
Palatini inflation in models with an R2 term

I. Antoniadis,a,b A. Karam,c A. Lykkas,c K. Tamvakisc,a

aLPTHE, Sorbonne Universite, CNRS, 4 Place Jussieu, 75005 Paris, France
bAlbert Einstein Center, Institute of Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012,
Bern, Switzerland
cPhysics Department, University of Ioannina, GR–45110 Ioannina, Greece
e-mail: antoniad@lpthe.jussieu.fr, alkaram@cc.uoi.gr, alykkas@cc.uoi.gr,
tamvakis@uoi.gr

Abstract. The Starobinsky model, considered in the framework of the Palatini formalism, in
contrast to the metric formulation, does not provide us with a model for inflation, due to the
absence of a propagating scalar degree of freedom that can play the role of the inflaton. In
the present article we study the Palatini formulation of the Starobinsky model coupled, in general
nonminimally, to scalar fields and analyze its inflationary behavior. We consider scalars, minimally
or nonminimally coupled to the Starobinsky model, such as a quadratic model, the induced gravity
model or the standard Higgs-like inflation model and analyze the corresponding modifications
favorable to inflation. In addition we examine the case of a classically scale-invariant model
driven by the Coleman-Weinberg mechanism. In the slow-roll approximation, we analyze the
inflationary predictions of these models and compare them to the latest constraints from the
Planck collaboration. In all cases, we find that the effect of the R2 term is to lower the value of
the tensor-to-scalar ratio.ar
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1 Introduction

Cosmological inflation is at present an attractive framework to address a number of issues of Big
Bang cosmology. Its most promising aspect is the treatment of primordial fluctuations resulting
in the large scale structures and the anisotropy in the temperature of the cosmic microwave
background (CMB) we observe today. Models of inflation require the presence of a scalar degree
of freedom (inflaton), either as a fundamental scalar field or incorporated into gravity itself, in
general as an effective scalar degree of freedom. The Starobinsky model, featuring next to the
Einstein-Hilbert term of general relativity (GR) a quadratic scalar curvature term, is persistently
in agreement with ongoing observations, in contrast to most single scalar field models which, if
not in disagreement, give borderline values for the relevant parameters.

Generalizations of GR in the form of f(R) theories [1–5] have attracted a lot of attention in
recent years. Such theories would in principle be suitable for inflation since they contain the scalar
degree of freedom that can play the role of the inflaton. The Starobinsky model is one particular
case of these theories1. Any theory with an action of the form

∫
d4x
√
−g f(R) can be reformulated

as a scalar-tensor theory of gravity rewritten in terms of a scalar field non-minimally coupled to
the Ricci scalar as

∫
d4x
√
−g {f ′(φ)R− V (φ)}, where the potential is V (φ) = φ f ′(φ)− f(φ).

1See [6–15] for some modifications of the Starobinsky model with the addition of an extra scalar field.
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It has been known for some time that an alternative variational principle leading to the
equations of motion of GR is the Palatini or first order formalism (see [2] for a review and [16–38]
for various applications) in which, in addition to the metric gµν , the connection Γρµν is treated
as an independent variable. This does not constitute an additional assumption about the nature
of the theory, but a different parametrization of the gravitational degrees of freedom. Another
important point is that since the action contains derivatives of the connection, there is no need for
a York-Gibbons-Hawking surface term. Within GR the two formulations are entirely equivalent.
However, in the presence of a non-minimal coupling, this is not the case. When a fundamental
scalar φ is coupled to gravity through a non-minimal coupling f(φ)R the metric and the Palatini
formulations lead to different results.

Another notable difference is the fact that, in the framework of the Palatini formulation, any
f(R) theory is entirely equivalent to the Einstein theory. A quick way to see this is by performing
a Weyl rescaling of the metric ḡµν = f ′(φ)gµν that transforms the action into the Einstein frame.
In the Palatini formalism Rµν , being a function of Γ, will be unaffected and no kinetic term will
be generated for the auxiliary scalar φ. Thus, in the Einstein frame, there is no propagating scalar
field and the action is just the Einstein action

∫
d4x
√
−ḡR̄ plus a potential term V (φ)/(f ′(φ))2

of the non-propagating scalar. Such a theory would not be suitable to describe inflation, since it
contains no dynamical degree of freedom to take up the role of the inflaton. Nevertheless, all of
this does not apply to f(R) theories coupled to matter.

