arXiv:1810.08204v2 [quant-ph] 27 May 2019

Quantum Error Correction with the Semion Code

G. Dauphinais, L. Ortiz, S. Varona, and M.A. Martin-Delgado
Departamento de Fisica Tedrica, Universidad Complutense, 28040 Madrid, Spain

We present a full quantum error correcting procedure with the semion code: an off-shell extension
of the double semion model. We construct open-string operators that recover the quantum memory
from arbitrary errors and closed-string operators that implement the basic logical operations for
information processing. Physically, the new open-string operators provide a detailed microscopic
description of the creation of semions at their endpoints. Remarkably, topological properties of the
string operators are determined using fundamental properties of the Hamiltonian, namely, the fact
that it is composed of commuting local terms squaring to the identity. In all, the semion code is a
topological code that, unlike previously studied topological codes, it is of non-CSS type and fits into
the stabilizer formalism. This is in sharp contrast with previous attempts yielding non-commutative

codes.
I. INTRODUCTION

Topological properties of quantum systems have be-
come a resource of paramount importance to construct
quantum memories that are more robust to external noise
and decoherence [1-7] than standard quantum error cor-
recting codes [8-15]. The latter are based on a special
class of codes - concatenated codes - which enable us to
perform longer quantum computations reliably, as we in-
crease the block size.

The Kitaev code is the simplest topological code yield-
ing a quantum memory [1]. It can be thought of as a
simple two-dimensional lattice gauge theory with gauge
group G = Zs. In D = 2 spatial dimensions, there is
another lattice gauge theory with the same gauge group
but different topological properties: the Double Semion
(DS) model [16-18, 22-25]. Although the Kitaev and the
DS models are lattice gauge theories sharing the same
gauge group, G = Zs, the braiding properties of their
quasiparticle excitations are radically different. For ex-
ample, whereas braiding two elementary quasiparticle ex-
citations (either an electric or a magnetic charge) gives a
+1 phase in the Kitaev code, doing so in the DS model
yields 4 phase factors.

The DS model was introduced in the context of the
search of new topological orders in strongly correlated
systems, gapped, non-chiral and based on string-net
mechanisms in D = 2 dimensions [16, 17]. Generaliza-
tions of the DS model to D = 3 and to higher dimen-
sions have appeared recently [18]. While the properties
of the Kitaev code has been extensively studied in quan-
tum computation and condensed matter, barely nothing
is known about the quantum error correcting properties
of the DS model despite recent efforts towards realizing
such models [19-21]. In this work we remedy this situa-
tion by introducing a new formulation of the DS model
that is suitable for a complete treatment as a quantum
memory with topological properties.

The first obstacle to tackle the DS model as a quan-
tum memory is the original formulation as a string-net
model [16]. In this formulation, the Hamiltonian is only
Hermitian and exactly solvable in a particular subspace,

where plaquette operators are Hermitian and commute.
Only linear combinations of closed-string configurations,
implying the absence of vertex excitations, are allowed in
this subspace [16, 26, 27]. The microscopic formulation
of the original DS model starts with a hexagonal lattice
A with qubits placed at links e. Vertex operators @, are
attached to the three links meeting at a vertex v € A.
Plaquette operators B, are attached to hexagons p € A
with the novel feature that their outer links carry addi-
tional phase factors that are missing in the corresponding
Kitaev model. Explicitly,

Qo = Jizo—;alia (1)

with ¢, 7, k, being the three qubits belonging to vertex
v (see Fig. 1a) and

By=|Ilor) IT #0-7 @

icdp j€o(p)

where Op are the six links of the hexagon and o(p) is
the set of six edges outgoing from each plaquette p, as it
is shown in Fig. 1b. Unlike the Kitaev code, these pla-
quette operators B, are Hermitian and commute among
themselves only in a subspace of the whole Hilbert space,
defined by the so-called zero-flux rule [16, 26, 27]. This
is given by a vertex-free condition on states,

Ho = A{|1) : Qult) = +[¢), Vo € A}. 3)

The set of vertex and plaquette operators defines a
Hamiltonian

Hps:=—) Q.+ B, (4)

vEA peEA

Due to the involved structure of phases that plaquette op-
erators in Eq. (2) have, it was aforementioned that these
operators do not commute out of the vertex-free sub-
space. This implies that the model is only well-defined
when there are no vertex excitations.

Therefore, in order to treat the DS model as a quan-
tum error correcting code [11, 28-31], it is necessary to

FIG. 1. The support of the vertex operator Q, = ofo303 and
plaquette operator B,. The qubits are placed on the edges.

have a formulation of the model that is valid in the whole
Hilbert space and not just for the vertex-free subspace
(3), since generic noise processes will make the system
leave the mentioned subspace. To this end, we introduce
an off-shell DS model that we call the semion code. This
new model is achieved by making a deformation of the
original plaquette operators (2) such that they become
commuting and Hermitian operators without imposing
the vertex-free condition [27]. In addition, we are able to
develop the complete program of quantum error correc-
tion with the semion code.

A. Summary of main results

In order to summarize the main contributions that we
present in this paper, we hereby advance a list of some
of our most relevant results.

(i) We perform a thorough analysis of a formulation
of the plaquette operators which commute in the
whole Hilbert space [27]. This construction con-
sists in adding extra phases to the plaquette opera-
tors, which depend on the configuration of the three
edges at each vertex. When the vertex-free condi-
tion is imposed, we recover the standard definition
of the DS model.

(ii) We give an explicit construction for string oper-
ators along arbitrary paths. They are complete
in the sense that any operator acting on the sys-
tem can be decomposed as a linear superposition of
such operators. Additionally, the string operators
can be constructed efficiently despite the complex
structure of the plaquette operators. Remarkably, a
microscopic formulation to create semions was not
proven until now.

(7ii) We analytically show that the excitations of the
system behave as semions, via the detailed study of
the constructed string operators, which allows us to

explicitly calculate the topological S-matrix. Inter-
estingly enough, most of the string operator proper-
ties rely on very generic arguments about the struc-
ture of the local operators making up the Hamilto-
nian, namely that they commute and square to the
identity.

(iv) Closed-string operators are constructed, which al-
low us to perform logical operations on the quan-
tum memory built from the semion code. Logical
operators are closed-string operators whose paths
are homologically non-trivial and act non-trivially
on the degenerate ground space.

(v) Given the above properties, we define a topologi-
cal quantum error correcting code based on a non-
trivial extension of the DS model. We build a code,
which is characterized by the following key proper-
ties: is topological, satisfies the stabiliser formal-
ism, is non-CSS, non-Pauli and additive.

The topological nature of the code becomes apparent
through the fact that global degrees of freedom are used
to encode information and only local interactions are con-
sidered [1, 4]. Another remarkable feature of the semion
code is that is of non-CSS type since in the plaquette
operators both Pauli X and Z operators enter in the def-
inition [9, 28]. Consequently, errors in an uncorrelated
error model such as independent bit-flip and phase-flip
errors cannot be treated separately. However, they can
be decomposed as a linear superpositions of fundamental
anyonic errors (string operators creating pairs of anyons)
with a known effect on the Hilbert space. Moreover, the
semion code is not a subgroup of the Pauli group since
the complex phases entering its definition (see Eq. (2))
makes impossible to express its generators in terms of
tensor products of Pauli matrices [32, 33]. Nevertheless,
the semion code is still an additive code: the sum of quan-
tum codewords is also a codeword [34]. This last fact is
intimitely related to the abelian nature of the semionic
excitations [35, 36].

B. Outline

The article is organized as follows. In Sec. I we intro-
duce the off-shell DS model, which is suitable for quan-
tum error correction. In Sec. I we build string operators
creating vertex excitations at their endpoints. Sec. IV is
devoted to logical operators and quantum error correc-
tion. We conclude in Sec. V. Appendices deserve special
attention since they contain the detailed explanations of
all the constructions used throughout the text. Specif-
ically, App. A presents an explicit example of a string
operator, App. B gives the detailed proof of Theorem 1,
which presents a systematic way to construct string oper-
ators, as well as several key properties of the string oper-
ators and finally App. C is devoted to the proof of The-
orem 2, which gives the commutation relations among
string operators.

II. OFF-SHELL DOUBLE SEMION:
MICROSCOPIC MODEL

We begin by considering a microscopic description of
the DS model on the entire Hilbert space of states, since
it is much better suited for quantum error correction.
We call this an off-shell DS code by borrowing the termi-
nology from quantum field theory and other instances in
physics where a shell condition amounts to a constraint
on the phase space of a system. For instance, the equa-
tion of motion is a shell condition for quantum particles
but the phase space is more general. In our case, the
shell condition is the vertex-free subspace or zero-flux
rule introduced in Eq. (3).

A. Double semion model in the vertex-free
subspace

Let us start by introducing the DS model in a new
presentation that is more suitable for building an off-
shell formulation of it. We consider the same hexagonal
lattice A with qubits attached to the edges e € A. The
vertex operators), will remain the same as in Eq. (1),
but the plaquette operators in the zero-flux subspace can
be rewritten in an equivalent form to that shown in Eq.
(2), i.e.,

6
By=(IIos | ([TT0),)
Jj=1 Jj=1

in which nf := 1(1+0%) is the projector on the state |0)
(nT) or [1) (n™) of qubit i, qubits are labeled as shown in
Fig. 1 and we use the convention that ng: refers to qubit
‘6’ for simplicity. Remarkably, this expression avoids any
reference to the outgoing links of hexagonal plaquettes
p. One readily sees that the vertex operators fulfill the
following relations:

Q'LQ; = la [Q’Ua Q’U’] = Oa [Q’Ua Bp] = 07 (6)

VYou,v',p € A. As for the plaquette operators Bp, they
also satisfy

Bl=1, Bl =B, [By, By =0; (7)

Vp,p’ € A, but only in the vertex-free subspace (3). Fur-
thermore, the product of all the vertex and plaquette
operators is the identity. A simple counting argument
reveals that the ground space is 49 degenerate!, which ¢

1 This is strictly true only if the total number of plaquettes of
the system is even. If it is odd, then the ground state must
contain a single flux excitation, which can be placed in any of
the plaquettes. In that latter case the ground space degeneracy
is an extensive quantity. However, any given flux configuration
is 49-degenerate. For simplicity, we assume in this work that the
system contains an even number of plaquettes.

being the genus of the orientable compact surface onto
which the lattice is placed.

An explicit unnormalized wavefunction belonging to
the ground space is obtained in the following way: we
start from the vacuum, i.e., [0)®, which has +1 eigen-
value for all vertex operators. Then, plaquette operators
are used to build projectors and apply them onto the
vacuum,

= [T 15722 0=, 0

pPEA

It is straightforward to check that this state fulfills the
lowest energy condition for the Hamiltonian (4) within
the vertex-free subspace. Expanding the product in Eq.
(8), one can see that the ground state is a superposi-
tion of closed loops configurations. Due to the condition
B, = —1 for the ground state, the coefficients of this su-
perposition of closed loops alternate sign. Thus, we can
write the ground state in a different way:

= >

i €{C-S conf.}

(~)ND7), 9)

where 7 is a bitstring representing a qubit configuration
and {C-S conf.} is the set of all possible closed-string con-
figurations. Each configuration in this set has a certain
number of closed loops, N (i), whose parity determines
the sign of the coefficient in the ground state superposi-
tion.

Of course the above construction only gives rise to one
of the ground states. To find the other ones, the start-
ing configuration can simply be replaced by a configura-
tion containing an homologically non-trivial closed loop
(which necessarily belongs to the vertex-free subspace),
and proceed with the same construction. Every differ-
ent homological class for the closed loop corresponds to
a different ground state.

Applying the B, operator on a specific loop configu-
ration flips the string occupancy of the interior edges of
plaquette p while acquiring a phase that depends on the
specific configuration under consideration. Applying B,
on the vacuum simply adds a closed loop around plaque-
tte p, while applying B, next to a closed loop either en-
larges (or shrinks) the existing loop to include (exclude)
plaquette p, while multiplying the wave function by —1
factor (see Fig. 2).

Due to the lack of commutativity of the plaquette op-
erators and the fact that they are not Hermitian, the
original DS model is only well-defined when there are no
vertex excitations. Moreover, the strings creating ver-
tex excitations are not properly defined either. A naive
attempt to construct these strings as a chain of % op-
erators, following the similarities with the Kitaev code,
resoundingly fails. As a consequence of the phases on the
external legs of plaquette operators, o” operators create
vertex excitations but also plaquette excitations. In order
to get a string that creates only two vertex excitations at

FIG. 2. Applying plaquette operator Bq adds a closed loop
around plaquette ¢ and multiply the wave function by a —1
phase. Each qubit in a given configuration is represented by
a filled link of the lattice if it is in state |1), whereas links in
|0) are left empty (dashed line).

the endpoints but commutes with all the plaquette oper-
ators along the path P, it is necessary to add some extra
phases to the chain of ¢® on the outer legs. An approach
to this problem is described in [27] but it is not success-
fully solved since the strings are only well-defined in the
vertex-free subspace.

The DS model gives rise to quasiparticle excitations
behaving like anyons. They are called semions, due to
the fact that their topological charge is ‘half’ of that of a
fermion, i.e., 7. There exist two types of semions in the
model, one corresponding to a vertex excitation, while
the other corresponds to both vertex and adjacent pla-
quettes excitations. From now on, we name these two
different possibilities as chiralities, positive chirality for
the former kind, and negative chirality for the latter one.
We warn the reader that this choice has been made ar-
bitrarily, and does not necessarily reflect the topological
charge of a given specie.

Taking into account all these caveats, we present in
the following a formulation of the DS model which gives
a microscopic approach to this interesting topological or-
der, fulfilling all the necessary properties in the whole
Hilbert space.

