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We present an alternative way of computing nonrelativistic single-particle spectra from holog-
raphy. To this end, we introduce a mass gap in a holographic Dirac semimetal and subsequently
study the nonrelativistic limit of the resulting spectral functions. We use this method to compute
the momentum distributions and the equation of state of our nonrelativistic fermions, of which the
latter can be used to extract all thermodynamic properties of the system. We find that our results
are universal and reproduce many experimentally and theoretically known features of an ultracold
Fermi gas at unitarity.
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Introduction.— Our understanding of ultracold Fermi
gases has significantly progressed over the past decade,
due to the fact that the s-wave scattering length, which
is the relevant measure for the strength of the interac-
tions in these systems, can be conveniently engineered
by tuning a magnetic field near a so-called Feshbach res-
onance [1, 2]. This allows for an accurate experimen-
tal analysis of ultracold gases in both the weakly and
strongly coupled regime [3–8]. A particularly interesting
situation occurs exactly at resonance, where the external
magnetic field is such that the scattering length diverges.
At this point collisions between the atoms are unitarity
limited and the system becomes almost scale invariant,
in the sense that the only length scale at zero temper-
ature is the average interatomic distance that is set by
the atomic density and diverges at zero density. Conse-
quently, the thermodynamic properties of the Fermi gas
become universal at unitarity [9].

Being strongly coupled, close to scale invariant and ex-
perimentally accessible, these ultracold gases at unitar-
ity present a benchmark problem for the application of
the holographic AdS/CFT correspondence, which aims
to describe a (possibly deformed) conformal field the-
ory (CFT) as a boundary property of a dual theory in a
curved spacetime with one more spatial dimension [10].
This correspondence was discovered within string the-
ory [11] and for condensed-matter physics has especially
had some successes in the application to emergent rela-
tivistic systems such as graphene [12, 13] and Weyl or
Dirac semimetals [14–21]. A common way to deal with
nonrelativistic systems in holography is to use instead of
an anti-de Sitter (AdS) spacetime background a so-called
Lifshitz background [22–26] as a gravitational dual with
a dynamical exponent z = 2. However, the fermionic
spectra obtained in this way are generally particle-hole
symmetric and without a mass gap. Hence for the de-
scription of an ultracold gas of massive atoms, a different
approach is needed. The purpose of this Letter is to pro-
vide this alternative approach to nonrelativistic hologra-
phy, which allows us to compute nonrelativistic single-
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FIG. 1. (color online) The universal equation of state ob-
tained for our nonrelativistic fermions with holographic in-
teractions. The atomic density n divided by the ideal Fermi
gas density nid is shown as a function of the chemical po-
tential times the inverse thermal energy βµ ≡ µ/kBT . For
comparison the inset shows the results of Refs. [28] (red) and
[29] (green). Note that our construction of the holographic
interactions depends on four dimensionless model parameters
that are introduced in the text below and that are not yet
fine-tuned to the experiments as these contain effects of the
inhomogeneity of the harmonically trapped gas and of the
phase transition to the superfluid state. The specific values
used are here the same as in Fig. 3.

particle spectra that can in principle be compared with
experiments. Our method uses as its starting point re-
sults for the dynamics of Dirac fermions from holography
[27], from which we can also obtain single-particle spec-
tra with a mass gap by introducing a mass deformation
in the CFT. The introduction of the mass gap allows
us to consider the nonrelativistic limit of such spectra,
where this mass scale, which contains the speed of light
c, is large compared to all the other energy scales in the
problem. Our most important finding below is that we
obtain a data collapse for the spectral functions in the
limit c → ∞, i.e., the spectral functions are universal
after an appropriate scaling with the chemical potential.

An important advantage of our procedure is that it al-
lows us to directly compare results obtained from a holo-
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graphic model with experimental data. Therefore, we
also extensively discuss the application of our method
to ultracold Fermi gases at unitarity. In particular, we
determine the equation of state from the single-particle
spectra, i.e., the density as a function of the chemical
potential and temperature, which is shown in Fig. 1
and from which all thermodynamic functions follow. The
equation of state can be directly compared with results
from experiments [28, 30–32] and from other theoretical
models that are based on for example quantum Monte-
Carlo methods [33, 34], the Luttinger-Ward formalism
[35], functional renormalization-group methods [36], or
more recently the complex Langevin model [29].

