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FROM WIGNER-YANASE-DYSON CONJECTURE TO

CARLEN-FRANK-LIEB CONJECTURE

HAONAN ZHANG

Abstract. In this paper we study the joint convexity/concavity of the trace
functions

Ψp,q,s(A,B) = Tr(B
q
2 K∗ApKB

q
2 )s, p, q, s ∈ R,

where A and B are positive definite matrices and K is any fixed invertible
matrix. We will give full range of (p, q, s) ∈ R3 for Ψp,q,s to be jointly con-
vex/concave for all K. As a consequence, we confirm a conjecture of Carlen,
Frank and Lieb. In particular, we confirm a weaker conjecture of Audenaert
and Datta and obtain the full range of (α, z) for α-z Rényi relative entropies
to be monotone under completely positive trace preserving maps. We also give
simpler proofs of many known results, including the concavity of Ψp,0,1/p for
0 < p < 1 which was first proved by Epstein using complex analysis. The key
is to reduce the problem to the joint convexity/concavity of the trace functions

Ψp,1−p,1(A,B) = TrK∗ApKB1−p, −1 ≤ p ≤ 1,

using a variational method.

1. Introduction

The joint convexity/concavity of the trace functions

(1.1) Ψp,q,s(A,B) = Tr(B
q

2K∗ApKB
q

2 )s, p, q, s ∈ R,

has played an important role in mathematical physics and quantum information.
Its study can be traced back to the celebrated Lieb’s Concavity Theorem [Lie73],
which states that Ψp,q,1 is jointly concave for all 0 ≤ p, q ≤ 1, p + q ≤ 1 and for all
K. Using this, Lieb confirmed the Wigner-Yanase-Dyson conjecture [WY63]: for
0 < p < 1 and any self-adjoint K, the function

(1.2) Sp(ρ,K) :=
1

2
Tr[ρp,K][ρ1−p,K] = −TrρK2 + TrρpKρ1−pK,

is concave in ρ, where [A,B] = AB − BA. We refer to [WY63, Lie73] for more
details about the skew information −Sp(ρ,K).

Since then, a lot of work around the joint convexity/concavity of Ψp,q,s has
emerged [And79, Bek04, CFL16, CL08, CL99, Eps73, FL13, Hia13, Hia16], follow-
ing [Lie73]. Through this line of research many methods have been developed.
Two main methods are the “analytic method” and the “variational method”. We
refer to a very nice survey paper [CFL18] for more historical information and the
explanation of these two methods.

Another motivation to study the joint convexity/concavity of Ψp,q,s comes from
quantum information theory. Indeed, the joint convexity/concavity of Ψp,q,1/(p+q)

is closely related to the monotonicity (or Data Processing Inequality) of the α-z
Rényi relative entropies, which has become a frontier topic in recent years. We
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2 HAONAN ZHANG

shall recall this in Section 2. Starting from this Audenaert and Datta conjectured
that:

Conjecture 1. [AD15, Conjecture 1] If 1 ≤ p ≤ 2, −1 ≤ q < 0 and (p, q) 6= (1,−1),
then for any matrix K, the function

Ψp,q,1/(p+q)(A,B) = Tr(B
q

2K∗ApKB
q

2 )
1

p+q ,

is jointly convex in (A,B), where A and B are positive definite matrices.

We cheat a little bit here, since the original form of their conjecture concerns

the convexity of A 7→ Tr(A
q

2K∗ApKA
q

2 )
1

p+q for all K. However, by doubling
dimension, a standard argument shows that they are equivalent. See the discussions
after [CFL18, Conjecture 1] for example.

In this paper we confirm a stronger conjecture of Carlen, Frank and Lieb:

Conjecture 2. [CFL18, Conjecture 4] If 1 ≤ p ≤ 2, −1 ≤ q < 0, (p, q) 6= (1,−1)
and s ≥ 1

p+q , then for any matrix K, the function

Ψp,q,s(A,B) = Tr(B
q

2K∗ApKB
q

2 )s,

is jointly convex in (A,B), where A and B are positive definite matrices.
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Figure 1.1. Joint convexity/concavity (for all K) of Ψp,q,s

Consequently, we give the full range of (p, q, s) for Ψp,q,s to be jointly convex or
jointly concave for any invertible K. See Figure 1.1 (note that (1,−1) and (−1, 1)
do not belong to the area of convexity) and the following
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Theorem 1.1. Fix any invertible matrix K. Suppose that p ≥ q and s > 0. Then
Ψp,q,s defined in (1.1) is

(1) jointly concave if 0 ≤ q ≤ p ≤ 1 and 0 < s ≤ 1
p+q ;

(2) jointly convex if −1 ≤ q ≤ p ≤ 0 and s > 0;
(3) jointly convex if −1 ≤ q ≤ 0, 1 ≤ p ≤ 2, (p, q) 6= (1,−1) and s ≥ 1

p+q .

We remark here that the symmetric property of Ψp,q,s allows us to assume p ≥ q

and s > 0. See the discussions before Proposition 2.2. Moreover, the above result
is sharp, in view of Proposition 2.3.