In the following section we set up the theory of the Starobinsky model, written in terms
of an auxiliary scalar field and coupled, in general non-minimally, to a fundamental scalar field
with a general potential in the framework of the Palatini formalism. Going to the Einstein frame
and solving for the auxiliary field we obtain an Einstein-Hilbert action with modified scalar field
interactions. We then proceed to study various specific cases of scalar interactions. In section 3
we analyze cases in which the scalar field is coupled minimally to gravity in the original action.
In particular we study the case of a free massive scalar field with just a quadratic potential
(section 3.1). In contrast to the standard metric formulation of this model we find that in this
formulation the resulting potential is that of a well-known inflationary attractor. In section 4
we discuss three cases of non-minimally coupled scalars. In particular, in section 4.1 we consider
the case of a scalar with scale-invariant interactions. In this model the Einstein-Hilbert term
is replaced by the classically scale-invariant coupling ξφ2R. Scale-invariance is broken via the
Coleman-Weinberg mechanism [39] and the Planck mass is dynamically generated in terms of the
VEV of the scalar field. The metric formulation of this model leads to linear inflation [23, 40–45].
The Palatini formulation of this model leads to a modified inflationary behaviour with favorable
predictions for the corresponding parameters. The slow-roll analysis of the model is carried out in
a succeeding section. In section 4.2 we consider the induced gravity model [46–53] in which, as in
the previous case, the Planck mass is generated by a scalar VEV, determined by a quartic Higgs-
like potential. In section 4.3 we study the case of nonminimal Higgs inflation model [8, 31, 54–71],
where we find that the α-dependence of the Einstein frame potential alleviates the need for large ξ,
with α being the coefficient of R2. In section 5 we consider all the above models in the framework
of slow-roll inflation and analyze their predictions. Finally, in the last section we summarize our
conclusions.
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2 The Starobinsky model coupled to matter

Consider the standard Starobinsky action written in terms of an auxiliary scalar χ

S =

∫
d4x
√
−g
{

1

2
M2

0 R +
α

4
R2

}
=

∫
d4x
√
−g
{

1

2

(
M2

0 + αχ2
)
R − α

4
χ4

}
. (2.1)

Note that only the bare Planck mass is a dimensionful parameter, α being dimensionless. Aiming
at coupling this theory to matter without introducing any other mass scales in the gravity-matter
coupling, we introduce a scalar field φ with a classically scale invariant non-minimal coupling to
gravity

S =

∫
d4x
√
−g
{

1

2

(
M2

0 + αχ2 + ξφ2
)
R − 1

2
(∇φ)2 − α

4
χ4 − V (φ)

}
. (2.2)

The nonminimal coupling is parametrized by the dimensionless parameter ξ. We shall consider this
model in the framework of the Palatini formulation, treating the connection Γ as an independent
variable. Then, the Ricci tensor Rµν is only a function of Γ. The form of the connection is derived
from an additional constraint equation, namely δS/δΓ = 0. Therefore, in the Palatini formalism,
the connection is an independent variable with no propagating on-shell degrees of freedom, i.e. it
is auxiliary.

Next, we consider a Weyl rescaling of the metric

ḡµν = Ω2(φ) gµν with Ω2(φ) =
M2

0 + ξφ2 + αχ2

M2
P

. (2.3)

The resulting Einstein frame action is

S =

∫
d4x
√
−ḡ

{
1

2
M2

P R̄ −
1

2

(
∇̄φ
)2

Ω2
− V̄

}
, (2.4)

where

V̄ (φ, χ) =
1

Ω4

(
V (φ) +

α

4
χ4
)
. (2.5)

As expected, no kinetic term has been generated for the field χ, known as the scalaron in the
metric formalism. Note that only the field φ can act as an inflaton, since it is the only propagating
scalar degree of freedom. This is in contrast to the metric formalism where we would obtain
two dynamical fields that each can contribute to inflation. The action (2.4) is standard GR
coupled minimally to the scalars φ and χ, the latter being an auxiliary field. Varying this action
with respect to Γ produces the usual Levi-Civita expression for the connection, which is written in
terms of the metric ḡµν . In what follows, we shall drop the bars on the metric and the gravitational
tensors. By varying with respect to χ we obtain the following constraint equation:

χ2 =

4V (φ)

(M2
0 +ξφ2)

+ (∇φ)2

M2
P[

1− α(∇φ)2

M2
P (M2

0 +ξφ2)