B. Exactly solvable model in the whole Hilbert
space

If we want to consider encoding quantum informa-
tion in the degenerate ground-state manifold of the stan-
dard (on-shell) DS model in Eq. (4), we immediately
run into major problems: X Pauli errors make the state
of the system leave the vertex-free subspace. The non-
commutativity of the B, operators poses difficulties when
interpreting the DS model as a stabilizer code.

To avoid such difficulties, we consider a modified ver-
sion of the plaquette operators in Eq. (2), which we call
the off-shell DS model or semion code

Hps=—>» Qv+ B, (10)
v P

where the generalized plaquette operator B, is a modifi-
cation of Bp obtained by multiplying it by a phase factor
that depends on the configuration on which it is applied.
More specifically, we have

B, := B, x f3,, (11)

with

By = b 0. (12)

where the sum runs over all possible configurations of
edges 1 through 12 shown in Fig. 1. b,(¢) is the phase
factor corresponding to the string configuration i. 7 rep-
resents a state in the computational basis. A qubit in
the state |0) is interpreted as the absence of a string on
its corresponding edge, while the state |1) reflects the
presence of a string. The phase operator 3, can be de-
composed as

Bp = B6,1,12) Br,2,7) B(2,3.8) B3,4,9) B(4,5,10) ﬂ(5,6,11)(713)
where f3(; j ry is a function of the string configuration of
edges i, j and k connected to vertex v(4, j, k). The specific
values for each factor f; ;) are shown graphically in
Fig. 3. Note that their specific form differ depending on
their position on the plaquette.

For future reference, notice that the generalised pla-
quette operator B, can be written as

By=T[ot [IT ~0™" | T8 (10)

1€0p jEOP vEP

where we use the notation j € dp to indicate the qubit
associated to edge j in plaquette p. v € p identify the
vertices belonging to plaquette p. Notice that this last
expression clearly shows that the phase factor appearing
in B, is a product of phases, 3,, depending on the string
configuration of the three edges connected to each vertex
of plaquette p. The complete algebraic expression of the
product of all 3, in a plaquette p is [27]

H ﬂv _ anz(n;ngfnfng)ln; (nfn;rfn;n;)

vEP

w it (i —ngng)ng (nyng—nfnd) (1)

« mio(ndnd —ning)ndi (ngnd —ning)

We can easily check that in the zero-flux rule the factors
in Eq. (15) reduce to 1, recovering expression (5) for the
plaquette operators.

The crucial point now is that the new generalized
plaquette operators, B,, satisfy the desired properties
needed by the stabilizer formalism of quantum error cor-
rection. Namely,

B2=1, Bl =B,, [B,,By]=0, [Q,,By]=0; (16)
Vp, p', v € A, regardless of the vertex-free condition (3).
The study of Hpg is rendered much simpler than that of

Hpg on the whole Hilbert space of the qubits by the fact
that the new plaquette operators commute.

B5,6,11
—1 i +1
o 1 N
—i +i 10 . 12.. T i
H R S N) i
Ba5,10 M N B1,6,12
. o 3 2’(,&\7]
: 9 e R i
+i —i i s —Z/l\ Fe
+i —i
Boss

FIG. 3. A graphical representation of the various non-trivial
phase factors of the form B k). A trivial phase of +1 is
applied for any configuration not shown on this picture. The
labeling of the edges have been omitted for simplicity, and
corresponds to the same as the one on Fig. 1.

III. STRING OPERATORS

We seek open-string operators creating excitations at
their endpoints without affecting the rest of vertex and
plaquette operators, as well as closed-string operators
that commute with vertex and plaquette operators. In
our case, excited states correspond to states in a —1
eigenstate for a vertex operator or a +1 eigenstate of a
plaquette operator. We say that an excitation is present
at vertex v (plaquette p) if the state of the system is in
a —1 (+1) eigenstate of @, (B,). Since we have that
[[oer Qv = HpeA B, =1, excitations are always created
in pairs.

In order to find such string operators, it is convenient
to reexpress the generalized plaquette operators as

B, =[Tor > b (7) i, (17)

i€p 7

where p denotes the interior edges of a plaquette (edges 1
through 6 in Fig. 1) and the string configurations in the
sum are taken on edges 1 through 12. b,(7) denotes the
complex phase picked up when applying operator B, to
the configuration i. Note that o7 b,(1)]i) (7] differs from
the product of the §,’s in the —1 factors appearing in
Eq. (14). Z;bp(m;) (i] includes the —1 factors as well as
the product of 3,.

Given two string configurations i and @ on a set of
edges, it is useful to define the string configuration iea
to be the configuration i’ where the edges occupied in
configuration & has been flipped. It is equivalent to sum
(mod 2) the two bitstrings. Additionally, we define the
configuration P of plaquette p as the string configuration
which is empty everywhere except for the six edges in the
interior of plaquette p, corresponding to edges 1 through
6 in Fig. 1. Likewise, @7, will be the configuration which
is only occupied for edges of path P.

Given a path P, we construct string operators S; cre-
ating vertex excitations at its endpoints and commuting
with every other operators in Hamiltonian (10). Negative
chirality strings are defined as S, := S;{S'Zéual, where

7zjcllual is a product of o* operators forming a path P},
in the dual lattice which is contained in the support of
S; . If P is open, SZ(,l 1 creates excitations at plaquettes
containing the vertices at the endpoints of P and oppo-
site to the first and last edges of P (p; and pg in Fig.
4), while if P is closed, S%, forms a closed path in the

dual
same homological class as P. Note that for a given path
P, various paths P, are possible, and each one gives
rise to a different string operator Sy .

A. An algorithm to generate string operators

In order to find these string operators, we consider the
following ansatz:

Si=I[or > P (Z) Wl (18)

i€P {e Conn(P)

where Fp(;) is a phase factor acquired when S;; is ap-

plied on configuration i. Fp (7) only depends on qubits
belonging to Conn(P), defined as:

Conn(P) := {links of P and its external legs}. (19)
It is also useful to define the set of plaquettes
Bp :={p:90p N Conn(P) # o}, (20)

which is the set of plaquettes that have at least one of
their interior edges contained in Conn(P). Equivalently,
one can define Bp to be the set of plaquettes such that
for at least one string configuration 7, b, (i ® &%) # by (7).
The structure of S?; is illustrated in Fig. 4. Note that
depending on the context, a configuration i is either un-
derstood to be on the full system, or is the configuration
restricted to Conn(P). The specific case considered is
explicitly stated in each case.
Ansatz (18) should satisfy the following properties:

(i) Anticommutes with vertex operators at the end-
points of P if it is open, while it commutes with
every other vertex and plaquette operators.

(#) Acts trivially on edges outside Conn(P).
Operators satisfying (i) and (#) are called string opera-
tors. Additionally, we may be interested in the proper-
ties:

(#ii) Squares to the identity.

(iv) Hermitian.

Conn(P) ~

FIG. 4. The structure of S;, where the path P is indicated
by the full black edges where the o” operators are applied.
The phase factors F; depend on the configuration of all the
edges identified with a dot, which are collectively denoted by
Conn(P). The effect of S} on the ground state of the system
is to create a pair of vertex excitations at the vertices located
at the endpoints of the path P, which are identified by big
red dots. Plaquettes p1 to pg constitute the set Bp.

If these are satisfied, they will be called canonical string
operators.

Properties (4) and (iv) are satisfied (see Lemmas 5
and 6 in App. B) if

Fp (iwd®) = [(2’)] (21)

Since we want S; to commute with all plaquettes in Bp
(for the rest of plaquettes, it commutes by construction),
we impose that the commutator vanishes, [S;{, Bp] =0,
which yields the equation

Fp (;@ &p) =

It is useful to define the function 6p(i,p) =
by (i ® &%) /b, (i), which relates Fp(i ® @) to Fp(i). We
can generalize Eq. (22) and function 65 (7, p) for an arbi-
trary number of plaquettes, namely,

-
)

Fp (;EB arr @ ... e O_Zp"’) =0p (;,pl, ...,pm) Fp (Z)

where 0p(i,p1, ..., pm) can be expressed as

. i1
m bpi <l @ &P @ &p]>
- =1
97j (Z7pl7"'7pm> = H i1 . (24)
=Ly, (Z@ o?P:‘)
j=1

Note that while we use the same symbol for the configu-
rations i in 0p and in Fp, the one in fp is over the whole
system in order for Eq. (24) to be well-defined. The spe-
cific way that the configuration i is extended over the
whole system (i.e which configuration on the rest of the
system is appended to it) does not matter, since as a con-
sequence of the structure of the plaquette operators, it

does not affect the value of 6p. As a consequence of the
fact that plaquette operators commute, the order of the
plaquettes p1, ..., p, in Op (Z, D1, .-y Pm) does not matter
(see Lemma 1). The function 0p (i, pi, ..., pm) relates the
value of Fp for configuration i to that of configuration
1@ aPt @ ... d aPm. These two configurations differ by
a sum of plaquettes and may be considered part of the

same configuration class Cp (Z), defined as

cp (i) =

where the configurations are restricted to Conn(P).
These configurations can be regarded as the set of con-
figurations related to fby adding loops associated with
plaquettes in Bp, only in the region where S;{ acts non-
trivially. Taking all this into account, one can obtain an
algorithm to compute the phases F; of the ansatz in Eq.
(18). This is given by Algorithm 1.

-t @ @y @)

pEsubset(Bp)

for every configuration class C» do
Pick a class representative ¢ € Cp

Set Fip(i) = ¢

for every subset (p1,...,pm) C Bp do

Pp(i @ @) = 0p(i,p1, -, pm)Fp(i)

i=1
end for

end for

ALGORITH_M 1. Determination of the Fp functions for a
path P. ¢*® are initial phases that can take any value.

Algorithm 1 begins by picking up a configuration Z,
which we call its class representative, and by setting its
value to an arbitrary phase ¢“?(¥). Any phase picked up
by the algorithm yields a valid string operator. Once
the value for the class representative ¢ is fixed, the algo-
rithm assigns values to the rest of the configurations in
the same configuration class by making use of Eq. (23).
Afterwards, a configuration, belonging to a different con-
figuration class, where the values have not yet been fixed,
is chosen and the same procedure is repeated until Fp
has been fixed for all possible configurations. An explicit
example of this can be seen in App. A.

As it is shown in App. B, it is always possible to deter-
mine Fp using Algorithm 1 such that the resulting S;
is a string operator. Furthermore, it is also possible to
enforce the constraint given in Eq. (21) such that we ob-
tain canonical string operators. Those important results
are summarized in the following theorem:

Theorem 1. Let P be a path. Any function Fp defined
by Algorithm 1 is such that S; 18 a string operator. Fur-
thermore, it is possible to choose the phases e*? such that
the string operator is canonical.

Note that the open-string operators generated by Al-
gorithm 1, S;, have positive chirality, because they an-
ticommute with vertex operators at the endpoints of P

(b)

FIG. 5. Examples of (a) a self-crossing path P and of (b)
a self-overlapping path Q. The dashed blue edges indicate
the links where the string Q self-overlaps, since some distant
parts of the path are connected.

and commute with every other vertex and plaquette op-
erators, satisfying property (7). However, the same does
not apply to closed-string operators, since closed strings
do not have endpoints. Algorithm 1 produces, in general,
closed-string operators without a definite chirality.

1. Concatenation of open-string operators

It is very useful to build strings as a concatenation of
smaller strings. This is specially relevant for constructing
non-trivial closed strings, since, as it was mentioned be-
fore, Algorithm 1 yields, in general, closed strings which
have no definite chirality. By building these closed strings
out of a multiplication of open strings, which have def-
inite chirality, we obtain positive- and negative-chirality
closed strings. Observe that given two paths, P; and Ps,
meeting at one endpoint or forming a closed path, the
multiplication of both S;l 4Py = 5;2 S;;l is a string oper-
ator satisfying properties (i) and (ii). In this way we can
build long string operators by concatenating short ones.

B. Crossing string operators

In order to understand the algebra of the string oper-
ators of the semion code that we build in Sec. IV A, it
is essential to know the commutation relations between
them acting on different paths.

The notion of crossing paths need to be precisely de-
fined since the region on which the string operators act
non-trivially, Conn(P), has a finite thickness. Heuristi-
cally, in order to consider that two paths are crossing,
the commun edges to both paths must not contain the
first nor last vertex of neither of the paths. Note that
two paths can cross more than once.

We further need to define the notions of self-crossing
and self-overlapping paths. Essentially, a path is self-
crossing if an observer moving on the path passes more
than once on any given edge. A path is said to be self-
overlapping if some regions of the support of the string

operator but not the path itself overlap and connect some
distant parts of the paths. Fig. 5 illustrates the previous
concepts. We refer the reader to App. C for rigorous def-
initions, as well as the proof of Theorem 2. This theorem
summarizes the commutation relations among the string
operators.

Theorem 2. Let P and Q be two paths crossing n times,
composed of non self-overlapping nor self-crossing indi-
vidual open paths, i.e., P = Pi#...#Ppm and Q =
Q1# ... #Q,,, for some integers m and m'. We have
that

[S5,58] = 0if n is even,

{S4, Sg} =0if n is odd. (26)

Given the definition of negative chirality string opera-
tors, and using the above results, we find that [Sy, S5] =
0 if n is even, while {S;, 55} = 0 if n is odd. We also
find [S5, S&] =0 for any n.

