arXiv:1811.02972v1 [math-ph] 7 Nov 2018

BELL POLYNOMIALS AND BROWNIAN BRIDGE IN SPECTRAL
GRAVITY MODELS ON MULTIFRACTAL ROBERTSON-WALKER
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COSMOLOGIES

FARZAD FATHIZADEH, YEORGIA KAFKOULIS, MATILDE MARCOLLI

ABSTRACT. We obtain an explicit formula for the full expansion of the spectral
action on Robertson-Walker spacetimes, expressed in terms of Bell polynomials,
using Brownian bridge integrals and the Feynman—Kac formula. We then apply this
result to the case of multifractal Packed Swiss Cheese Cosmology models obtained
from an arrangement of Robertson—Walker spacetimes along an Apollonian sphere
packing. Using Mellin transforms, we show that the asymptotic expansion of the
spectral action contains the same terms as in the case of a single Robertson—Walker
spacetime, but with zeta-regularized coefficients, given by values at integers of the
zeta function of the fractal string of the radii of the sphere packing, as well as
additional log-periodic correction terms arising from the poles (off the real line) of
this zeta function.
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1. INTRODUCTION

The spectral action was proposed in the '90s by Chamseddine and Connes [3] as
a possible action functional for gravity coupled to matter that extends to noncom-
mutative spaces. It was successfully applied to the construction of particle physics
models [10], where its asymptotic expansion reconstructs the Lagrangian of the Stan-
dard Model with right handed neutrinos and Majorana masses, [6], see also [38]. It
was also shown in [6] that, in the gravity sector, the asymptotic expansion of the
spectral action gives rise to a modified gravity model that includes, in addition to
the Einstein—Hilbert action and the cosmological term of General Relativity, also a
conformal gravity term (Weyl curvature) and a Gauss—Bonnet gravity term (which
is non-dynamical and topological in dimension four).

It was shown in [2], [30], [31] that one can incorporate in the spectral action
functional a scalar field, seen as a perturbation of the Dirac operator. The action
functional then determines a potential for this scalar field that has the shape of a slow—
roll potential, suitable for a cosmological inflation scenario. This slow—roll potential
was used in [2], [30], [31] to study how an action functional model of gravity can
address the cosmic topology question. For an overview of spectral action models in
cosmology see [29].

The spectral action, with its full asymptotic expansion, has been computed ex-

plicitly for various types of solutions of the Einstein equations, including Robertson—
Walker metrics [5], [20], [19] and Bianchi IX gravitational instantons, [16], [17], [I§].

The starting point of this paper is the computation of [5] of the spectral action
for (Euclidean) Robertson—Walker metrics and the results of [20], showing that the
coefficients of the asymptotic expansion of the spectral action for these metrics are
recursively given by rational functions of the scaling factor of the metric and its
derivatives, with Q-coefficients.

We obtain here a different and more explicit derivation of the full expansion of
the spectral action for Robertson-Walker metrics. As in [5] it is based on Brownian
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bridge integrals, but a more convenient choice of variables leads to more easily com-
putable integrals and to a completely explicit form of the coefficients in terms of Bell
polynomials.

This explicit form suggests that a deeper algebraic and combinatorial structure is
present in the asymptotic expansion of the spectral action, at least for very regular
geometries like the Robertson—Walker metrics. This structure is closely related to
the Hopf algebra structure of renormalization in quantum field theories, manifested
here through the Faa di Bruno Hopf algebra and its relation to the Bell polynomials.

We then consider the case where, instead of a single Robertson—Walker cosmology
with spatial sections given by a sphere S, we have a multifractal arrangement in the
form of a Robertson—Walker cosmology over an Apollonian packing of spheres. This
type of multifractal cosmology models are known as “Packed Swiss Cheese Cosmol-
ogy”, [33]. They model spacetimes that are isotropic but non-homogeneous, based
on a construction originally introduced in [34]. A model of the spectral action for
Packed Swiss Cheese Cosmologies was developed in [I], based on a simplified static
model with constant scaling factor. We extend the results here to the full model with
an arbitrary underlying Robertson—Walker metric.

We consider an Apollonian packing of spheres S® with a sequence of radii £ =
{a,r}. We endow each 4-dimensional spacetime R x S*® with a Robertson—Walker
metric d*+a(t)?do?, scaled by the corresponding radius afl,k in two possible ways, see
(52) and (B1]). For a particular choice of a scaling factor of the form a(t) = sin(t)
this general setting includes the case of packings of four-spheres.

We first illustrate a lower dimensional example based on a special class of Apollo-
nian circle packings, the Ford circles, where we show explicitly the terms arising in
the spectral action that detect the fractal structure, which are expressible in terms
of zeros of the Riemann zeta function. This example also illustrates the fact that the
very restrictive condition on the sphere packing used in the simplified model of [I],
based on an approximation by self-similar fractal strings with lattice property, is too
strong for the general setting we need to consider here. The method we use in this
paper to obtain the full asymptotic expansion of the spectral action is independent
of this approximation assumption and only requires a milder condition on the fractal
string £ = {a,} of the sphere packing, namely the property that the zeta function
(c(2) admits analytic continuation to a meromorphic function on C with simple poles
located away from the set of integers less than or equal to 4.

We obtain the full expansion of the spectral action on these multifractal Packed
Swiss Cheese Cosmologies in terms of the expansion for a single Robertson—Walker
metric obtained in the first part of the paper, using a Mellin transform argument. The
resulting expansion has two series of term, one that corresponds to the terms in the
expansion of a single Robertson—-Walker metric, where the coefficients are modified
by a zeta regularized sum of powers of the packing radii, so that the coefficients are
no longer rational numbers but they contain the zeta values (- (4 —2M), for M € N.
The second series of terms corresponds to the poles of the fractal string zeta function
(c(z) and give rise to a series of log-periodic terms as already observed in the simpler
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model of [I]. In this case the coefficients are values of the zeta function of the Dirac
operator of the underlying model Robertson—Walker metric.
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2. SPECTRAL GRAVITY AND ROBERTSON-WALKER METRICS

We discuss here some general preliminary facts about Robertson—Walker metrics
and the spectral action functional, which will be useful in the following sections.

2.1. Spectral gravity. The spectral action functional can be defined on ordinary
manifolds or more generally on noncommutative geometries, described in terms of
the spectral triple formalism [9]. The functional is defined in terms of a regularized
trace of a Dirac operator

(2.1) S == Y ),

AeSpec(D)

where A € RY is an energy scale and f(z) is a smooth test function (which one can
think of as a smooth approximation to a cutoff function. In the commutative case, one
assumes that the underlying manifold is Riemannian and compact, so that the Dirac
operator has compact resolvent, hence the series in (2.I) makes sense. The general
spectral triple axioms in the noncommutative case [9] are modelled on the analytic
properties of Dirac operators on compact Riemannian spin manifolds. While the
definition (Z.1I) does not directly extend to Lorentzian geometries, it is often the case
that the local terms in the asymptotic expansion of the spectral action may admit
Wick rotations to Lorentzian signature and can be used in gravity and cosmology
models.

Throughout this paper we will work only with spacetimes with Euclidean signature,
and in particular, with Robertson—Walker metrics of the form dt?+a(t)?do? on R x S3,
where the geometry is given as a warped product of the flat metric on R and the round
metric do? on the 3-dimensional sphere S of radius one. Here the real line R is used
to parametrize the cosmic time ¢, and the spatial section of the universe is a 3-sphere,
expanded by the scaling factor a(t).
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The asymptotic expansion of the spectral action is obtained from the heat kernel
expansion for the square D? of the Dirac operator. Suppose that the heat kernel has
a small time asymptotic expansion at 7 — 0+ of the form

_ 2
b E Co, T

where We assume that the terms o > 0 are integers, then, using a test function of the

form f(x fo —ra dyu(7) for some measure p with normalization f(0 fo dp(T
we obtaln an expansion (see B, 51, [38])
(2.2) Te(f(D/A) ~ ) faca N+ aof(0) + > faca A,

a<0 a>0

where the coefficients f, are given by

S feeTde a <0
(2.3) Ja = { (0_1)ocf(oc)(()) a>0,aeN

Thus, the problem of computing the full spectral action expansion amounts to com-
puting the heat kernel expansion coefficients.

In the case of R x S? with a Riemannian Robertson—Walker metric of the form
dt* + a(t)*do® = dt* + a(t)*(dx?* sin® x(df* + sin® 0 d¢?),

the square D? of the Dirac operator has the explicit form ([5])

0  3d(t) 1 a'(t)
2 9 2 0M.\2 0
D ==+ 2a) a0 P g P
with
0 1 0 1 1 0
_ 2 —_
Dy =~ (8X + cotx) +7 sin (89 COtH) 7 sin y sin@ 9¢

Using a basis of eigenfunctions of the Dirac operator on S?%, the operator D? was
decomposed into a direct sum of operators of the form
2 m+3Hr (n+d)d
HE = (g - ok D
dt? a? a?

which are then used to compute the spectral action expansion via a Feynman-Kac
formula. We will discuss this setting more in detail in §3] where we present a different
method of computing these coefficients, also in terms of the Feynman—Kac formula
and the Brownian bridge integrals, but with a computationally simpler choice of
coordinates.
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2.2. Pseudodifferential calculus. We let D be the Dirac operator of the Robertson-
Walker metric with a general cosmic factor a(t):

(2.4) ds® = dt* + a(t)*do’.
We can express the heat kernel as
1
9 -rD? _ - —TA(D2 _ )\)!
(2.5) e 5 /, e A)~ld),

for v a contour in the complex plane traveling clockwise around the non-negative
reals. Since D? is an elliptic operator of order 2, we can approximate (D? — \)~! by
a parametrix

(2.6) o(Ry) NZT’j(%fa)\)a

5=0
where each of the r;(x,&,\) is a pseudodifferential symbol of order —2 — j so that
ri(x, 76, T2N) = 7% Irj(z,&, ). It is then possible to determine recursively the
homogeneous pseudodifferential symbols 7; in the expansion of the parametrix, with
ro(r,&,A) = (pa(2,€) — X\)7L, and for any n > 1

2.7 .6 0) = = 30 L0, € el ol €V,

where the summation runs over all « € Z4, j € 0,1,...,n — 1, k € {0, 1,2} such that
la| +j+2—k=n, see [20], [16].

The small time asymptotic expansion of the heat kernel

o _(n—1)/2
(28) Tr(e—TD2) ~ o+ nZ::O W /tl‘(en(l’))dUOlg

and (2.3 with the parametrix expansion (28] give

1
(2.9) nl@)  VAet(g) =~ | e raw,€ N dAde,
!
gl
and the coefficients a,, of the heat kernel expansion can be written as in [20] in the
form

1

210) @ = /S tlen) dvl

1

2r 2w /2
_ 3 .
T 1674 /0 /0 /0 tr(en)a”(t) sin(n) cos(n) dn dpy dos.

In fact, only the even coefficients as,, are nontrivial. The coefficients as,, can then
be determined in terms of the recursive formula (2.7) for the parametrix. Using this
method it is proved in [20] that the coefficients a,, satisfy a rationality phenomenon
conjectured in [5]. Namely, if we denote by as,(t) the coefficient asy, prior to time-
integration, that is, as,, = [ as,(t) dt, then the result proved in [20] shows that each
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asm (t) is described by a polynomial in several variables whose coefficients are rational
numbers,

Qo (alt),d'(t),...,a®™ (1))

2.11 m(t) = )
( ) az ( ) a(t)Qm—3
where Qo € Q[zo, 21, ..., Tam]. Moreover, the degree of each monomial appearing
in Yy, is either 2m — 2 or 2m. More concretely,
(2.12) Qom (0, 1, ..., Top) = Z Com e TN -+ phm
k

where ¢, € Q, and for each multi-index k = (ko, k1, . . ., k2mm) in the summation we
have:

2m 2m 2m 2m
(213)  either > k= jkj=2m-2 or > k=Y jkj=2m.

J=0 J=0 Jj=0 j=0

As we will see later, the structure (2I3]) of the summation in the polynomials
(212) is reminiscent of the structure of a combinatorially very interesting family
of polynomials, the Bell polynomials, that describe the combinatorial structure of
derivatives of composite functions. Indeed we will prove in the next sections that the
coefficients ag,, (t) can be computed explicitly in terms of Bell polynomials.

2.3. Physical examples: expansion models. The first few coefficients ag, as, a4, ag
in the expansion of the spectral action for the Robertson—Walker metric, as computed
in [5], give the following expressions (written without time integration)

ao(t) = ~a¥(t),

2
_ @) (a'(t) | (a(t) -1
as(t) = 1 ( all) + (D) )7

1

a(t) = 155 ( 2()al () + 9a(t)a'(H)a'®) (t) + 3a(t)(a")*(t) — 4(a')*(t)a" (t) - 5@”(15)) :

ao(t) = _@@at) _d@)ta’t) a"(t)’ (@)%t a'(t)*  d(t)a® )
0 240a2(t) 84a2(t)  120a(t) 21a(t) 90 240a(t)
d(t)a®(t) d(t)a"()aV(t) a()a®()? oD(t) d/(t)’a(t)
84a(t) 20 1680 240 120
a(t)a” (t)a™ (t) N a(t)a' (t)a® (t) N a(t)?al®(t)
840 140 560

While the spectral action is computed for a compact 4-dimensional Riemannian
manifold (for example the sphere S* for which a(t) = sin(#)) the expressions obtained
above for the coefficients as functions of the scaling factor a(t) of the Robertson—
Walker metric continue to make sense for more realistic universe models where the
scaling factor describes different phases of the expansion of the universe. In the case
of an expanding universe (as opposed to the expansion and contraction case of the
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sphere S?) the time integration of the expressions above may introduce divergences
that requires cutoff regularization.