Holographic interactions.—To explain most clearly the
physical content of our approach, we consider a relativis-
tic Dirac fermion Ψ with bare mass M0 and chemical
potential µ0 that is linearly coupled to a strongly inter-
acting CFT through a fermionic operator O. Referring
to the supplemental material for our conventions in this
section on the units (mostly ~ = c = 1) and on the Dirac
theory in flat and curved spacetimes [37], the correspond-
ing grand-canonical action is

S =

∫

k

{
Ψ†γ0

(
− /K − iM0

)
Ψ + gΨ†O + gO†Ψ

}
+ SCFT,

(1)
with

∫
k
≡
∫

d4k/(2π)4, kµ = (−ω,k), /K = γµKµ, γµ
the gamma matrices, Kµ = (−ω − µ0,k), g a coupling
constant and SCFT the action of the deformed CFT con-
taining O. To make a connection with condensed-matter
physics, we think of the CFT as being formed out of
collective variables of the single fermion Ψ. From this
perspective, the operator O is then a composite operator
containing Ψ. The CFTs described by holographic mod-
els contain a large number of degrees of freedom N [11],
which implies that upon integrating out the CFT we can
write the retarded Green’s function for Ψ as

G−1R (ω,k) = −γ0
(
/K + iM0

)
− Σ(ω,k), (2)

with Σ(ω,k) ≡ g2GO(ω,k) the self-energy matrix for Ψ
that due to the implicit large-N limit only involves the
two-point function GO of O. The latter can be directly
obtained from the dictionary of the AdS/CFT correspon-
dence.

Technically, we obtain the above Green’s function GR
from a holographic dynamical-source model [15]. The
calculation of the Green’s function is then a two-step
process. The first step is to find the gravitational dual
of the CFT, also known as the bulk background, which
consists of a so-called asymptotically anti-de Sitter space-
time with an additional spatial coordinate r. Moreover,
to have a nonzero temperature T and chemical potential
µ0 in the CFT, we need to have a black-hole horizon at
r = r+ and a U(1) gauge field A = Atdt in the bulk
[14]. Finally, consistent with our above interpretation of
O, we need to introduce a mass deformation in the CFT.

(a) (b)

FIG. 2. (color online) (a) A typical bulk solution of the gauge
field At (blue) and the scalar field rφ (yellow). The latter is
multiplied by r so that its value at the boundary at r = ∞
gives the mass M0, up to the constant α = 4

√
3/π2 that is

derived in Ref. [27]. From the value of At at the boundary
we can read off the chemical potential divided by the charge
q. (b) The Witten diagram from which the self-energy for Ψ
follows. The dashed line gives the propagator GO, which fol-
lows from the propagation of the Dirac fermions in the curved
bulk spacetime.

This we achieve by adding also a real scalar field φ to
the gravity theory [16]. The gravitational background is
then found by simultaneously solving the Einstein equa-
tions, the Maxwell equations and the Klein-Gordon equa-
tion. Numerically, this is achieved by integrating the cou-
pled equations of motion for At(r), φ(r) and the metric
gMN (r), or equivalently the vielbeins eMN (r) [38], from
the horizon at r+ to the boundary at r = ∞, where the
CFT lives [39]. Here we use capital Roman indices in
the five-dimensional bulk spacetime, which, as opposed
to the Greek indices, include the radial r-direction. From
the boundary values of the solution we can then read off
the chemical potential and the massM0, as illustrated in
Fig. 2a, whereas the temperature is equal to the Hawking
temperature that follows from the behavior of the metric
at the horizon.

The second step is then to find the two-point function
GO, that according to the holographic dictionary follows
by having two Dirac spinors, which together contain the
degrees of freedom of Ψ and O, propagate on the gravita-
tional background found in the first step, as illustrated in
Fig. 2b. These spinors have bulk charge q under the U(1)
gauge field and bulk masses M and −M , respectively.
Furthermore, they are coupled to the scalar field φ by a
Yukawa coupling with strength λ, which is necessary to
provide a coupling between the chiral components of the
boundary spinor Ψ [27]. From the associated equations
of motion for these bulk fermions, we can then derive a
differential equation for the 4× 4 matrix Ξ, which is re-
lated to GO by GO(ω,k) = − limr→∞ r2Mγ0Ξ(r, ω,k).
This equation reads