Interpreting a vertex (in the case of S3) or the combi-
nation of a vertex and plaquette excitations (in the case of
S5) as the presence of a quasiparticle labeled by st and
s~ respectively, the topological S matrix [35], written in
the basis (1,s7,s7,s7s7) where 1 denotes the vacuum,
i.e. the absence of excitation, and s*s~ the composite
object excitation, is found to be

1 1 1 1
11 -1 1 -1
11 -1 -1
1 -1 -1 1

(27)

We can thus interpret the string operators S; and S5
as creating pairs of semions of different chirality at their
endpoints.

1. The need for path concatenation

Notice that Theorem 2 does not state anything about
closed paths (homologically trivial or not) which are com-
posed of a single path. One can check that when such a
path crosses another one, in general they do not commute
nor anti-commute. Such paths thus cannot be considered
as ‘fundamental’ string operators in the sense that they
do not possess a definite chirality.

Algorithm 1 enforces that the) - Fp(1)]i)(i] operator
does not contain any open Széual operator for an open
path, since by construction, Algortihm 1 builds a string
operator which commutes with every plaquette opera-
tor. For a closed path however, one can add S%, to

dual

S Fp(i)|iy (] — (Z;Fp (Z)|Z><Z|) %, , which is also a
dual
valid output of Algorithm 1. In fact, such a S%, oper-
dual
ator can be added selectively to only a subset of configu-
ration classes, causing a ‘mixing’ of the chiralities. This
is explained in detail in App. C3.

By producing closed paths starting from smaller open
paths as their basic constituents, one can enforce the pro-
duction of strings of a definite chirality. This is caused
by the fact that the individual components cannot carry
flux excitations by construction, and so neither can their
concatenation. The physical intuition is that each small
open string operator creates a pair of semions of positive
chirality at their endpoints. Since the created semions
are their own anti-particles, they subsequently all fuse to
the vacuum, returning the system to the ground space.

C. Completeness of the string operators

In this section, we seek to decompose a string of o”
operators into the strings operators defined in our model,
St and S>.

We first note that any matrix p of size 2" x 2" can be
written as a linear combination of Pauli operators, i.e.,

p= > Py, P.)P,P., (28)
P.,P,

where P, (P,) are Pauli operators acting on n qubits and
formed of products of identities and o® (0*) operators
only and where ¢(P,, P.) are non-zero complex num-
bers. Given the matrix p, one can recover the coefficients
¢(Py, P,) using the formula

1
C(Pvaz) = 27TI‘ (Pwpzp)' (29)

In our case, a chain of o™ operators on path P, denoted
by Xp, can be written as

Xp = 5h x Y [Fp(@)]'13) il- (30)

— - =

Given the form of) +[Fp(i)]*|i)(i|, we can write

Xp=8hx >

P.eConn(P)

c(P,)P;, (31)

where P, are Pauli operators containing only identities
and 0% and where we write P, € Conn(P) in an abuse of
notation to signify that P, acts non-trivially only on the
qubits in Conn(P). The coeflicients ¢(P,) are given by

o(P.) = gy L EPRE@), (2

where |Conn(P)| is the number of edges in Conn(P).
Chains of ¢* operators form valid string operators S?,
which create flux excitations at their endpoints. This
clearly shows that any Pauli operator acting on the sys-
tem can be written in terms of string operators. Since
any operator acting on the system can be decomposed
as a linear combination of Pauli operators, we find that
the string operators are complete in the sense that any
operator can be expressed in terms of them.

FIG. 6. A cartoon example of 2 sets of logical operators
on a l-torus. {S{,S%} = {Sy/, Sy} = 0, while [S{,Sy] =
[Sy, ;] = 0. Arrows indicate identified boundaries.

IV. THE SEMION CODE

The tools we have developed in previous sections can
be used to build a quantum error correction code using
as code space the ground space of the off-shell DS model,
given by Hamiltonian (4). The information encoded is
topologically protected since we are using global degrees
of freedom that cannot be affected by local errors. Addi-
tionally, we perform quantum error correction using the
DS model as a stabilizer code, where plaquette and ver-
tex operators are our stabilizers.

A. Logical operators

Recalling that a surface of genus g can be seen as the
connected sum of g tori [37], we can define two pairs of
anti-commutating logical operators for every torus in the
connected sum [38]. One pair consists of string operators
Sy and Sj, with V(H) any homologically non-trivial
path along the vertical (horizontal) direction,while the
other pair consists of S, and S;;, Both pairs are made up
of open non self-crossing nor self-overlapping individual
paths, as prescribed by Theorem 2. Fig. 6 illustrates two
such pairs for a genus 1 torus.

B. Quantum error correction

The stabilizer operators, vertices and plaquette defined
in Egs. (1) and (11), can be periodically measured to de-
tect any errors occurring in the system. Once the syn-
drome pattern is obtained, assuming a given noise model,
it is fed into a decoder. It outputs a recovery operation
using the string operators developed in this work in order
to bring the system back to the encoded subspace, where
the probability of applying a non-trivial logical opera-
tion is minimized. While we leave the development of de-
coders specifically designed for the semion code for future
work, one could imagine adapting some of the various ex-

|
' SN 4 5 - |
q +-1 S Se. A P 2+ r
I
I
Sad 3 ~b q 1 -
~ ~ 3 r - 3 -
g\ \\ Ve »
~ e -5
PN 1
p r L. .
TQ 7T 2>~ q $4 S
1
| P |

FIG. 7. The three possible edge orientations on which the o
operator can be applied. Qubit 3 is affected in all cases, and
may leave flux excitations on the four surrounding plaquettes
labeled by p, ¢, r and s. The probabilities of measuring a
given flux pattern are given in Tab. I.

Probability
(bp, bg, by, bs)|Orientation (a)|Orientation (b)|Orientation (c)
(0,0,0,0) 9/16 1/16 9/16
(1,1,0,0) 1/16 1/16 1/16
(1,0,1,0) 1/16 1/16 1/16
(0,1,1,0) 1/16 9/16 1/16
(1,0,0,1) 1/16 1/16 1/16
(0,1,0,1) 1/16 1/16 1/16
(0,0,1,1) 1/16 1/16 1/16
(1,1,1,1) 1/16 1/16 1/16

TABLE 1. The various probabilities of getting a given flux ex-
citation configuration after the application of the operator o
on a qubit, for the three possible orientations. The plaquettes
label correspond to the ones in Fig. 7.

isting decoders developed for topological codes [2, 39-61].

Tab. I shows the probabilities of measuring a given flux
configurations after applying a single ¢” on the ground
state for the three possible edge orientations shown in
Fig. 7. Note that as Egs. (30) and (31) suggest, the
probabilities in Tab. I do not depend of the phases used to
initialize the F(.; function in Algorithm 1. More details
giving a deeper understanding on the structure of the
string operators S; can be found in App. B3.

A distinctive feature of the probability distributions in
Tab. I is that there is a directionality in the error pattern.
A 0% error affecting a vertical edge (orientation (b)) is
much more likely to leave flux excitations behind than
for the other two orientations. This is clearly due to the
specific structure of the plaquette operators, and could be
used advantageously when dealing with asymmetric noise
[62, 63]. Another major difference with the toric code is
the fact that chains of % errors are likely to leave flux
excitations along their path. This additional information
could be used by the decoder and may lead to a higher
threshold value.

V. CONCLUSIONS AND OUTLOOK

One of the key features of the off-shell DS model devel-
oped here for error correction is that it is a non-CSS code
[64, 65]. This is not novel in the theory of quantum er-
ror correcting codes. In fact, the answer to the important
question of what is the minimal complete error correction
code that is able to encode one logical qubit and correct
for an arbitrary error was precisely a non-CSS code of
five qubits [64, 65]. This is consistent with the quantum
Hamming bound [32], and is in sharp contrast with the
classical case where the solution is the repetition code
of three bits. However, what is peculiar of the off-shell
DS code is that, to our knowledge, this is the first non-
CSS topological quantum memory that being a stabilizer
code, it is also a topological code throughout the whole
Hilbert space. In a sense, this was a missing link in the
theory of topological quantum error correction codes and
we have filled this gap with the tools introduced in our
work.

We notice that a previous study [33] attempted to
construct a quantum error correction code using the DS
model as the starting point. The main difference with our
work is that they construct a non-commuting quantum
correcting code, whereas we have succeeded in construct-
ing an extension that belongs to the stabilizer formalism.
As a consequence of this, the whole error correction pro-
cedure of the off-shell DS code is topological. On the
contrary, the topological nature of the non-commuting
code in [33] is unproven. Both constructions share the
feature of using non-Pauli operators to construct the ba-
sic string operators of the model.

The outcome of our work is a complete characteri-
zation of the error correction procedure for a quantum
memory based on a topological non-CSS stabilizer code.
This is a major step for the reason explained above.
However, a fully-fledged quantum computer will demand
more, namely, a universal gate set and a fault-tolerant
procedure to battle errors dynamically [66]. With the
tools deployed here, it is conceivable that this goal will
be achieved elsewhere.

A new way of constructing quantum codes opens up
with this work. The tools introduced here for models
like the DS based on Abelian lattice gauge theories can be
generalized to other Levin-Wen models [16, 67, 68], like
doubled Fibonacci models, or twisted versions of fracton
models [69]. This is the subject of further study.

ACKNOWLEDGMENTS

We thank Fiona Burnell and Juan Miguel Nieto
for helpful discussions. We acknowledge financial
support from the Spanish MINECO grants FIS2012-
33152, FIS2015-67411, and the CAM research consor-
tium QUITEMAD+, Grant No. S2013/ICE-2801. The
research of M.A.M.-D. has been supported in part by the
U.S. Army Research Office through Grant No. W911N

F-14-1-0103. S.V. thanks FPU MECD Grant.

Appendix A: Example of an open-string operator

It is instructive to illustrate the workings of Algorithm
1 to find string operators S; in order to gain a more in-
tuitive understanding. Consider the very simple path
P = {e}, consisting only of edge e shown in Fig. 8.
Any given configuration on the five edges included in
Conn({e}) is represented by a bit string of length 5, for
which a 0 indicates the absence of a string, while a 1
indicates that it is occupied. One can also interpret the
bit string as a state in the computational basis, a 0 in-
dicating a +1 eigenstate of the corresponding ¢*, while
a 1 indicates a —1 eigenstate of ¢*. We compute the
function F {t y S0 that S?e} is a canonical string opera-
tor, i.e., it also fulfills Eq. (21). Following Algorithm 1,
the configuration (0,0,0,0,0) is first chosen and we set
F{t}(0,0,0,0,0) = 1. Noting that By, contains the 4
plaquettes identified as p, ¢, and s in Fig. 8, we find the
following values for F' {'Z %

F((0,0,0,0,0) =1, Fy(1,1,0,0,0) = —i,
Fiey(1,0,1,1,0) = —i, F(0,0,0,1,1) = —i,
F(y(0,0,1,0,0) =1, Fy(1,1,1,0,0) =
Fiey(1,0,0,1,0) =4, Fiy(0,0,1,1,1) =4,
Fiey(0,1,1,0,1) = —i, Fyy(1,1,1,1,1) = -1,
Fiey(0,1,1,1,0) = —i, Fyy(1,0,0,0,1) =4,
Fiy(0,1,0,0,1) =4, Fyy(1,1,0,1,1) = -1,
Fiy(0,1,0,1,0) =4, F(1,0,1,0,1) = —i.

Here we are not only computing the values for con-

-,

figuration class Cy.3(0), but also for configuration
class C{e}(o?{e}), since these two are related by Eq.
(21)and therefore Algorithm 1 makes the assignment
Froy (i, in,is @ 1,4, 5) = [Fyey (i1, ia, is, i, i5)] "

Choosing next the configuration (0,0,0,0,1) and set-
ting F.1(0,0,0,0,1) = 1, we can fix the following values
of F{e} :

Fiey
Fley

1,0,0,1,1
0,1,0,0,0

Fey(0,1,0,1,1
Fey(1,0,0,0,0

Fe1(0,0,0,0,1) =1 Fey(0,0,0,1,0) =1
Fie1(1,1,0,0,1) = —i, Fyy(1,1,0,1,0) = —i,
F(0,0,1,0,1) =1 Fe1(0,0,1,1,0) =1
Fre1(1,1,1,0,1) = 4, Fry(1,1,1,1,0) = 4,
Fe1(1,0,1,1,1) = =1, Fy(0,1,1,1,1) = —1,
Fey(0,1,1,0,0) = 4, Frey(1,0,1,0,0) = 4,

()= 1. Fiol)= -1

() = —t, () = —i.

Again, two class of configurations are fixed due to the
fact that the string is canonical. We keep doing this till
all configuration classes have been fixed. As a result, we

10

FIG. 8. The layout we consider to find a possible string op-
erator S creating a pair of vertex excitations at v1,2,3 and
v3,4,5. The red edges correspond to the qubits in Conn(e), the
ones on which ST acts non-trivially, with edge e correspond-
ing to qubit 3. ST anti commutes with both vertex operators
Quvy 25 = 070305 and Qu,, , = 030705, while commuting
with every other vertex operators as well as every generalized
plaquette operators.

obtain SE’E}, which commutes with the four neighbouring

plaquette operators By, By, B, and B, shown in Fig. 8,
as well as all the other plaquette operators which are
farther away.

Appendix B: Proofs regarding string operators
produced by Algorithm 1

In order to prove Theorem 1, we begin by stating sev-
eral technical results in the following section.

1. Useful technical lemmas

,Dn} an ordered set of plaque-
,qn} be a permutation of it. For

Lemma 1. Let {p1,pa,...
ttes and let {q1,4qz2, ...

any configuration i, we have that 0p (Z, P1,P2, - - ,pn) =

073 (thQZ’-- 7Qn)
Proof. According to Eq. (24), we have that

_,m
@ ar @dP|B,, ..
s =1

cyPm) =

.B,,li®adP)

->meo 2
(@ G}loﬂﬂB - By 1)
1=

> P B1
(i @ a@% ® a”|Byp,) - - - Byp)li ® @7) (B1)

i=1

=

: Bq(m) ‘Z>

<i @ ad Bq(pm) ..