Throughout this paper we will not assume any fixed form for the scaling factor
a(t) and we will work in complete generality for an arbitrary smooth function. We
list here some cosmologically relevant examples of scaling factors of an expanding
universe and the corresponding form of the first few coefficients of the spectral action
expansion, computed using the pseudodifferential calculus discussed above.

2.3.1. Inflation dominated universe. For an inflation dominated universe model the
scaling factor derived from the Friedmann equations and the Robertson-Walker metric
produces an exponentially expanding universe, [I2], with scaling factor a(t) = ef'.

This gives

1
aO(t) = §€2Ht7
2H263Ht _ th
a2(t) = 4 y
as(t) = 11H*eH — 5H%H!,
—-31 1
N o= FOe3HE o 1 pra HE
as(?) 9510 ¢ Tt

2.3.2. Radiation dominated universe. In the radiation-dominated phase of the uni-
verse expansion the scaling factor grows like a(t) = (2Ht)'/2. This gives terms of the
form

anlt) = V2(H1)*?,

ag(t) = ——F,

4
V2Ht(—11H + 30t)
CL4(t) = — 5 y
1440t
0 —919 - 2/ H?t + 189 - 2Y/SH? + 30 - 6'/3 H (H)%/°
Qg =

20160 - 22/3t5\/Ht
L2t 61/3t(Ht)>/5 + 126 - 323 H(Ht)7/6
20160 - 22/3t5\/Ht '
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2.3.3. Matter-dominated universe. In a matter-dominated universe model [I2] the
scale factor has an expansion rate of the form a(t) = (2Ht)*3 and gives terms

ap(t) = §H2t2,
a2 1/3\%3
t)y = ——=(= Ht)*/3
1 H2 1 2\
N = — 4 (2} 2
al) = 3557 +72<3) (/3
5 H? 11 H?/3

Qg (t) =

5016 ¢4 | 810.22/3 . 3173 {103

2.3.4. Empty universe. In an empty universe with scaling factor a(t) = Ht the spec-
tral action coefficients take the form
1
ap = §(Ht)3>
H3t — Ht
1 .

a9 =

with vanishing higher terms.

3. COMBINATORIAL STRUCTURES IN THE SPECTRAL ACTION EXPANSION

We work here and in the rest of the paper with a Robertson—Walker metric with
an arbitrary choice of the scaling factor a(t).

In [5] a method for computing the spectral action expansion on Robertson—Walker
metrics based on the Feynman-Kac formula and Brownian bridge integrals was de-
veloped. The main steps of their argument are summarized as follows. Let D? be the
square of the Dirac operator on a Euclidean Robertson—Walker metric. The spectral
action, for a test function of the form f(u) = e™*", is written as

Te(f(D?)) ~ Y p(n) Tr(f(H,)),

with multiplicities p(n) = 4(n + 1)(n + 2) and with the operator H,, of the form

2

d
H,= S 1V, (),
2z T V()

31) ) = L2+ ) -,

_SHn)

In order to evaluate the trace Tr(e one then uses the Feynman-Kac formula of

[36], Theorem 6.6,

(3.2) e Hn(t,t) = /exp(—s/o Voo (t + V2sa(u))du) D[a).

1
24/TS
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Here D[a] denotes the Brownian bridge integrals, [36], where the Brownian bridge is
the Gaussian process characterized by the covariance

(3.3) E(a(s)a(t) =s(1—t), 0<s<t<l1.

One then uses the Euler-Maclaurin formula to replace the summation Y p(n)e™ (¢, )
by a continuous integration over x > 3/2 which gives

= | K (3/2)
/3/2 Ralo)de + sh(3/2) — 2

with the functions

ba(o) = (4 = )= [ 0 Dl

(3.4) u=s /1 a2t 4+ V2sa(v)) dv,
ub=s /1 a'a”2(t + V2sa(v)) dv.

The asymptotic expansion is then obtained in [5] using Taylor expansions of the form

1 (k)
/0 F(t+V2sa(v))dv=F(t)+ > E k!(t) (V2s)*zi (),

where

(3.5) xk(a):/o a(v)* dv.

In computational terms, the Laurent series expansion for b, which is given as the
quotient

) a=2(t + V2sa(v)) dv
fol a'a=2(t +v/2sa(v)) dv’

introduces a considerable amount of complication that slows down the computation.
We argue here that a simpler choice of variables significantly simplifies the compu-
tational complexity of the terms of this expansion and provides a more transparent
description of the resulting terms of the asymptotic expansion, which reveals the
presence of a richer combinatorial structure.

(3.6) b=

3.1. A convenient choice of variables for Brownian bridge integrals. We set
(3.7) A(t) =1/a(t),  B(t) = A(t)%.

We can then write the potential V,,(¢) of (8]) in the form

(3.8) Vi(t) = 2 At)* + 2 A'(t) = 22 B(t) + 2 A'(t), with © =n + 3/2.
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We then write the integral in the Feynman—Kac formula (3.2) as
1
(3.9) — s/ Vot +V2sa(v))dv=—2°U — 2V,
0

in terms of the expressions

(3.10) U:s/01A2 (t—i-\/%oz(v)) dsz/()lB(t—i—\/goz(v)) dv,

(3.11) V= 3/01 A <t+ @a(v)) dv

In order to do the summation over n using the Poisson summation formula (cf. [4],
[5]), we set
1

(3.12) fo(x) = (gﬁ — Z) e~ UV,
and we obtain

(3.13)

\Few (=U? +2U + V?)
fs oy |
Considering the Varlables U and V given in the definitions (8:10) and (B11]) above,

the task of computing the terms of the asymptotic expansion becomes significantly

easier (even for the computer) compared to the series for the specific functions (B.4)
and (B.6]) of the u and b defined in [5]. It is in particular the Laurent series (B.6]) of
b in [5] which creates a great amount of unnecessary computational difficulties.
Using (B.12), we obtain the function that generates the full expansion in the form
8.14) 1 el (U220 +V?) 1 e (- U2 +2U +V?)
s 4U5/2 Vs 4U5/2

We consider then the Laurent series expansion of the function given by (B.I4]) in the
variable s.

3.2. Laurent series expansion. In order to keep the notation concise and more

efficient we let 7 = s'/2 and write:

= u = v
3.15 U=r? — " V=172 =
( ) ; n! ; n!

where

v, = A (22 1 (a)
with A and B as in (31) and with zx(a) as in ([B.3]).
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Lemma 3.1. Forr € R and m € Z>, we have

V2 m _ a(em) N ()M
(3.16) e U'V™ =1 ZCM ™
M=0
where
(e
(3 17) C(Tvm) _ Z k—lnu—n—i-r—k,l}Zn—i-m—p Ugy * - Ug Vgy ** Vg,
. M 4np) 0 0 AT
0<k,p, N<M : 1 k-qi: - Gp:
0<n<M/2
N+2n=M
1<y, li,q1 5 qp <N
b+t qrt+gp=N
with the convention that when k = 0 we have uy, ---up, = 1, and when p = 0

we have vg, ---v,, = 1. Note that it follows that when k = p = 0 one considers

Ugy ~ - U Vg~ Vg = L.

Proof. By direct computation we find that

o0

6% Uuym = Z 1 U—n—i—r V2n+m _
4nn)!
n=0
e 1 e e k
Z u—n—l—r 7_—2n+2r Z —n+r Ug TZ 7_4n—l—2mv2n—|—m
4nn)! 0 k !UO 0

n=0 k=0 /=1

2n+ P

<« [2n+m =, q

x D DT
=0 p =1 1Y

k P
—n—+r, 2n+m 00 00
_ 2(7,,_,’_m) UO ’UO —nN + T 2n + m n U/[ Z Uq q
T Z 4np) ( k P ’ ‘ !uoT qz_: q! ’UOT

n,k,p>0

_ ey G (o (e
4nn) k

n,k,p>0

o0
XZ Z Ugy =" Up, Vg " " Vg, N

/A R T 4
n2o \ e Gl ug ! - gpl g

where the inner summation is over all ¢;,...,¢, > 1 and ¢;,...,q, > 1 such that
b+ -+l +q + -+ gy = N with the convention that when p = k = 0 the sum
is equal to 1. For simplicity we denoted this condition by |¢| + |¢| = N. O

We then obtain an explicit formula for the general term in the full expansion of
the spectral action.
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Theorem 3.2. As 7 = s%/2 — 0%, we have:

Tr(exp(—72 Z M= /agM

where
1
(3.18) ao(t) = 503 3/20)
and
1

319) arlt) = [ (56577 + (CH5 - CH/8) ) Dlal. b€z
Proof. Using Lemma [B.J] we write the desired expansion for the function given by
BI4) as
e (U2 +2U + V)

A[J5/2 -

I (-
- Z ( 522 ol 1/2,0)) R SO0 A,
M=0

The statement of the theorem then follows directly from this expression for the ex-
pansion of ([B.14]). O

The form (ZI2) with the relations ([ZI3]) of the terms in the expansion of the
spectral action for Robertson—Walker metrics, obtained in [20], suggests that the
explicit terms obtained above should be expressible in terms of Bell polynomials. We
show in the next subsections that this is indeed the case.

1
(3.20) T

3.3. Bell polynomials. Bell polynomials arise naturally in the Faa di Bruno formula
that expresses the derivatives of composite functions, [23], [35]

Bay Z £ (1)) Bung' (), 9" (1), gD 1),

More precisely, the multivariable Bell polynomials are defined as
(3.22)

Al g\ A2 Ta—k+1 Rk
B@k(l'l,...,l'ﬁ—k-i-l Z )\1|)\2 )‘B k+1 (1!) <§> ((ﬁT—T—l)')

where the summation is over all sequences A = (A1, Ao, ...) of non-negative integers
such that

A= "iN=8 A=) A=k
i=1 i=1
Note that these conditions imply that A\g_g12 = A\g_p43 = --- = 0. We shall use the

following conventions:
Bo,o(l"l) =1,
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Bﬁ,(](xlv BRI 7:1:5-‘1-1) = 07 B > 07
BM:O, 0< B <k.

The structure of the polynomials (ZI2)) that arise in the spectral action expansion
of the Robertson—-Walker metric [20] suggests that the combinatorial structure of
the asymptotic expansion may be describable in terms of Bell polynomial, arising
from the time-derivatives of expressions depending on the scaling factor a(t) in the
recursive formula (7). Although it may be possible to see this directly at the level
of the recursive formula obtained by the pseudodifferential calculus, it seems difficult
to control the terms explicitly by that method. We shown instead that the explicit
form of the terms of the asymptotic expansion obtained in Theorem above can
indeed be expressed directly in terms of Bell polynomials.

Proposition 3.3. Forr € R and m, M € Z>,, we have:

—n+r\ (2n+m\ (2M—2n 12l
(r,m) ( k )( )( B ) kp —ndr—k 2n4+m—
G’ = > < Ty

X

0<k,p<2M
0<n<M
0<B<2M—2n

Bg g (u1, ..., ug_s1) Borr—on—pg.p (U1, - - -, Vans—2n—g—p+1) ) :

Proof. We have

(—n+r) (2n+m)

(rym) k D —ntr—k 2ntm—p Wy " UL Ugy m 0 - Ug,

Conr = qrpl o Yo AR |
0<k,p,N<2M s v be i dp
T0<n<M
NA2n=2M

1<l l,q1,qp<N
b+l +q1t+gp=N

(—n+7") (2n+m)
. k D —ntr—k 2ntm—p ey " UL Ugy t 0t Ug,
- gl 0% AT
0<k,p<2M p
0<n<M
1< lh,q1, . qp<2M —2n
b+l +qi++qp=2M—2n

(—n+7") (2n+m)
_ Z k P o=k 2ntm—p
4nn! 0 0
0<k,p<2M
0<n<M

2M —2n
u;el'.'ugkvql.'.vqp
x D ) NEATTRYAE
B=0 1<by, by ogp<aM—2p 1O ATt

b4+l =P
g1+ +qp=2M—2n—p3
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In the inner summation, assume the integers (1, ..., ¢, consist of A\; copies of 1, ...,
Mg copies of 3, and the integers q,...,q, consist of py copies of 1, ..., pop—o,—p
copies of 2M — 2n — 5. We then obtain

o -

(—n+r) (2n+m

Z k P )u—n—i-r k 2n+m p2]\§nz< )( p )x
4nn! 0 v [

0<k,p<2M -y M2 M —2n—p
0<n<M
e )
(AN (B (1) (M = 2n = Bl
—n+r\ (2n+m 2M —2n
Z ( k )( P )u_n+rk2n+m p< Z ]{;'p‘ "
4rn! 0 B1(2M — 2n — B)!