As a corollary of Theorem 1.1, Proposition 2.1 and Proposition 2.3, we obtain
all (α, z) such that Dα,z is monotone under completely positive trace preserving
maps (or satisfies Data Processing Inequality, see (2.6) for the precise definition).

Theorem 1.2. The α-z relative Rényi entropy Dα,z is monotone under completely
positive trace preserving maps if and only if one of the following holds

(1) 0 < α < 1 and z ≥ max{α, 1 − α};
(2) 1 < α ≤ 2 and α

2 ≤ z ≤ α;
(3) 2 ≤ α < ∞ and α− 1 ≤ z ≤ α.

As we mentioned earlier, in the history two main methods have been developed
to study the convexity/concavity of the trace functions Ψp,q,s: the analytic method
and the variational method. The analytic method, which is the methodology em-
ploying the theory of Herglotz functions, was first introduced by Epstein [Eps73].
The variational method was first used by Carlen and Lieb in [CL08]. Both of them
have their own advantages, as the authors wrote in [CFL18, Page 8]: “It appears
that the analyticity method is especially useful for proving concavity and the vari-
ational method is more useful for proving convexity, but this is not meant to be
an absolute distinction.” In this paper we confirm Conjecture 2 by developing only
the variational method.

The main value of this paper is twofold. Firstly, we develop the variational
method in a very simple way such that it is useful to prove both convexity and
concavity, and it reduces the convexity/concavity of Ψp,q,s to three very particular
cases, which were already known (see Theorem 3.7). In this way we obtain the full
range of (p, q, s) such that Ψp,q,s is jointly convex/concave and confirm Conjecture
1 and Conjecture 2. Secondly, using our variational method in a slightly different
way, we can furthermore reduce these three very particular cases to Lieb’s concavity
result [Lie73] of Ψp,1−p,1 for 0 < p ≤ 1 and Ando’s convexity result [And79] of
Ψp,1−p,1 for −1 ≤ p < 0. In other words, from Lieb’s and Ando’s classical joint
convexity/concavity results (which admit many simple proofs) on

Ψp,1−p,1(A,B) = TrK∗ApKB1−p,

the subsequent results on joint convexity/concavity of Ψp,q,s can be derived easily
via our variational method. In this way we recover many classical results immedi-
ately. Moreover, we emphasize here that the analytic method can be avoided.

In the past half a century we have developed a lot of tools to tackle the con-
vexity/concavity of trace functions, and have witnessed a number of applications
of the convexity/concavity of trace functions to many areas, like mathematical
physics and quantum information. Now our variational method helps us to reduce
the Carlen-Frank-Lieb conjecture (in fact the joint convexity/concavity of the whole
family Ψp,q,s) to the convexity/concavity of the trace function (1.2) (in which the
essential part is Ψp,1−p,1) in the Wigner-Yanase-Dyson conjecture. This brings us
back to the origin of the whole story.
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This paper is organized as follows. In Section 2 we recall the background of
Conjecture 1 and Conjecture 2. In Section 3 we give the proof of our main result
Theorem 1.1.

We fix some notations in this paper. We use H to denote a finite-dimensional
Hilbert space. We use B(H) to denote the family of bounded linear operators
on H, P(H) to denote the family of positive linear operators on H (or n-by-n
positive semi-definite matrices with dimH = n), and D(H) to denote the family
of density operators, i.e., positive linear operators on H with unit trace (or n-by-n
positive semi-definite matrices having unit trace with dimH = n). Moreover, we

use B(H)
×

(reps. P(H)
×

and D(H)
×

) to denote the family of invertible operators
in B(H) (resp. P(H) and D(H)). We use Tr to denote the usual trace on matrix
algebra and we use I to denote the identity matrix. For any matrix A we use |A|

to denote its modulus (A∗A)
1
2 .

We close this section with a remark. In this paper we are mainly dealing with
the invertible matrices, to avoid some technical problems and make the paper more
readable. In this case for A ∈ P(H)× and α ∈ R, Aα is always well-defined.
Some results in this paper are still valid in the non-invertible case, by using an
approximation argument. For example, in Conjectures 1 and 2, K is not assumed
to be invertible, since Xs is always well-defined for positive semi-definite X and
s > 0. When K is not invertible, one can approximate K with invertible Kǫ =
K + ǫI, where ǫ > 0 is small enough. Then the convexity of Tr(B

q

2K∗ApKB
q

2 )s,

which is the limit of Tr(B
q

2K∗
ǫA

pKǫB
q

2 )s as ǫ tends to 0, follows from that of

Tr(B
q

2K∗
ǫA

pKǫB
q

2 )s, since the convexity is stable under taking limits.

2. Background

In this section we collect necessary background information for this paper. Most
of them are borrowed from the survey paper [CFL18]. One can refer to [CFL18]
and the references therein for further details. Experts may skip this section without
any difficulty.

Given two probability density functions P and Q on R, the relative entropy, or
Kullback-Leibler divergence of P with respect to Q is given by

(2.1) S(P ||Q) :=

ˆ

R

P (x)(logP (x) − logQ(x))dx.