−(err∂r+2M)Ξ+i
(
i /K + λφ

)
−iΞ

(
i /K − λφ

)
Ξ = 0, (3)
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FIG. 3. (color online) (a) Starting with a relativistic spectrum
with particle and antiparticle peaks, we obtain nonrelativis-
tic spectra by inspecting the nonrelativistic regime at small µ,
where the antiparticle peak decouples. (b) The spectral func-
tion at βµ = 2 and k = 6kF /5, for kBT/M0c

2 equal to 10−4

(blue), 2 · 10−4 (yellow), 3 · 10−4 (green), 5 · 10−4 (red) and
10−3 (purple). (c) The universal spectral functions at βµ = 2
for several values of k. For the curve corresponding to the left
peak, k = 0, and k increases by kF /5 for successive curves. In
both (b) and (c) we used {q,M, λ, g} = {1, 49/100,−3/4, 1/3}
[40], for which ~kF ' 2.1

√
µM0 and Z ' 0.3.

where now Kµ = (−ω − qAt,k) and /K = γνeµνKµ. It
is supplemented with the initial condition Ξ(r+) = iγ0,
corresponding to purely infalling conditions at the hori-
zon. Having solved Eq. (3), we find the spectral function
ρ(ω,k) = −Im[TrGR(ω,k)]/π of Ψ which depends on the
ratios kBT/M0c

2 and µ0/M0c
2 obtained from the gravita-

tional background, and additionally on the dimensionless
parameters q, M , λ and g involved in our construction of
the holographic interactions. We comment on the phys-
ical significance of these model parameters at the end of
the paper.

Nonrelativistic limit.— The above (semi)holographic
model yields relativistic spectral functions that obey the
frequency sum rule

∫
dωρ(ω,k) = 4 [41] and thus contain

both particle and antiparticle peaks, separated by a gap
proportional to M0c

2 [27]. The introduction of this mass
scale allows us to inspect the nonrelativistic limit by con-
sidering temperatures and chemical potentials that are
small compared to this scale. For this, however, we first
need a suitable definition of the nonrelativistic chemical
potential µ, which differs from µ0 defined above as in the
limit c → ∞ we want to measure the chemical potential
with respect to the bottom of the particle band as illus-
trated in Fig. 3a. Hence, when µ = T = 0 we expect a
delta peak at (ω,k) = (0,0). Defining µ∗0 as the value

of µ0 at which this occurs, the nonrelativistic chemical
potential µ is then proportional to µ0 − µ∗0.

Moreover, for a genuine nonrelativistic spectrum, we
should observe that in the regime where ~ω and ~ck are
small compared toM0c

2, the spectral functions no longer
depend on the energy scale M0c

2. Another way of say-
ing this is that the spectra should only depend on the
ratio βµ rather than on kBT/M0c

2 and µ/M0c
2 sepa-

rately. An obvious strategy to find such spectra is there-
fore to analyze spectral functions for several small values
of T and µ, keeping the ratio βµ fixed. Our numeri-
cal data shown in Fig. 3b reveals that we can indeed
find a data collapse in this limit, provided that we use
the nonrelativistic chemical potential µ = Z(µ0 − µ∗0),
with the wavefunction renormalization factor Z defined
by 1/Z = −2∂ωRe [TrGR(ω,0)]

−1 ∣∣
ω=0

. In Fig. 3c we
show the spectral functions obtained for βµ = 2 for sev-
eral values of k. The locations ω(k) of the peaks in these
spectra indeed conform to a nonrelativistic dispersion
ω(k) = ~(k2 − k2F )/2Meff with kF the Fermi momentum
and Meff ' 0.86M0 for the model parameters in the fig-
ure that we have chosen such that the spectral functions
resemble those of the unitary Fermi gas.