0<k,p<2M

0<n<M
Z Bl (2M —2n — p)! upt - ugwl s )

Ml Ngh gl (panr—on—p)! (XA - (BDA8 (1)1 -+ ((2M — 2n — B)!)H2m—2n—p

where the last summation is over all sequences of non-negative integers A and p such
that

A+ 2X 4+ BAg = 0, AMA+ A+ +Ag =k,
pa 24+ -+ (2M —=2n— ) pons —on—p = 2M —2n—f3, M1+t on—2n—8 = P-

Now we can use the Bell polynomials to write:

—n+r\ (2n+m\ 1.1 |
C(Tvm)_ Z ( k )( P )k'p.u—n-i-?“—k,l}?n-‘rm—p
M 4 n! (2M — 2n)! 0 0
0<k,p<2M
0<n<M

2M —2n OM — o
X ( Z ( ﬁ )Bﬁ,k (u17 e 7uﬁ—k+1> X BQM—Zn—B,p (Ul, e 7U2M—2n—ﬁ—p+1) ) .
B=0

This gives the stated result. U

4. BROWNIAN BRIDGE AND COMBINATORIAL STRUCTURE

In this section we compute explicitly the Brownian bridge integrals and obtain the
full combinatorial structure of the spectral action expansion for Robertson—Walker
metrics.
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4.1. Brownian bridge integrals. We provide combinatorial formulas for the Brow-
nian bridge integrals that we need in order to write combinatorial expressions for the
integrals in Theorem B2 describing the coefficients agp,(¢) in the full expansion of the
spectral action for the Robertson-Walker metric.

We need a preliminary result about integrals of monomials on the standard simplex.
Lemma 4.1. Let A" denote the simplex

A" = {(v1,v9,...,0,) ER":0< v <wvp < <, <1}

Then the integral of a monomial vflvgz vk s given by the expression
(4.1)
1
k1, ko k
V052 - vl doy dog - - - dv, = )
an Lo TR (v + 1) (ki + ko +2) - (ki + ko + -+ ky, + 1)

In particular, we have the following case.

Corollary 4.2. If1 < j; < jo <--- < Jr <n then

e+ DG +2) (et k1)
(4.2) /M Vj, 0, - - - U5, dvy dvg - - - dvy, = ) :
Proof. The case of (£.2]) is a special case of Lemma[LIl The right-hand-side is directly
obtained from the corresponding expression in (4.1]). O

We then consider the Brownian bridge integrals. The defining property (B3] of
the Brownian bridge implies the following.

Lemma 4.3. For (vy,vq,...,vs,) € A, n € Z>q the Brownian bridge integrals can
be computed as

(4.3) /04(@1)04(@2) < avan) Dla) = i, (1 =05 viy (1= j,) -+ 03, (1= vj,),
where the summation is over all indices such that iy < ji, 1o < Jo, .., in < Jn, and
{ilajla'éQaj% cee ainajn} - {]-> 2a IO 2’)7,}

It is convenient to reformulate the expression (43]) in a slightly different notation
as follows.

Corollary 4.4. For (vi, vy, ..., vs,) € A%, n € Zsq, we have
(4.4)

a(vr)a(vs) - - - a(vay,) Dia] = Z Vo (1) (1 =Vo(2) )Vo(3) (1 =Vo(a)) - * * Vor(2n—1) (1 =Vs(2n)),

oS3,

where S5, is the set of all permutations o in the symmetric group Si, such that
o(l)<o(2),0(3)<o(4), ...,02n—1) < o(2n).

This then gives a reformulation that will be useful in the following.
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Lemma 4.5. For (vy,vq,...,vs,) € A*™, n € Zsy we have

/ a(v)a(z) -+ a(v3n) Dlar] =

Z Us(1)VUs(3) * * * Vo (2n—1) <1 + Z Z Vo (241) Vo (252) * * "Uo(2jk)> .

1<j1<g2<-<jr<n
Proof. This follows directly from Lemma 4l O

Definition 4.6. For any non-negative integer n, we let Jy, be the set consisting of
the O-tuple. For any k = 1,...,n, we let Ji be the set of all k-tuples of integers
J = (J1,J2y -+ Jk) sSuch that 1 < ji < jo < +++ < jp < n. For any J € Jyn, and
o€ Ss., we define o;(1), 05(2), ..., o;(n+ k) by the property that

O'J(l) <O'J(2) < ~-~<0J(n—|—k:),
and that the set of such o;’s is given by
{o;(1)<0;2) < - <osn+k)}={c(1),003),...,002n—1),0(2j1),...,0(2jk)}

Using the notation (3.3]) as in [5],
1
zi (@) :/ a(v)fdv,
0

we can then write the Brownian bridge integrals of the z4(«) in the following form.

Lemma 4.7. We have

/xl(a)Z"D[a] :/</01a(v) dv)2nD[a] _

ko—J os(2)+1)-- (aJ(n+k:)+n+k:—1)
(2n)! ZZ 2 (- Bn+ k)

oeSs, k=0 JETkn

Proof. This is obtained using the expression of Lemma and the notation as in
Definition F.Gl O

We can then formulate the monomial Brownian bridge integrals as follows.

Proposition 4.8. For (vy,ve,...,v,) € A" and for iy,is,... i, € Z>o such that
U 49 + -+ 1y € 27250, we have
(4.5)

/ (1) a(vy) - - a(v,)"™ Dla] =
N (1)l 11/2) = N
(I) VDI (]/2) (Z( )ZZ ZH o )

r1=07r2=0 rn=0p=1
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where I = (i1,1a,...,1,), the first summation is over all non-negative integers k; .,
J3,m=1,2 ... ,n such that
nk _ 1z nk k =1; forall j =
Z Jm =50 Z( im T kmj) =1; forall j=1,2,....n,
Jjm=1 m=1
and we set for each m =1,2,...,n,
m—1

Km = km,m —|— (kj,m —|— km,j)'
1

J
Proof. First observe that, for Brownian bridge integrals in exponential form, we have
the identity

/exp (\/—_1 iwa(w)) Dla] = exp (—% i cj,mujum) ,
j=1 jm=1
where the terms c¢; ,,, are given by
Cim=0;(1—vy) if j<m, and Cim =Un(l—v;) if m<y
This implies that we have

(V=L)itizttin (i iy 4o i,
(i1 +idg+ -+ 1p)! )

) /Oé(vl)iloé(vg)iQ -+~ a(vp)™ Dla] =

11,22, ...,1pn

n
: o L i1Hiattin) /2
(Coeﬂi(:lent of uiug -+ ul in ( g cj,mujum)( ! )/ )

J:m=1

(_1/2)(i1+i2+---+in)/2
(i1 +dg+ - +1,)/2)!

_ (—1/2) izt in)/2 (i1 +ig + -+ +iy)/2 ﬁ i
(i1 +ig + - +1n)/2)! ki1, ki, kin, k2, Kk o

j7m:1
where the summation is over all non-negative integers k;,,, j,m = 1,2,...,n such
that

D kjn = (i iz 4+ 4 0n) /2
7ym=1

and, for any j =1,2,...,n,

2t > (kb)) = i

1<m<n,m#j

This then gives

/ a(vr)" a(v2) -+ a(vn)™ Dlal]

C (N R (S (U2 T
) <I) (V=D (|71/2) (Z<k:m)Hm>
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(YT M1 (o (T2 gy
_(I) (VDI (1]/2)! (Z(m)ﬂv Um) )

where I = (41,149, ...,1,) and for each m =1,2,...,n,
m—1
Ko = + Y (Kjm + ki j)
j=1

Therefore we obtain

/ a(vr)" a(v2)? -+ a(vg)™ Dlal]

-(0) oA (2 () e (o))

m=1 r,;, =0

() i (S £ ()e-)

r1=0r2=0 rn=0p=1

O

We then obtain the following expression for integration over a simplex of Brownian
bridge monomial integrals.

Lemma 4.9. For iy,19,...,%, € Z>o such that iy + iy + -+ + 1, € 2Z>( we have

/n/a(vl)ila(vz)”~-~oz(vn)i” Dla] dvy dvy - - - dv,

LN 12y 1]/2) 5 & 0 ()
(1) A () S - X lrerats)

where I = (iy,12,...,1i,) and the first summation is over all non-negative integers
Ejm, j,m=1,2,...,n such that

> ki =11/2, > (kjm + ki) =i; forall j=1,2...n,
7,m=1 m=1
and where, for each m =1,2,...,n, we set
m—1
Km = km,m + Z(kj,m + km,j)-
j=1

Proof. This follows directly from Lemma [.1] and Proposition [4.8l U
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4.2. Shuffle product. We introduce the following notation for the integrals de-
scribed combinatorially in Proposition (8]

Definition 4.10. For (vi,vq,...,v,) € A" and for iy, is,..., i, € Z>o such that
1+ g + -+ 1y € 272> we set

(4.6) Vi, to, ... in) i= /a(vl)“a(vg)i2 -~a(v,)™ Dla] .

We view (iy,1is,...,1,) as a word constructed with the letters iy, s, ..., 4, and we
extend the definition of V' linearly to the vector space generated by all such words.

Definition 4.11. The shuffle product of two words (iy, s, ... ,i,) and (j1, jo, -, Jq)
is defined to be the sum of the (p;q) words obtained by interlacing the letters of the
two words in such a way that in each term the order of the letters of each word is
preserved. The shuffle product is denoted by LLI.

Lemma 4.12. Assume that 2n = mqi; + mois + - - - + my1, is an even positive inte-
ger (where iy, is, ..., 1, are distinct positive integers and my, my, ..., m, are positive
integers). Then

[utarma@ s @y Dl

:m'/ ‘V (’il,...,il)LU(iQ,...,ig)LU'"|_|_|(’ir,...,ir) dUldUQ"'dU|m|,
m ~~ - ~~ ~ N’
8 mi ma2 ez
where
m! = (mq!)(ma!) - - - (m,!), im| =mq +my+---+m,.

Proof. Tt follows directly from writing

/mwwwmmm~wmmWDm

:/(/Ola(vl)il dv1>m1(/01a(vg)i2 dvg)m---(/ola(vr)“ dvr)mrD[a],

and considering definitions E.10] and 111 O

Note that Lemma provides a formula for [,V (i1,...,i,)dvy - dv,. Thus,
using Lemma and Lemma we have achieved a combinatorial description of
all the Brownian bridge integrals involved in the calculation of the spectral action
expansion.
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4.3. The integrals in terms of the Dawson function. In Lemma [£.9 we gave a
combinatorial formula for

/n/a(vl)hO‘(UZ)iz"‘a(vn)i"D[a] dvy dvg - - - dv,.

A crucial fact that we used for deriving the combinatorial formula is that since the

Brownian bridge is a Gaussian process, for (vy,...,v,) € A" we have:
n 1 n
/exp (\/—1 Zuja(vj)> Dla] = exp (—5 Z cj,mujum) ,
Jj=1 j,m=1
where
Gm=vj(1=vy) if j<m, and ¢um=uv,(1—v;) if m<j

Therefore, if i1,49,...,%, € Z>o and 41 + 99 + -+ + 4, € 2Z>¢, then, setting [ =
(i1, .. ,in)

\I\ m

m' / / a(v)a(ve)? - - a(v,)™ D] dvy dvy - - - dvy,

is equal to the coefficient of u’'uZ - --u’* in the Maclaurin series of

1 n
(47) / exp <_§ Z ijv,ujum) dvl dv2 . 'dvn

Jm=1

By writing the expansion of the integrand in the latter we derived the combinatorial
formula presented in Lemma 9

It is natural to ask whether there is a closed formula for the result of the integral
given by (LT). It turns out that it is possible to obtain such closed expressions in
terms of the Dawson function

(4.8) F(z) := exp (—2?) /Or exp (y°) dy.

We show the first few cases of the integral (A7) and their explicit form in terms of
the function (E3).

Example 4.13. When n = 1,2, 3 we find the following explicit expressions:

/ < ; ) = (;_\}5)
exp | —zcuy | dvy = ——————%,
Al

2 Uq

Lo (-4 35 ) - 22 ) ()

jme1 U1Uo (Ul -+ UQ> ’

3
1
/AS exp (—5 Z cj7mujum> dvy dvg dvs =

7j,m=1
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war(2) wir(22) wir(c9)
uiuz (uituz)(uz+us) (w1 +uz+us) + uruz (ur+uz) (uztus)(ur tustus)  wius(ur+us)(ustus) (us +uztus) +
svor(5) sVar(452) sV (455°)
up (urFuz)us(uztuz)(urtuz+uz) g (ui+uz)us(uatus)(uifustus)  ug(urtuz)us(uztus)(ur +uz+us) +
uytugtug U2 _u3
svaF (et ) n sVIF (%) i VI (5% ) _
w1 (u1+u2)uz(uz+us) (u1+uz+usz) ug (u1+u2)uz(ue+us)(ui+uz+us) ug (u1+u2)uz(uz+us) (u+uz+us)
ugtug
8vIF ("33

ua (u1tu2)us(ue+us)(uitus+tus)

An explicit expression for

4
1
/A4 exp (—5 Z cj,mujum> dvy dvy dvs dvy

J.m=1

in terms of the Dawson function (48] is included in the Appendix.

4.4. Combinatorial description of the full spectral action expansion. In
Proposition we showed that

(—TL+7‘) (2n+m

u i
(rm) __ k P ) —n+r Ky 2n+m ~DPL| ol _' )
C2M - Z Anp) Kl p! ZH )\llul !
0<k,p<2M A =1
0<n<M
0<B<2M—2n
where, for each fixed k, p, n, 5, the inner summation is over all sequences A =(A1, g, .. .)

and 1 =(puq, pa, . .. ) of non-negative integers such that

=1 =1

Note that these conditions imply that only finitely many A; and p; can be non-zero,
namely: Ag_gr2 = Ag_p3 =+ =0 and poy—2n-p—pr2 = posr—20—p—pr3 =~ =0.