For α ∈ (0, 1) ∪ (1,∞), the α-Rényi relative entropy of P with respect to Q is
defined as [Rén61]

(2.2) Sα(P ||Q) :=
1

α− 1
log

ˆ

R

P (x)αQ(x)1−αdx.

Both classical relative entropies (2.1) and (2.2) have been generalized to quantum
setting, where the density functions are replaced by the density operators, and the
integral is replaced by the trace, respectively. However, their quantum analogues
might take various forms.

Fix ρ, σ ∈ D(H)
×

with H being any finite-dimensional Hilbert space. A natural
quantum analogue of (2.1), is the so-called Umegaki relative entropy [Ume62]

(2.3) D(ρ||σ) := Trρ(log ρ− log σ).

It is monotone under completely positive trace preserving (CPTP) maps [Lin75].
That is,

(2.4) D(E(ρ)||E(σ)) ≤ D(ρ||σ),

for all CPTP maps E : B(H) → B(H) and all density operators ρ, σ ∈ D(H)
×

.
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The inequality (2.4) is known as the Data Processing Inequality (DPI). As one
of the most fundamental inequalities in quantum information, DPI has strong links
with the Strong Subadditivity (SSA) of the von Neumann entropy [LR73], the un-
certainty principle [TR11], the quantum hypothesis testing [MO15] and the Holevo
bound for the accessible information [Hol73]. Not every quantum analogue of (2.1)
satisfies DPI. For example, it is known that [CL18]

D′(ρ||σ) := Trρ log(σ− 1
2 ρσ− 1

2 ),

as a generalization of (2.1), does not satisfy DPI.
A natural generalization of (2.2) is the family of quantum α-Rényi relative en-

tropies

Dα(ρ||σ) :=
1

α− 1
log Tr(ρασ1−α), α ∈ (0, 1) ∪ (1,∞).

Another important generalization of (2.2), introduced by Müller-Lennert, Dupuis,
Szehr, Fehr, Tomamichel [MLDS+13] and Wilde, Winter, Yang [WWY14], are the
sandwiched α-Rényi entropies :

D̃α(ρ||σ) :=
1

α− 1
log Tr(σ

1−α
2α ρσ

1−α
2α )α, α ∈ (0, 1) ∪ (1,∞).

Audenaert and Datta [AD15] introduced a new family of quantum Rényi relative
entropies by using two parameters, called the α-z Rényi relative entropies :

(2.5) Dα,z(ρ||σ) :=
1

α− 1
log Tr(σ

1−α
2z ρ

α
z σ

1−α
2z )z , α ∈ (−∞, 1) ∪ (1,∞), z > 0.

It unifies Dα and D̃α by taking z = 1 and z = α, respectively. We comment here
that the α-z Rényi relative entropies have appeared earlier in a paper by Jaksic,
Ogata, Pautrat and Pillet [JOPP12].

A natural question is, for which (α, z) does the α-z Rényi relative entropy Dα,z

satisfy DPI, that is,

(2.6) Dα,z(E(ρ)||E(σ)) ≤ Dα,z(ρ||σ),

for any CPTP map E on B(H) and all density operators ρ, σ ∈ D(H)
×

? This
remained open for some range of (α, z) before the present paper. It is well-known
that DPI is essentially equivalent to the joint convexity/concavity of the trace
functions inside the definition of Dα,z.

Proposition 2.1. [CFL18, Proposition 7] Let α ∈ (−∞, 1)∪ (1,∞) and z > 0. Set
p = α

z and q = 1−α
z . Then (2.6) holds for any CPTP map E : B(H) → B(H), all

density operators ρ, σ ∈ D(H)
×

and any finite-dimensional Hilbert space H if and
only if one of the following holds

(1) α < 1 and Ψp,q,1/(p+q) with K = I is jointly concave;
(2) α > 1 and Ψp,q,1/(p+q) with K = I is jointly convex.

For the reader’s convenience, we present its proof in the end of this section. From
some known results on the joint convexity/concavity of Ψp,q,1/(p+q) with K = I,
Audenaert and Datta obtained DPI for Dα,z for some—but not full—range of (α, z)
[AD15, Theorem 1]. By saying full we mean necessary and sufficient conditions on
(α, z). It is then natural to ask whether DPI holds for the remaining range of (α, z).
This motivated Audenaert and Datta to raise Conjecture 1.

More generally, consider the joint convexity/concavity of trace functions

Ψp,q,s(A,B) = Tr(B
q

2K∗ApKB
q

2 )s,

where A,B ∈ P(H)×, K ∈ B(H)× and p, q, s ∈ R. Note that Ψq,p,s(B,A) =
Ψp,q,s(A,B) with K replaced by K∗, and Ψ−p,−q,−s(A,B) = Ψp,q,s(A,B) with K

replaced by (K−1)∗. So in the sequel we assume that p ≥ q and s > 0.
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The knowledge of the joint convexity/concavity of Ψp,q,s before the survey paper
[CFL18] is summarized in the following proposition in [CFL18] or the figure therein.