= 97’((]17 s an),

where ¢(p;) denotes the permutation of plaquettes that
exchange {p1,...,pm} to {q1,...,q¢m}, and where we
used the fact that the plaquette operators all com-
mute. O

Lemma 2. Let {p1,po,... ,qr} be

two different set of plaquettes in Bp such that @ aPi =

7pm} and {(Zl>(127 e
m

i=1
k
P a% on the string configuration of Conn(P). Then,
i=1
for any configuration i, we find that
Op (7,p1,p2,..~,pm) =0p (aQ1aQ27~~-va> . (B2)

J

Lm
(i @ ar & ad”|By,
i=1

11

Proof. First notice that given the structure of the pla-

m k
quette operators, @ @ = @ &% on Conn(P) implies
i=1 =1

that HB HB HB” = 1, where {rq,...,
i= =1
all the plaquettes out51de of Bp. We also have that

@, ar = (@?:1 aqf) ® (Pj_, @"), where the con-

1=

rs} are

figurations are taken over the whole system. Using those
facts, we find

m k s g —
- By, I1iZ1 By, Hj:l By, [I1=1 Brli @ a”)

973(;’])1’"'7297774) =

L m
<Z @ d'pl |Bpm
i=1

t Bpl H:ll

k s A
By, Hj:l By, [L=1 Bnli)

(@ 0|, B, Il Buliod™) (@ a0\ IIi, By (S50 0]) T, By o a”)

i=1
2 N = TR s 3 B > 2N o T8 27 k 2
(@ a | Tl By, Ty Bl (@ Tl B (517 G1) Ty Ba, 1) (B3)
> TNk —q s o > Nk
(@ v @ (@i, @) @ dP| [T, Buli@)_, a% @ d”) ((@,_, a9 & a”|[]}_, B,li & d”)
S NF =g p k >
<Z®' 104%@(@1 10‘”)‘1_11 1 n|1®j 1 095 <Z®j:1o“|nj:1Bq,-|>
>~k o .
<Z®j 1aqj (@l 1@ L)‘XPHZ 1BTLX73|Z® 1aqj> - -
= - 979(%(]17--~7Qk)a:977(2,111,---7qk),
<Z®J 1 0% & (D am) [TT- 1Bm|2@] p Q%)
[
where we used the fact that Xp commutes with the pla- O

quette operators B,,, since the plaquettes in {ry,..., 7}
are not in Conn(P). Xp is the string of o, corresponding
to the string operator defined on P. O

Lemma 3. The functions Fp constructed by Algorithm
1 are well-defined.

Proof. First note that Lemma 1 states that the order
in which the plaquettes {p1,...,pn} appear in a specific
subset of Bp and the order into which the subsets are
chosen do not affect its value.

Next, we show that if there are two different sets of pla-
quettes {p1,...,pm}t C Bp and {q1,...,qx} C Bp such
that aPr @ --- @ aP™ = a® & - - - @ a%, where it is under-
stood that the configurations are equal on Conn(P) (as
opposed to the whole lattice), then Algorithm 1 ensures
that Fp(fea aPL @ - - @ abr) = FP(Z@ an @ - @aim),
for any configurations Z(and for configuration idal as
well). This is a simple consequence of Lemma B2, which

tells us that 0p (7, p1s ..., pm) = 0p(i,q1, .., qr), and of
the way that the Fp functions are built;
Fp(i@a" @---®aP) = 0p(i,p1, .- ., pm)Fp (i)
=0p(@,q1,. ... a1)Fp()
=Fp(i®at @ @am).

Lemma 4. Let Fp be a function determined by Algo-
rithm 1. Then Fp simultaneously satisfies all the con-
straints (22).

Proof. Consider an arbitrary configuration i for which
the value of Fp(i) has been determined using Algorithm
1. Two possible cases need to be analyzed:

1. If 7 is one of the configuration picked to set an un-
known value of Fp(i), then we find that for any
plaquette p,

bp(i & aP)

Fp(i®a?) = P (i), (B4)

by definition of 6p.

2. If i is not one of the configurations picked, then
there is another configuration i’ which was picked
as a class representative and a set of plaquettes
{p1,...,pm} C Bp such thati =i GaP @ -parm.
For any plaquette p, according to Algorithm 1, we
find that

-

FP(Z@) 073'(7p1;--'apmap)
P(Z) 073(ap17~"7pm)

(B5)

By using definition (24), we find

Gp(y,pl,...,pm,p) B bp(;’ Qar @---@arm @ar)
9p(§77p17...,pm) bp(f/@o‘;m @@ arm)
_bliea”)
by ()

We thus have that in both cases, all the constraints (22)
are satisfied.
O

Dl

Lemma 5. (canonical strings) Fp(i ® @7) = [Fp(i
for any string configuration i if and only if [S;]2 =1.

Proof. Explicit calculation of [S}]? gives

[P = 11er > Fr@il
ieP String conf. 7
x| ILed > Fp@N) @

iveP String conf. i

Y Fr@liead”)ied”

String conf. 7

<

String conf. 7/

P>

String conf. i

-,

Fp (@)@

Fp(i® a”)Fp(i)|i){i-

Clearly, Fp(i @ aP) = [Fp(i)]* implies that [S5]? = 1,
since Fp (i) is a complex number lying on the unit circle.
On the other hand, [S$]? = 1 implies that Fp(i)Fp(i @
aP) = 1, which means that Fp(i & @) = [Fp(i)]*, once
again because Fp (i) is a complex number lying on the
unit circle.

O

Lemma 6. (canonical strings) [S4]T = S if and only

if Fp(i® aP) = [Fp(i)]* for any configuration i.
Proof. Explicit calculation of [S}]T gives

[sp1f = > @@l] ot

String conf. i €P

> F@ [[[ef) DGl []of

String conf. 7 JEP 1€P

[[or > FOrlied”)ied”|

i€P String conf. i

Suppose that [S;E]T = S;;. In that case, it is clear that
[Fp(i)]* = Fp(i®ad”). ~

It is also clear that [Fp(i)]* = Fp(i®a”) implies that
[Sp11 = S5 O

12

Lemma 7. (canonical strings) Suppose that for any set
of plaquettes {p1,pa,...,pm} C Bp and for a string con-
figuration i, we have that Fp(;@ aPt @ - @ arm) =
0p(i,p1, ..., Pm)Fp(i) and Fp(i®dP @ar @---@arm) =
ep(i@&P,pl,...7pm)Fp(i@&P). If FP(Z@&P) =
[Fp(i)]*, then for any set of plaquettes {q1,...,qx} C Bp,
we have that Fp(i®a? @a" @---@a%) = [Fp(i®d” @
B &qk)]*'
Proof. By hypothesis, we have that
Pp(i®a”) = 0p(i,q1) Fp (i), (B6)

as well as

Fr(fod® @a") = 0p(i,)] ' Fp(i®a®), (BT)

where we took advantage of the fact that 0p (Z@&P, q1) =

[0p(7,q1)] 7", as is clear from Eq. (21).
Using the fact that Fp(i®a”) = [Fp(i)]* in Eq. (B6),

we find
[Fp@i®a”)]" = [0p(i,q)] Fp(i®a”)
Fo(idal @an . B8
_Fpliedredh) ao &m).()
Fp(i®aP)

Since Fp lies on the unit circle, we find that

Fp(i®ad® @ at)Fp(i®ah) =1, (B9)
which in turn implies that
Fp(i®af @an) =[Fp(i ®an))*. (B10)

The same reasoning can be recursively employed to show
that

Fp(iodPod" @ - -©at) = [Fp(i®at @---@aw)]*.
(B11)
O

Lemma 8. (canonical strings) Let Fp be a function
determined by Algorithm 1. If the phases e are as-
signed to the class representatives i in such a way that

Fp(i) = [Fp(i® aP)]*, then Fp simultaneously satisfies
all the constraints in Eq. (21).

Proof. As it was done before, two possible cases are con-
sidered.

1. If i is one of the configuration picked as a class
representative to set the value of Fp(i), then we

trivially have that Fp(i ® @) = [Fp(7)]*.

2. If 7 is not one of the configurations picked, then
once again we find that i =/ @ aPr & --- & aPm, as
mentioned above.

We find

FpiaaP)=Fp(@ ®@a’ @a” &---@a’m). (B12)

Using Algorithm 1, we find that

m
FP(?@&M) ZGP(?7P17--~7P7rL)F%(?)a
j=1
m
F’p(ll @&’P@&P]) _

0p(7' ®a%,p1,...,pm) P (7 @ aP).
Since all the conditions of Lemma 7 are satisfied,
we have that

P ®dal @dan @---@arm)
= [Fpl@a™ @ &))"

—

— [P ()]

(B13)

2. Proof of Theorem 1

Given all the previous technical results, it is straight-
forward to give the proof of Theorem 1, which we restate
here for ease of reading:

Theorem 1. Let P be a path. Any function Fp defined
by Algorithm 1 is such that S% s a string operator. Fur-
thermore, it is possible to choose the phases e**") such
that the string operator is canonical.

Proof. First note that according to Lemma 3, Fp is well-
defined. By construction, Fp» has non-trivial support
only in Conn(P), thus any operator S% built from it sat-
isfies condition (7). Furthermore, Lemma 4 states that
S satisfies conditions (22). We thus have that condi-
tion (7) is satisfied as well, proving that S% is a string
operator.

In order to show that it is always possible to choose the
phases ei*()’s 50 that S% is canonical, we must consider
two cases, depending on whether P is open or close.

Suppose first that the path P is open. In that case, we
have that configurations 7 and i ® &” are in two distinct
configuration classes. Given the class representative i for
which we set Fp(i) = e'?, we simply pick class represen-
tative i a” as representative for its corresponding class,
and set Fp(i ® a¥) = e 9.

J

13

If P is close, then we find that i and i®a” be
long to the same class of configurations, since there ex-
ists a set of plaquettes {pi,...,pm} C Bp such that on

Conn(P), i® a7 =i®a" @--- & aPm. Setting Fp (i)
(05 (7, p1s ., pm)] "2, we find that Fp(i ® a¥) = [Fp*.

In both cases, we can use Lemma 8 to find that all con-
straints of Eq. (21) are fulfilled and therefore, conditions
(ii1) and (iv) are also satisfied.

O

3. Consistency of the probability of measuring an
excitation configuration

The decomposition of Xp in terms of string operators
given by Eq. (31) is not unique given that in Algorithm 1,
we are free to choose different initial phases for the var-
ious class representatives. However, we show here that
the probabilities associated with finding a given excita-
tion pattern after the application Xp are insensitive to
those initial phases. For simplicity, we assume that P is a
single non-overlapping and non-crossing open path. The
arguments below generalize in a straightforward manner
to the case where we need to consider P = P1# ... #Pn,
for some m > 1. First note that

DA =TT50+ 0%, (B

2

, (). We can thus write Fp(7)|i)(i] =
>.p, CP. ()P, where P, are all the possible Pauli oper-
ators acting on the qubits in Conn(P) and composed of
0% and identities only, and where ¢p_(7) are complex co-
efficients given by Eq. (B14) multiplied by Fp (;) Given
Fp differing of Fp by the choice of phases associated
with the different class representatives, we have that
Ep(D)|i)(i] = >.p. CP. (f)ei“”(;)Pz, where j is the repre-
sentative of the configuration class into which Zbelongs7
and ¢(7) is the phase difference used between Fp and Fp
to initialize Algorithm 1.

We define the orthonormal basis {|L, C')} where C' la-
bels the vertex and flux excitations configuration while
L is a label for the 49 degenerate states corresponding
to a given configuration. The probability of the transi-
tion |L,C) — |L’,C") caused by the application of Xp is
given by

where i = (a4, ...

P(IL.C) —» |L',C") = (L. TS5 S S Y e (e D P.|L,C)?

j iecp(y) =

=2 2

ieCp (i) P st. |

z

=

> ¢ (Dep: ()eieD=20). (B15)

73" i€Cp(f) P st [(L,C'|SP-|L,C)|=1
(L',C"|SLPLIL,C) =1

Clearly, P, and P, share the same endpoints and belong to the same homological class, i.e. P, P, form a trivial closed

14

loop. Given the decomposition in Eq. (B14), we find that for j # j’

> b, Dep,(7) = 0. (B16)
P. st. [(L',C'|S}P.|L,C)|=1
P! s.t. |(L',C'|SEPL|L,CY=1

z

To see this, we rewrite Eq. (B16) as

> S e @ero. @), (B17)

P, s.t. |(L',C"|S$ P;|L,0)|=1 Q:C{Q.}

where {Q,} denotes the set of all subsets of products of charge operators associated with the vertices in path P. Noting

that since 7 and 7’ belongs to different configuration classes, there exists a vertex v/ such that cp, (7') = —cp..Q,,).
Using this last fact, we get

> Yo [er(Deroq. () + b (Der.q.0, (@), (B18)

P. s.t. [(L',C7|SEP.|L,C)|=1 Q-S{Q, \Q,/

which clearly equals 0.
The probability transition is thus given by

PLC) e =Y T S @en@eanpiLo, e
J 4,3’ €Cp (;) P, s.t. ‘(L/7C/|P2|ch>|
P! s.t. \(L’,C’|P2/|L,C>|

z

which is independent of the phases eie(d),

Appendix C: Topological properties of strings operators

Before presenting various technical results, we begin by precisely defining what we mean by crossing paths.