] . (2.6)
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We may now substitute (2.6) back into the action. Instead of writing the complete expression of S
in terms of χ[φ], we write down an expansion in derivatives neglecting terms O((∇φ)4) or higher.
We have

S ≈
∫
d4x
√
−g

{
M2

P

2
R − 1

2

(∇φ)2

Ω2
0

(
1

1 + 4α̃V
Ω4

0

)
− V

Ω4
0

(
1

1 + 4α̃V
Ω4

0

)
+ O

(
(∇φ)4

)}
, (2.7)

where α̃ = α/M4
P and

Ω2
0 =

1

M2
P

(
M2

0 + ξφ2
)
. (2.8)

Note that even in the case of minimal coupling ξ = 0 the presence of the quadratic scalar curvature
term modifies the matter Lagrangian non-trivially.

3 Minimally coupled scalars

The form of the Palatini-Starobinsky action (2.2) suggests that even in the case of minimally
coupled scalars (i.e. ξ = 0, M0 6= 0), the presence of the quadratic Starobinsky term is highly
non-trivial. Weyl rescaling with Ω2 = 1 + αχ2/M2

P , using M0 = MP , takes us to the Einstein
action (2.4) with the potential (2.5). The auxiliary field equation gives

χ2 =
4V (φ) + (∇φ)2

M2
P − α

(∇φ)2

M2
P

(3.1)

and the resulting effective action is

S ≈
∫

d4x
√
−g
{
M2

P

2
R − 1

2
(∇φ)2

(
1

1 + 4α̃V

)
− V

(1 + 4α̃V )
+ O((∇φ)4)

}
. (3.2)

3.1 A free massive scalar model

Note that in the simple case of a free massive scalar with a potential

V (φ) =
1

2
m2φ2 , (3.3)

we can obtain an inflationary plateau in the effective theory described above. Indeed, by intro-
ducing the canonical scalar

ζ =

∫
dφ√

1 + 2αm2

M4
P
φ2

=
M2

P

m
√

2α
sinh−1(m

√
2αφ/M2

P ) , (3.4)

or

φ =
M2

P

m
√

2α
sinh

(
mζ
√

2α/M2
P

)
, (3.5)
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the resulting potential is

V̄ (ζ) =
M2

P

4α
tanh2

(
m
√

2αζ/M2
P

)
. (3.6)

This is a well-known potential, corresponding to an inflationary attractor, also obtainable in
supergravity in the framework of the SU(2, 1)/SU(2)×U(1) no-scale model with a Kähler potential
−3 ln(T + T̄ − |S|2) and a superpotential W = W0 + S(T − 1)/(T + 1) [72–75]. In section 5.1
we analyze numerically the predicted slow-roll parameters and find them in full agreement with
observations for a wide range of parameter choices. Large values of r can be avoided by reasonably
small values of the parameter α. This is in sharp contrast to the case of the quadratic model in
chaotic inflation. A plot of the potential (3.6) is shown in Fig. 1.
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Figure 1: The potential for the minimal quadratic model (3.6) as a function of the canonical
scalar field given in (3.4). We have set α = 0.1 and m = 0.1 (in Planck units).

We note that even in the case of a minimally coupled scalar with a quartic Higgs-like potential
λ
4
(φ2 − v2)2, the presence of the R2 term has a non-trivial effect on the Einstein-frame potential.

In this case, for large values of the canonical field the effective potential V/(1 + 4α̃V ) reaches an
inflationary plateau M4

P/4α.

4 Non-Minimally coupled scalars

4.1 A quasi-scale-invariant framework

The fact that the R2 term of the Starobinsky model dominates over the linear term during inflation
suggests that at very high energies gravity may be scale invariant. Adopting an effective theory
approach and hoping that the results are general enough for some possible UV completions, we
proceed considering a quasi-scale-invariant version of action (2.2), meaning that M0 = 0 and no
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other dimensionful parameters are present apart from a cosmological constant term2 Λ4, the scalar
potential being the quartic V (φ) = λ

4
φ4

S =

∫
d4x
√
−g

{
1

2

(
ξφ2 + αχ2

)
R − 1

2
(∇φ)2 − λ

4
φ4 − α

4
χ4 + Λ4

}
. (4.1)

To this action we should add the matter action Sm =
∫
d4x
√
−gLm(ϕ′, ψ, Aµ), containing

all matter fields interacting with φ through scale-invariant interactions. These interactions at the
quantum level will generate at one-loop level radiative corrections, which, calculated in the Jordan
frame, are grouped in an effective potential V1(φ). Assuming that the detailed field content of Sm
is such that the Coleman-Weinberg mechanism [39] takes place, the one-loop effective potential
has the form [23, 40–45]3

V1(φ) = Λ4

(
1 +

φ4

〈φ〉4
(

2 ln(φ2/〈φ〉2) − 1
))

= Λ4

(
1 +

ξ2φ4

M4
P

(
2 ln(ξφ2/M2

P ) − 1
) )

, (4.2)

where the Planck mass is defined in terms of the VEV of φ that minimizes V1, namely M2
P ≡ ξ〈φ〉2.