Proposition 2.2. [CFL18, Theorem 2] Fix K ∈ B(H)
×
. Then Ψp,q,s is

(1) jointly concave if 0 ≤ q ≤ p ≤ 1 and 0 < s ≤ 1
p+q ;

(2) jointly convex if −1 ≤ q ≤ p ≤ 0 and s > 0;
(3) jointly convex if −1 ≤ q ≤ 0, 1 ≤ p < 2, (p, q) 6= (1,−1) and s ≥

min{ 1
p−1 ,

1
q+1} or p = 2, −1 ≤ q ≤ 0 and s ≥ 1

q+2 .

For more historical details of these results, see the discussions after [CFL18,
Theorem 2]. We only comment here that the case s = 1, which was first studied
in the history, is due to Lieb [Lie73] for 0 ≤ q ≤ p ≤ 1 with p + q ≤ 1, as well
as for −1 ≤ q ≤ p ≤ 0, and due to Ando [And79] for −1 ≤ q ≤ 0, 1 ≤ p < 2,
with p + q ≥ 1. Their work played an important role in the development of matrix
analysis.

The following proposition, due to Hiai [Hia13], gives the necessary conditions for
Ψp,q,s to be jointly convex or jointly concave.

Proposition 2.3. [Hia13, Propositions 5.1(2) and 5.4(2)][CFL18, Proposition 3]
Let p ≥ q and s > 0. Suppose that (p, q) 6= (0, 0) and K = I.

(1) If Ψp,q,s is jointly concave for H = C2, then 0 ≤ q ≤ p ≤ 1 and 0 < s ≤ 1
p+q .

(2) If Ψp,q,s is jointly convex for H = C4, then either −1 ≤ q ≤ p ≤ 0 and
s > 0 or −1 ≤ q ≤ 0, 1 ≤ p ≤ 2, (p, q) 6= (1,−1) and s ≥ 1

p+q .

From the above two propositions, Carlen, Frank and Lieb raised Conjecture
2. Some partial results were known before the present paper, as pointed out in
Proposition 2.2 (3).

We close this section with the proof of Proposition 2.1. It comes from [CFL18,
Proposition 7], following a well-known argument due to Lindblad [Lin75] and Uhlmann
[Uhl73].

Proof of Proposition 2.1. We use Ψ to denote Ψp,q,1/(p+q) with K = I. We only
prove the case α > 1, since the proof for α < 1 is similar. Then it is equivalent to
show that Ψ satisfies the inequality

Ψ(E(ρ), E(σ)) ≤ Ψ(ρ, σ),

for any CPTP map E on B(H), for all ρ, σ ∈ D(H)
×

and for all H if and only if Ψ
is jointly convex.

To show the “if” part, take any CPTP map E : B(H) → B(H). Then we can
write E as

E(γ) = Tr2U(γ ⊗ δ)U∗,

where δ ∈ D(H′), U is unitary on H ⊗ H′, and H′ is a Hilbert space such that
N ′ := dimH′ ≤ (dimH)2. Here Tr2 denotes the usual partial trace over H′. For a
proof, see for example [Lin75, Lemma 5]. It origins in the celebrated Stinespring’s
Theorem [Sti55]. Let du denote the normalized Haar measure on the group of all
unitaries on H′, then

(2.7) E(γ) ⊗
IH′

N ′
=

ˆ

(IH ⊗ u)U(γ ⊗ δ)U∗(IH ⊗ u∗)du,

where IH and IH′ are the identity maps over H and H′, respectively. By the tensor
property of Ψ, we have

Ψ(E(ρ), E(σ)) = Ψ

(
E(ρ) ⊗

IH′

N ′
, E(σ) ⊗

IH′

N ′

)
.
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From the joint convexity of Ψ and (2.7) it follows that

Ψ(E(ρ), E(σ)) ≤

ˆ

Ψ((IH⊗u)U(ρ⊗δ)U∗(IH⊗u∗), (IH⊗u)U(σ⊗δ)U∗(IH⊗u∗))du.

By the unitary invariance and the tensor property of Ψ we obtain that

Ψ(E(ρ), E(σ)) ≤ Ψ(ρ, σ),

as desired.

To show the “only if” part, for any ρ1, ρ2, σ1, σ2 ∈ D(H)
×

and any 0 < λ < 1,
define

ρ =

(
λρ1 0
0 (1 − λ)ρ2

)
and σ =

(
λσ1 0

0 (1 − λ)σ2

)
,

in D(H⊕H)×. Since the map

(2.8) E

(
a b

c d

)
=

1

2

(
a + d 0

0 a + d

)
,

is a CPTP map, we obtain from the monotonicity of Ψ that

Ψ(E(ρ), E(σ)) ≤ Ψ(ρ, σ),

which is nothing but

Ψ(λρ1 + (1 − λ)ρ2, λσ1 + (1 − λ)σ2) ≤ λΨ(ρ1, σ1) + (1 − λ)Ψ(ρ2, σ2).