Definition 1. Let a path P = {e1,ea,...,en} be a sequence of edges such that edge e; connects vertices v;_1 to v;. If
Vo = Un, we say that the path P is closed; otherwise it is open. If there exists 0 < i <mn and j #1, 0 < j <n such
that v; = v; in the sequence of vertices it contains, vp = {vg,v1,...,Un}, then P is said to be self-crossing. If there
erists a plaquette containing two or more vertices of vp that cannot form a single consecutive sequence, then path P
is said to be self-overlapping. Note that the notions of self-overlapping and self-crossing do not imply each other (see
Fig. 5).

Definition 2. Consider two paths P = {el,...,el} and Q = {e2,...,e2} connecting vertices {vf,...,vF} and
{UOQ, e Q} respectively. Consider a sequence of edges in common of both paths P and Q, and consider the largest
(posszbly empty) such sequence (supposing for now that it is umque) Epo = {ef = eJQ,... el] = eQ} (with both
sequences ordered in increasing order of szmplzczty ie. i > i and j' > j) connecting the common vertices in P and

Q, denoted by Ap g = Wl = vj%l, e ,v? =v; } Consider the following properties :

i) (in the case where both paths open) none of the vertices v}, vl ’UOQ and vn, are in Ap g,

i) (in the case where one path is open (P), the other is closed (Q)) none of the vertices v} and v} are in Ap, g,

ii) both pairs of edges (el |,]Q 1) and (ef+1,ejg,+1) have the same relative orientation, i.e., clockwise or counter-
clockwise.

If condition i) is satisfied, we say that paths P and Q cross over the edges Ep o. Note that for the case of two closed
paths, we always say that they cross. If condition (ii) is not satisfied (including the case where Ep o is the empty
set), we say that P and Q cross 0 times, otherwise we say that paths P and Q cross once. Finally, if there is more
than one pair of sequences E;D’Q and A%;)Q where i runs from 1 through m which all satisfy conditions i), we say that

paths P and Q cross. For all the regions E;;’Q, cey E;)’”'Q and A;}’Q, cey A;;”'Q for which i) is satisfied, with m' < m,
we say that paths P and Q cross over the relevant region, and we additionally say that paths P and Q cross m’ times.
See Fig. 9 for explicit examples.

15

(d)

FIG. 9. Example of two open paths P and Q which, according to criteria i) of Definition 2 are crossing over the edge
Ep,o = {e] =ef}(a), as well as paths P and Q' which are not crossing (b), since path Q contains vertex v§ . The two open
paths P and Q cross 0 times in (c), according to criteria 4z), while they cross once in (d). The arrows indicate the relative
orientation among the strings.

Note that in the previous definition, paths P and Q can be formed of smaller paths, i.e., P = P1#...#P,, and
Q = Q1#...#Q,. Notice that when P and Q cross, we may define a reference frame such that one of the paths
plays the role of the horizontal and the other the vertical. In the following, we consider that path P is the horizontal
and Q the vertical.

It is useful to define B! = {pleft, ... plef) the set of plaquettes in Bp such that @ arm = a9

P 1 > yPm I
when restricted to Conn(P) and containing the left-most plaquette of Bp. In a complementary way, we define
B%’right = Bp\Bg’IEﬁ. In a similar way, Bg’up and Bg‘down can be defined for a suitable path Q. The nomenclature
of left vs right is an arbitrary choice (just as is the case for up vs down).

Note that we implicitly used the fact that paths P and Q cross, are open, and that they are not self-overlapping nor
self-crossing in the above definition. If it were not the case, then it would not be possible to find a set of plaquettes
such that the associated configuration corresponds to the configuration of the other path on its connected region.

Furthermore, for a general path P = P14 ... #P,, with every path {P;} open, not self-crossing nor self-overlapping,
but for which it is not necessarily true for the whole path P, and for a path Q such that P and Q are crossing, it is
always possible to similarly define Bgi’left (right) for § € {1,...,m}.

Consider two crossing paths P = P1# ... #Pp, and Q = O1# ... #09,, such that every individual path P; and Q; is
open, is not self-crossing nor self-overlapping, and we are interested in computing the commutation relations between
S;l 4 4p, and 851 4. 40, Explicit calculations give

i'—1

m 1—1 n
ShopwrSovw.na, = 1ot Il os > IIFnGea@a™) [] Fo, (P a)lia, (o)
j=1 i'=1

i€P jeQ string conf. 7 ¢=1 j'=1

where the product over the small strings are taken in the reverse order, and where the string configurations are
considered over the whole system.
Similarly computing the product of the string operators in the reverse order, we get

m i—1 n i —1
SonoShpr, = 1ot I o5 > IIFn G] Fo, (e a® P a>)ia. (o2
eP JjeQ string conf. 71=1 Jj=1 i'=1 Jj'=1

Considering Eq. (C1) and (C2), we define the quantity

R @ [, Fr, (o a® @izt @) i, Fo, (@24 a%)
P1#t H# P, Q1 #Qn = T Fo, i
[[i2, Fr,(i @;:1 abi)Ilh_, Fo,(i®aP @;/:1)

. (C3)

which gives the commutation relations between S;l w4 up, and SJer 4. 40, -The quantity defined in Eq. (C3) is

independent on the specific string configuration 7, which is shown in Lemma 9 and 10, and that it does not depend
on the specific way that the paths P and Q are partitioned in the smaller paths {P;} and {Q;}, as long as those are
not self-crossing nor self-overlapping. It can also be shown that if paths P and Q are transformed to paths P’ and Q’

16

using a series of elongations, reductions and valid deformations such that none of the elementary step makes a path
crossing an endpoint of the other path, then we find Rp g = Rp,o/. This is done in Lemmas 11 through 15 as well
as in Corollary 1. If paths P and Q cross an odd number of times, one can then proceed to transforms paths P and Q
to minimal configurations Ppin and Quin such that Rp o = Rp,,..0.... (see Fig. 12). Explicitly computing this last
quantity for a given string configuration yields Rp o = —1. If, on the other hand, P and Q cross an even number of
times, one can consider the deformed paths Py and Qg such that Rp o = Rp,,0, and such that Py and Qp supports
are disjoint, showing that Rp ¢ = +1. Remarkably, all those previous results are essentially due to the fact that the
plaquette operators commute and square to the identity.

1. Useful technical lemmas

Lemmas mentioned before are introduced here. They are necessary to show Theorem 2.

Lemma 9. Let {p},...,p! .} = 87%“" and {q{,...,qfﬂ} = Bg;bj with a; = left or a; = right and b; = up or
b; = down, as it is shown in Fig. 10. Then, Rp, 4. 4P, .01%..40, (1) can be written as:

m

- (
Rt @itttrn (1) = [| e
i=1 < j—l

R R 1 ~o0
- <Z€B;:1O‘QJ€B1€ 10‘qk|H 1 Bgi |Z®; , @%)

XH 2 T\ Q. nt —»q =0
i=1 <Z®j:10‘ ! |H] 1Bq |Z® 1 ¢ J>

i ari

m’ i P
j=1 j,l ars)

-

EBZ
;-

a'P
=1 7] (C4)

P,up : p
Qleft i . O, right
Bp : . o Bp
on pri P

>mm———
.

FIG. 10. An example of the structure of string operators S; and SJQr on crossing paths P and Q, shown in dark blue and red,

respectively. The various sets of plaquettes Bg left (right) and Bg’up (down) are presented in various matching colours. The edge
over which both paths P and Q are overlapping is circled by a dashed line.

Proof. We begin by considering the quantity

Fr. (0 a2 @, a7)

) (C5)

Fp,(i EB =1 L AP i)

which appears in Eq. (C3). Using the definition of B%ai, we find
Fp(foa® @ d™) Fp(®;L, d% @) d™) o)

i—1 - - i—1 —
FPi(l@j:1O‘P]) qu(69] 1O‘PJ)

17

Using the structure of the Fp, as defined by Algorithm 1 we find that there exists a configuration i’ and a set of

plaquettes {p/,...,p.,,} (possibly empty) such that ¢ @J 1 LaPi = @;n:,l &% when restricted to Conn(P;). We can
thus write
L =P - , _
(@Z) :epi(zlaplla'"ap;n/aplla"'apjﬂi)
pr(@; 110_27)) Hpi(i/7p/17""p’/rn’) (07)

= 6771(;71)37 e 7pini)7

where we made use of Eq. (24). Note that using Lemma 2, we are free to choose the values for a;=left/right and
bj=up/down, as we please. This will turn out to be very useful later on.
Using Eq. (24), we find

F;?(Z@ _'Q@ivil _’P") B <@; 104 JEBk 10‘pk|HJ 1Bp \Z@j 1627)>

+ /7 21_,73 - 2 ’Ll—»’p (08)
F’Pi(l®] 10[) <Z@ Jj= 1 Jj= 10[>
A similar reasoning holding for the quantity
i =1 =

Fg,(i@;_,a%)

+ i’—1 AQ) (09)
F3, (0 &L a%)

this completes the proof. O

The precedent lemma stipulates that prg(f) can be written in terms of the phases acquired by the product of the
plaquette operators of the plaquettes contained in B%’a and Bp’b, on the appropriate string configurations.

Lemma 10. The quantity Rp, 4. 4P, 01 #..#0, (;) is independent of the string configuration i

Proof. Consider an arbitrary edge e and its associated canonical string operator S, which we can always find according
to Theorem 1. Further let {pf{,...,p! .} = and {q{,...,¢;} = Pobs

Bgf“ Bg'” with a; = left or a; = right and b; = up
or b; = down, and which we are always free to choose according to Lemma 2. Using Lemma 9 and the fact that S

is canonical and therefore squares to one, the quantity Rp, 4. #p,.,0:14%...#0. (;) is given by

—

@ ﬁ <@; 1ap’@ apk|S+H—1B S+|Z@J L @)
Rpyst. P, Qi #Q, (1) = _
i=1 <Z®]=1 ars Oé”’flSJrH By 5+|Z€BJ 1 aPi)
Tmi—l 29; b gl 1
(i@, a% 69221 e H | B SHI@Z, @)
i=1 6@2:1 a2 @y, a% @ _, 4%)
(G, a7 D 1apk@oze|l_[] pr |z@; LaPi @ ae)
N1~ 1=
i=1 \ 69; el Gakﬂ ark @ ael Hj:l By i ; ari @ ae)
1 - i - ¢ 2 Ni—1 0. o =
xﬁ <Z@; 1aQJ@ aqk@ae|H?13iZ ;1aQJ@ae>
21\ (D=, a9 @i, @t @ a| [}, Bylidj—, 4% @ a°)
ﬁ F.(i @), a7 D, 7 & d)F, <fea;’ L d7)
i=1 Feu@;;ll &Pj)Fe(Z@l . ari @k 1Oép" EBOKP)
o[B a% @i, at @ a) P @) %)
i=1 Fe(i @:j:l O_ZQJ)FC(Z @;:1 d’QJ @221 O_qulc D d’e)

(C10)

18

Carefully looking at the right-hand side of the equality, we find that

Rpy .. P, Qi #00 (1) = Ry gt P, Q1 . 40, (1 D A°)
] [E0@m ™ i, ¥ & a) (i), 3™)
X -
1 - i—1 ->p. g
o \ Fe(@ EB; 1 QP9 Fe(i @;‘:1 ari @ps, ark @ a) (C11)

- i—1 —0O. LS N - i—1 —0O.

p (FE@m A @i v e a6
i1 \Fe(i@), %) Fe(i@)_, A% @)_, a% a°)

Note that it is always pObbib]e to choose the a;’s and the b;’s so that, in case of need, we can add some addi-

tional plaquettes in BQ “ and B b3 respectively without affecting R'pl# #Pon, 014 #0,, (0) in order to have that on

Conn({e}), we find G DD asz = a2 for any 4, and A% @ - B dhi = &P for any j. Using this, we find

ﬁ F(i@)_, d @, av o d)F, (ZEBE 1 67)
i=1 Fe(’@j:l aP])FE(Z®j 18P L, vk @ ae)
FO@)1 6% @, a% 0) R0 @, a2)

-

X H 2 N =0 - 7 =0, nt —qi e (C12)
i1\ Fe(iDj_, a '7)F6(Z®j:1a i Py A B a°)

J
Fe(i@o_ﬂ)@a @0&)Fe(;@éﬂj) % F(Z@a b a)Fe(;)
F.()F.(i® a2 & ae) F.(i®a)F.(i® a? @ aP @ a)

=1

)

-,

where we used that F,(i’ & @°) = [F.(')] " for any string configuration ', since S is canonical.