Lemma 4.14. For r € R and m,M € Zsq the Brownian bridge integral of the
expressions CS7™ above gives

[ ki piel -
(—7’;:-7‘) (Qn;—m)k'p'
1,...,1 2,....,2 cee ..
Z ( An 9n—M p| Ak+p V( ( ;\ ) ) L ( ;\ ) ) LU ) dUl d’l}k+p><
1tH1 2+p2
—r— , P > i + 1 B (¢ Ai AGHD) () P
B(t) + k(A(t))2+ PH( N )( Z'<> Z'() ’
i=1 v : :

where the summation is over all integers 0 < k,p < 2M,0 < n < M, 0 < g <
2M —2n, and over all sequences X =(A1, \a, . ..) and p =(p1, pia2, - . . ) of non-negative
integers for each choice of k,p,n, B, such that |\|' = 5,|\| = k, |u| = 2M — 2n —
B, |:u| =
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Proof. This follows directly from the above fact from Proposition using Lemma
4,12 0

In Theorem we showed that the coefficients appearing in the asymptotic ex-
pansion

Tr(exp(—72D?)) Z /a2M (as 7 — 07)

are given by '
a(t) = 55,

and

1 1 _ _
o) = [ (5C57 + 3 (CHIE" - CGI3™) ) plal, M1 €2y

The result of Lemma ELI4 gives a combinatorial description of [ CS7™ D[a], hence
we can write a combinatorial formula for an arbitrary coefficient in the full expansion
of the spectral action for the Robertson—Walker metric with the expansion factor a(t).
We use again the notation A(t) = 1/a(t), B(t) = A(t)? as in (B1) and the expressions
V((1,...,1)w(2,...,2) W) as in Definition 10

Theorem 4.15. For any M € Z>, the coefficients of the expansion of the spectral
action of a Robertson—Walker metric are given by

a2 M (t) =

—n— 3/2)(2n)k'p'
_Z ( T o] /MH)V((I’”"1)'-'-'(2"">2)'—'—'"')d“l"'dvkﬂ;x

A Aa+pz
B(t) A (A >>2n—p1°j (Az- ;u) (Bﬁ(t))ki (A@*;(w)“f)
A () o= () (o)
%/MHV(MLUMLUM)CZM...dvk+px

oo 057 (52 (45 )

where the structure of the summations is as follows. The first summation Y is
over all integers 0 < k,p < 2M,0 < n < M, 0 < g < 2M — 2n, and over all
sequences A =(A1, Ao, ...) and p =(p1, fo, ... ) of non-negative integers (for each
choice of k,p,n, B) such that |\|" = B,|\| =k, |u|' = 2M —2n— B, |u| = p. Similarly,
the second summation Z” 1s over all integers 0 < k,p < 2M —2,0<n < M —1,
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0 < B <2M —2—2n, and over all sequences X =(A1, Ao, ... ), = (u1, pa,...)of
non-negative integers such that |\ = B, |\ =k, |p|' =2M —2 —2n— 3, |ul =p
Proof. The result follows directly from Theorem and Lemma [L.T4] O

4.5. Explicit form of the coefficients. Using the combinatorial formula obtained
in Theorem [LT5] we can compute explicitly the coefficients agys(t) in terms of the
expressions A(t) = 1/a(t), B(t) = A(t)?. For the first few coefficients this gives the
following expressions:

(1) = omr
a = —
0 2B(t)3/2
o 3A(1): B'(t) 5B'(t)? 1
a = - —
? 8B(t)>2  8B(t)3% ' 32B(t)7/? AB(t)/?’
aq(t) =
A" BA/(H)2B"(t) | 35A'(1)2B/()? A/ A(t)? AB A1)  BAIA B ()
16B(t)5/2 32B(t)7/2 128B(t)9/2 64B(t)7/2 IGB(t) /2 8B(t)5/2 16B(t)7/2
BW (1) 3B (t)? + B"(t) + 1058"()* (t) BB )B'(t)  TTB'(t)2B"(t)
80B(t)5/2 64B(t)7/2 48B(t)3/2 1024B(t)11/2 64B(t)5/ 16B(t)7/2 384B(1)%/2

Similar explicit expressions for the coefficients ag(t) and ag(t) are reported in Appen-
dix B. When written in terms of the scaling factor a(t) through the relation (B.7)),
these expressions agree with those computed in [5], [20].

4.6. The Faa di Bruno Hopf algebra. The Bell polynomials and the Faa di Bruno
formula have a Hopf algebra interpretation, where one considers the group G4f(A)
of formal diffeomorphisms tangent to the identity,

F#) =+ 3 fut® € e[l

with A a unital commutative algebra over a field K, with the product given by
composition. Viewed as an affine group scheme, G4 is dual to the Fad di Bruno
Hopf algebra Hpgg,

(49) GdiH(A) = Hom(?—[de, A)

As an algebra Hpqp is a polynomial algebra Kz, zo, x3,...,2,,...] in countably
many variables x;, with coproduct (see [22])

" (m+1)!
A({Z}'n) = Z ﬁ Bn+1,m+1(17 2!:1:1, 3!:1:2, ey (n —m + 1)':L’n_m) & Tm
m=0

n

+1)!
= Z ]{;OIZ K, |H$ & T,

m=0 \ ko+ki+ko++kn=m+1
k1+2ko+--4nkp,=n—m
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with zp = 1. The Hopf algebra is graded by deg(x,) = n and connected Hgeg—o = K.
The counit is given by €(z,) = d,0 and the antipode is determined inductively for
graded connected Hopf algebras.

It is known that the Faa di Bruno Hopf algebra embeds in the Connes—Kreimer
Hopf algebra of planar rooted trees, _ﬂ?;?ﬂ, Hrap — Her and dually the affine group
schemes map surjectively Gog — G4,

While we will not consider this question in the present paper, it is worth point-
ing out that the structure of the asymptotic expansion of the spectral action of the
Robertson—Walker metrics that we obtained here in terms of Bell polynomials suggest
the presence of an interesting Hopf algebra action, similar to the one regulating the
renormalization of quantum field theories, see [11]. Understanding the structure and
meaning of the role of the Faa di Bruno Hopf algebra in the spectral action expansion
appears to be an especially interesting question in view of a better understanding of
the spectral action as a gravity model. Indeed, one usually considers the spectral
action functional as an effective field theory (at energies around or below unification,
as indicated by the resulting models of gravity coupled to matter) and treats it semi-
classically using the leading terms of the asymptotic expansion as a classical action
functional for (modified) gravity. The full spectral action expansion provides a series
of higher-derivatives correction terms, which are known to improve renormalizability,
In particular the role of the full spectral action expansion in renormalizability in the
case of Yang—Mills models was studied in [39] and for general almost-commutative
geometries in [40], [41]. The use of the full expansion of the spectral action functional
is crucial in these renormalizability arguments, see [41]. The description of the coeffi-
cients of the spectral action in terms of Brownian bridge integrals appears especially
suitable for analyzing the spectral action as a quantum theory and their expression
in terms of Bell polynomials, with the Faa di Bruno Hopf algebra action suggests
what the underlying Hopf-algebraic renormalization structure should be. We hope
to return to this question in future work.

5. MULTIFRACTAL ROBERTSON—WALKER COSMOLOGIES

In this second part of the paper we turn to consider the multifractal cases of
Robertson—-Walker cosmologies, where the spatial sections are obtained as an ar-
rangement of 3-spheres such as an Apollonian packing, generalizing the static cases
considered in [I].

5.1. Packed Swiss Cheese Cosmologies. The hypothesis of multifractal struc-
tures in cosmology was proposed to justify the observable distribution of clusters of
galaxies, see for instance [37]. A particularly interesting model exhibiting fractality
and multifractality is known as the “packed swiss cheese cosmology”, [33]. These are
constructed on the model of the fractality of an Apollonian packing of spheres inside
a 4-dimensional spacetime.

In [I] it was shown that a spectral action model of gravity can be applied to
these fractal cosmologies. Under some regularity assumptions on the structure of
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the fractal, the spectral action can be computed, using a general method of [7], [§]
for constructing spectral triples (the noncommutative analogs of spin geometry) on
fractals. Unlike the case of an ordinary smooth manifold, in the presence of a fractal
structure the heat kernel of the Dirac operator acquires some log periodic terms.
These correspond to the presence of poles off the real line in the zeta function of the
Dirac operators. In turn these poles determine additional terms in the asymptotic
expansion of the spectral action. These are corrections to the action functional of
gravity that detect the presence of fractality. In particular, the shape of a slow—roll
potential for inflation derived from the spectral action model was shown in [I] to be
also affected by these terms, so that corrections due to the presence of fractality also
appear in the slow—roll coefficients, which in principle are detectable via observational
data. The regularity assumptions on the fractal geometry used in [I] were aimed at
obtaining sufficiently good analytic properties of the corresponding zeta functions, in
the sense of [26].

However, the model of spectral action on multifractal swiss-cheese type cosmologies
considered in [I] is not entirely realistic, because the relevant spacetime is assumed
to be a product of a fractal packing of spheres (or of spherical manifolds) times a
compactified Euclidean time dimension S', so that, in particular, the scaling factor
of the spatial sections remains constant. This corresponds to a static, rather than a
more realistic expanding universe.

In order to make the model more realistic and physically interesting, our goal in
the present paper is to reformulate the multifractal spectral action model in terms of
Robertson-Walker metrics.

Although this may at first look like a simple modification, in fact it requires a
completely different set of analytical tools to derive the spectral action computation
from heat kernel and zeta function information. In particular, the analytic techniques
involved are based on the derivation of the terms of the asymptotic expansion of
the spectral action for Robertson—Walker metrics discussed in the previous sections,
based on the Feynman-Kac formula and Brownian bridge integrals as in [5]. In the
case of Robertson—Walker metrics that are round 4-spheres, the result we obtain can
also be obtained using the technique of [I], based on the results of [2§] counting the
contributions of the different levels in the fractal structure, and on results on the heat

kernel on fractals, [13], [14], [15].

5.2. Dirac operator decomposition. We consider here a Robertson-Walker ge-
ometry on a spacetime of the form R x P, where the spatial sections, instead of being
a single 3-sphere, form an Apollonian packing of 3-spheres, as in a Packed Swiss
Cheese Cosmology.

More precisely, here P is a packing of 3-dimensional spheres with radii {a, : n €
N,k =1,...,6 - 5"} where, in an iterative construction of the packing, at each
stage n € N, a number of spheres equal to 6-5""! is added to the packing. We denote
these spheres by S, ,, see [I] and [24] for a detailed description of the Apollonian
packings of higher dimensional spheres and their iterative construction.



SPECTRAL GRAVITY ON (MULTIFRACTAL) ROBERTSON-WALKER COSMOLOGIES 27

In a Robertson-Walker metric on a spacetime with an Apollonian packing of
spheres in the spatial sections, we can assume that each sphere in the packing in-
flates at time ¢ with the same rate a(t). We consider two possible rescalings of the
Robertson-Walker metric by effect of the scaling radii a, ; of the packing.

(1) The first choice is to rescale the whole 4-dimensional spacetime, that is, to
consider a metric of the form

(5.1) ds? . = a2 . (dt* 4 a(t)* do®), neNk=1,...,6-5""

(2) The second choice is to rescale only the spatial sections, that is, to consider a
metric of the form

(5.2) s, = dt* + a(t)? ay j, do?, neNk=1,...,6-5""

In both cases we write D, for the resulting Dirac operators on R x S, , for the
metric (&) or (B.2]).

We then encode the geometry of the inflating sphere packing P in the Dirac op-
erator of a spectral triple associated to the entire (fractal) space R x P. The main
advantage of the spectral triples formalism of noncommutative geometry, [9], is the
fact that it makes it possible to adapt fundamental properties of Riemannian geom-
etry to spaces that are not smooth manifolds, including fractals.

In our case, we follow the construction of spectral triples on fractals obtained in
[7, [§]. For a space of the form R x P, with P an Apollonian packing of 3-spheres,
the spectral triple we consider is as in [I], with (A, H,D) with A an involutive
subalgebra of Cy(R x P) of functions f with bounded commutator [D, 7(f)], where 7
is the representation of the algebra as multiplication operators on the Hilbert space
H = ®pHnp with Hy, = L2(San,k, S) the spinor spaces of the individual spheres in
the packing and with Dirac operator D = Dgyp of the form

.577,71

6
(5.3) Dyxp =D B Dus

neN k=1

with the D,,, the Dirac operators on the individual spaces R x S, , with the
Robertson-Walker metric (5.2)).

We will discuss both choices (B]) and (B.2]) in 6l

5.3. Mellin transform and zeta functions. We first recall the relation between
the terms in asymptotic expansion of a function and the poles of its Mellin transform,
[21]. Given a meromorphic function ¢(z) with set of poles S C C and its Laurent
series expansion at a pole zg € S,
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the singular element S(¢, z) of ¢ at zy is the projection onto the polar part of the
Laurent expansion at zg,

S(¢, 20) = Z cr(z — 2)".
—N<k<0
The singular expansion of ¢ is the formal sum of all the singular elements of ¢ at all
poles in S,
Se(z) = Z S(¢, 2).
z€S

We write ¢(2) =< Sy(2) to denote the singular expansion. For example, the singular
expansion of the Gamma function is

~1DF 1
F(z)xz( k!) PR

k>0

Then the relation between the asymptotic expansion at u — 0 of a function f(u) and
the singular expansion of its Mellin transform ¢(z) = M(f)(z) is as follows. The
small time asymptotic expansion is of the form

f(u) ~usor Z Cakau™ log(u)r,
a€eS ko
where the coefficients c, j, are determined by the singular expansion of the Mellin
transform,
(—1)kk,!
(5 + a)katl’

M()(2) = Smn(z) = Y cap
a€S ka
where the index k, ranges over the terms in the singular element of ¢(z) = M(f)(z)
at z = «, up to the order of pole at a. A similar expression holds for the asymptotic
expansion at u — oo, see [2I] and the appendix to [42]. In the case where there are
no logarithmic terms in the asymptotic expansion,

f(u) ~u—0t Z Cauaa
acS
the Mellin transform M (f)(z) has analytic continuation to a meromorphic function
on C with simple poles at z = —a with residue c,.