Finally, it is very important to realize that in principle
the antiparticle part of the spectrum is still present in our
numerics due to the fact that we can make the scaleM0c

2

very large, but not truly infinite. However, this part must
not be included in the nonrelativistic spectral function
that only describes the particles. Naturally, this part
of the spectrum also does not collapse. In practice this
means that we should cut off the spectrum at some point
inside the mass gap. Our results are not very sensitive to
this cutoff, provided the scaleM0c

2 is taken large enough.
By construction, the final spectral functions then also
satisfy the desired frequency sum rule

∫
dωρ(ω,k) = 2

for spin-1/2 particles.
Unitary fermions.— Unitary fermions constitute, simi-

lar to the findings above, a system described at zero tem-
perature by a set of universal constants and whose dimen-
sionless thermodynamic functions depend solely on βµ.
An example of the former is the constant βSF defined by
µ = (1 +βSF)εF , with εF the Fermi energy. Experiments
as well as theoretical models have determined that at
zero temperature, so in the superfluid phase, βSF ' −0.6
[6, 7, 28, 34, 42, 43]. The same quantity in the normal
phase should in principle be slightly less negative, but
is not accurately known at present. Therefore we have
for simplicity taken our model parameters such that also
βN ' −0.6. To see this from our spectra we can use that
εF = ~2k2F /2mid with mid the mass of the ideal Fermi
gas. The Fermi momentum ~kF ' 2.1

√
µM0 follows di-

rectly from the dispersion in our spectral functions at low
temperatures and the value of the mass mid ' 0.94M0

we obtain from the dispersion of the critical system near
µ = T = 0, since our spectral functions indeed contain a
very sharp peak in this case.
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FIG. 4. (color online) (a) The momentum distributions found from the spectral functions integrated with the minimum cut-off
frequency ω = −10µ/~ and including a wavefunction renormalization factor 1/Z. In order of increasing steepness at kF , the
values of βµ are 0.34, 0.51, 0.79, 1.03, 1.27, 1.51, 1.75, 1.87, 1.99, 2.97 and 4.21. (b) The momentum distributions behave
as 1/k4 for large k, although there are some deviations if k is too large. The coloring is the same as in (a). (c) The contact
parameter scaled with µ2m2

id/~4, as determined from the large momentum tails in (b).

From our spectral functions we can next calculate the
momentum distributions N(k) =

∫
dωρ(ω,k)nF (ω) with

nF the Fermi-Dirac distribution. These can ultimately
be used to determine the equation of state that was al-
ready shown previously in Fig. 1. Performing the cal-
culation, whose outcome is shown in Fig. 4a, we need
to realize that the above-mentioned wavefunction renor-
malization requires us to add an additional factor of 1/Z
to the momentum distribution. In this manner the in-
tegral of N(k) over momentum space approaches the
ideal result at low temperatures, as expected from Lut-
tinger’s theorem. To understand also physically why this
factor is necessary, we note that the spectral functions
we obtain generically consist of the nonrelativistic low-
frequency peak with a spectral weight of 2Z and a long
tail at higher frequencies that contains most of the re-
maining spectral weight. Such tails are a recurring fea-
ture in holographic spectra and are related to the non-
analytic behavior (−ω2+c2k2)M of the self-energy due to
the asymptotically AdS gravitational background. This
tail persists even in the low-temperature limit, where
the momentum distribution only captures the states at
small negative frequencies. We can therefore interpret
our spectra as containing a ‘coherent’ part of weight 2Z,
which is shown in Fig. 3 and describes the nonrelativis-
tic unitary fermions, and an ‘incoherent’ part of weight
2(1− Z).

Comparing the momentum distributions to the results
of Ref. [44], we see that many features of the unitary
Fermi gas are reproduced by our nonrelativistic fermions.
For instance, we have checked that the slope of N(k)
at the Fermi momentum does not diverge in the zero-
temperature limit, which signals a non-Fermi-liquid be-
havior and is in agreement with Fig. 6 of Ref. [44]. More-
over, the characteristic asymptotic behavior of the mo-
mentum distributions as C/k4 for large k in terms the
contact parameter C, is also seen in our data in Fig. 4b,
although we observe some relativistic corrections for even

larger k. From this figure we can also read off the con-
tact parameter, which results in Fig. 4c. We remind that
to calculate the momentum distributions, we must in-
troduce a frequency cutoff inside the gap from which we
start integrating the spectral functions. The dependence
on this cutoff is negligible for the momentum distribu-
tions in Fig. 4a themselves, but the cutoff does have some
influence on the tails in Fig. 4b, as small deviations get
amplified by the factor k4. Given these uncertainties and
the fact that we can still fine-tune several model param-
eters, we find the agreement with Fig. 2b of Ref. [44]
rather encouraging. Note that our momentum distribu-
tions contain also an interesting crossing point, which
appears to be a universal feature of strongly interacting
systems [45].