This finishes the proof of the joint convexity of Ψ. �

3. The proofs

This section is devoted to the proof of Theorem 1.1. The following classical
results will serve as the building blocks to achieve the joint convexity/concavity of
Ψp,q,s. The concavity result is due to Lieb [Lie73] and the convexity result is due to
Ando [And79]. They have now many simple proofs, see for example [NEE13]. We
only comment here that they are based on the operator convexity of A 7→ Ap when
−1 ≤ p < 0 or 1 ≤ p ≤ 2, and the operator concavity of A 7→ Ap when 0 < p ≤ 1.

Lemma 3.1. [Lie73, And79] For any K ∈ B(H)
×
, the function

Ψp,1−p,1(A,B) = TrK∗ApKB1−p, A,B ∈ P(H)
×
,

is

(1) jointly concave if 0 < p ≤ 1;
(2) jointly convex if −1 ≤ p < 0.

Theorem 1.1 will be reduced to Lemma 3.1 in three steps, using a variational
method. The idea of the variational method is based on the following lemma
[CFL18, Lemma 13]. We give the proof here for the reader’s convenience.

Lemma 3.2. Let X,Y be two convex subsets of vector spaces and f : X × Y → R

a function.

(1) If f(·, y) is convex (resp. concave) for any y ∈ Y , then x 7→ supy∈Y f(x, y)
(resp. x 7→ infy∈Y f(x, y)) is convex (resp. concave).

(2) If f is jointly convex (resp. concave) on X × Y , then x 7→ infy∈Y f(x, y)
(resp. x 7→ supy∈Y f(x, y)) is convex (resp. concave).

Proof. (1) This follows immediately from the definition.
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(2) We only prove the convexity here. The proof of the concavity is similar.
For any x1, x2 ∈ X and any 0 < λ < 1, set x := λx1 + (1 − λ)x2. Then
for any ǫ > 0 and i = 1, 2, there exists yi ∈ Y such that f(xi, yi) ≤
infy∈Y f(xi, y) + ǫ. By the joint convexity of f , we have

inf
y∈Y

f(x, y) ≤ f(x, λy1 + (1 − λ)y2)

≤ λf(x1, y1) + (1 − λ)f(x2, y2)

≤ λ inf
y∈Y

f(x1, y) + (1 − λ) inf
y∈Y

f(x2, y) + ǫ.

Then the proof finishes by letting ǫ → 0+.
�

The following variational method is the key of the proof. It originates in [CL08]
and the special cases (either r0 = 1 or r1 = 1) have been widely used [CFL18].

Theorem 3.3. For ri > 0, i = 0, 1, 2 such that 1
r0

= 1
r1

+ 1
r2
, we have for any

X,Y ∈ B(H)
×

that

(3.1) Tr|XY |r0 = min
Z∈B(H)×

{
r0

r1
Tr|XZ|r1 +

r0

r2
Tr|Z−1Y |r2

}
,

and

(3.2) Tr|XY |r1 = max
Z∈B(H)×

{
r1

r0
Tr|XZ|r0 −

r1

r2
Tr|Y −1Z|r2

}
.

Proof. For any p > 0 define ‖ · ‖p as ‖A‖pp := Tr|A|p. For any Z ∈ B(H)
×

, we have
by Hölder’s inequality that

Tr|XY |r0 ≤ ‖XZ‖r0r1‖Z
−1Y ‖r0r2 = [Tr|XZ|r1 ]

r0
r1 [Tr|Z−1Y |r2 ]

r0
r2 .

For a proof of Hölder’s inequality, see [Bha97, Exercise IV.2.7]. Actually it is a
special case of [Bha97, Exercise IV.2.7] by choosing the unitarily invariant norm
|||·||| to be ‖ · ‖1. And [Bha97, Exercise IV.2.7] can be proved by almost the same
argument as the proof of [Bha97, Corollary IV.2.6], since [Bha97, Theorem IV.2.5]
is valid for all r > 0.

Then from Young’s inequality for numbers (or AM-GM inequality): xαyβ ≤
αx + βy for positive x, y and positive α, β such that α + β = 1, it follows that

(3.3) Tr|XY |r0 ≤ [Tr|XZ|r1]
r0
r1 [Tr|Z−1Y |r2 ]

r0
r2 ≤

r0

r1
Tr|XZ|r1 +

r0

r2
Tr|Z−1Y |r2 .

By exchanging Y and Z, we have

(3.4) Tr|XY |r1 ≥
r1

r0
Tr|XZ|r0 −

r1

r2
Tr|Y −1Z|r2 .

In view of (3.3), to prove (3.1) it suffices to find a minimizer. For this let
Y ∗X∗ = U |Y ∗X∗| be the polar decomposition of Y ∗X∗, then XY U = |Y ∗X∗|. Set

Z := Y U |Y ∗X∗|−
r1

r1+r2 , then we have

XZ = XY U |Y ∗X∗|−
r1

r1+r2 = |Y ∗X∗|
r2

r1+r2 , Z−1Y = |Y ∗X∗|
r1

r1+r2 U∗.

Using the facts that ‖ · ‖p is unitarily invariant and ‖A‖p = ‖A∗‖p for all A, we
have

Tr|XZ|r1 = Tr|Y ∗X∗|
r1r2

r1+r2 = Tr|XY |
r1r2

r1+r2 = Tr|XY |r0 ,

and

Tr|Z−1Y |r2 = Tr|Y ∗X∗|
r1r2

r1+r2 = Tr|XY |
r1r2

r1+r2 = Tr|XY |r0 .