5.4. Packings of 4-spheres. Before discussing the general structure of the spectral
action on Packed Swiss Cheese Cosmologies based on Robertson—Walker metrics,
which we will be discussing in §6 we begin by discussing explicitly a special case:
the choice (&) of the scaled metrics in the special setting where the underlying
Robertson-Walker metric is a round 4-sphere. Thus, we are considering a packing
of 4-spheres, where one scales the entire 4-sphere over each 3-sphere in the packing
and not just the spatial directions. The resulting spacetimes then have a different
scaling of the time coordinate in each sphere of the Apollonian packing. This case
is much simpler than the general case, because one can directly see the corrections
to the spectral action due to fractality simply by looking at the zeta function of the
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Dirac operator as in the cases considered in [I]. Thus, it serves as a good model case
to identify the expected correction terms we will encounter in the general case.

Lemma 5.1. In the case of a 4-dimensional sphere S of radius r > 0, the zeta
function of the Dirac operator is given by

Cp(s) = Tr(|Dga| ™ mew (s —3) = (s = 1)),

with ((s) the Riemann zeta function.

Proof. The spectrum of the Dirac operator on a round (D — 1)-dimensional sphere
SP=L of radius r is

D—-1
(5.4) Spec(Dgp-1) = {)\&i = 4! (T +€) |l e Z+},
with multiplicities
(5.5) myy = 2072 (“;D).

As shown in [5], this can also be obtained by regarding the unit 4-dimensional sphere
as a Robertson—Walker metric with a(t) = sin(¢). In the case of a 4-sphere of radius
r this gives

Cp(s) = Tr(|Dsa|™*) = Y u(n)Tr(f(H,))

n>0
with f(z) = 27%2 and where H, = H} @ H; with
[ d_2 B (n+2) N (n+32)a
" dt? a? a? ’

with multiplicity u(n) = 2(n + 1)(n + 2) and with a(t) = sin(t) with ¢ € [0, 7]. Here
we are scaling both the factor a(t) and the ¢ direction by the same factor r, since the
whole S? is rescaled. Indeed one then has

S u)T(f(H)) = S ) 3 (22

n>0 n>0 k>n—+2
2=k 4
=4 ) sk =g (Cs = 3) = (s = 1)),
k>n+2

U

Let (c(s) = )., 1 a,  denote the fractal string zeta function [26] of an Apollonian
packing P of 3-spheres with sequence of radii £ = {a,}.

Corollary 5.2. For a packing P of 3-spheres with sequence of radii L = {a,;} and
the collection of 4-spheres obtained from it by making each 3-sphere the equator inside
a fized hyperplane of a corresponding 4-sphere, we obtain a Dirac operator Dp (of
the general form discussed in 45.23) with zeta function (p,(s) = (c(s)Cpg,(s), given
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by the product of the fractal string zeta function of the sphere packing and the zeta
function of the Dirac operator on the unit 4-sphere.

Proof. This follows directly from the previous lemma with the form (B.3]) of the Dirac
operator, which gives

Cop(s) =Te(IDp[ ) =) %ai,k(é(s —3) = (s = 1)) = Ce(s)¢pg (s)-
U

This shows that, for a spacetime geometry constructed in this way the leading
terms in the spectral action expansion have the following form.

Lemma 5.3. The leading terms in the expansion of the spectral action for the Dirac
operator Dp of the 4-sphere packings described above have the form

(56) Tr(f(Dp/A)) ~ ( )CDP( )‘l‘f A2Cﬁ( )‘l‘f A4C£ + Z fJAUCDS4( )RJ,

ceS(L)

where S(L) is the set of poles of the fractal string zeta function (c(s) of the sequence
of radii of the packing and R, = Ress—,(c(8) are the corresponding residues, and the
coefficients f, are the momenta of the test function f,

— /OOO f)tdv.

Proof. The result follows using the Mellin transform relation between the zeta func-
tion of the Dirac operator and the heat-kernel of the Dirac Laplacian

(5.7) Tr(|Dp| %) = ﬁ /OOO Tr(e~*P7) t3/> 1at

give the terms in the expansion of the spectral action of the form (5.6]), through the
relation between heat kernel coefficients and residues of the zeta function via Mellin
transform, as in §5.3 O

The terms (£(2) and ((4) replace the radii r* and r* of the corresponding terms
in the spectral action on a single sphere S4 of radius r of Lemma [B.J] with the zeta
regularizations of the sums »_, , a; , and Zn i Gp - Since the packing dimension of
a 3-dimensional sphere packmg is smaller than four but larger than three, by the
estimate in [I], the sum (¢(4) = Y7, , ap , is an actual convergent sum while (¢(2)
is a zeta regularized value. However, for more general packings of 4-spheres, not
obtained from a packing of 3-spheres, the packing dimension may be larger than 4,
hence (,(4) would also be a regularized value.

The multifractal nature of the sphere packing is reflected in the fact that the zeta
function ((s) has poles off the real line.

In [I] the packing P of 3-spheres was assumed to satisfy certain strong analytic-
ity assumptions (listed in §3.3 of [I]), requiring that the fractal string zeta function
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Ce(s) = X2, 1 @, of the sequence of radii of the packing would have analytic con-
tinuation to a meromorphic function on a region of the complex plane that contains
the non-negative real axis; the analytic continuation would have only one pole on the
non-negative real axis, located at the packing dimension of P; all the poles of (.(s)
would be simple; and £ would have a good approximation by a family £, of self-
similar fractal strings with the lattice property (see [26]) so that the complex poles
of (r(s) are approximated by the poles of (., (s). More precisely, this approximation
property means that, for all € > 0 there is an n € N and R = R(e,n) > 0 such
that within a vertical region of size at most R the complex poles of (,(s) are within
distance at most € from the poles of (., (s). Under these assumptions, the following
result is obtained by applying directly the results of [I] to the packing of 4-spheres.

Proposition 5.4. Under the analyticity assumption of [1] on the sphere packing, the
term

o
Z fJAU CDS;( )'RJ
oceS(L)
consists of a leading real term
o 4f0’
A T(C(U —3) = ¢le—1)R,

with o0 = o(P) € Ry the packing dimension of P, and an oscillatory term SE°(A) in-
volving the contribution of the poles of ((s) off the real line. Its truncation SF°(A)<g
giwen by counting only the poles in a strip of vertical width R satisfies

Ny
S%SC(A)SR ~ Z A ¢on7j (en(A))u
§=0
where s, ; = 0y j+ iy, + fog—b”jl), for7=0,..., N, are the poles of the approximating
41, > .
fors = ?(g(sw —3) = (50 — 1))Rs,, / fu)u " du.
0

In the following subsection we look at a simpler and more explicit lower dimensional
example based on a special case of Apollonian circle packings, the Ford circles. This
provides an example where the correction terms to the spectral action due to fractality
can be computed completely explicitly, although the packing in this case does not
satisfy the analyticity assumption since it does not have a good approximation by
self-similar fractal strings with the lattice property.

5.5. Lower dimensional example: circle packings. It is useful to consider first
a simpler lower dimensional example where, instead of a 4-dimensional spacetime
R x P, with P an Apollonian packing of 3-spheres, one considers the case of a 2-
dimensional spacetime R x C where C is an Apollonian packing of circles. The reasons
for considering this example, although it is not directly of physical relevance, is that
it simplifies two important features of the more general case we will be analyzing
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in the following: the sequence of the radii of the packing can be described more
explicitly, especially in the more interesting cases with number theoretic structure,
[25]; moreover, the Dirac spectrum for the Dirac operator on the circle is simpler
than the Dirac spectrum on higher dimensional spheres.

5.5.1. Ford circles. We consider here in particular the lower dimensional example of
a 2-dimensional spacetime R x C where the Apollonian circle packing C is given by
the Ford circles. These are circles tangent to the real line at points (k/n,0) with
centers at the points (k/n,1/(2n?)). The advantage of this case is that the sequence
of radii is known and given by a simple explicit expression. This example will also
be helpful in showing that the condition mentioned above on the existence of a good
approximation of £ and the poles of (,(s) by a family £,, of self-similar fractal strings
and the poles of their zeta functions (., (s) is in fact a very delicate property and
even very simple and apparently very regular examples of Apollonian packings need
not satisfy it.

Lemma 5.5. The fractal string zeta function of the Apollonian packing of Ford circles

s given by
(5.9 oy =27 S22 D),

¢(29)

Proof. In the case of Ford circles, the number of circles of radius r,, = (2n?)~! is equal

to the number of integers 1 < k < n that are coprime to n, ged{k,n} = 1. This

means that the multiplicity m(r,) is given by the value of the Euler totient function
m(ry) = @(n),

where the FEuler totient function is equivalently given by

1
p(n) = ng(l -

with product over the distinct prime numbers dividing n. Thus, the fractal string zeta
function in the sense of [26] of the Apollonian packing of Ford circles is essentially
the Dirichlet series generating function of the Euler totient function,

(5.9) Ce(s) = p(n) (2n) ™" =273 g(n)n~> = 27°D,(2s).
n>1 n>1
The Dirichlet series generating function of the Euler totient function

(5.10) Dy(s) = > ‘P(f)

n
n>1

can be computed using the fact that for a prime power p”* the totient function satisfies
p(p*) = p* — p*~! so that

s 1—p°
1+ Zw(pk)p = T—p
k
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which then gives, using the Euler product formula,

(s—1)
Dy(s) = =,
SO( ) C(S)
where ((s) is the Riemann zeta function. Thus, the zeta function of the Ford circles
packing is given by (5.8]). O

Lemma 5.6. The Ford circles packing does not satisfy the approrimation condition
by a family L, of self-similar fractal strings with the lattice property.

Proof. The set S(L) of poles of (,(s) consists of three subsets S(£) = S; U S, U S
where §; = {s = 1}, the point where the function ((2s — 1) has a pole, Sy = {s =
—k : k € N}, the points that are trivial zeros of ((2s), and S3 = {p € C N R_ :
((2p) = 0} consisting of all the non-trivial zeros of the Riemann zeta function ¢(2s).
Assuming that the Riemann hypothesis holds, the poles of (,(s) in S3 are all on
a single vertical line of real part 1/4. Thus, in the case of the Apollonian packing
given by Ford circles, the question of whether poles of (,(s) that lie off the real line
have a good approximation by self-similar fractal strings, is in fact the question of
whether the nontrivial Riemann zeros admit such an approximation. It is known (see
Theorem 11.1 of [26]) that the non-trivial Riemann zeros do not contain any infinite
arithmetic progression. The possibility of a finite arithmetic progression within a
certain vertical strip is limited (see Theorem 11.5 of [26]) by an estimate of the
following form: if ((a + inb) = 0 for some a € (0,1) and b > 0 and for all integers

with 0 < |n| < A then
11
A < 60logb <2i)

™

and A < 13b when a = 1/2, see Theorem 11.5 of [26]. Also the possibility of having
an infinite sequence of non-trivial Riemann zeros approximated by an arithmetic
progression, namely having ((a + inb) — 0 as |n| — oo for some a € (0,1) and
b > 0 is ruled out (see Theorem 11.16 of [26]). Thus, the explicit example of Ford
circles provides a simple case where one can see that the approximation condition by
self-similar fractal strings is very difficult to satisfy even for very regular packings. [

Nonetheless, in the case of the Ford circles, one can explicitly see the corrections
to the spectral action due to the fractality of the Apollonian packing.

Since our main focus here is on 4-dimensional spacetime geometries, we can also
construct a 4-dimensional example using the 1-dimensional Apollonian circle packing
by Ford circles, by increasing dimension to a collection of 2-spheres with the Ford
circles as equators in a given hyperplane, and then considering these 2-spheres as
equators of a collection of 3-spheres and similarly pass to a collection of 4-spheres.

Proposition 5.7. For a packing of 4-spheres obtained from the Ford packing of circles
as above, the leading terms of the spectral action expansion are of the form

4 47 7
Te(f(Dp /) ~ 15 7(0) + 1584 D 2y TEOCLD) g

A%+
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Ly ((h=3) = ((—k=1),
C(—2k—1)

>
keN

by B D ) r(), costblon A,

o=a+1ib

where o ranges over the nontrivial zeros of ((2s), withr(f), = [ f(w)u*"" cos(bu) du

and Zy = (((c —3) — ((0 — 1))((20 — 1).

Proof. The packing is given by a collection of 4-spheres of radii the r, = (2n?)~!
as the Ford circles and with the same multiplicities given by the Euler totient func-
tion m(r,) = p(n). Thus, we can apply the expansion obtained previously for an
arrangement of 4-spheres with a given sequence of radii and multiplicities and we
obtain

(o)

Te(f (/) ~ £(0)cpp0) + A2 1 parel) 5 a0l

ceS(L)
where here we have
FO)60(0) = 1060, 0)ce(0) = L (¢(-3) - c(-1) S = 1 70

with ¢(0) = —1/2, ((—1) = —1/12, and ¢(—3) = 1/120, and

26c(2) _ 45¢(3) . 4o
f2A 9 - 471'4 f2A )

1678
The sequence of additional terms corresponding to poles of the zeta function (.(s)
can be subdivided into the contributions of the three sets §; described above so that
we have a term coming from &) = {o = 1} with

Cpg(1 ) 1
f A 54 1 = ﬁ f1A>
then a series of contributions from the poles in Sy, at the even negative integers,
(pgi(—K) 25 ((—k —3) —((=k—1)
AR TR = G ATF

and a series of contributions from the set S3 that involves the non-trivial zeros of the
Riemann zeta function, of the form

CDS4( ) 270t

JeN—5—Ro = fo\7 (¢(o=3) = (o —1))¢(20 - 1),

at points 0 € C ~\R_ with ((20) = 0. We can write these equivalently as a series of
terms

27%cos(blog2)
3

R(Zy) r(f)e A cos(blog A),
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where 0 = a + ib (with a = 1/4 under the assumption that the Riemann hypothesis
holds) and with r(f), = [;° f(u)u*"" cos(bu) du and with Z, = (¢(o —3) — ((0 —
1))¢(20 —1). O

Thus, assuming the Riemann hypothesis holds, the correction terms due to the
presence of fractality introduce a term of order A in the energy scale and a term
of order A%, where the latter occurs together with a series of log periodic terms
cos(blog A) with b the imaginary parts of the nontrivial Riemann zeros.