O

Lemma 11. Let P = Pl#...,#PZ-#PZH# HPn and Q = O1# ... #0O, be two crossing paths. For any i €
. L Pz 7 i

{1,...,m—1}, we denote P; = {e}",... e ep, ‘} we define P;™ = {el,... eﬁ, €1 Y, tP = {e 11|,ef ,...,eﬁm},

and similarly for P, and ~'P;, this time removing the first or last edge, depending on the case. If the paths 'PijE and
i’PH_l are not self-overlapping nor self-crossing, we have that

Rpy st P AP #e #P Qi # # Q. = Rpl#...#Pj#f7>1¢+1#...#73m,91#...#gn

:R (C13)

Pr#t . HP; #TPigr#t H#Pm, Qu# . #Qn"

+1

Proof. Consider the edge efi and the corresponding canonical string operator, written as SJ7. We then have that

m (@), 67 DLy ark|[SF] H"’_ By [ST10 1@, a7)

Roputt Pt Posrtho P @1 #20 = | |

i ([a™ ;- pk|[5+] wit T2 By [SE et [{ @2, aP) -

n ‘-’ i—1 =9, n' i - i—1 ~Q; ()
H @j 1 « @k 1 & qi |Z @] 1 « >
X ﬂ -)
=1 (16D 10‘Q7®k =1 @ i)

We thus get

Rt HPott Posr#e H P Qu#e H Qs = P i 4 PE o Po s #s # Py Q1 #r Q0

F.((@_, aP)F.(id] aP ea::”l ark @ a°) (C15)

Fe(;@j QP)Fe(;@g ar @y, A @ ar)
As in the reasoning of the proof of Lemma 10, we used our freedom to add some plaquettes to Bgf’” and B% i’;*l, SO
that we have BQ e C Bg;am and B_Q ’a””“ C Bg’aerl Additionally, when can choose them such that when restricted

to Conn({e}), we have that @Zil o'Zpk b Trl ari’ = Q. We thus find that

19

RPyth . Pt Pair o P Qb # Q. = Ropy i Pt o= Pyt P, Qudr O (C16)

A similar reasoning shows that

RPl#‘..#Px#mﬂ#...P,,L,Ql#...#gn = RPI#A..#p; HE Py # HPm, Q1 #.. #Q," (017)
O

Corollary 1. Let P = P1# ... #Py, and Q = Q1# ... #Q,, be two crossing paths. For any i € {1,...,n — 1}, we
have that
Ryt P Qe QA Qi1 e #e Qi = Ropy s 4P Qutt H O A Qi1 #h A0

:R (C18)

Pr#t . HPm, Q. H#HQ, #T Qi1 #.. #Qn"
Proof. To see that Eq. (C18) holds, it suffices to use the same reasoning than in Lemma 11, this time for the appropriate
path Q.. O

Given the fact that the quantity Rp, 4. 4P, 0,%..#0, is insensitive to the specific decomposition of the paths P
and @ as long as they are composed of simple paths which are not self-crossing nor self-overlapping, from now on we
will simply write Rp o.

Lemma 12. Consider the paths P, P' = Po#P#Pmi1, Q and Q' = Qo#Q#Qni1, such that P and Q are crossing,
and such that Py, Pmy1 do not contain edges in Conn(Q'), as well as Qo, Qni1 do not contain edges in Conn(P’).
Then, we have that

Rpq = R o (C19)
Proof. We begin by considering Rp,#p,0, given by

(D @™ ea’”’l il H;-”Z B, |fea’i a7
Rp,#p,0 = H <ﬂ®

«
&Qj @ j 1
-1 a J@k p G |Hnl

Inserting [574;0]2 at various appropriate locations, with S;O a canonical string operator, and rearranging the terms, we
find

Jl JO

(C20)

n (D)
HfEB

i=1

i
Jj=

o @ Bl H;"Z Bylf o &7 @13
0T]1 @)

s 3 1—1 S0,
Z@j 10‘QJ @k POH'f B?S |Z@j710‘Q3>

— - (C21)
iP;_, a% @k:1 ot H 1By S+ |Z€BJ 1 G99)
} Goa @, are|sh T ‘B 05, |z€9 aPo)
(D, @ TT7%, Byoli)
Using the structure of S;O, we find that
n (e d™ @, B, I Bylie d™ @), a™)
RPO#P Q :H > =P i—1 » —P P
1 ieadr P, a ’@k 1“’“‘HJ 1Bp |Z@O‘O®] 1O">
n T i—1 : _ —~1 -0.
y H (i @aPe €Bj=1 j:l g |z @ qPo Eszl @) (C22)
=1 (i@ aro EB; 1 Q9 ?:1 aro @;:1 ai)
- i i . m
Fp, D} _, @% & aPo)Fp (i . .
Po(@k_l) 7’0() F’PO(Z ® aPo)FPO(api’.,)_

Fp,(i® @2 @j_, a% @ @70) Pp, (7 ® a°) =

20

Since we have that Py N Conn(Q) = () and since paths P and Q are crossing, we find that for any string configuration
i, Fp,(i' ® @2) = Fp,(i'). We thus conclude that

0

F. Y9 @ aP0)Fp, (i i
Po(@k 1o b a) (i) . FPO(® aPo)Ep, (@ —p (C23)
Fp,(i®a® @k:1 @t @ @P0) Fp, (i ® d2) k=1

Furthermore, using Lemma 10, we see that

m z@apo@

o By aP)

693»:11 ars)
" <f@ aro @;;i &% Py, at| szl Bq_;. ied™ @) a%) (C24)
S {ear @ a% @ an T, Byli®aPo @j_, a%)

=Rpr.o

Jj= 1

i=1 j= =1

X

A similar reasoning allows one to add the remaining paths Pp,+1, Qo and Q,, 41, to finally find that
Rpror = Rp,o. (C25)
O

Lemma 13. Let P = P1# ... #Py, and Q = Q14 ... #Q,, be two crossing paths. Assume further that path P is not
self-crossing. Consider a set of distinct paths {’Pg} differing from path P by a plaquette p, i.c., @F = @ﬂ aPh @ ap,
with the plaquette p not containing the vertices at the endpoint of path Q and such that every ’Pg is composed of non
self-overlapping nor self-crossing individual open paths. Then we have that Rp o = Hﬁ R”’S:Q

P Q

1

Q

,Pp

3

p
Pﬂz
FIG. 11. This illustration shows a specific example on path deformation. Three distinct paths ({Pgs,, Pg,, Pss }, in dark red)
are created by applying a plaquette p (in dark blue) to the original path P(dark red). Pis, , Pivy, Pibs are individual paths which

give the parts of path P that overlaps with plaquette p. Py, 4,77{;)5,77{,)6 are the individual paths which complete plaquette p
and are contained in the newly formed paths.

Proof. First notice that since paths P and Q cross, we have that paths Pg and Q also cross, since the set of paths
{Pg} and P differs only by a plaquette, which cannot change its endpoints, and since the plaquette p does not contain
the endpoints of path Q.

We can decompose the path P, of the plaquette in a series of small paths Py, # ... #Pp, with & < 6 which are
not self-overlapping nor self-crossing. Furthermore, using Lemma 11, we can assume without loss of generality that
the parts of path P that overlap with plaquette p are given by individuals paths P;, ,...,P;, , while the rest of the
plaquette is given by individual paths ’PéHl, e ,Pék (see Fig. 11). Note that the various individual paths Piy - B

Zhl

21

(as well as ’Pi’bH P,
one path, the path P must have at least two different sequences of individual paths in {Pibl e ,Pl-bl} such that they
are separated by some paths in {Pgbl Y ,P;bk }. Given the structure of a plaquette and of the connected region of
+1

a path, and using the fact that P is not self-crossing, we find that the resulting set of paths {Pg} is such that any
path in it does not contain any edge which is in the connected regions of the other ones.

For convenience, we denote the newly formed paths ’Pg = Psa1#...#Psms, and the corresponding paths
’P{,Hl ;++y Py, that are in Pj as {Pg iy ;.- s PBlis, }, appearing in order. Note that I’ < k — [, and its dependance on
£ has been omitted for the sake of clarity.

) need not be adjacent to each other. We note that in order for {’Pg } to contain more than

We begin by considering R;Jé which is given by

" <ﬂ@; s
'R,pﬁg: e
E@EB 1a

i 047; @'ml ~p

[z]H] 1B [79[1] |ZEB] 104PJ>
Pli— 1]1_[P[Pli— 1]] |Z®l 116273]>

ﬂ i—1 Q. n =q z 1 —» (026)
ﬁ @g 1O‘J@k:1ak|Bp(HJ 1 By B) %)
>< .
i ae @, atip, (117, 5,5,) 7@, 5%
where we have defined
1 for i <ip,,
+ +
574)-[2_] — 57’1-,,1 ...Spibj for iy, <i <idp,,,,J <l (C27)
+ + P
Spibl o Spibl for i >4,
and where B,, is the plaquette operator associated to plaquette p. We thus get
m <'L @7' =1 P] @ 71 p] j=1 @"P]>
R’P 0= H AT FE iy seening
7 =1 g@l_l j=1 ari EBZﬂ j= 1 o j=1 &Pj>
AU G {ibysmin, 3¢ {iny orevin, }
ﬁ @Z qu’EBk 1aqk€9a”|HJ 1 Byi B|’€B] 1OéQJ>
i (@), a% @), a% @ av| [T}, By Bp|zeaj:1 a%) (C28)

—

7j—1
X F’pibj (ioad” @ a @)sz ioa’ @ 7)
i=1

<.
Il
—

by(i @ &%)
by(i®aP ®aQ)’

where we have implicitly used our freedom in choosing the sets of plaquettes BQ @i B b5 and of adding plaquettes
if necessary without affecting the value of Rp g in order to have that on Conn(PibJ), we have that @Zil ark = a2
for any i € {1,. m} and for any j € {1,...,1}, and where we also have modified the set of plaquettes Bg;bj so that

P b .

on Conn(P,), @k) &% = &P for any j € {1,...,n} and such that Us Bg? Pid = Bg;b” U {p}.

We next introduce the various individual paths P{bl“ , leb and rearrange the terms in an appropriate order so
as to explicitly make appear the various P%’s. Note that in order to do so, we used the fact that the various paths do
not have support on the other path’s connected regions. We get

22

= B ;PP
» H ﬁ <Z@ +P[i] H;n=1 8. &[JTIZEB _ QR)
P,Q = 1 LpP B L B
5 \i=1 <Z@; 10‘73[“@21:1 ars 731’1 1]H Bﬁ”[]WGBJ 1O‘Pﬁ]>
X - ; . Bi Bi B ird i -0,
B i=1 <Z @;:l aQ] Z:l aqk H?:l qul ¢ @;:l aQJ>
2 2P o =0 mi—1 =Py -
X HFP%J-(’@“ BB) pwa”)
- i—1 =P -)
j=1 Pi, (1®aP @i, a) by(i @ a” @ a?)
where we have defined
1 for i <ig,
+ + : C_ ;
S+ ot = ‘5’7’/3 . "'SPﬂ,iﬁj forig, <i<ig, ,,j<l (C30)
+ + S
Sp, ny "'SP/a,i,;l for i >ig,,
and where we have {p; = BQ 0 {d) = Bgﬂ’i’bﬁ’i.
Under close inspection, it thus becomes clear that
b Fp, (0a”0a®@51d™)\ fear)
RP7Q :HR'PE; X H - > i—1 P —.*p —p ~0oN (031)
3 j=1 FPibj (i®aP Py a ™) by(t®a” & a°)

We first notice that since all the paths ’Pg and P cross with path O, we can define ng ={po1,---,P0,0}, aset of

plaquettes in Bp, such that on Conn(P;), we have that @;_; aP<i = a<. Using the same reasoning as in Lemma 9,
we find that

Wied) (el @l @I, B lied))
bp(i@aP? @a?) (o aP ©dP @), ares|[I7-, Byo,li @ aP @ aP»)’
On the other hand, we find that
P oalayy ! gP
[P o T aa @™
1 P -
j=1 FPib,(Z a @f 1 @ bi)
k - o _aP _,’P
H (i _p QP @J i=1Ppo,i ioa” @7 bi) (C33)
rd 1 —»’Pl 1 -P;
=1 (i@ P@ 1041)9’69] ble 1 Bpo.i 2 PEB?:M bi)
_ <Z ea” oad™ @i, are (I, Bypg . 10a" @ arv)
(i ®aP @i_, arei| 10—, Bpo.li @ aP) '
Putting Egs. (C31), (C32) and (C33) together, we conclude that
Rp.o = [[Res- (C34)

B

To finally conclude the proof, we remark that according to Lemma 11 we are free to modify the composition in
terms of individual paths of the various {Pg }’s as long as the their individual paths remain non self-overlapping nor
self-crossing. O

Lemma 14. Let P and Q be two crossing paths such that each of them is made of simple non self-overlapping nor
self-crossing open paths, and such that P is not self-crossing. If they cross an even number of times, then Rp g = 1.

23

Proof. The idea of the proof is to deform the path P using the results of Lemma 13, as well as path Q by some elongation
and reductions using Lemma 12, in order to get a set of paths {Psg} and path Q' such that Rp o = HB Rp,,0/, and
such that all of them are outside of Conn(Q’), thus implying that Rp, o = 1.

We first note that if P and Q@ do not have any edges in common, then they trivially commute, since by supposition
they are crossing each other. This implies that Rp o = 1.

Consider the case where P and Q have some edges in common. Suppose first that P and Q have a single contiguous
set of common edges, £. In that case, the path P can be sequentially deformed along the set of contiguous plaquettes
in Conn(Q) containing the edges in € as well as the two edges in P\E sharing vertices with the edges in £ in order to
give a new sets of paths {Pg}. Note that since P and Q cross 0 times, we can assume that none of the paths in {Ps}
contains edges in Conn(Q). If it is not the case, then we can use Lemma 12 to first find a shorter path @' such that
Rp,0 = Rp,o and for which it is true. By suitably choosing a decomposition of those plaquettes such that they are
non self-overlapping nor self-crossing, we can use Lemma 13, to find that Rp o =[] s Rpy0 =1

FIG. 12. The quantity Rp,o for 2 paths P and Q crossing an odd number of times is equal to Rp for the minimal

paths Pmin and Omin shown above.

min>Qmin

Suppose next that P and Q have two or more different contiguous sets of common edges {£;}. In that case, we
can deform P by a subset of plaquettes in Bg so as to form a single contiguous set of common edges £ such that
EUOE D Y, &, where §€ denotes the first and last edges in Q which are also in £, and such that all newly formed
paths {Ps} cross Q, where we have again chosen a suitable decomposition of the paths along the plaquettes. Again
using Lemma 13 and considering a shortened path Q' using Lemma 12 if necessary, we find that Rp o =[] 5 Rpy,0,
where one of the Ps’s have a single set of edges (£) in common with @', and where the other paths cross 0 times with
Q’. Since modifying the path P by a set of plaquettes cannot change the parity of the number of crossing, we have
that the former path crosses 0 times with Q' as well. By the previous reasoning, we thus find that Rp o = 1.

