activities of RuHex (see the markings in Figure S10). The 1st pair redox peaks (Mark #1) 
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originates from RuHex electrostatically bound to the phosphate backbone of DNA (surface-

confined redox activity). At sufficiently high CRuHex, another set of peaks (Mark #2) appears at 

less-negative potentials, contributing from the RuHex redox probes diffused to the electrode-

surface (diffusion-controlled redox activity).9-12 

 

Figure S10. Electrochemical voltammetric responses as a function of RuHex concentration. 

(a) CV and (b) LSV spectra of capture DNA probe (CP) immobilized on AuNPs@MoS2/SPGE; 

and the respective (c) CV and (d) LSV spectra of  CP immobilized on bare SPGE, recorded in 10 

mM TE buffer. CRuHex = RuHex concentration. The MoS2 NSs exhibit signature responses for 

the redox activity of RuHex, distinctly different from that of  well-reported Au-sensors. 
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At the bare SPGE, these two sets of redox peaks, #1 and #2, are distinctly observed on the 

cathodic scan. The cathodic peaks (#1 and #2) exhibit blue-shift in potential with increasing 

CRuHex [Peak #1: from -0.6 V (45 M) to -0.45 V (225 M), and Peak #2: from -0.35 V (45 

M) to -0.3 V (225 M)]. The anodic potential-scan demonstrates only the redox peak #2 that 

exhibits a blue-shift from -0.3 V (45 M) to -0.2 V (225 M). 

Interestingly, at AuNPs@MoS2/SPGE the two sets of redox peaks, #1 and #2, become 

noticeable only during the anodic potential-scan, around -0.4 and -0.3 V, respectively. However, 

peaks #1 and #2 overlap during the cathodic potential-scan, exhibiting a peak-potential around -

0.46 V. In contrast to bare SPGE, both the redox peaks do not show any noticeable CRuHex–

dependent shift in peak-potential at the AuNPs@MoS2/SPGE. 

Such noticeable dissimilarities in the voltammetric responses of RuHex between the 

AuNPs@MoS2/SPGE and the bare SPGE could be a sign of different modes of affinity of RuHex 

at these two electrodes. 

Importantly, both CV and LSV responses of RuHex (Figure S10) recommend that, for the 

CC measurements at the AuNPs@MoS2/SPGEs, the pulse width is needed to extend to 800 mV 

(applied potential stepping from +0.2 V to -0.6 V), employing 14.5 M of RuHex to completely 

neutralize the negative charges of CP for efficient quantification. Accordingly, for the CC 

detection at the bare SPGEs or AuNPs@SPGEs, the pulse width should be kept at 700 mV (from 

+0.2 V to -0.5 V), using 50 M of RuHex. 
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S10. Optimization of CP–TR–AP Hybridization Strategy. 

 

Figure S11. Optimization of CP–TR–AP Hybridization Strategy.  Hybridization efficiency, 

HE% = (QCP-TR-AP – QCP) / QCP, for different hybridization strategies. Error bars represent the 

standard deviations estimated from at least three independent measurements. 
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S11. Control Experiment: Confirmation of Amplified function of AP. 

 

Figure S12. Importance of the signal amplified probe (AP).  Hybridization efficiency, HE%, 

for different protocols, in absence (only f-CP) and presence of AP (for CP). Error bars represent 

the standard deviations estimated from at least three independent measurements. 

 

Table S4: Oligonucleotides used for control experiment 

Oligonucleotides used Sequence (from 5 to 3) 

CP 
Thiol-modified Capture Probe DNA 

default choice 
5-Thiol- TCA ACA TCA GT -3 

   

f-CP 
Thiol-modified Capture Probe DNA  

for complete miRNA-hybridization 
5-Thiol- TCA ACA TCA GTC TGA TAA GCT A -3 

   

TR Target RNA : miRNA-21 5- UAG CUU AUC AGA CUG AUG UUG A -3 

AP Signal Amplified Probe DNA 5- CTG ATA AGC TA -3 
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S12. Selectivity of AuNPs@MoS2/SPGE miRNA Sensor. 

 

Table S5: Oligonucleotides used for Selectivity Test 

 Sequence (from 5 to 3) 

T1 TR 5- UAG CUU AUC AGA CUG AUG UUG A -3 

T2 1MM 5- UCG CUU AUC AGA CUG AUG UUG A -3 

T3 3MM 5- UCG CUU AUC AAA CUG AUG UUC A -3 

T4 NCT 5- UUA AUG CUA AUC GUG AUA GGG G -3 
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S13. Chronocoulometric Responses on CP–TR Hybridization in absence of RuHex. 

 

Figure S13. Effect of CTR on chronocoulometric responses in blank TE buffer (RuHex-free). 

Representative CC curves for AuNPs-decorated (a) MoS2(1k), (b) MoS2(10k) and (c) bare SPGE 

(AuNPs@SPGE), recorded in blank 10 mM TE buffer, immediately after the hybridization step 

at every concentration (CTR) of the target miRNA (TR), and prior to the addition of RuHex. The 

MoS2 NSs exhibit an obvious decrease of CC values with CTR, distinctly opposite to that 

exhibited by bare SPGEs. 
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Interestingly, chronocoulometric responses, recorded in the blank (RuHex-free) TE buffer 

solution, exhibit an obvious decrease in charge with increasing target miRNA concentration CTR, 

for the AuNPs@MoS2/SPGE sensor (Figure S13). Interestingly, the decreasing trend is more 

apparent for the sensor comprised of thinner MoS2(10k) NSs (AuNPs@MoS2(10k)/SPGE). In 

contrast, the AuNPs@SPGE sensor exhibits the expected increase of charge as more negatively 

charged miRNA targets are accumulated on the electrode. 

The decrease of the charge at the AuNPs@MoS2/SPGE, upon increasing CTR, can be 

explained through band bending phenomena at semiconductor-electrolyte interface. The AuNPs 

act as a p-type dopant in MoS2 since the AuCl4
- ions in solution can strongly withdraw electrons 

from MoS2 layers and reduce to AuNPs.13-15 The p-type doping of AuNP in MoS2 was confirmed 

by XPS. Both Mo4+ (Figure 5a) and S2- (Figure 5b) peaks of AuNPs@MoS2 have shifted to 

lower binding energies compared with that of pure MoS2, indicating a down-shift of the Fermi 

level in MoS2 due to p-type doping. As a result, the depletion layer width (or band bending) at 

the metal–semiconductor interface was increased. The depletion layer width (or band bending) is 

expected to increase further with increasing CTR as more negative charges will develop on the 

electrode/electrolyte interface; hence the observed charge observed in the CC measurements will 

progressively decrease. 
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