
ar
X

iv
:1

81
1.

03
15

5v
4 

 [
m

at
h-

ph
] 

 2
2 

A
pr

 2
02

0

Spectral aspects of the Berezin transform

Louis Ioosa, Victoria Kaminkerb, Leonid Polterovichb and Dor Shmoishb

April 23, 2020

Abstract

We discuss the Berezin transform, a Markov operator associated to posi-
tive operator valued measures (POVMs), in a number of contexts including the
Berezin-Toeplitz quantization, Donaldson’s dynamical system on the space of Her-
mitian inner products on a complex vector space, representations of finite groups,
and quantum noise. In particular, we calculate the spectral gap for quantization
in terms of the fundamental tone of the phase space. Our results confirm a predic-
tion of Donaldson for the spectrum of the Q-operator on Kähler manifolds with
constant scalar curvature, and yield exponential convergence of Donaldson’s iter-
ations to the fixed point. Furthermore, viewing POVMs as data clouds, we study
their spectral features via geometry of measure metric spaces and the diffusion
distance.
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7 Two concepts of quantum noise 42

1 Introduction

Given a function f on a classical phase space X, let us first quantize it and then
dequantize. This operation on functions, f 7→ Bf , is called the Berezin transform. As a
result of this operation, the function f blurs on the phase space. The intuition behind
this is as follows a: assume that f is the Dirac delta-function at a point x ∈ X. Its
quantization is a coherent state at x, whose dequantization is approximately a Gaussian
centered at x. In the framework of the Berezin-Toeplitz quantization of closed Kähler
manifolds, B is known to be a Markov operator with finite-dimensional image, and is
closely related to the Laplace-Beltrami operator ∆ of the Kähler manifold. In fact, the
Berezin transform has the following asymptotic expansion as ~ → 0, due to Karabegov
and Schlichenmaier [31] b:

B~(f) = f − ~

4π
∆f + O(~2) , (1)

for every smooth function f on X, with remainder depending on f and where ~ stands
for the Planck constant (see Section 3 for notations and conventions).

We focus on the spectral properties of B. For fixed ~, this operator factors through
a finite-dimensional space and hence its spectrum consists of a finite collection of points
lying in the interval [0, 1]. Moreover, multiplicities of positive eigenvalues are finite, and
1 is the maximal eigenvalue corresponding to the constant function. Write its spectrum
(with multiplicities) in the form

1 = γ0 > γ1 > γ2 > . . . > γk > . . . > 0 .

The quantity γ := 1 − γ1 is called the spectral gap, a fundamental characteristic of
a Markov chain responsible for the rate of convergence to the stationary distribution.
Our first result, Theorem 3.1, implies that in the context of the Berezin-Toeplitz quan-
tization, the spectral gap γ of the Berezin transform equals

γ =
~

4π
λ1 + O(~2) , (2)

where λ1 stands for the first eigenvalue of ∆. Note that the upper bound on the
gap readily follows from (1). The proof follows a work of Lebeau and Michel [36] on
semiclassical random walks on manifolds with extra ingredients such as an asymptotic
expansion for the Bergman kernel due to Dai, Liu and Ma [13], a comparison between
the Berezin transform and the heat operator motivated by the work of Liu and Ma [38],

aWe thank S. Nonnenmacher for this explanation.
bNote that after renormalization, there is a missing factor of 1/2 in front of the second term of the

analogous formula in [31, (1.2)].
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and a refined version of the above-mentioned Karabegov-Schlichenmaier asymptotic
expansion [31]. In fact, Theorem 3.1 shows much more than (2), namely that one can
approximate the full spectrum of ∆, as well as the associated eigenfunctions, with those
of B.

Let us point out that the proof of Theorem 3.1 can be extended to Berezin-Toeplitz
quantization of closed symplectic manifolds, using the quantum spaces given by the
eigenstates corresponding to the small eigenvalues of the renormalized Bochner Lapla-
cian. This uses the associated generalized Bergman kernel of Ma and Marinescu [41] and
asymptotic estimates refining those of Ma, Marinescu and Lu [39] (see the discussion
at the end of Section 3).