Hence Tr|XY |r0 = r0
r1

Tr|XZ|r1 + r0
r2

Tr|Z−1Y |r2 , which proves (3.1).
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In view of (3.4), to prove (3.2) it suffices to find a maximizer. For this let U be

as above and choose Z to be Y U |Y ∗X∗|
r1
r2 , then

XZ = XY U |Y ∗X∗|
r1
r2 = |Y ∗X∗|

r1+r2
r2 , Y −1Z = U |Y ∗X∗|

r1
r2 .

It follows that

Tr|XZ|r0 = Tr|Y ∗X∗|
(r1+r2)r0

r2 = Tr|Y ∗X∗|r1 = Tr|XY |r1 ,

and

Tr|Y −1Z|r2 = Tr|Y ∗X∗|r1 = Tr|XY |r1 .

Hence Tr|XY |r1 = r1
r0

Tr|XZ|r0 − r1
r2

Tr|Y −1Z|r2 and the proof of (3.2) is finished.
�

Remark 3.4. It is possible to generalize this variational method to the infinite
dimensional case or to more general norm functions, which is beyond the aim of
this paper. It is also possible to apply this variational method to trace functions
with n ≥ 3 variables. Let rj > 0, j = 0, 1, . . . , n such that 1

r0
=

∑n
j=1

1
rj

. Then we

have for X1, . . . , Xn ∈ B(H)× that

Tr|X1 · · ·Xn|
r0

= min





r0

r1
Tr|X1Z1|

r1 +

n−1∑

j=2

r0

rj
Tr|Z−1

j−1XjZj |
rj +

r0

rn
Tr|Z−1

n−1Xn|
rn




 ,
(3.5)

and

Tr|X1 · · ·Xn|
r1

= max





r1

r0
Tr|X1Z1|

r0 −

n−1∑

j=2

r1

rj
Tr|Z−1

j X−1
j Zj−1|

rj −
r1

rn
Tr|X−1

n Zn−1|
rn




 ,
(3.6)

where min and max run over all Z1, . . . , Zn−1 ∈ B(H)
×

. The proof is similar to the
two variables case. We only explain here that min is indeed achieved for (3.5). Let
X∗

n · · ·X
∗
1 = U |X∗

n · · ·X
∗
1 | be the polar decomposition of X∗

n · · ·X
∗
1 . Then set

Zj := Xj+1 · · ·XnU |X∗
n · · ·X

∗
1 |

αj , αj =

j∑

k=1

r0

rk
− 1

for 1 ≤ j ≤ n− 1. One can check that

Tr|X1 · · ·Xn|
r0 =

r0

r1
Tr|X1Z1|

r1 +
n−1∑

j=2

r0

rj
Tr|Z−1

j−1XjZj|
rj +

r0

rn
Tr|Z−1

n−1Xn|
rn .

Now we are ready to proceed with the three steps of reductions. Note that Step
1 is enough to finish the proof of Theorem 1.1 and confirm Conjectures 1 and 2.

Step 1: In the first step we reduce the joint convexity/concavity of Ψp,q,s to the
convexity/concavity of

Υp,s(A) := Tr(K∗ApK)s, A ∈ P(H)
×
,

for all K ∈ B(H)
×

, which has already been thoroughly studied.

Theorem 3.5. [CFL18, Proposition 5] For any K ∈ B(H)×, Υp,s is

(1) concave if 0 < p ≤ 1 and 0 < s ≤ 1
p ;

(2) convex if −1 ≤ p ≤ 0 and s > 0;
(3) convex if 1 ≤ p ≤ 2 and s ≥ 1

p .
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See the discussions after Proposition 5 in [CFL18] for more historical information.
We only comment here that the proof of concavity for 0 < p ≤ 1 with s = 1

p is due

to Epstein [Eps73]. His analytic method is nowadays developed as an important
tool in matrix analysis, in particular to deal with concavity (rather than convexity)
of trace functions. We will give a simpler proof of this theorem later, without using
Epstein’s analytic approach.

Proof of Theorem 1.1 given Theorem 3.5. Before proceeding with the proof note
first that

Ψp,q,s(A,B) = Tr(B
q
2K∗ApKB

q
2 )s = Tr|A

p
2 KB

q
2 |2s.

(1) If q = 0, then the claim reduces to Theorem 3.5 (1). To show the case
0 < q ≤ p ≤ 1 and 0 < s ≤ 1

p+q , set λ := s(p + q) ∈ (0, 1] and we apply (3.1) to

(r0, r1, r2) = (2s, 2λ
p , 2λ

q ) and (X,Y ) = (A
p

2 K,B
q

2 ):

(3.7) Ψp,q,s(A,B) = min
Z∈B(H)×

{
p

p + q
Tr|A

p
2 KZ|

2λ
p +

q

p + q
Tr|Z−1B

q
2 |

2λ
q

}
.