Thus, after dimensional transmutation, the quartic φ4 term is replaced by (4.2).
The cosmological constant Λ is required in order to ensure the vanishing of the potential

V1(φ) at the minimum. Alternatively, we may replace this condition with the vanishing of the
overall resulting potential V̄ (φ, χ) ∝ V1(φ) + αχ4/4. In this case V1(φ) would be just V1(φ) =
C φ4 (2 ln(φ2/〈φ〉2)− 1), where C is a coefficient dependent on the details of the matter action Sm.
Then, the vanishing of V̄ would have to be attributed to a tuned cancellation between the two
terms.

Considering now the Weyl rescaling (2.3) we obtain again the Einstein frame action

S =

∫
d4x
√
−ḡ

{
1

2
M2

P R̄ −
1

2

(
∇̄φ
)2

Ω2
− V̄

}
, (4.3)

with

V̄ (φ, χ) =
1

Ω4

(
V1(φ) +

α

4
χ4
)

(4.4)

and Ω2 = (ξφ2 + αχ2) /M2
P . The equation for the auxiliary field χ is

χ2 =
4V1(φ) + ξφ2(∇φ)2

M2
P[

ξφ2 − α(∇φ)2

M2
P

] . (4.5)

and, substituted in (4.3) gives up to O((∇φ)4) the effective action

S ≈
∫

d4x
√
−g
{
M2

P

2
R − 1

2
(∇φ)2

(
ξφ2M2

P

ξ2φ4 + 4αV1

)
− V1

(
M4

P

ξ2φ4 + 4αV1

)
+ O((∇φ)4)

}
.

(4.6)

2We allow for the possibility of a bare cosmological constant term needed to ensure vanishing potential at the
minimum.

3See [41, 76–96] for other inflationary models based on classical scale invariance.
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Note that in the absence of radiative corrections, i.e. just for a λφ4/4 potential, we would trivially
get a constant potential, while the kinetic term of φ would be rescaled by a trivial α-dependent
factor. In the absence of the Starobinsky term, i.e. for α = 0, it has been shown that the
Coleman-Weinberg action (4.6) leads to linear inflation [23] for ξ & 0.1.

For a general α we may introduce the canonical scalar field variable

ζ = MP

∫
dφ

√
ξφ2

ξ2φ4 + 4αV1(φ)
. (4.7)

The parameter Λ giving the overall scale of the one loop potential is estimated to be a few orders
of magnitude below MP [40]. Therefore, we may approximate the canonical scalar to be

ζ ≈ MP

2
√
ξ

ln(ξφ2/M2
P ) . (4.8)

The effective Lagrangian is

Leff ≈ −
1

2
(∇ζ)2 − V̄ (ζ) , (4.9)

where

V̄ (ζ) =
Λ4
(

4
√
ξ ζ
MP
− 1 + e

−4
√
ξ ζ
MP

)
M4

P + 4αΛ4
(

4
√
ξ ζ
MP
− 1 + e

−4
√
ξ ζ
MP

) . (4.10)

For large values of ζ values there is an inflationary plateau of height 1/4α, while the potential
minimum occurs at ζ = 0. A plot of the potential (4.10) is given in Fig. 2.

0 5 10 15

0.000

0.001

0.002

0.003

0.004

ζ

V (ζ)

Figure 2: The potential for the nonminimal Coleman-Weinberg potential (4.10) as a function of
the canonical scalar field given in (4.8). We have set Λ = 10−2, ξ = 0.1 and α = 0.01 (in Planck
units).
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4.2 Induced gravity model

In this section we study another interesting model that can dynamically generate the Planck mass
from the VEV of a scalar field. The dynamics of the scalar field are described by a Higgs-like
potential with a minimum at the scalar VEV, v ≡ 〈φ〉. Such models [46–53] have their origin
in early attempts to marry the dynamics of spontaneous symmetry breaking and gravity, but
nowadays they serve as viable extensions of GR, at least when one studies inflation.