The Berezin transform is defined in the more general context of positive operator
valued measures (POVMs). In fact, the Berezin-Toeplitz quantization is nothing else
but the integration over a certain POVM on the phase space M with values in the
space of quantum observables, and the dequantization is the dual operation [35, 8].
In addition to quantization, POVMs appear in quantum mechanics in another setting:
they model quantum measurements [7]. Interestingly enough, within this model the
spectral gap of the Berezin transform corresponding to a POVM admits two different
interpretations: it measures the minimal magnitude of quantum noise production, and
it equals the spectral gap of the Markov chain corresponding to repeated quantum
measurements (see Section 7 for details).

Another theme of this paper is related to Donaldson’s program [17] of developing
approximate methods for detecting canonical metrics on Kähler manifolds. Interestingly
enough, our study of the Berezin transform yields the asymptotic behaviour of the
spectrum and of the eigenfunctions of the Q-operator, a geometric operator arising in
this program, for Kähler metrics of constant scalar curvature. This behaviour, which
was predicted by Donaldson in [17], is stated in Theorem 3.2 below.

Additionally, Donaldson discovered in [17] a remarkable class of dynamical systems
on the space of all Hermitian products on a given complex vector space. Section 4 deals
with the spectrum of the linearization of such a system at a fixed point. We show that
it can be identified with the quantum channel associated to a certain POVM. Using
the positivity of the associated spectral gap and under certain natural assumptions,
we prove that this linearization is contracting, which confirms Donaldson’s prediction
via numerical computations in [17, § 3]. By the Grobman-Hartman theorem and earlier
results of Donaldson, this implies in particular that the iterations of this system converge
exponentially fast to its fixed point (see Theorem 4.4), and not only for "almost all initial
conditions", as predicted in [17, § 4.1]. The use of Hartman’s theorem in a related
context has been suggested by Fine in [23].

This naturally brings us, in Section 5, to a geometric viewpoint at POVMs. Fol-
lowing Oreshkov and Calsamiglia [44, VII.C], we encode them as probability measures
in the space of quantum states S equipped with the Hilbert-Schmidt metric. It turns
out that the spectral gap admits a transparent description in terms of the geometry
of such metric measure spaces and exhibits a robust behaviour under perturbations of
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POVMs in the Wasserstein metric. In a similar spirit, one can consider a POVM as a
data cloud in S, which leads us to a link between the spectral gap and the diffusion
distance, a notion coming from geometric data analysis.

Section 6 contains a case study of POVMs associated to irreducible unitary rep-
resentations of finite groups. In this case the spectrum of the Berezin transform and
the diffusion distance associated to the corresponding Markov chain can be calculated
explicitly via the character table of the group, and their properties reflect algebraic
features. In particular, we prove that any non-trivial irreducible representation of a
simple group has a strictly positive spectral gap (see Corollary 6.6).

2 Preliminaries

The mathematical model of quantum mechanics starts with a complex Hilbert space
H. In what follows we consider finite-dimensional Hilbert spaces only. Observables are
represented by Hermitian operators whose space is denoted by L (H). Quantum states
are provided by density operators, i.e., positive trace-one operators ρ ∈ L (H). They
form a subset S(H) ⊂ L (H). Notation: We write ((A,B)) for the scalar product
tr(AB∗) = tr(AB) on L (H).

Let Ω be a set equipped with a σ-algebra C of its subsets. By default, we assume
that Ω is a Polish topological space (i.e., it is homeomorphic to a complete metric space
possessing a countable dense subset) and C is the Borel σ-algebra.

An L (H)-valued positive operator valued measure W on (Ω,C ), which we abbrevi-
ated to POVM, is a countably additive map W : C → L (H) which takes each subset
X ∈ C to a positive operator W (X) ∈ L (H) and which is normalized by W (Ω) = 1l.
According to [10], every L (H)-valued POVM possesses a density with respect to some
probability measure α on (Ω,C ), that is having the form

dW (s) = nF (s)dα(s) , (3)

where n = dimC H and F : Ω → S(H) is a measurable function.
A POVM W given by formula (3) is called pure if

(i) for every s ∈ Ω the state F (s) is pure, i.e. a rank one projector;

(ii) the map F : Ω → S(H) is one to one.