Finally, we calculate the total density by integrat-
ing the momentum distributions over momentum space.
The result, normalized by the ideal Fermi gas density, is
shown in Fig. 1. For low temperatures our result asymp-
totically approaches 1/(1 + βN)3/2 with βN ' −0.6, as
expected. This limit is not clearly visible in the data of
Refs. [28, 29], since there at low temperatures the uni-
tary gas becomes superfluid, a feature that we have not
included yet but can also be achieved holographically.

Discussion and outlook.— Up to now, we have used
holography as a bottom-up approach in which the var-
ious model parameters can be tuned to fit to experi-
ments. However, the holographic dictionary also pro-
vides insight into the physical significance of these pa-
rameters. For instance, the conformal dimension of the
operator O is equal to 2 +M , and q and λ determine the
strength of the CFT three-point functions 〈O†O(Ψ†Ψ)〉
and 〈O†O(Ψ†γ0Ψ)〉, respectively. In the context of the
unitary Fermi gas a natural choice for the operator O is
Ψ† multiplied with the annihilation operator of a Fes-
hbach molecule. If this identification is correct then
g would correspond to the atom-molecule coupling of
the Feshbach resonance. Exploring these possible mi-



croscopic connections in detail is beyond the scope of
the present paper and is left for future work. Continu-
ing in the spirit of bottom-up holography, however, our
approach allows for many extensions by adding more in-
gredients to the gravitational dual theory, such as the
inclusion of the backreaction on the bulk geometry by a
complex scalar field that is dual to the superfluid order
parameter and the introduction of a spin and/or mass
imbalance.
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I. ACTIONS AND EQUATIONS OF MOTION FOR THE BULK THEORY

In this section we present more details on the gravitational background that is used to obtain the results in the main
text. In particular, we present the equations of motion that need to be solved in order to obtain this background.
Moreover, we present the equations of motion for the probe Dirac spinors propagating on this background, which
ultimately lead to the self-energy of our spectral functions.

A. Gravitational background

The bulk theory contains a gauge field A = Atdt to account for the chemical potential in the CFT and a scalar field
φ to account for the mass deformation in the CFT. The scalar field is tachyonic with mass m2

φ = −3, such that the
corresponding deformation of the CFT has the dimension of a fermionic mass deformation.

The gravitational background follows from the backreaction of these fields on the geometry described by the metric
gMN , which follows from the action

Sbackground =

∫
d5x
√−g

(
R+ 12− 1

4
F 2 − 1

2

(
(∂φ)2 +m2

φφ
2
))

. (1)

Here, g is the determinant of the metric, R is the Ricci scalar, F = dA and (∂φ)
2

= ∂Mφ∂
Mφ. Moreover, we note

that the first two terms in the Lagrangian density represent the standard Einstein-Hilbert Lagrangian R− 2Λ, since
in our units the cosmological constant is given by Λ = −6 as explained in Appendix A.

For the metric ds2 = gMNdxMdxN we use the following Ansatz :

ds2 = −f(r)e−χ(r)dt2 +
dr2

f(r)
+ r2dx2 , (2)

∗ n.w.m.plantz@uu.nl; h.t.c.stoof@uu.nl
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where the metric components as well as At and φ only depend on the radial coordinate r due to planar symmetry.
The equations of motion following from Eq. (1) can then be written as

φ′′ +

(
f ′

f
+

3

r
− χ′

2

)
φ′ +

3

f
φ = 0 , (3)

A′′t +

(
3

r
+
χ′

2

)
A′t = 0 , (4)

χ′ +
r

3
φ′2 = 0 , (5)

f ′ +

(
2

r
− χ′

2

)
f +

r

6
eχA′2t −

r

2
φ2 − 4r = 0 , (6)

where a prime denotes differentiation with respect to r. A gravitational background then follows from solving this
system with the initial conditions f(r+) = 0, At(r+) = 0, χ(r+) = 0 and two free initial conditions φ(r+) and A′t(r+).
After solving the system, the solution is rescaled such that in the end χ(∞) = 0 as required for asymptotically anti-de
Sitter spacetimes. It can be shown that φ′(r+) is not independent of the other initial conditions.