Consider the following action

S =

∫
d4x
√
−g
{

1

2

(
ξφ2 + αχ2

)
R− 1

2
(∇φ)2 − λ

4

(
φ2 − v2

)2 − α

4
χ4

}
. (4.11)

Following what we did previously, using (4.5), we end up with the effective action in the Einstein
frame

S ≈
∫

d4x
√
−g
{
M2

P

2
R− 1

2
(∇φ)2

(
ξφ2M2

P

ξ2φ4 + 4αV

)
− V

(
M4

P

ξ2φ4 + 4αV

)
+O((∇φ)4)

}
, (4.12)

where V (φ) = λ
4
(φ2−v2)2 is the induced gravity potential. We may introduce the canonical scalar

field

ζ =
MP

2

√
ξ

ξ2 + αλ
ln
[
φ2(αλ+ ξ2)− αλv2 +

√
αλ+ ξ2

√
ξ2φ4 + αλ(φ2 − v2)2

]
, (4.13)

and the potential, expressed in terms of the canonical field reads as

V̄ = M4
P

V

ξ2φ4 + 4αV
=

λM4
P

4(ξ2 + αλ)

e 4
√
αλ+ξ2ζ

MP
√
ξ − 2e

2
√
αλ+ξ2ζ

MP
√
ξ − αλM4

P

αλM4
P + e

4
√
αλ+ξ2ζ

MP
√
ξ

2

, (4.14)

where we used v2 = M2
P/ξ. A plot of the potential (4.14) is given in Fig. 3.
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Figure 3: The potential for the induced gravity model (4.14) as a function of the canonical scalar
field given in (4.13). We have set λ = 10−2, ξ = 0.1, α = 0.01 and υ = 1/

√
ξ (in Planck units).
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4.3 Nonminimal Higgs model

A compelling idea concerning inflation, is for the Higgs boson to take up the role of the inflaton
field [8, 31, 54–71]. This can by achieved by coupling the Higgs field nonminimally to the Ricci
curvature. Such a proposal is minimal in the sense that one does not need to extend the field
content of the Standard Model. There have been numerous studies through the years, with the
general consensus being that one has to expect very large values of the nonminimal coupling
ξ ∼ (103 − 105), in order to account for the measured values of the inflationary observables. Here
and in following sections we argue that in the Palatini formalism the nonminimal coupling ξ can
take up much lower values.

Consider the following action

S =

∫
d4x
√
−g
{

1

2

(
M2

0 + 2ξ |H|2 + αχ2
)
R− 1

2
|DH|2 − V (H)− α

4
χ4

}
. (4.15)

By performing the Weyl rescaling of the metric with

Ω2 = 1 +
αχ2

M2
P

+ 2ξ
|H|2

M2
P

(4.16)

the Einstein frame action reads

S =

∫
d4x
√
−g

M
2
P

2
R− |DH|2 1(

1 + αχ2

M2
P

+ 2ξ |H|
2

M2
P

) − V (H) + α
4
χ4(

1 + αχ2

M2
P

+ 2ξ |H|
2

M2
P

)2

 , (4.17)

where we assumed that M0 'MP . Adopting the unitary gauge H = 1√
2

(
0
h

)
with

V (H) = λ

(
|H|2 − v2

2

)2

=
λ

4

(
h2 − v2

)2
(4.18)

and

χ2 =

4V
M2

0 +2ξ|H|2 + 2|∇H|2
M2
P[

1− 2α|∇H|2

M2
P (M2

0 +2ξ|∇H|2)

] , (4.19)

we obtain

S =

∫
d4x
√
−g
{
M2

P

2
R− 1

2
(∇h)2

(
ξh2M2

P

ξ2h4 + 4αV

)
− V

(
M4

P

ξ2h4 + 4αV

)
+O

(
(∇h)4

)}
. (4.20)

Next, we assume that in order for the Higgs field to drive inflation it must be far away from its
VEV. We also assume that ξh2 � M2

P and obtain the following expression for the canonically
normalized field

ζ 'MP

√
ξ

ξ2 + αλ
sinh−1

(
h

MP

√
ξ
ξ2 + αλ

ξ2 − αλ

)
. (4.21)
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The potential reads as

V̄ (ζ) ' λ

4

M4
P

ξ2 + αλ

sinh2
(√

ξ2+αλ
ξ

ζ
MP

)
2ξ2

ξ2−αλ + sinh2
(√

ξ2+αλ
ξ

ζ
MP

) . (4.22)

Note that the nonminimal coupling ξ has been replaced with an effective combination that depends
on α. As the slow-roll inflation analysis will show below, this can potentially extend the viability
of the model for reasonably small values of ξ. A plot of the above potential is shown in Fig. 4.
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Figure 4: The potential for the nonminimal Higgs potential (4.22) as a function of the canonical
scalar field given in (4.21). We have set λ = 10−4, ξ = 10 and α = 1.