Since 0 < λ
p ≤ 1

p and 0 < λ
q ≤ 1

q , from Theorem 3.5 (1) it follows that the maps

A 7→
p

p + q
Tr|A

p

2 KZ|
2λ
p =

p

p + q
Tr(Z∗K∗ApKZ)

λ
p

and
B 7→

q

p + q
Tr|Z−1B

q

2 |
2λ
q =

q

p + q
Tr(Z−1Bq(Z−1)∗)

λ
q

are both concave. Hence they are both jointly concave as functions in (A,B) and
so is Ψp,q,s by Lemma 3.2 (1) and (3.7).

(2) If p = 0, then the claim reduces to Theorem 3.5 (2). Suppose −1 ≤ q ≤ p < 0
and s > 0, then we apply (3.2) to (r0, r1, r2) = (2t, 2s, 2

−q ) with 1
t = 1

s − q and

(X,Y ) = (A
p

2 K,B
q

2 ):

(3.8) Ψp,q,s(A,B) = max
Z∈B(H)×

{s

t
Tr|A

p

2 KZ|2t + sqTr|B−
q

2Z|
2

−q

}
.

Note that t > 0, sq < 0 and 0 < −q ≤ 1. By Theorem 3.5 (1) and (2), the maps

A 7→
s

t
Tr|A

p

2 KZ|2t =
s

t
Tr(Z∗K∗ApKZ)t

and
B 7→ sqTr|B−

q

2Z|
2

−q = sqTr(Z∗B−qZ)
1

−q

are both convex. Hence they are both jointly convex as functions in (A,B) and so
is Ψp,q,s by Lemma 3.2 (1) and (3.8).

(3) If q = 0, then the claim reduces to Theorem 3.5 (3). Suppose −1 ≤ q < 0, 1 ≤
p ≤ 2, (p, q) 6= (1,−1) and s ≥ 1

p+q , then we apply (3.2) to (r0, r1, r2) = (2t, 2s, 2
−q )

with 1
t = 1

s − q and (X,Y ) = (A
p

2 K,B
q

2 ):

(3.9) Ψp,q,s(A,B) = max
Z∈B(H)×

{s

t
Tr|A

p
2 KZ|2t + sqTr|B−

q
2Z|

2
−q

}
.

Since sq < 0, 0 < −q ≤ 1 and t = 1
s−1−q ≥ 1

p , we have by Theorem 3.5 (1) and (3)

that the maps

A 7→
s

t
Tr|A

p

2 KZ|2t =
s

t
Tr(Z∗K∗ApKZ)t

and
B 7→ sqTr|B−

q
2Z|

2
−q = sqTr(Z∗B−qZ)

1
−q

are both convex. Hence they are both jointly convex as functions in (A,B) and so
is Ψp,q,s by Lemma 3.2 (1) and (3.9). �
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Remark 3.6. One can understand this step of reduction in the following heuristic
way. In Figure 1.1, the green region [0, 1] × [0, 1] is generated by two intervals of
the p-axis and the q-axis: [0, 1] × {0} and {0} × [0, 1]. That is how we deduce the
joint concavity of Ψp,q,s (Theorem 1.1 (1)) from the concavity of Υp,s (Theorem
3.5 (1)) in the above proof. The proof of the yellow region of the Figure 1.1 can be
understood in a similar way.

Step 2: In our second step we reduce Theorem 3.5 to three particular cases.

Theorem 3.7. [Eps73, Hia13, CL08] Fix K ∈ B(H)
×
, then

(1) Υp,1/p is concave when 0 < p ≤ 1 (Epstein);
(2) Υp,s is convex when −1 ≤ p < 0 and 0 < s ≤ 1 (Hiai);
(3) Υp,1/p is convex when 1 ≤ p ≤ 2 (Carlen-Lieb).

Proof of Theorem 3.5 given 3.7. Indeed, when 0 < p ≤ 1, 0 < s < 1
p and 1

s = p+ 1
t ,

by applying (3.1) to (r0, r1, r2) = (2s, 2
p , 2t) and (X,Y ) = (A

p
2 ,K) we obtain that

Tr(K∗ApK)s = min
Z∈B(H)×

{
spTr(Z∗ApZ)

1
p +

s

t
Tr(K∗(Z−1)∗Z−1K)t

}
.

Then by Lemma 3.2 (1), the concavity of Υp,1/p implies the concavity of Υp,s.

When −1 ≤ p < 0 and s > 1, by applying (3.2) to (r0, r1, r2) = (2, 2s, 2s
s−1 ) and

(X,Y ) = (A
p
2 ,K) we obtain that

Tr(K∗ApK)s = max
Z∈B(H)×

{
sTrZ∗ApZ − (s− 1)Tr(Z∗(K−1)∗K−1Z)

s
s−1

}
.

Then by Lemma 3.2 (1), the convexity of Υp,1 implies the convexity of Υp,s.

When 1 ≤ p ≤ 2, s > 1
p and p = 1

s + 1
t , by applying (3.2) to (r0, r1, r2) =

( 2
p , 2s, 2t) and (X,Y ) = (A

p

2 ,K) we obtain that

Tr(K∗ApK)s = max
Z∈B(H)×

{
spTr(Z∗ApZ)

1
p −

s

t
Tr(Z∗(K−1)∗K−1Z)t

}
.