O

Lemma 15. Let P and Q be two crossing paths such that each of them is made of simple non self-overlapping nor
self-crossing open paths, and such that ‘P is not self-crossing. If they cross an odd number of times, then Rp g = —1.

Proof. The idea of the proof closely follows that of Lemma 14. We begin by sequentially deforming the path P into
a set of paths {Pg} such that all of them are crossing with path Q, and such that there is a single set of contiguous
edges between one of the path P, € {Ps} and Q, and such that Rp o = Hﬂ Rp,,o, where Q" may be a shortened
path of Q, as described in the proof of Lemma 14. Since any path Pg # P, crosses path Q' 0 times, we have that
Rp,,o =1 for 3 # 0. We thus have that Rp o = Rp, o'

In order to calculate Rp, o/, we note that we can first sequentially deform path P, as described previously so
that there is a single common edge between the two paths, and we can use Lemma 12 to bring the endpoints of
the two paths as close as possible in order to minimize the length of the paths. We thus find that computing Rp o
reduces to computing this quantity for a single minimal path configurations Ppi, and Qi illustrated in Fig. 12.
Explicit calculations using Eq. (C3) for a single underlying string configuration (Lemma 10 ensures that its value is
independent of the configuration), gives that Rp =—1.

min,@min

O

2. Proof of Theorem 2

Having introduced all previous technical lemmas, we are in a position to complete the demonstration of Theorem 2.

24

Theorem 2. Let P and Q be two paths crossing n times, composed of non self-overlapping nor self-crossing individual
open paths. We have that

(S S+]:Oifniseven

C35
{55,585} =0if n is odd. (035)

Proof. Consider first the case where path P is not self-crossing. Given the definition in Eq. (C3) of Rp, o, Lemma 14
shows that [S} S+] =0 if n is even, while Lemma 15 shows that {S}, S$ o) =01is nis odd.

Consider next the case where P is self-crossing. Using Lemma 11, we can always find paths Py,...,P,, for which
P = P1#...#P,,, such that none of those are self-crossing, with Rpl#n_#pm)g = Rp,o. Suppose that all those
paths cross with Q. Since S;l 4oaP,, = S;m . S+1, it suffices to know the commutation relations between every of
the operators S+1v cee S;m and 55. Since none of the corresponding paths are self-overlapping, the reasoning of the
above paragraph can be used to find the same result.

It may be impossible to decompose path P = P17 ... #P,, such that all of its components cross with Q. This
happens only in the case where some edges in path P appear at more than one position. In that case, suppose for
simplicity that path P = Pi# ... # P aH#PI1#PI1# - . #Poc1#PoF# Por17 ... #Pr can be decomposed such that
pahts P, = P, are the only ones with edges in common (possibly in reversed order). The following reasoning works
in the same way if there are more than a single pair of such paths. Consider the quantity

i <;®; 1 & J@k 10‘p
1-1;[1(@

" <®g R 10"“|HJ 1B

]H] 1B S+ |Z® _, %)
i—1 -
i—1] ij1 i P[i—1]|l®j 1 0F9)

i@, @)

]1a

=1l = e gy (C36)
iéé:llo <Z @j:1 ars @kzl aP| Hj:l i ‘Z @j:1 a%i)
X T _Fr (;@;71 aP @yL, v @ ™)
izt Ep, (;69; L oPi @ ek e &p’),
where
SH o ifi<i<o
Sh. =3P - C37
Pl { 1 otherwise. ()

Using Lemma 11, for any ¢ € {l,..., o} it is always possible to find a path decomposition and sets of plaquettes B%’ai

such that on Conn(P;), EBZLl aPk = @2. This can simply be achieved by taking individual paths of lenght 1 in the
decomposition of path P. We thus find that

ol P (i@, o @, ark @ a™)

: =1 (C38)
- i+1 _, i = ?
i Fp (i EB; RClER Y an' @ ar)
which, given Equation (C4), leads us to the conclusion that
Rpit P PAHP L #e B Po s HPo# Posr # HPm, Q = RoP1# H P # P e HPo 1 #Pos1 # # P, Q0 (C39)

To complete the proof, it suffices to notice that we can now apply the reasoning of the first two paragraphs of this
proof.
O

3. The need for path concatenation To answer this question, note that two string operators
S; and S; obtained by a different choice of phases in

i 1
Each time Algorithm 1 picks a configuration represen- Algorithm 1 are related through

tative Z, an initial phase must be chosen. All of these
choices yield valid string operators. One may wonder St = 57‘; Z e p,, (C40)

what is the physical difference between different choices. c€Cp

Se

FIG. 13. A closed string, S¢, and a positive-chirality open
string, Sg, where paths O and C cross once. @° can be written
in this particular example as & = @' @ - - - @ @PS, restricted
to Conn(C) . The multiplication of plaquettes inside C, i.e.,
By, ...Bp, is a negative-chirality string in Conn(C).

where Cp denotes the set of all configuration classes of
path P, P. = = [i)(i| is the projector on the states of
configuration class ¢, and e is an independent arbitrary
complex phase for every class configuration.
Equivalently, given a string operator S;;, we can ob-
tain another string operator S5 multiplying S by an
operator Sédual, where Cqual is a closed loop in the dual
lattice affecting only qubits in Conn(P). Since SZ, is
a loop, it may be expressed as a multiplication of vertex
operators (unless it is a non-trivial loop, which may hap-
pen for closed strings). Therefore S%' still commutes with
all plaquette and vertex operators and it is contained in
Conn(P), satisfying properties (i) and (ii). It is also pos-
sible to obtain another string operator multiplying S; by
a linear combination of S* operators on closed loops, i.e.,

St =85 (I+c(a%) S +c(a®)Sg, +...), (C4l)

where c(a¥

¢) are coeflicients associated with the closed-
string operator S¢ and Cy, ..., C,, are closed paths in the
dual lattice contained in Conn(P). For any two strings
generated by Algorithm 1 differing only in the choice of
initial phases, we can always find a relation of the form

given by Eq. (C41).

25

a. Closed-string operators

If we consider now a closed path, C, and we use Algo-
rithm 1 to find a closed-string operator, we will not find in
general a positive-chirality nor a negative-chirality string,
but some mixing of both. Physically, this is caused by
the fact that for a closed string there is no difference in
the pattern of plaquette violations between positive- and
negative-chirality strings, since there are no endpoints.
From Eq. (C41) we can see that starting from a positive-
chirality string, SC+ , it is possible to add S* operators
forming a loop which cannot be expressed as the prod-
uct of vertex operators (which we call a non trivial loop
in the remainder of the section) to the linear superpo-
sition. Once this is done, the resulting operator, S’c,
does not have a well-defined chirality. Remember, that
for an open string, we may obtain the negative-chirality
string by multiplying it by an open string S*, violating
the plaquettes at the endpoints. For closed strings we
may proceed analogously to obtain the opposite chirality
by multiplying by a non-trivial closed string SZ,. Since
we are multiplying Sg' by a linear combination of trivial
and non-trivial loops of S%, the chirality of S¢ is no longer
positive nor negative. Thus, we drop the ‘+’ superscript
in Sc.

The mixing of chiralities becomes apparent when com-
puting the commutator between a closed string, S¢, and
a positive-chirality open string, S(Jg , where paths C and
O cross once (see Fig. 13):

Roc = (i|[S5,Sc]li) =

where here [- -] is the commutator in the group sense,
ie., [g,h] = g~ 'h~'gh. In this case, notice that on
Conn(C), the configurations 7 and 7 @ @° do not belong
to the same class. Using Eq. (C40), it is thus clear that
Ro,c can be modified by selecting different phases to ini-
tialize F¢ in Algorithm 1.

[1] A.Yu. Kitaev, “Fault-tolerant quantum computation by
anyons,” Annals of Physics 303, 2 — 30 (2003).

[2] Eric Dennis, Alexei Kitaev, Andrew Landahl, and
John Preskill, “Topological quantum memory,” Journal
of Mathematical Physics 43, 4452-4505 (2002).

[3] S. B. Bravyi and A. Yu. Kitaev, “Quantum codes on a
lattice with boundary,” arXiv:quant-ph 9811052 (1998).

[4] H. Bombin and M. A. Martin-Delgado, “Topological
quantum distillation,” Phys. Rev. Lett. 97, 180501
(2006).

[5] H. Bombin and M. A. Martin-Delgado, “Topological

computation without braiding,” Phys. Rev. Lett. 98,
160502 (2007).

[6] H. Bombin and M. A. Martin-Delgado, “Homological er-
ror correction: Classical and quantum codes,” Journal of
Mathematical Physics 48, 052105 (2007).

[7] H. Bombin and M. A. Martin-Delgado, “Optimal re-
sources for topological two-dimensional stabilizer codes:
Comparative study,” Phys. Rev. A 76, 012305 (2007).

[8] Peter W. Shor, “Scheme for reducing decoherence in
quantum computer memory,” Phys. Rev. A 52, R2493—
R2496 (1995).

http://dx.doi.org/ 10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
https://arxiv.org/abs/quant-ph/9811052
http://dx.doi.org/ 10.1103/PhysRevLett.97.180501
http://dx.doi.org/ 10.1103/PhysRevLett.97.180501
http://dx.doi.org/ 10.1103/PhysRevLett.98.160502
http://dx.doi.org/ 10.1103/PhysRevLett.98.160502
http://dx.doi.org/10.1063/1.2731356
http://dx.doi.org/10.1063/1.2731356
http://dx.doi.org/10.1103/PhysRevA.76.012305
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevA.52.R2493

[9] A. M. Steane, “Error correcting codes in quantum the-
ory,” Phys. Rev. Lett. 77, 793-797 (1996).

[10] Peter W. Shor., “Fault-tolerant quantum computation,”
arXiv:quant-ph 9605011 (1996).

[11] W. Zurek. E. Knill, R. Laflamme, “Threshold accuracy
for quantum computation,” arXiv:quant-ph 9610011
(1996).

[12] A Yu Kitaev, “Quantum computations: algorithms and
error correction,” Russian Mathematical Surveys 52
(1997).

[13] Michael Ben-Or Dorit Aharonov, “Fault tolerant quan-
tum computation with constant error,” arXiv:quant-ph
9611025 (1996).

[14] M.A. Nielsen and LL. Chuang, Quantum Computa-
tion and Quantum Information (University Press, Cam-
bridge, 2000).

[15] A. Galindo and M. A. Martin-Delgado, “Information
and computation: Classical and quantum aspects,” Rev.
Mod. Phys. 74, 347-423 (2002).

[16] Michael A. Levin and Xiao-Gang Wen, “String-net con-
densation: A physical mechanism for topological phases,”
Phys. Rev. B 71, 045110 (2005).

[17] Michael Freedman, Chetan Nayak, Kirill Shtengel, Kevin
Walker, and Zhenghan Wang, “A class of p,t-invariant
topological phases of interacting electrons,” Annals of
Physics 310, 428 — 492 (2004).

[18] Michael H. Freeman and Matthew B. Hastings, “Dou-
ble semions in arbitrary dimension,” Communications in
Mathematical Physics 347, 389-419 (2016).

[19] Akira Furusaki, “Weyl points and Dirac lines protected
by multiple screw rotations,” Science Bulletin 62, 788 —
7994 (2017) .

[20] K. Li, Y. Wan, L.-Y. Hung, T. Lan, G. Long, D. Lu,
B. Zeng, and R. Laflamme, “Experimental Identification
of Non-Abelian Topological Orders on a Quantum Sim-
ulator,” Phys. Rev. Lett. 118, 080502 (2017) .

[21] Raza Syed, . Alexander Sirota, and Jeffrey C. Y. Teo
“From Dirac Semimetrals to Topological Phases in Three
Dimensions: A Coupled-Wire Construction,” Phys. Rev.
X 9, 011039 (2019).

[22] Oliver Buerschaper, Siddhardh C. Morampudi, and
Frank Pollmann, “Double semion phase in an exactly
solvable quantum dimer model on the kagome lattice,”
Phys. Rev. B 90, 195148 (2014).

[23] Siddhardh C. Morampudi, Curt von Keyserlingk, and
Frank Pollmann, “Numerical study of a transition be-
tween F 2 topologically ordered phases,” Phys. Rev. B
90, 035117 (2014).

[24] Romn Ors, Tzu-Chieh Wei, Oliver Buerschaper, and
Maarten Van den Nest, “Geometric entanglement in
topologically ordered states,” New Journal of Physics 16,
013015 (2014).

[25] Yang Qi, Zheng-Cheng Gu, and Hong Yao, “Double-
semion topological order from exactly solvable quantum
dimer models,” Phys. Rev. B 92, 155105 (2015).

[26] Andrej Mesaros and Ying Ran, “Classification of sym-
metry enriched topological phases with exactly solvable
models,” Phys. Rev. B 87, 155115 (2013).

[27] C. W. von Keyserlingk, F. J. Burnell, and S. H. Simon,
“Three-dimensional topological lattice models with sur-
face anyons,” Phys. Rev. B 87, 045107 (2013).

[28] A. R. Calderbank and Peter W. Shor, “Good quantum
error-correcting codes exist,” Phys. Rev. A 54, 1098-1105
(1996).

26

[29] Andrew Steane, “Multiple-particle interference and
quantum error correction,” Proceedings of the Royal So-
ciety of London A: Mathematical, Physical and Engineer-
ing Sciences 452, 2551-2577 (1996).