5 Slow-Roll Inflation

The Einstein equation resulting from the general form of the action (2.7) is

M2
P

(
Rµν −

1

2
gµνR

)
=
∇µφ∇νφ

Ω2
0

(
1

1 + 4α̃V
Ω4

0

)
− gµν

[
1

2

(∇φ)2

Ω2
0

(
1

1 + 4α̃V
Ω4

0

)
+

V

Ω4
0

(
1

1 + 4α̃V
Ω4

0

) ]
.

(5.1)
Assuming a flat FLRW metric ds2 = −dt2 + a2(t)(d~x)2, the resulting Friedmann equation reads

3M2
PH

2 =

[
1

2

(φ̇)2

Ω2
0

+
V

Ω4
0

](
1

1 + 4α̃V
Ω4

0

)
, (5.2)

with H = ȧ/a the usual Hubble parameter. Equivalently, the action can be expressed in terms of
the canonically normalized field ζ and the potential V̄ (ζ) takes the form

S ≈
∫

d4x
√
−g
{
−1

2
(∇ζ)2 − V̄ (ζ)

}
, (5.3)
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where

ζ =

∫
dφ√

Ω2
0 + 4α̃V (φ)

Ω2
0

, V̄ (ζ) =
V (φ)

Ω4
0 + 4α̃V (φ)

. (5.4)

Then, the Friedmann equation has its canonical form

3M2
PH

2 =
1

2
ζ̇2 + V̄ (ζ) . (5.5)

In the slow-roll approximation, the first order expressions for the tensor-to-scalar ratio r and
the scalar index ns are given in terms of the potential slow-roll parameters εV and ηV at horizon
crossing as

r ≈ 16 εV , ns ≈ 1− 6εV + 2ηV , (5.6)

where

εV ≡
M2

P

2

(
V̄ ′(ζ)

V̄ (ζ)

)2

, ηV ≡ M2
P

(
V̄ ′′(ζ)

V̄ (ζ)

)
. (5.7)

Next, we compute these parameters for each of the models analyzed in the preceding sections.

5.1 The minimally-coupled quadratic model

The slow-roll parameters for the minimally-coupled quadratic model, described by the potential
(3.6), are found to be

εV =
m2

M2
P

16α

sinh2(2m
√

2αζ/M2
P )

, (5.8)

ηV = 16α
m2

M2
P

(
2− cosh(2mζ

√
2α/M2

P )
)

sinh2(2mζ
√

2α/M2
P )

. (5.9)

The end of inflation condition εV ' 1 gives

ζf =
M2

P

2m
√

2α
sinh−1(2m

√
2α/MP ) . (5.10)

Then, the integral for the number of e-folds in terms of the canonical scalar field yields

N =

∫ ζf

ζ∗

dζ√
2εV (ζ)

=
M2

P

16αm2

∫
dx

x

√
sinhx

∣∣∣∣2mζf
√

2α/M2
P

2mζ∗
√

2α/M2
P

. (5.11)

In Fig. 5 we plot the predictions of the model in the ns − r plane for various values of the
parameter α and for N = 50 − 60 e-folds, overlaid with the latest results from the Planck 2018
collaboration [97, 98]. We observe that as α becomes smaller, the predictions asymptote to those
of the simple quadratic model (without the R2 term). On the contrary, as α becomes larger the
value of r becomes smaller, reaching values similar to those of the Starobinsky model.
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Figure 5: The predictions for the inflationary observables in the nS − r plane for the minimally-
coupled quadratic model for N = 50−60 e-folds. We have set m = 0.1 and have varied α between
0.01 and 10.