Then by Lemma 3.2 (1), the convexity of Υp,1/p implies the convexity of Υp,s. �

Step 3: In the last step we reduce Theorem 3.7 to Lemma 3.1.

Proof of Theorem 3.7 given Lemma 3.1. The proof is inspired by the proof of (2)
in [CFL18]. Let us recall it first. If s = 1, the convexity of Υp,1 follows from the
operator convexity of A 7→ Ap for −1 ≤ p < 0. If 0 < s < 1, by applying (3.1) to

(r0, r1, r2) = (2s, 2, 2s
1−s ) and (X,Y ) = (A

p

2 K, I), we have

Tr(K∗ApK)s = min
Z∈B(H)×

{
sTr|A

p

2 KZ|2 + (1 − s)Tr|Z−1|
2s

1−s

}

= min
Z∈P(H)×

{
sTrK∗ApKZ + (1 − s)TrZ

s
s−1

}

= min
Z∈P(H)×

{
sTrK∗ApKZ1−p + (1 − s)TrZ

s(1−p)
s−1

}
.

Since s(1−p)
s−1 < 0, the function t 7→ t

s(1−p)
s−1 is convex. Thus Z 7→ TrZ

s(1−p)
s−1 is convex

(see for example [Car10, Theorem 2.10]). This, together with Ando’s convexity
result (Lemma 3.1 (2)) and Lemma 3.2 (2), yields the convexity of Υp,s.
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Now we prove (1). There is nothing to prove when p = 1. For 0 < p < 1, by

applying (3.2) to (r0, r1, r2) = (2, 2
p ,

2
1−p ) and (X,Y ) = (A

p
2 K, I), we have

Tr(K∗ApK)
1
p = max

Z∈B(H)×

{
1

p
Tr|A

p

2KZ|2 −
1 − p

p
Tr|Z|

2
1−p

}

= max
Z∈P(H)×

{
1

p
TrK∗ApKZ −

1 − p

p
TrZ

1
1−p

}

= max
Z∈P(H)×

{
1

p
TrK∗ApKZ1−p −

1 − p

p
TrZ

}
.

Then by Lieb’s concavity result (Lemma 3.1 (1)) and Lemma 3.2 (2), Υp,1/p is
concave.

(3) can be shown similarly. Indeed, the case p = 1 is trivial. For 1 < p ≤ 2, by

applying (3.1) to (r0, r1, r2) = ( 2
p , 2,

2
p−1 ) and (X,Y ) = (A

p

2 K, I), we have

Tr(K∗ApK)
1
p = min

Z∈B(H)×

{
1

p
Tr|A

p

2 KZ|2 +
p− 1

p
Tr|Z−1|

2
p−1

}

= min
Z∈P(H)×

{
1

p
TrK∗ApKZ +

p− 1

p
TrZ

1
1−p

}

= min
Z∈P(H)×

{
1

p
TrK∗ApKZ1−p +

p− 1

p
TrZ

}
.

Then by Ando’s convexity result (Lemma 3.1 (2)) and Lemma 3.2 (2), Υp,1/p is
convex. �

Remark 3.8. Although the variational methods (3.1) and (3.2) admit analogues
(3.5) and (3.6) of n(≥ 3) variables, the joint convexity/concavity of

P(H)
×
× · · · ×P(H)

×
∋ (A1, . . . , An) 7→ Tr(A

pn
2

n K∗
n−1 · · ·K

∗
1A

p1

1 K1 · · ·Kn−1A
pn
2

n )s

can not be derived directly from Theorem 3.5 because of the appearance of the
term Tr|Z−1

j−1XjZj|
rj . For example, we have

Tr|X1X2X3|
r0

= min
Z1,Z2∈B(H)×

{
r0

r1
Tr|X1Z1|

r1 +
r0

r2
Tr|Z−1

1 X2Z2|
r2 +

r0

r3
Tr|Z−1

2 X3|
r3

}
.

(3.10)

To obtain the joint concavity of

P(H)
×
× P(H) × P(H)

×
∋ (A1, A2, A3) 7→ Tr(A

p3
2
3 K∗

2A
p2
2
2 K∗

1A
p1

1 K1A
p2
2
2 K2A

p3
2
3 )s,

via the variational method (3.10), the concavity of the function of the form

P(H)
×
∋ A2 7→ Tr|Y1A

p2
2
2 Y2|

r2 = Tr(Y ∗
2 A

p2
2
2 Y ∗

1 Y1A
p2
2
2 Y2)

r2
2

is required. Unfortunately, little is known for general Y ∗
1 Y1 6= I. Indeed, Carlen,

Frank and Lieb proved that [CFL16, Corollary 3.3] for p, q, r ∈ R\{0}, the function

(A,B,C) 7→ TrC
r
2B

q

2ApB
q

2C
r
2

is never concave, and it is convex if and only if q = 2, p, r < 0 and −1 ≤ p+ r < 0.
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