After numerically solving the above system of equations, we extract the parameters of the CFT. The tempera-
ture follows from the metric tensor via

T =
f ′(r+)e−χ(r+)/2

4π
, (7)

whereas the chemical potential per unit charge and the mass are given by the boundary values µ0/q = At(∞) and

M0 = limr→∞ rφ(r)/α respectively. Here the proportionality constant α = 4
√

3/π2 is discussed in Ref. [1], however,
note that there α is defined as what is 1/α here.

B. Probe spinors

The self-energy of our spectral functions follow from the solution Ξ of Eq. (3) in the main text. To derive this
equation, we have two Dirac spinors ψ(1) and ψ(2) propagate on the bulk theory obtained from the equations of
motion above. These spinors have masses M1 = M and M2 = −M respectively and are coupled to the gauge field
AM with a charge q. The associated action is given by

SDirac = igf

∫
d5x
√−g

(
ψ̄(1)

(
/D −M

)
ψ(1) + ψ̄(2)

(
/D +M

)
ψ(2)

)

+ igY

∫
d5x
√−gφ

(
ψ̄(1)ψ(2) + ψ̄(2)ψ(1)

)
+ igf

∫
d4x
√
−h
(
ψ̄
(1)
R ψ

(1)
L − ψ̄

(2)
L ψ

(2)
R

)
. (8)

where ψ̄ = ψ†Γ0, /D = ΓM (∇M − iqAM ), gf and gY are coupling constants, h is the determinant of the induced

metric on the boundary and ψ
(i)
R,L = (1 + Γr)ψ(i)/2. The spinor covariant derivative ∇ and the Dirac matrices in

(4+1)-dimensional flat (ΓM ) and curved (ΓM ) spacetime are defined in Appendix A. The action consists of a standard
Dirac action for the spinors ψ(i), a Yukawa term which is necessary to couple the chiral components of the spinor on

the boundary and a boundary action to be consistent with the Dirichlet boundary conditions δψ
(1)
R = 0 and δψ

(2)
L = 0.

Defining λ = gY /gf , the equations of motion from the spinor are then
(
/D −M

)
ψ(1) = −λφψ(2), (9)

(
/D +M

)
ψ(2) = −λφψ(1). (10)

Next, we define the Dirac spinors Ψ = ψ
(1)
R + ψ

(2)
L and η = ψ

(1)
L − ψ

(2)
R , in terms of which the on-shell action is

Son shell = igf

∫
d4x
√
−hΨ̄η. (11)

The matrix Ξ is now defined in momentum space by

η(r, k) = −iΞ(r, k)Ψ(r, k), (12)

so that Ξ is related to the Green’s function for the fermionic boundary operator sourced by the Dirac spinor Ψ on the
boundary. Eq. (3) in the main text then follows from the above definition when imposing the Dirac equations for Ψ
and η, which follow from rewriting the Dirac equations for ψ(1) and ψ(2).
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FIG. 1. The Fermi momentum at g = ∞ as a function of λ depends on µ0 only through kF,0 and λc. Here, we used q = 1,
M = 49/100 and kBT = 10−4M0c

2, which is small enough to determine kF . The values of µ0/M0c
2 are 1/2 (blue dots) and 1

(yellow dots). The black curve shows the graph of
√

1− x2, with x = λ/λc.

II. ON THE CHOICE OF PARAMETERS USED TO OBTAIN NONRELATIVISTIC SPECTRA

In general, a spectral function ρ(ω,k) depends on the gravitational-background parameters kBT/M0c
2 and µ0/M0c

2

and the model parameters q, M and λ and g. Not every set of the parameters {q,M, λ, g} is suitable to obtain
universal nonrelativistic spectra with holographic interactions. Firstly, to satisfy the frequency sum rule, we must
have that −1/2 < M < 1/2 [2]. Moreover, we can restrict to positive g since the spectral functions only depend on
g2. In this section we discuss some more restrictions on this set, which we have taken into account for the values of
the paramaters used in the main text. In particular, fixing q and M , we find a restriction on λ.