[30] J. Preskill, Lecture Notes for Physics 219: Quantum
Computation (2004).

[31] Barbara M. Terhal, “Quantum error correction for quan-
tum memories,” Rev. Mod. Phys. 87, 307-346 (2015).

[32] Daniel Gottesman, “Class of quantum error-correcting
codes saturating the quantum hamming bound,” Phys.
Rev. A 54, 1862-1868 (1996).

[33] Xiaotong Ni, Oliver Buerschaper, and Maarten Van den
Nest, “A non-commuting stabilizer formalism,” Journal
of Mathematical Physics 56, 052201 (2015).

[34] A.R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.
Sloane, “Quantum error correction and orthogonal geom-
etry,” Phys. Rev. Lett. 78, 405-408 (1997).

[35] Alexei Kitaev, “Anyons in an exactly solved model and
beyond,” Annals of Physics 321, 2 — 111 (2006), january
Special Issue.

[36] R. N. Pfeifer, O. Buerschaper, S. Trebst, A. W. W. Lud-
wig, M. Troyer, and G. Vidal, “Translation invariance,
topology, and protection of criticality un chains of inter-
acting anyons,” Phys. Rev. B, 155111 (2012).

[37] Nikio Nakahara, Geometry, Topology and Physics (Tay-
lor & Francis, 2003).

[38] H. Bombin and M. A. Martin-Delgado, “Homological er-
ror correction: Classical and quantum codes,” Journal of
Mathematical Physics 48, 052105 (2007).

[39] D. S. Wang, A. G. Fowler, A. M. Stephens, and L. C. L.
Hollenberg, “Threshold error rates for the toric and pla-
nar codes,” Quantum Info. Comput. 10, 456-469 (2010).

[40] Guillaume Duclos-Cianci and David Poulin, “Fast de-
coders for topological quantum codes,” Phys. Rev. Lett.
104, 050504 (2010).

[41] Sergey Bravyi and Jeongwan Haah, “Quantum self-
correction in the 3d cubic code model,” Phys. Rev. Lett.
111, 200501 (2013).

[42] Austin G. Fowler, Adam C. Whiteside, and Lloyd C. L.
Hollenberg, “Towards practical classical processing for
the surface code,” Phys. Rev. Lett. 108, 180501 (2012).

[43] Hussain Anwar, Benjamin J Brown, Earl T Campbell,
and Dan E Browne, “Fast decoders for qudit topological
codes,” New Journal of Physics 16, 063038 (2014).

[44] Nicolas Delfosse and Gilles Zmor, “Linear-time maximum
likelihood decoding of surface codes over the quantum
erasure channel,” arXiv:quant-ph 1703.01517 (2017).

[45] Nicolas Delfosse and Naomi H. Nickerson, “Almost-
linear time decoding algorithm for topological codes,”
arXiv:quant-ph 1709.06218 (2017).

[46] Nishad Maskara, Aleksander Kubica, and Tomas
Jochym-O’Connor, “Advantages of versatile neural-
network decoding for topological codes,” arXiv:quant-ph
1802.08680 (2018).

[47) Aleksander Kubica and John Preskill, “Cellular-
automaton decoders with provable thresholds for topo-
logical codes,” arXiv:quant-ph 1809.10145 (2018).

[48] Michael Herold, Earl T Campbell, Jens Eisert, and
Michael J Kastoryano, “Cellular-automaton decoders for
topological quantum memories,” Npj Quantum Informa-
tion 1, 15010 EP — (2015).

[49] James Wootton, “A simple decoder for topological
codes,” Entropy 17, 19461957 (2015).

[50] Pradeep Sarvepalli and Robert Raussendorf, “Efficient

http://dx.doi.org/10.1103/PhysRevLett.77.793
https://arxiv.org/abs/quant-ph/9605011
https://arxiv.org/abs/quant-ph/9610011
https://arxiv.org/abs/quant-ph/9610011
http://iopscience.iop.org/article/10.1070/RM1997v052n06ABEH002155/meta
http://iopscience.iop.org/article/10.1070/RM1997v052n06ABEH002155/meta
https://arxiv.org/abs/quant-ph/9611025
https://arxiv.org/abs/quant-ph/9611025
http://dx.doi.org/10.1103/RevModPhys.74.347
http://dx.doi.org/10.1103/RevModPhys.74.347
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1016/j.aop.2004.01.006
http://dx.doi.org/10.1016/j.aop.2004.01.006
https://link.springer.com/article/10.1007%2Fs00220-016-2604-0
https://link.springer.com/article/10.1007%2Fs00220-016-2604-0
http://dx.doi.org/10.1016/j.scib.2017.05.014
http://dx.doi.org/10.1016/j.scib.2017.05.014
http://dx.doi.org/10.1103/PhysRevLett.118.080502
http://dx.doi.org/10.1103/PhysRevX.9.011039
http://dx.doi.org/10.1103/PhysRevX.9.011039
http://dx.doi.org/10.1103/PhysRevB.90.195148
http://dx.doi.org/10.1103/PhysRevB.90.035117
http://dx.doi.org/10.1103/PhysRevB.90.035117
http://stacks.iop.org/1367-2630/16/i=1/a=013015
http://stacks.iop.org/1367-2630/16/i=1/a=013015
http://dx.doi.org/ 10.1103/PhysRevB.92.155105
http://dx.doi.org/10.1103/PhysRevB.87.155115
http://dx.doi.org/ 10.1103/PhysRevB.87.045107
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1098/rspa.1996.0136
http://dx.doi.org/10.1098/rspa.1996.0136
http://dx.doi.org/10.1098/rspa.1996.0136
http://www.theory.caltech.edu/~preskill/ph219/topological.pdf
http://www.theory.caltech.edu/~preskill/ph219/topological.pdf
http://dx.doi.org/ 10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/PhysRevA.54.1862
http://dx.doi.org/10.1103/PhysRevA.54.1862
http://dx.doi.org/ 10.1063/1.4920923
http://dx.doi.org/ 10.1063/1.4920923
http://dx.doi.org/10.1103/PhysRevLett.78.405
http://www.sciencedirect.com/science/article/pii/S0003491605002381
http://dx.doi.org/ 10.1103/PhysRevB.86.155111
http://dx.doi.org/10.1063/1.2731356
http://dx.doi.org/10.1063/1.2731356
http://dl.acm.org/citation.cfm?id=2011362.2011368
http://dx.doi.org/ 10.1103/PhysRevLett.104.050504
http://dx.doi.org/ 10.1103/PhysRevLett.104.050504
http://dx.doi.org/ 10.1103/PhysRevLett.111.200501
http://dx.doi.org/ 10.1103/PhysRevLett.111.200501
http://dx.doi.org/10.1103/PhysRevLett.108.180501
http://stacks.iop.org/1367-2630/16/i=6/a=063038
https://arxiv.org/abs/1703.01517
https://arxiv.org/abs/1709.06218
https://arxiv.org/abs/1802.08680
https://arxiv.org/abs/1802.08680
https://arxiv.org/abs/1809.10145
http://dx.doi.org/10.1038/npjqi.2015.10
http://dx.doi.org/10.1038/npjqi.2015.10
http://dx.doi.org/10.3390/e17041946

decoding of topological color codes,” Phys. Rev. A 85,
022317 (2012).

[61] J. Harrington, Analysis of quantum error-correcting

codes: symplectic lattice codes and toric codes (Ph.D

Thesis, Caltech, 2004).

Christopher Chamberland and Pooya Ronagh, “Deep

neural decoders for near term fault-tolerant experi-

ments,” Quantum Science and Technology 3, 044002

(2018).

[63] Michael Herold, Michael J Kastoryano, Earl T Campbell,
and Jens Eisert, “Cellular automaton decoders of topo-
logical quantum memories in the fault tolerant setting,”
New Journal of Physics 19, 063012 (2017).

[54] Guillaume Dauphinais and David Poulin, “Fault-tolerant
quantum error correction for non-abelian anyons,” Com-
munications in Mathematical Physics 355, 519-560
(2017).

[65] Ryan Sweke, Markus S. Kesselring, Evert P.L. van

Nieuwenburg, and Jens Eisert, “Reinforcement learn-

ing decoders for fault-tolerant quantum computation,”

arxiv:quant-ph 1810.07207 (2018).

Nikolas P. Breuckmann, Kasper Duivenvoorden, Do-

minik Michels, and Barbara M. Terhal, “Local decoders

for the 2d and 4d toric code,” Quantum Information and

Computation 17, 0181 (2017).

[57] Nikolas P. Breuckmann and Xiaotong Ni, “Scalable Neu-
ral Network Decoders for Higher Dimensional Quantum
Codes,” Quantum 2, 68 (2018).

[58] James R. Wootton and Daniel Loss, “High threshold er-
ror correction for the surface code,” Phys. Rev. Lett. 109,
160503 (2012).

[69] Adrian Hutter, James R. Wootton, and Daniel Loss,
“Efficient markov chain monte carlo algorithm for the
surface code,” Phys. Rev. A 89, 022326 (2014).

[60] Sergey Bravyi, Martin Suchara, and Alexander Vargo,
“Efficient algorithms for maximum likelihood decoding
in the surface code,” Phys. Rev. A 90, 032326 (2014).

[61] Andrew S. Darmawan and David Poulin, “Linear-time
general decoding algorithm for the surface code,” Phys.
Rev. E 97, 051302 (2018).

[62] H. Bombin, Ruben S. Andrist, Masayuki Ohzeki, Hel-
mut G. Katzgraber, and M. A. Martin-Delgado, “Strong
resilience of topological codes to depolarization,” Phys.
Rev. X 2, 021004 (2012).

[63] David K. Tuckett, Stephen D. Bartlett, and Steven T.
Flammia, “Ultrahigh error threshold for surface codes
with biased noise,” Phys. Rev. Lett. 120, 050505 (2018).

[64] Raymond Laflamme, Cesar Miquel, Juan Pablo Paz, and
Wojciech Hubert Zurek, “Perfect quantum error correct-
ing code,” Phys. Rev. Lett. 77, 198-201 (1996).

[65] David P. DiVincenzo and Peter W. Shor, “Fault-tolerant
error correction with efficient quantum codes,” Phys.
Rev. Lett. 77, 3260-3263 (1996).

[66] J. Preskill, “Fault-tolerant quantum computation,”
arXiv:quant-ph 9712048 (1997).

[67] Michael Levin and Zheng-Cheng Gu, “Braiding statistics
approach to symmetry-protected topological phases,”
Phys. Rev. B 86, 115109 (2012).

[68] L. Ortiz and M.A. Martin-Delgado, “A bilayer double
semion model with symmetry-enriched topological or-
der,” Annals of Physics 375, 193 — 226 (2016).

[69] Hao Song, Abhinav Prem, Sheng-Jie Huang, and M.A.
Martin-Delgado, “Twisted fracton models in three di-
mensions,” Phys. Rev. B 99, 155118 (2018)

[52

56

27

http://dx.doi.org/ 10.1103/PhysRevA.85.022317
http://dx.doi.org/ 10.1103/PhysRevA.85.022317
http://stacks.iop.org/2058-9565/3/i=4/a=044002
http://stacks.iop.org/2058-9565/3/i=4/a=044002
http://stacks.iop.org/1367-2630/19/i=6/a=063012
http://dx.doi.org/10.1007/s00220-017-2923-9
http://dx.doi.org/10.1007/s00220-017-2923-9
http://dx.doi.org/10.1007/s00220-017-2923-9
http://arxiv.org/pdf/1810.07207.pdf
https://arxiv.org/abs/1609.00510
https://arxiv.org/abs/1609.00510
http://dx.doi.org/10.22331/q-2018-05-24-68
http://dx.doi.org/ 10.1103/PhysRevLett.109.160503
http://dx.doi.org/ 10.1103/PhysRevLett.109.160503
http://dx.doi.org/ 10.1103/PhysRevA.89.022326
http://dx.doi.org/10.1103/PhysRevA.90.032326
http://dx.doi.org/10.1103/PhysRevE.97.051302
http://dx.doi.org/10.1103/PhysRevE.97.051302
http://dx.doi.org/ 10.1103/PhysRevX.2.021004
http://dx.doi.org/ 10.1103/PhysRevX.2.021004
http://dx.doi.org/10.1103/PhysRevLett.120.050505
http://dx.doi.org/ 10.1103/PhysRevLett.77.198
http://dx.doi.org/10.1103/PhysRevLett.77.3260
http://dx.doi.org/10.1103/PhysRevLett.77.3260
https://arxiv.org/abs/quant-ph/9712048
http://dx.doi.org/ 10.1103/PhysRevB.86.115109
http://www.sciencedirect.com/science/article/pii/S0003491616302093
http://dx.doi.org/10.1103/PhysRevB.99.155118

	 Quantum Error Correction with the Semion Code
	Abstract
	I Introduction
	A Summary of main results
	B Outline

	II Off-Shell double semion: microscopic model
	A Double semion model in the vertex-free subspace
	B Exactly solvable model in the whole Hilbert space

	III String operators
	A An algorithm to generate string operators
	1 Concatenation of open-string operators

	B Crossing string operators
	1 The need for path concatenation

	C Completeness of the string operators

	IV The semion code
	A Logical operators
	B Quantum error correction

	V Conclusions and outlook
	 Acknowledgments
	A Example of an open-string operator
	B Proofs regarding string operators produced by Algorithm 1
	1 Useful technical lemmas
	2 Proof of Theorem ??
	3 Consistency of the probability of measuring an excitation configuration

	C Topological properties of strings operators
	1 Useful technical lemmas
	2 Proof of Theorem ??
	3 The need for path concatenation
	a Closed-string operators

	 References