Remark 5.8. Observe also that the usual cosmological term and Einstein—Hilbert
term now no longer have rational coefficients as in the case of the ordinary Robertson—
Walker metrics with a single S® as spatial section. An effect of the fractality intro-
duced by the sphere packing is the zeta regularization of the sphere radius powers in
these terms, which introduce non-rational coefficients like ((3), {(7), and powers of 7.
In relation to the results of [18], [19], observe that the coefficients in this example are
no longer rational numbers but are still periods of mixed Tate motives. One can ask
the question, for more general sphere packings with associated zeta function (,(z), of
whether the argument given in [I9] can be modified to obtain a motivic description
of the coefficients of the spectral action expansion and what conditions on the fractal
string £ = {an} of the packing radii will give rise to mixed Tate periods.

6. FEYNMAN-KAC FORMULA ON SPHERE PACKINGS

In this section we consider the general case of a Packed Swiss Cheese Cosmology
on R x P, where P is an Apollonian packing of 3-spheres S®, with radii sequence
L = {an}, where each R x S, is endowed with a scaled Robertson-Walker metric
of either the form (5.0]) or (5.2), for a given underlying Robertson—Walker metric dt*+
a(t)?do®. We use the full expansion of the heat kernel for the underlying Robertson—
Walker metric, obtained in the previous sections using the Brownian bridge and the
Feynman-Kac formula, and an analysis of the effect of the scaling by the radii a,, ; to
derive via a Mellin transform argument the full heat kernel expansion for the Dirac
operator on the Packed Swiss Cheese Cosmology R x P.

We first consider the case of R x P with the scaled Robertson—Walker metrics of
the form a , (dt* + a(t)*do?), as in (G1]), which we refer to as the “round scaling”
case. We compute the Feynman-Kac formula for the entire sphere packing using a
Mellin transform with respect to the s variables of the heat kernel, together with the
results on the asymptotic expansion for the underlying Robertson—Walker metric to
obtain the full heat kernel expansion for the Packed Swiss Cheese Cosmology.

As we have seen in the simpler examples of the previous section, one finds two series
of terms, one that corresponds to the expansion of the underlying Robertson—Walker
metric, with zeta regularized coefficients, and one additional series that corresponds
to the poles of the zeta function (,(z) of the fractal string of the packing.

We then consider the case of R x P with the scaled Robertson—Walker metrics of
the form dt*+a? ;. -a(t)* do® as in (5.2), or the “non-round scaling” case. We illustrate
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in this case a different argument based on the Mellin transform of the function fs(z)
with respect to the “multiplicity” variable x and we interpret the integral [, fs(z) dx
as a special value of a combination of Mellin transforms. This shows the occurrence
of zeta regularized sums over the radii in the resulting Feynman—Kac formula. We
also explain how one obtains the contributions of the poles of the zeta function (. (z)
to the asymptotic expansion of the spectral action in this case.

6.1. Zeta regularized series and Mellin transform. We consider the Packed
Swiss Cheese Cosmology R x P with radii £ = {a,;} and with the Robertson-
Walker metrics of the form a2 , (dt* 4 a(t)*do?), as in (5.1I). We present a method for
computing the asymptotic expansion of the heat kernel based on the Mellin transform
with respect to the variable 7 of the heat-kernel expansion exp(—72D?).

We consider a slightly more general form of the series considered in §4 of [42].
In particular, we consider the case of a function f(7) with small time asymptotic
expansion

(6.1) Fr) ~ > ent™
N
and we consider an associated series of the form

(6.2) gr(r) = 3 F(rar)

where R = {r,} is an assigned sequence of r, € R% with the property that the zeta
function Cg(z) = ), r,* converges for (z) > C for some C' > 0, and has an analytic
continuation to a meromorphic function in C for which z = —N for N € N are regular
points. We also assume that (z(z) has only simple poles and that the poles of (g are
regular values of the Mellin transform M(f)(z).

Proposition 6.1. Let R = {r,} be a sequence as above with f(7) and gr(T) as in
@) and [©2). Then the small time asymptotic expansion of gR(T) is given by

(6.3) 9r(7) ~r0s > e Ca(=N)TN + D Rpo M(f)(0) 7

o€S(Cr)
where S(Cr) is the set of poles of Cr(z) with residues Rr, := Res.—,(r(z).

Proof. We can formally write for the series gr the expansion
(64) gR<T) ~ ZCNTT]:[TN = ZCR(—
Nn N

One observes then, as in [42], that if M(f)(z) is the Mellin transform

/f )r*~tdr

then the Mellin transform M(g)(z) is given by
(6.5) M(g)(2) = Ca(z) - M(f)(2).
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This means that we can obtain the asymptotic expansion of gg(7) when 7 — 0+ by
analyzing the singular expansion of the Mellin transform M(gg)(z), as recalled in
g5.31 In this case we obtain the singular expansion

()= 3 R M) | g <R<_> |

zZ—0 g
ceS(Cr) oceSM(f

where S(Cr) is the set of poles of (g(z), which are assumed to be simple, with residue
Rr.o, and where S(M(f)) is the set of poles of M(f) with singular expansion

Smpn(z) = Y o

z—0
oeS(M(f))

Since we are assuming that f(7) has small time asymptotic expansion (6.1I), the
relation to the singular expansion of the Mellin transform gives

CN
Smn(2) =Y TN
N

hence we obtain the result. O

6.2. The Feynman—Kac formula and asymptotic expansion. We use the method
described in Proposition together with the Feynman—Kac formula, to obtain the
asymptotic expansion of the trace of the heat-kernel for the square of the Dirac op-
erator on the sphere packing P endowed with the Robertson—Walker metric as in

E&T).

Theorem 6.2. Let D := Dryp = @y 1Dy 1 be the Dirac operator on a sphere packing
P, with sequence of radit L = {a,y}, with the Robertson—Walker metrics (5.1)).
Assume that the zeta function ((z) of the fractal string L has analytic continuation
to a meromorphic function on C that is regular at the points z € {M € Z : M < 4}
and only has simple poles. Then the heat kernel expansion is given by

Tr(exp(—72D?)) ~

- 1 1/ - -
©06) > ige-anr+a) [ (OG0 + 1 (737 - 3" ) Dla

M=0 ~
+ ZoeSL f(o) - Res.—oCc- 777,

where Sg. is the set of poles of (z and f(z) = M(f)(z) is the Mellin transform of
the function f(7) = Tr(exp(—72D?)) with D the Dirac operator on R x S3 with the
Robertson—Walker metric dt* + a(t)*do?.

Proof. We consider again the Feynman—Kac formula, focusing first on a single sphere
in the packing P, with radius a,, , endowed with a Robertson-Walker metric of the
form (B.J]). This means that we consider an operator of the form

d2
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where the potential V},, ,, x is as in (6.20). The Feynman-Kac formula then reads as

2
—F—(gztap Vm.nk)

e T Hmnk(t f) = e “n ' (t,t)

_ 2&%/@@(_72/0 Vit + V2= a(u))du) Dlal].

G,k
Using the same Taylor expansion method described earlier, after replacing as above

the sum
5 ulme e

with multiplicities p(m) with the integral

/_: frnk(z)de

fronp(z) = <x2 - i) e AT,
with U and V' as in (8.10) and (B1III), we obtain

where

v2
S nm)e e g,6) = [ 22k <4 (~ansU™Y2 + 203, U792 + aikVQU—W)) Dlal
7_ b b
1 6% 2 rr—1/2 4 —3/2 277-5/2
with the Taylor expansion
64U U?“vf 2(r+20) Z a,T—LJI\f 2(r+4-20) C(T’Z M
M=0

with C](\Z’Z) as in (BI7) and the resulting expansion as in ([3.20), which after scaling
appropriately by the factors a,, ; becomes

eauv

2
1 1%
- ( (—ap U2+ ap (2072 + V2U‘5/2))> =
. , 7

4
1 o= (-
z Z ( —5/22) _ ](\41/270)> Co(—M + 2)7_M—2 + 5 Z CJ(‘/I3/2,0)<£(_M +4)7_M—4
M=0

Thus, we can write the Feynman—Kac formula for the whole P

DD e s (1, 1) =

nk m

%) 1 _ _
ZT2M 4 2M—|—4)/< C( 3/2,0) 1(02(1\4512272) —051\212270))) D[a]7

M=0
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with only the term %Cé_?’/ 20 Wwhen M = 0, as in Theorem B.2l This series should be
interpreted in the sense discussed in gﬁj] above, as a series

Zf nkT

3/2,00 L, (=5/2,2 ~1/2,0
Z M= 4/( ( / 4(02(M12 )_02(M12 ))) Dla].

Thus, applying the method of Proposition [6.1], we find that g-(7) has an asymptotic
expansion for 7 — 0+ of the form (6.6]). O

Theorem determines the full expansion of the spectral action on a multifractal
Packed Swiss Cheese Cosmology R x P with the Robertson-Walker metrics (5.1I).

Corollary 6.3. Under the same hypotheses as Theorem[G.2, the full expansion of the
spectral action on R x P with the Robertson—Walker metrics (5.1)) is of the form
(6.8)

Te(f(D/A)) ~
00 1 _ 1 _ —
SR f Ly Co(~2M +4)/ (§C§M3/2,o) N E(Céjﬁ’z’ _ CélejO))) D[a]

M=0
+ZO’ES£ ( ) fU Resz:UCE - A

Proof. Asin [3], [], and [38], we relate the coefficients of the spectral action expansion
to the coefficients of the heat kernel as in (2.2]) and (23], by computing the spectral
action Tr(f(D/A)) with respect to a test function of the form f(z) = [ e 7 du(r)
for some measure p, with [ du(r) = f(0). Assuming that the full expansion of the
heat kernel is of the form

—72D2 Z 7_201620”

we obtain from (Iﬂl) and (23)
D/A Z f2ac2a + ap f —|— Z fgaCQQA_ «

a<0 a>0

— [ et
0
and when o« = M > 0

o= [ () = (<)Y F20(0),
0
Thus, we obtain a series of the form

Tr(f(D/A)) ~

o0 1
ZA—2M+4f_2M+4 gﬁ(—2M‘|—4)/ (502(1\43/20 (02(1\45/222 02(1\41/220))) D[Oé]
M=0

where for oo < 0
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+ Z f(O’) . fO’ . Resz:agﬁ : AU>

€S,

where the Mellin transform relation (5.7]) between heat kernel and zeta function

2 o 272
Tr(|D|7%) = / e TP A
gives

z I'(z/2)

f2) = M(Ta(e ™)) () = =2 6o ().

6.3. Scaling properties for non-round scaling. We now consider the effect of
rescaling the Robertson-Walker metric dt? + a(t)*do? to metrics of the form di? +

al .- a(t)?do®, as in (B.2).

Lemma 6.4. Let U and V be as in BI0), BII), for a given Robertson—Walker
metric of the form ds®> = dt* + a(t)?do? on R x S3. For a rescaled metric of the form
ds? = dt* + a® - a(t)* do?, with a constant scaling factor a > 0, as in (5.2)), we have

(6.9) U—a?U, VealV.,

Proof. In the first case, the expressions ([3.7)), (310), (BI1) show that the U and V
functions defined by (BI0) and (BI1) change like U — a2 U and V + a~' V, under
the rescaling a(t) — a - a(t) of the scaling factor. O

Remark 6.5. Compare this with the case of a rescaled metric of the form ds? =
a - (dt* + a(t)*do?) as in (B0), that we discussed in §6.11 where the the operator
d?/dt* also scales by a™2, hence in the Feynman—Kac formula, one modifies the term

ol —sT) e (-2 E
GO\ T2 ) TP\ T e )

This has the effect of scaling the variable s — a~2s, so that the variables U and V
are replaced by new variables U’, V' with

! V2 ! V2
U=a* s/ A%(t + Ts a(v))dv and V' =a7? s/ At + TS a(v))dv.
0 0

with the effect of the rescaling v/2s/a on the expansion and on the resulting heat-
kernel asymptotics shown in §6.1] .

Lemma 6.6. The rescaling U — a=2U and V + a='V gives the rescaled expression

o0

(6.10)

R

_ _ 1 & _
(a3 CJ(\/[ 5/2,2) aC'](M 1/270)) M=z 5 Z o CJ(\/I 3/2,0) M4
M=0 M=0
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Proof. By Lemma [6.4] n this case the scaling takes the form
€V2/4UUrvm N a—2r—m €V2/4UUrvm’

which means that the coefficients C};" are rescaled by a factor a=*~™ and we obtain

the rescaled expression (6.10). O

Clearly the expression (G.I0) suggests that, in this case, we should expect an as-
ymptotic expansion with zeta regularized terms of the form

f)@c(?)w}f/?’”—cﬁ(l)c( ROy M2y o Zc Oy M

M=0

(6.11)

A~ =

with the zeta function (¢(s) = }_, , @, of the sphere packing radii. This will be
justified more precisely in the following subsections.