To derive such restrictions, we should realize that the self-energy contains a gap itself. If the peaks in the non-
relativistic spectral functions are situated inside this gap, they will not be broadened and the resulting spectrum
will resemble a noninteracting one, containing delta peaks at each value of k. Since the gap in the self-energy Ξ is
proportional to |λ|M0c

2, we expect this to occur for large values of |λ|. In the analysis below we indeed find an upper
bound for |λ|.

For k = 0, the peak in the nonrelativistic spectrum is not situated inside the gap of the self-energy if we re-
strict to chemical potentials µ0 that are greater than the critical chemical potential µ∗0 in the limit g →∞. Since for
nonrelativistic spectra µ0 ' µ∗0, we can write this criterion as

µ∗0(q,M, λ, g) > µ∗0(q,M, λ,∞). (13)

This condition should also be sufficient for nonrelativistic spectral functions at nonzero k, provided that the difference
between µ∗0(q,M, λ, g) and µ∗0(q,M, λ,∞) is not nonrelativistically small. For parameters satisfying this condition,
we indeed find spectra containing peaks with a nontrivial width, such as the ones in the main text.

To see what the above condition implies for the allowed sets of model parameters, we study the behavior of the critical
chemical potential µ∗0 as a function of λ and g for fixed q and M . Noting that at the critical chemical potential we
have that kF = 0, we can use that the Fermi momentum kF (λ, g, µ0) at g =∞ depends on λ as

kF (λ,∞, µ0) = kF,0

√
1− λ2

λ2c
, (14)

where kF,0 = kF (0,∞, µ0) and λc is defined as the positive value of λ at which the Fermi momentum at g = ∞ is
zero. This dependence is found numerically and is shown in Fig. 1. All dependence on µ0 is contained in kF (0,∞, µ0)
and λc(µ0). Putting Eq. (14) to zero yields that the critical chemical potential at g = ∞ is given by the solution of
|λ| = λc(µ0). It was furthermore found in Ref. [1] that except for small µ0, both kF,0 and λc are linear in µ0 > 0, so
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FIG. 2. The critical chemical potential as a function the coupling g. Here |λ| = 3/4 for the red curves and |λ| = 2 for the green
curves. The solid curves correspond to positive λ and the dashed curves correspond to negative λ. The dotted lines denote the
asymptotic values of the curves, which are equal to |λ|/B. Here we used q = 1 and M = 49/100, for which B ' 1.33.

that in this regime we can write λc ' Bµ0/M0c
2 with B a positive coefficient which depends on q and M . It follows

that at g =∞ we get

µ∗0(λ,∞) =
|λ|
B
M0c

2 (15)

so that the criterion in Eq. (13) can be written as |λ|M0c
2 < Bµ∗0(λ, g).

We proceed by studying the dependence of the critical chemical potential µ∗0 on λ and g, of which the result is shown
in Fig. 2. Clearly, for g = 0 we have that µ∗0 = M0c

2. For λ < 0, we then find that µ∗0/M0c
2 is a monotonic function

starting at 1 and asymptotically approaching |λ|/B. In contrast, when λ > 0 we observe that µ∗0/M0c
2 monotonically

decreases to 0 for some value of g, after which it monotonically increases to λ/B. These findings indicate that we can
only obey the criterion in Eq. (13) if µ∗0(λ,∞) < M0c

2, i.e.,

|λ| < B, (16)

which for fixed values of q and M gives an upper bound for |λ|. From Fig. 2 we furthermore observe that there is no
restriction on g for negative λ, whereas for positive λ an upper bound for g2 is required to satisfy Eq. (16).

For the parameters q = 1 and M = 49/100, which are used in the main text, we have that B ' 1.33, so that
our choice λ = −3/4 satisfies the criterion above in Eq. (16). We remark that we should not choose |λ| too small, since
then an additional peak near the chemical potential at ω = 0 appears in our spectra. This leads to an avoided crossing
between this peak and the particle band, which makes it hard to define the critical chemical potential. Having opted
for a negative λ, the above discussion imposes no further restriction on g. However, to obtain nonrelativistic spectra,
we should not take g too large. To see this, we note that we can think of g as a measure for the region in momentum
space where the holographic interactions dominate the free kinetic part of the Green’s function. As a consequence,
for large g we find that the tails at higher frequencies in the spectral functions that were mentioned in the main text
persist until deep in the relativistic regime. Moreover, the spectral weight in the gap is then no longer negligible. This
is not the case for the value g = 1/3 used in the main text, which we have taken to reproduce the value βN ' −0.6.
Finally, the chosen value for M in the main text is also related to the above-mentioned tails. We find that choosing
M close to its supremum 1/2 avoids long tails extending to relativistic ω. In particular, the spectral functions decay
faster than 1/ω for large ω, i.e., for ω � µ but still within the nonrelativistic regime, as is necessary to obey the sum
rule.
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Appendix A: Conventions on units and Dirac theory