5.2 The nonminimal Coleman-Weinberg model

A direct calculation of εV and ηV for the nonminimal Coleman-Weinberg potential in (4.10) gives

εV ≈
M2

P

2
(
ζ −MP/4

√
ξ
)2
(

1 + 16α
√
ξ Λ4

M5
P

(
ζ −MP/4

√
ξ
))2 (5.12)

and

ηV ≈ −
32α
√
ξ Λ4

M4
P(

ζ −MP/4
√
ξ
)2
(

1 + 16α
√
ξ Λ4

M4
P

(
ζ −MP/4

√
ξ
))2 . (5.13)

From the expression for εV we may determine the final value ζf corresponding to the end of
inflation as defined by the condition εV ' 1. It is

ζf = 4
√
ξMP +

M4
P

32α
√
ξΛ4

−1 +

√
1 +

√
2M4

P

16α
√
ξΛ4

 ≈ 4
√
ξMP+MP/2

√
2−2α

√
ξ

Λ4

M3
P

. (5.14)

Inserting the approximate expression for εV in the definition of the number of e-folds we obtain

N = ln
(
ζ∗/MP − 4

√
ξ
)
− ln

(
ζf/MP − 4

√
ξ
)

+ 16α
√
ξ

Λ4

M5
P

(ζ∗ − ζf ) . (5.15)
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In Fig. 6 we plot the predictions of the model in the ns − r plane for various values of the
parameter α, with fixed Λ = 0.1, ξ = 0.1 and for N = 50 − 60 e-folds. We observe that as
α becomes smaller, the predictions asymptote to those of the linear inflation model [23, 40–45]
(without the R2 term)4. As α becomes larger the value of r becomes smaller since the R2 term
dominates.

3.0
2.5
2.0
1.5
1.0

log (α)

Figure 6: The predictions for the inflationary observables in the nS− r plane for the nonminimal
Coleman-Weinberg model and for N = 50 − 60 e-folds. We have set Λ = 0.1 and ξ = 0.1 (in
Planck units).

5.3 The induced gravity model

The slow-roll parameters for the induced gravity model (4.14) have the form

εV =

32M4
P

(
αλ+ ξ2

)
e

4ζ
√
αλ+ξ2√
ξMP

(
2αλM2

P e
2ζ
√
αλ+ξ2√
ξMP + ξe

4ζ
√
αλ+ξ2√
ξMP − αλξM4

P

)2

ξ

(
−2ξM2

P e
2ζ
√
αλ+ξ2√
ξMP + e

4ζ
√
αλ+ξ2√
ξMP − αλM4

P

)2(
e

4ζ
√
αλ+ξ2√
ξMP + αλM4

P

)2 , (5.16)

4In the model without the R2 term, the linear inflation limit is reached for values of the nonminimal coupling
above ξ & 0.1
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ηV =
16M2

P

(
αλ+ ξ2

)
ξ


6α2λ2M6

P(
e

4ζ
√
αλ+ξ2√
ξMP + αλM4

P

)2 +

2M4
P

(
αλ+ ξ2

)(
2ξe

2ζ
√
αλ+ξ2√
ξMP + αλM2

P

)
(
−2ξM2

P e
2ζ
√
αλ+ξ2√
ξMP + e

4ζ
√
αλ+ξ2√
ξMP − αλM4

P

)2

−
6αλM2

P

e
4ζ
√
αλ+ξ2√
ξMP + αλM4

P

+
2M2

P

(
αλ+ ξ2

)
− ξe

2ζ
√
αλ+ξ2√
ξMP

−2ξM2
P e

2ζ
√
αλ+ξ2√
ξMP + e

4ζ
√
αλ+ξ2√
ξMP − αλM4

P

 . (5.17)

In Fig. 7 we plot the predictions of the model in the ns−r plane for various values of the parameter
α, with fixed λ = 0.01, ξ = 0.1 and for N = 50− 60 e-folds. The dashed and solid lines represent
the allowed 1σ and 2σ range of ns, set by the Planck 2018 collaboration [97, 98]. We observe that
as α becomes smaller, we recover the predictions of the model without the R2 term. Again, as α
becomes larger the value of r becomes smaller since the R2 term dominates.

log(α)

-2.0

-1.5

-1.0

-0.5

0

0.94 0.95 0.96 0.97 0.98
0.000

0.002

0.004

0.006

0.008

ns

r
log(α)

0.75

1.00

1.25

1.50

1.75

2.00

0.94 0.95 0.96 0.97 0.98
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

ns

r

Figure 7: The predictions for the inflationary observables in the nS − r plane for the induced
gravity model and for N = 50 − 60 e-folds. In the plot on the left we have varied α between 0.1
and 10, while in the plot on the right we have varied α between 10 and 100. We have set λ = 0.01,
ξ = 0.1 (in Planck units).