6.4. Mellin transform and hypergeometric function. We provide an argument
for the presence of the zeta regularized terms (6.11]) based on taking a Mellin trans-
form with respect to the “multiplicity variable” x in the function fy(z) of ([B.12).

With the notation a™ = a(a+1)---(a+n—1) and a'® = 1, the Kummer confluent
hypergeometric function is defined by the series

1F1(th Zb(n

and is a solution of the Kummer equation

d*f df
t—2 4+ (b—t)= —af = 0.
aiz O
The function f,(z) of (BI2]) has a Mellin transform that can be computed explicitly

in terms of the Kummer confluent hypergeometric function.

Lemma 6.7. The Mellin transform in the x-variable of the function

furlo) = fula) = (2 = e

s given in terms of the Kummer confluent hypergeometric function 1Fy by the ex-
pression

M(($2 . i>e—m2U—xV)(z) _ %U_(Z+3)/2X
12 o 2 z 1 V2 z—|—2 1
(U PN -UARG 50 55) + 221 A5 5 57)

z+1 z+13 V2 z+33 I%&
VDU R 5,5) — 26+ DR 5 10).
Similarly, the Mellin transform in the x-variable of the function
1 2
foq(@) i= (2% = 2)e~ " UHV

4
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is also given in terms of the Kummer confluent hypergeometric function as

1 1.
M((IQ — Z) gU ( +3)/2><

z 1 V? 2421 V?
>y FEA G s

z+1 z+1 3 & z+3 3 V2
U R (= 5 ) 2+ DB (S 5 1))

6—:(:2U+x\/) (Z) _

(U1/2 D(z2/2)(~U B (2,

+V I(

As discussed earlier, the real variable x is a continuous variable replacing the
discrete m -+ 2 in the expression for the potential V,,,(¢) of (BI).

Lemma 6.8. The multiplicity integral is a special value at z =1

/oofsx )dx =

(6.12) (—iU_(1Jr ( J(U 1 1(; ; Z_U)_2Z1F1(1 ; ; IL/U))) =1
v2\/7

— e Y ( 1/2 +2U_3/2 +V2U_5/2) )

Proof. We consider again the mtegral B13), which we write in the form

/_:fS(I)dx:/Ooof87—(5’3)d95+/000f57+(a:)d93

where
1

fs,:l:(x) _ ($2 . Z)e_xQU:th‘
In turn, we can write these integrals in terms of Mellin transforms as
(6.13) | £ ds = MUl + M) )
The Mellin transform on the right-hand-side is given by
(6.14)

1oz 21 V? 2z 1 V?

MUf, )@+ M(fo)() = = U TR G, 5, 70) -2 R (145, 5, 02)

and the evaluation at z = 1 of this expression gives back the expression we used
before

1 2 1 V2 21 V2
Loas Vi _
( 4U F( )(U1F1(2 3 4U) 2Z1Fl(1+2 > 4U))> =1
VQ\/_

e (U4 U L VEUTHR),

(6.15)
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6.5. Scaling and hypergeometric functions. To simplify some of the following
expressions, we introduce the notation

z V2
H)\(T> Z) = U_Z/2 F(Z/2) 1F1(_a)\7_)a

(6.16) 24U v

H(1,2):= Hyp(r,2) =U*"T(2/2) 1F1(2 3 4U)

where, as above, the variables s and 7 are related by s = 72. We also introduce, for

later use, the notation

(6.17) He(r, 2) = U_Z/2§£( 1T(2/2) 1F1(; ; IL/U) Ce(z) H(T, 2).

Corollary 6.9. Consider the scaling of the S spatial sections by a factor a, . taken
from the series L = {a, i} of radii of a given sphere packing, as in (5.2).

1
Qafﬁf (Hy(r.2+3)V = Hy(r,2+2).

Proof. Scaling the Robertson-Walker metric by a,j as in (5.2)), we find that the
Mellin transform of f,(z) of (B12) satisfies

M(fs)(z) = M(fsnp)(2) = la(z+3) - (+3)/2

<H%(T,Z+1)V—H%(T,Z>>

8 n,k
1 /2 % z 1 V2 z+2 1 V_2
(U TG —ad Ui R G 5 5) + 221 B (5= 5 1)
_ z+1,, z+1 3 V2 z—|—3 3 V2
a4 VI @ U R (=5, 75) — 26+ DA (=5, 5)

1, (s z+1 z—|—13V2 . le2
= gei (v ey e R ) - U ENAG )

2 2727 4U

1z+2 _(5+1) E Z+21V_2 . _z+3 Z+1 Z+33 V2
+ 0k <U 2 F(2)z 1F1(—2 ’2’4U)) U= VI( ) (z+ 1)1 Fi(—— DL 4U)
We then write the above as (G.I8]), where we used I'(2/2)z = 2I'((z + 2)/2) and
F((z+1)/2)(z+ 1) =2I'(z + 3)/2). O

Similarly, we obtain the scaling of the integral ffooo fs(z) dz, viewed in terms of
sums of Mellin transforms as above.

Corollary 6.10. For a scaled metric of the form dt* + a2 a(t)*do® as in ([B2) we
have

M(fs n,k —)(Z) + M(.fs,n,k,-i—)(z) -

1 _z z 1 V2 . _z
1
_Zai’k H(r,2)+ a2 2 H(r,z 4 2).

K

l\DIN
DN —
W
-
SN—
SN—
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6.6. Sphere packing and Mellin transform. We consider then the full sphere
packing P with sequence of radii £ = {a,} and with the Robertson-Walker metrics
of the form as in (5.2). The potential V,,(¢), m € N, of (8]) is replaced by a sequence
(m+2) 3

m((m + 5) — p - (1)),

Each potential in this sequence corresponds to a scaled choice a;iA(t) and a;iB (t)
of the variables of ([B.7), and corresponding scaled variables a;i U and a;}ﬂ V in (B.10)

and (B.100), as discussed above. We then consider a function fp s associated to the
full sphere packing P of the form

1 _ _
(621) f'P,s(x> — <x2 o Z) Ze—xzani U—Z‘anylkv.

n,k

(620) Vm,n,k =

As above, we write

| paw)do = MUp )@ ms + MU )2
with fpsx = (22 = 1/4) 3, cexp(—2?a, 3 U £ za,; V).

Lemma 6.11. For R x P with sequence of radii £ = {a, x} and with the Robertson—
Walker metrics of the form as in (5.2)), the Mellin transform of fp s _+ fp.s+ satisfies,
with s = 72,

1
622) Mo )(E) + MUfpa)() =~ He(r2) + Helr,2 +2)
Proof. This follows directly from (G.I2)) since we have
1
MUfpa)(=) = < (Hylr 2+ 1)V = Hy(r2) Y ai,
n,k

and

M(fpa )(2) + MUfpa)(2) = = (S az,) Hir,2) + (3 azt) Hir, 2+ 2),

which gives ([G.22)). O

This shows that, indeed, we obtain the zeta regularized coefficients (,(3) and ((1)
as in (6.I1]), when we evaluate at z = 1 the expression ([6.22]). This argument, however,
does not suffice to identify all the modified terms in the asymptotic expansion of the
spectral action due to the fractality of the sphere packing, as we expect also in
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this case to see contributions from the poles of the zeta function (,(z). We cannot
apply the same argument used for the round scaling here, since the fact that the 7
variable is not rescaled prevents us from applying the same argument of §6.1] based
on §4 of [42]. However, we show in the next subsection that one can still extract the
information on the contribution of the poles of (,(z) from a further analysis of these
Mellin transforms.

6.7. Pole contributions. The discussion above shows why one obtains zeta regular-
ized coefficients in the spectral action expansion in the case of the non-round scaling
(52) of the Robertson-Walker metrics. However, it does not explain why in the as-
ymptotic expansion for 7 — 0 of the heat kernel one should also find contributions
associated to the poles of the zeta function (,(z), as in the case of the round scaling
discussed before. In fact, one can see that such terms will occur in this case too,
when one applies the 7 expansion (B.13])

o0 o0 v
E n ™, V=r? E T
ol ol
=0 n=0

to the function Hy (7, 2) = (e (2)T(2/2)U~*/% 1 Fy(2/2,1/2,V?/4U) as in (6.I1), equiv-
alently written as

He(r.2) = (o2 (2/2)U Z/?Z4n vy,

by expanding the confluent hypergeometric function, with (a), = a(a+1) --- (a+n—1)
denoting the rising factorial. One sees from (B.15)) that the term U~*/? will contribute
a term with 7% times a power series in 7, while the confluent hypergeometric function
will contribute power series in 7.

Rather than giving a complete computation, we simply explain here why the pres-
ence of the term with 7% will generate the pole contributions, by illustrating the same
phenomenon in a simplified case.

The product of the Mellin transforms M(f1)(z) - M(f2)(z) corresponds to the
transform of the Mellin convolution

M(f1)(2) - M(f2)(2) = M(f1* f2)(2),
(ox f2)(a / £ pal) 2.

Moreover, Mellin transform can be applied to distributions [27], [32], by considering
the space of test functions D(R,) and the space Q@ = M(D(R,)) of their Mellin
transforms. Let D', and Q" denote the dual spaces. Denoting by (-, -) ¢ the duality
pairing between Q" and Q and by (-,-) the duality pairing between D’ and D(R.),
for a distribution A € D’ one defines M(A) by the property that (M(A), M(¢)) =
(A, ¢). Then the Mellin transform of a distribution in D/, belongs to the space Q',
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which is a space of analytic functions. In particular, the Mellin transform of a delta
distribution is given by

(6.23) = M(0(x — 7).
Similarly, we can write as Mellin transform of a distribution
(6.24) 7% Ce(2) Zfank Mx—T-any)).

This is the distribution acting as

g Tng (X — T - anp), g T Qp gy O(T Qo).

We write this dlstrlbutlon as

= ZT(Ln,k 0 — 7+ any)-
n,k

Consider then a given function g(z). In particular, for our application we should
think of the function g, (z) := M~YT'(2/2) 1F1(z/2,1/2,7)). The product of Mellin
transforms is then

M(Ap7)(2) - M(g)(2) = M(Ap - % g)(2)

o0 d
:M(Zfan,k / (u—Tan) :E u ZM ).
n,k 0 7- a'nk

We then let h.(7) := M(g(%) and we write the above as
= Z hz(’T . amk).
n,k

One can then obtain the asymptotic expansion for this function by using the same
technique that we used in the case of the round scaling, by considering now the
variable z fixed (it will be evaluated at z = 1 in the end) and taking a Mellin
transform with respect to the variable 7. To avoid confusing notation we write M.,
for the Mellin transform taken with respect to the variable 7, and we write this Mellin
transform as a function of a complex variable 5. Arguing as in the round scaling case,
we have

M (Lo(7))(B8) = Cc(B) - M(h(7))()-

It then follows that the terms in the asymptotic expansion for 7 — 0 of L.(7) are
determined by the terms in the singular expansion of the Mellin transform (.(3) -
M(h,(7))(5). These contain a series of terms that correspond to the poles o € S¢
of the zeta function ((f) with coefficient given by the product of the residue R, =
Resg—,(-(5) and the value M(h.(7))(0) with a power 777, as well as terms that
correspond to the poles of M(h,(7))(S) (which are terms of the asymptotic expansion
of h. (7). When we apply this argument to g, (z) := M~YT'(z/2)1F1(2/2,1/2,7)), the
resulting asymptotic expansion then needs to be modified by replacing v = V?2/4U
and expanding U and V in powers of 7 according to (B.I5). This makes writing



SPECTRAL GRAVITY ON (MULTIFRACTAL) ROBERTSON-WALKER COSMOLOGIES 47

out in full the explicit computation lengthy, but it does not change the fundamental
structure of the expansion, which will still have a series of terms arising from the
poles of (-(5). Thus, even without carrying out a full explicit computation of all
these terms, we then see that the structure of the asymptotic expansion of the heat
kernel (hence of the spectral action) is similar to the case of the round scaling, with
a series of terms generated by the poles of (-(5) and a series of terms coming from
the asymptotic expansion of the underlying (unscaled) Robertson—Walker metric,
appearing with zeta regularized coefficients as in ([6.1T]).