The action for the gravitational background in Eq. (1) in SI units reads

S =

∫
d5x
√−g


 c3

16πG5
(R− 2Λ)− 1

4µ5c
F 2 −

(
(∂φ)

2
+
m2
φc

2

~2
φ2

)
 . (A1)

Here G5 and µ5 are Newton’s constant and the vacuum permeability respectively, defined in 4+1 spacetime dimensions.
Using the cosmological constant Λ we can define the anti-de Sitter radius as L2 = 6/(−Λ), noting that the cosmological
constant is always negative in the asymptotically anti-de Sitter spacetimes that we are dealing with. The dimensionless
gauge field and scalar field are then defined as

Ãt̃ =

√
16πG5

µ5c6
At, (A2)

φ̃ =

√
16πG5

c3
φ. (A3)

The tildes, which we omit in the main text, denote dimensionless quantities. The metric signature is mostly plus
and its components are defined by ds2 = gMNdxMdxN , with xM = {ct, r,x} where capital Roman letters refer to
(4 + 1)-dimensional spacetime, as opposed to Greek letters for which xµ = {ct,x}. With this definition of the metric,
the components gMN are already dimensionless. All dimensionless units in main text are obtained by scaling all length
scales by L, i.e., putting Λ = −6. As a consequence, when putting ~ = 1 and c = 1, all energy (or mass) scales are
expressed in units of ~c/L (or ~/cL). This is also true for the temperature T , setting Boltzmann’s constant kB = 1.

Finally, the Dirac fields in Eq. (8) are in units of
√
~/L and the dimensionless charge of the probe field is given by

q̃ =

√
µ5c6

16πG5

L

~c
q. (A4)

In the main text we use the dimensionless units defined here for bulk parameters such as M and q. For quantities
defined in the CFT we use SI units, which means we restore c, ~ and kB .

The Dirac matrices in flat (3 + 1)-dimensional spacetime are given by

γµ =

(
0 σ̄µ

σµ 0

)
(A5)

where σ = (I2, σ
i) and σ̄ = (−I2, σ

i) with σi the Pauli matrices and I2 the 2 × 2 identity matrix. Moreover, we use
underlined indices for tensors and Dirac matrices defined in flat spacetime, so that gMN = ηMN = diag(−1, 1, 1, 1, 1).
The gamma matrices ΓM in (4 + 1)-dimensional flat spacetime are given by Γµ = γµ for µ 6= r and

Γr = γ5 ≡ iγ0γ1γ2γ3 =

(
I2 0
0 −I2

)
. (A6)

The vielbeins eMN that appear in the Dirac action in Eq. (8) in curved spacetime are defined by

gMN = e
P
Me

Q

NηPQ (A7)

where the inverse vielbeins satisfy eMP e
P
N = δMN and ePMe

N
P = δ

N
M . For the metric in Eq. (2) this gives

e00 =

√
eχ(r)

f(r)
, (A8)

err =
√
f(r), (A9)

eii =
1

r
. (A10)
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In the main text, we have omitted the underlines and only use the Dirac matrices in flat spacetime. Moreover, all
vielbeins in the main text are such that their lower index corresponds to the flat one.

The spinor covariant derivative ∇M , which also appears in the Dirac action in Eq. (8), is defined as

∇Mψ = ∂Mψ + ΩMψ (A11)

with ΩM given by

ΩM =
1

8
ωMNP [ΓN ,ΓP ] (A12)

and the spin connection ω
M
NP given by

ω
M
NP = e

M
Q e

R
PΓQNR − eQP ∂Ne

M
Q . (A13)

Here ΓMNP denotes the Christoffel connection. The spin connection does not appear in the equation for Ξ in the main
text, as we can remove it by rescaling the probe spinors by a function depending on r only, see appendix A.2 in Ref.
[1] for details.
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