5.4 The nonminimal Higgs model

The slow-roll parameters for the nonminimal Higgs model (4.14) have the form

εV =

8ξ3
(
αλ+ ξ2

)
coth2

(
ζ
√
αλ
ξ

+ξ

MP

)
csch4

(
ζ
√
αλ
ξ

+ξ

MP

)
(

2ξ2csch2

(
ζ
√
αλ
ξ

+ξ

MP

)
+M2

P (ξ2 − αλ)

)2 , (5.18)
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ηV =

4ξ
(
αλ+ ξ2

)
csch4

(
ζ
√
αλ
ξ

+ξ

MP

)(
M2
P

(
αλ− ξ2

)(
cosh

(
2ζ

√
αλ
ξ

+ξ

MP

)
+ 2

)
+ 2ξ2

(
coth2

(
ζ
√
αλ
ξ

+ξ

MP

)
+ 1

))
(

2ξ2csch2

(
ζ
√
αλ
ξ

+ξ

MP

)
+M2

P (ξ2 − αλ)

)2 .

(5.19)

In Fig. 8 we plot the predictions of the model in the ns − r plane with fixed λ = 10−4, ξ = 1
and for N = 50− 60 e-folds. We vary the R2 term parameter between α = 1− 1000. Again, as α
becomes larger the tensor-to-scalar ratio becomes smaller.
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Figure 8: The predictions for the inflationary observables in the nS− r plane for the nonminimal
Higgs model with fixed λ = 10−4 and for N = 50 − 60 e-folds. On the left plot we fix ξ = 1 and
vary the R2 term parameter between α = 1− 1000. On the right plot we fix α = 0.1 and vary the
nonminimal coupling between ξ = 0.001− 1.

6 Conclusions

Among the few viable inflationary models, the Starobinsky model, in light of presently existing
CMB data, has received particular attention. Nevertheless, in contrast to its standard metric
formulation, within the Palatini formalism it does not provide us with a model for inflation, due
to the absence of a propagating inflaton. In the present article we have considered the Starobinsky
model in the framework of the Palatini formalism coupled to matter in the form of a scalar field, in
general coupled nonminimally to gravity. The resulting Einstein frame theory contains non-trivial
alterations in the scalar interactions that can drastically modify the inflationary behavior of the
models considered.

We have analyzed slow-roll inflation in a number of models and found that even models
excluded within the standard formulation can be rendered viable due to the presence of the R2
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term in the Palatini formalism. Specifically, we have examined the model of a minimally coupled
scalar with just a quadratic potential, a quasi-scale invariant Coleman-Weinberg model with a
non-minimally coupled scalar, an induced gravity model and the nonminimally coupled Higgs
model.

We find that the minimally coupled quadratic model can provide a viable model of inflation.
Subplanckian values of the model mass parameter (m = 0.1) and not too-large values of the
Starobinsky parameter (α ∈ [0.01, 10]) give ns and r within the allowed region for a number of
e-folds 50 − 60. This is in contrast to the metric formulation of this model in the absence of the
Starobinsky term which leads to a unacceptably large r. Next, we have analyzed the classically
scale-invariant Coleman-Weinberg model and find it to be also a viable inflationary model. We find
ns and r within the acceptable region for a large range of α values and reasonably small ξ ∼ 0.1,
for which the model without the R2 term in the metric formalism reaches the linear inflation
limit. The induced gravity model of a nonminimally coupled scalar field with a quartic potential
in which the Planck scale is generated by the scalar field VEV, has also been analyzed. We find
that the predicted ns and r values are within the acceptable region for values of the Starobinsky
parameter α ∈ [0.1, 10] and for reasonably small values of the couplings ξ ∼ 0.1, λ ∼ 0.01. Lastly,
we have analyzed the non-minimally coupled Higgs model and found ns and r values within the
acceptable region for small ξ ∈ [1, 100] and λ ∼ 10−4, α ∼ 1.

In conclusion, all the analyzed models can provide viable models of inflation, with the main
effect of the R2 term being that it lowers the value of r. The Palatini formalism has the advantage
of providing single-field inflation, while in the metric formalism with an R2 term we would need to
consider multifield analysis. We expect more models that lie outside of the current allowed r− ns
parameter space to follow the trend described above.
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Note Added
While this article was prepared for submission, a related article by V.-E. Enckell et al. ap-
peared [33], where the authors studied the effect of the R2 term in the Palatini formalism.
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