APPENDIX A

We include here the explicit expression in terms of Dawson functions for the inte-
grals (L1) in the case of the 4-dimensional simplex. We have

4
1
/A4 exp (—5 Z cj,mujum> dvy dvy dvs dvy =

J,m=1

r(25)v )
u1 (urtu2)(uztus) (u1+uz+us) (us+ua) (uzt+us+us) (1 +uztus+ua)
32F(“1+ “2)
w1 (u1tuz) (uatus) (ur +us+us) (us+us) (uotustua) (ur +ustuztus)
32F(“2+ “3)
w1 (u1tu2)(uz+tus) (u1 +uztus) (uz+ua) (uatus+ua) (ur +uztug+ua) +
u]tugtug
B2F (153 ) V2
w1 (u1+u2)(uz+usz) (u1 +uz+us) (uz+us) (ua+us+us) (ur+uz+us+uq)
32F< ; f)\/i
ug(u1+u2)(uz+usz) (u1 +uz+us) (uz+us) (ua+us+usg) (ur +uz+us+uq)
EN )
ug (u1+u2) (uatu3z) (ur +us+us) (uz+ua) (ua+us+us) (ur +uz+uz+ug)
32F(“2+ “3)
uz(u1+u2)(u2+u3)(u1+u2+u3)(U3+u4)(u2+u3+u4)(u1+u2+u3+u4) +
16F( )u3\/
urug (u1+u2) (v +us)(ui+uz+us)(us+ua) (u2+us+ua)(u1 +uz+us+ua)
2
16F(2 \/E)um/i B
uruz(u1+uz)(ue+ug) (u1 +uztus) (uz+uq) (ua+us+ug) (u1 +uz+us+uy)
16F(“1+“2)u3\/§
+

+

+

_|_

2v2
urug (u1+u2) (v +us)(ui+uz+us) (us+ua) (2 +us+ua)(u1 +uz+us+ua)

16F(2%)u4\/§

uiuz(u1+uz)(uz+us)(u1 +UQ+US)(u3+U4)(u2+US+U4)(U1 Fuz+uz+ug)
16F< )u4\/_

wruz (w1 tuz) (uz +ug) (ur +uz +us) (uz+uas) (ug+uz+us) (ur +us+usfus)
16F<u1+u2>u4\/§

+

22
wria (T i2) (a3 (a1 F s us) (us Lun) (uat s Fun) (wi Faatustun)

(52
(urtu2)us(uztuz) (w1 tuztusz)(us+ua)(uztus+ua)(ui tuz+uz+ua) +
()
(u1+u2)us(uz+us)(u1+uz+us)(us+us) (ug+us+us) (ur +ugtus+us)
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s (435) 3

(u1+u2)uz(uz+usz)(us +uz+us) (US +ug)(uztuz+uq)(ur+uz+us+ug
16F< ) usv/2
wy (w1 +uz)us (uz +us) (ur +uz+us) (uz+us) (ug+uz+us) (ur +ustusfus)

wy (w1 +uz)us (uz +ug) (ur +uz +us) (uz+uas) (ua+uz+us) (ur +ustusfus)
ugtug

16F< 2l )uzx/i N

w1 (u14u2)uz(ue+us)(ui+uzs+us) (us+uq) (uz+uz+ug ) (u1 +us+uz+us)
u1+u2+U3
1(51?(72 ] )uQ\/E

u1(u1+u2)u3(UQ+u3)(u1+u2+u3)(U3+u4)(u2+u3+u4)(u1+u2+u3+u4)

16F( )u4\f

uy (ur+ug)us(ua+us) (u1 +ug+us) (us+us) (ug+us+us) (ur+ugtus+us)

w1 (u1 +uz)us(uz+us) (ur Fuz+us) (us+us) (uptus+ua) (ur Fugtus+us)
16F<“2+“3 )u4\/§
+

5+
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APPENDIX B

We report here the explicit expressions for the coefficients ag(t) and ag(t) of the
spectral action as a function of A(t) = 1/a(t) and B(t) = A(t)?. The expressions we
obtain for agp(t) for M =0,...,4 match those computed in [5], [20] when expressed
in terms of the scaling factor a(t). We have:

ag(t) =
TA ()5 1058’ (£)2 A’ (t)* A () 358 (A () | BAG()A/(1)3  35B/(t)A”(1)A!(t)3
768B(t)9/2 + 1024B(t)11/2 — 128B(t)5/2 ~  763B(1)%/2 96B(1)7/2 192B(t)9/2 +
11558/ (1)* A/ ()2 | BA"(#)2A/(t)2 | 21B"(t)2A(t)? + B (t) A’ (t)? + 7B'()B®) (A’ ()2 BW@HA'()2
4096 B(t)13/2 64B(t)7/2 256B(t)9/2 64B(t)5/2 64B(t)9/2 64B(t)7/2
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5B/(1)2A'(t)> 2318/ (t)2B"(1)A'(1)> | B')A”(t)A'(t) + 7TB' (1) A" (t)B" (t) A’ (1) + 7T7B'(t)2AG) (1) A’ (1)
256B(t)7/2 512B(t)11/2 32B(t)5/2 192B(t)9/2 384B(t)9/2
ABY A () AB@A ()  A’®)B® @A) B HAD@A()  3B"#)ABG) B)A(t)
80B(1)5/2 — T48B(t)3/2 16B(t)7/2 T 1eBM)T2 32B(t)7/2 o
1058’ (t)3 A (t) A’ (t) + 50058’ (t)6 358/ (t)2 A" (t)2 | 249B'(t)2B"(t)? 3AG) ()2 23B) (£)2
256B(t)11/2 49152B(t)15/2 256 B(t)9/2 1024 B(t)11/2 160B(t)5/2 2688B(t)7/2
1B (£)2B"(t) , 15B'(t)3B®) () , A’®)AD @) | 19B"(t)BW (¢) B (t) 3B/ (t)B®) (t)
768B(t)7/2 128B(t)11/2 40B(t)5/2 1344B(t)7/2 480B(t)3/2 148B(1)T2
A (t)2 B'(t)B® (1) 3B’ (t)2 B©) () 1B/ () A7 ()AB) (8)  11A" (1)2B" (1)
96B(t)3/2 ~ 160B(t)5/2 ~ 640B(t)>/2  1120B(t)5/2 96B(t)7/2 192B(t)7/2
43B'()B" (#)B® (1)  25B'(1)°BW (1) 61B" (t)3 35B'(t)* 13098’ (t)* B" (t)

384B(t)9/2 768B(1)°/2  2304B(t)9/? 6144 B(t)9/2 4096B(t)13/2

+

CLg(t) =

3A/ ()3 + TIB(1)2A/(4)8  A®)°  TB'(MA()S | TABD @A (1) 21B/(HA”(t)A ()5
4096 B(t)11/2 4096 B(t)13/2 1536B(t)7/2 1024B(t)11/2 768B(t)9/2 512B(t)11/2
50058 (H)* A’ (1)* | 35A7(1)2A/ ()% | 63B”(1)2A/(H)* | 5B'(H)A'(H)* | 21B/(t)BG) (t)A’(t)*
32768 B(t)15/2 1536 B(t)9/2 2048 B(t)11/2 1536B(t)7/2 512B(t)11/2 -
7B (1) A’ (+)* 358/ ()2 A’ (t)* 847B’ (1)2B" (t) A’ (t)* 5B (t)A” (1) A’ (t)3 TTB! (1) A" (t)B" () A’ (t)3
1536B(t)9/2 ~ 6144B(1)%2 4096 B(t)13/2 384B(1)7/2 + 256B(t)11/2
7B (£)2 A (A (1) | ADMA' (@) AB @A) TB")AB A (1) TA"()B® (#)A(t)3
512B(t)11/2 192B(t)7/2 192B(t)5/2 128B(t)9/2 192B(t)9/2
TB' () AW WA (1)>  385B'(t)3A”(H)A'(#)3 | 25025B'(t)SA'(1)2 |, 315B'(1)2A”(t)2 A’ (t)?
192B(t)9/2 o 1024 B(t)13/2 65536 B(1)17/2 1024 B(t)11/2
2739B’ ()2 B” (1)2 A’ (t)2 | 3AG) (1)2A4’(t)2 | 23BG)(1)2A(1)2 | 7TB'(1)2B"(t)A’(t)2 |, 165B’(t)>B®) (1) A’ (t)2
4096 B(t)13/2 128B(t)7/2 1536 B(t)9/2 3072B(t)9/2 + 512B(t)13/2
ATAD A ()2 | 19B" () BW () A/ (#)2 | BW M)A ()2 | 3B ()BO () A/ (1)2  A"(t)2 A (1)?
32B(t)7/2 768B(t)9/2 640B(t)>/2 256B(t)%/2 T 128B(1)5/2
B'()BA @A (1)2  3B"(#)2A' ()2  BOMA' ()2 1TB' (A )ABL WA ()2 TTA" ()2 B" (1) A (t)?
128B(t)7/2 TOUB12B(1)7/2 T RI6B(H)T/2 384B(t)%/2 o 768B(t)9/2 o
1208’ (1) B" () B () A’ ()2 61B"(1)3A'(t)? 5B/ (1)?BW A’ (1)? 1058/ (1)*A'(1)*
512B(t)11/2 1024B(t)11/2 1024 B(t)11/2 8192B(t)11/2
170178/ (1)*B" (1) A’ (t)2 | 35B/(t)3A”(H)A’(t) |, 1309B'(t)3A”(t)B" (H)A'(t) |, 1309B’(t)*AG) (1) A’ (1)
16384 B(t)15/2 1536 B(t)9/2 + 1024 B(t)13/2 + 4096 B(t)13/2
11A7 ()2ZAB) (A (t) | 61B"(1)2AB ()A'(t) | 3B"()ABG)(®)A'(t) , A”()B®) (t)A’(t)
192B(t)7/2 768B(t)9/2 320B(t)5/2 160B(t)>/2
43A"7(#)B" ()B®) () A'(t) |, 43B'(t)AG) ()BG) () A’ (t) | B'()AD @)A'(t) | 43B'(t)B” (1) AW (1) A’ (1) +
384B(t)9/2 384B(t)9/2 160B(t)>/2 384B(t)9/2
25B' () A" () BW () A'(#) |, 25B'(1)2AGI A () |, AD@)A(t) AB) () A (1) 11B’(t)A” (t)B" (t) A’ (t)
384B(t)9/2 768B(t)9/2 1120B(t)5/2 ~ 480B(t)3/2 384B(1)7/2 o
3A"MBG) (A1) 3B/ ()AO WA ()  11B'0)2?AB (A1)  23BB (AW MA ()
448B(t)7/2 448B(t)7/2 768B(t)7/2 1344 B(t)7/2
19AG) () BW (1) A'(t)  19B"(H)AG)(1)A’(t)  35B/(1)A”(1)3A'(t)  45B'(t)2 A" (t)BB) (1) A’ (1)
1344B(t)7/2 - 1344B(t)7/2 o 384B(t)%/2 - 128B(t)11/2 o
158 ()3 AW (1) A’ () 249B’ (1) A" (1) B" ()2 A’ (t) 249B' (t)2B" () AB) (1) A’ (t) 50058 (t)> A" (t) A’ (t)
128B(t)11/2 o 512B(t)11/2 o 512B(t)11/2 o 8192B(t)15/2 +
4254258’ ()8 5A” (t)* 1261B" (t)* 61B" (1)3 19258/ (1)* A (t)2 |, 127699B' (1) B" (t)?
3145728 B(t)19/2 + 768B(t)7/2 + 61440B(t)11/2 + 32256 B(t)7/2 + 8192B(t)13/2 163840B(t)15/2
83A”(1)2B"(t)2 |, 83B'(1)2AB®)(1)2 | 659B'(t)?BG) ()2 23A4M) ()2 23B (1)2
1536 B(t)9/2 1536 B(t)9/2 10240B(t)11/2 6720B(t)5/2 16128 B(t)7/2
1198’ (H)* B" () 11A” (t)2B" (t) 1B ()A” (1) AB) (1) | 83B'(H)A” (t)B" (t)A®) (¥) 18598’ (t)° BG®) (t)
8192B(t)11/2 1920B(t)5/2 960B(t)5/2 + 384B(t)9/2 8192B(t)15/2
5B/ (t)A” ()2B®)(t) |, 227B'(t)B” (t)2B®)(t) |, 43B'(t)B”(t)B®) (t) |, 5B/ (t)2A” (1) AW (1)
64B(t)9/2 1280B(t)11/2 5376B(t)7/2 64B(t)9/2
25B’(t)2BW(t) | 527B'(t)2B” (t)B™ (t) 19AG) (1) AG) (1) 178 ()3 B®) (1) 19BG) () BG) (t)
10752B(t)7/2 5120B(t)11/2 3360B(t)5/2 1024 B(t)11/2 8064B(t)7/2
3A"(MAO® @) | 11B"(£)B© (¢) BO) (¢) B'®)BD@)  A”#)AD (1) AB) ()2

1120B(t)5/2 8064 B(t)7/2 67208 (t)3/2 2016 B(t)7/2 240B(1)3/2 ~ 320B(t)3/2

+

_|_

_|_
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3B'(t)B®) (1)  19B”(t)B™ (1) B®) (1) 23B3) (1)2 5B/ (1)2A” ()2 43A"(t)AB) (1)BG) (1)
4480B(t)5/2 ~ T13440B(t)>/2 ~ 20160B(t)5/2 = 26880B(t)5/2 ~  512B(1)7/2 1344B(t)7/2 -
43A" (B ()AD (1) 43B' (A ()AD (1)  25B' W) A (H)AB) (1)  61B"(H)AB ()2 254" (#)2BM (1)
1344B(t)7/2 o 1344B(t)7/2 o 1344B(t)7/2 T 2688B(1)7/2 T 2688B(1)7/2
B'(t)B"(t)B®) (1)  3B'(t)B® (t)BW(t) 5B/ (t)*B®) (1)  31B"(t)B® (1)2  25B” (1)2B™(t)
64B(t)%/2 o 128B(t)9/2 T 768B(1)%2  1536B(1)%/2 1536B(1)%/2
5B/(1)2BO) (1)  83B/(t)2B"(1)2  119B'(t)2A”(1)AG)(t)  357B'(1)2A”(1)2B"(t)  561B'(t)*B® (1)
1536B(1)%/2 ~  6144B(t)%/2 512B(t)11/2 o 1024 B(t)11/2 T T 8192B(1)13/2
48298’ (t)3 B" (t) B®) (t) 19943 B’ (t)2B" (t)3 3858’ (t)0 1151158’ ()5 B (t)
10240B(t)13/2 T T 61440B(1)13/2 T 98304B(1)13/2 T T 196608B(t)17/2
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