Pure POVMs, under various names, arise in several areas of mathematics including the
Berezin-Toeplitz quantization , convex geometry (see [25] for the notion of an isotropic
measure and [1] for the resolution of identity associated to John and Löwner ellipsoids),
signal processing (see [18] for a link between tight frames and quantum measurements)
and Hamiltonian group actions [21]. When Ω is a finite set, a pure POVM with a given
measure α exists if and only if the measure α({s}) of each point s ∈ Ω is 6 1/n, see
[21] for a detailed account on the structure of the moduli spaces of pure POVMs on
finite sets up to unitary conjugations.
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Let us introduce the main character of our story, the spectral gap of a POVM of
the form (3). Define a map T : L1(Ω, α) → L (H) by

T (φ) =
∫

Ω
φ dW = n

∫

Ω
φ(s)F (s)dα(s) .

(here and below we work with spaces of real-valued functions). The dual map T ∗ :
L (H) → L∞(Ω, α) is given by T ∗(A)(s) = n((F (s), A)). Since L∞ ⊂ L1, we have an
operator

E =
1

n
TT ∗ : L (H) → L (H) ,

E(A) = n
∫

Ω
((F (s), A))F (s)dα(s) . (4)

Observe that E is a unital trace-preserving completely positive map. In the terminology
of [27, Example 5.4], this is an example of an entanglement-breaking quantum channel.

Furthermore, set

B =
1

n
T ∗T : L1(Ω, α) → L∞(Ω, α) ,

B(φ)(t) = n
∫

Ω
φ(s)((F (s), F (t)))dα(s) . (5)

Observe that the image of B is finite-dimensional as B factors through L (H).
Write (φ, ψ) :=

∫

Ω φψ dα for the scalar product on L2(Ω, α), and ‖ · ‖ for the associ-
ated norm. Note that B is defined as an operator on L2(Ω, α) and its spectrum belongs
to [0, 1], with 1 being the maximal eigenvalue associated with the constant function.

Note now that positive eigenvalues of E and B coincide. Indeed, T ∗ maps isomor-
phically an eigenspace corresponding to a positive eigenvalue of E to the eigenspace of
B corresponding to the same eigenvalue. Write

1 = γ0 > γ1 > γ2 > γk > . . . > 0

for the eigenvalues of B with multiplicites.

Definition 2.1. The non-negative number

γ(W ) := 1 − γ1 > 0

is called the spectral gap of the POVM W .

With slight abuse of terminology, we sometimes refer to γ(W ) as the spectral gap
of operators B and E .

Several aspects of this paper concern the positivity of such a spectral gap, and are
related to the theory of Markov chains with state space Ω. The notion of the spectral
gap, while seemingly being unnoticed in the context of POVMs, naturally appears in
the study of Markov chains, where it is responsible for the rate of convergence to the
stationary measure. In Section 3, Markov chains will provide a useful link between
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Berezin-Toeplitz quantization and semiclassical random walks studied by Lebeau and
Michel [36], to get a semi-classical estimation of the spectral gap of the Bereztin-Toeplitz
POVM. In fact, the result of Lebeau and Michel can be applied directly to get a lower
bound on this spectral gap, giving a weak version of Theorem 3.1. Finally, as we have
already mentioned, POVMs play a central role in the mathematical theory of quantum
measurements, and, interestingly enough, Markov chains arise in the context of repeated
quantum measurements, see Section 7. Let us recall some basic notions from the theory
of Markov chains [2, 47]. A Markov kernel on Ω is a map x 7→ σx sending a point x ∈ Ω
to a probability measure σx on (Ω,C ) such that x 7→ σx(A) is a measurable function
for every A ∈ C . With every Markov kernel σ one associates a Markov chain, i.e., a
sequence of Ω-valued random variables ζk, k = 0, 1, . . . defined on the same probability
space, such that for every n and every sequence xi ∈ Ω the conditional probabilities
satisfy

P(ζn | ζn−1 = xn−1, . . . , ζ0 = x0) = σxn−1
.

If ζ0 is distributed according to a probability measure ν0 on Ω, then ζ1 is distributed
according to ν1 given by the formula

ν1(A) =
∫

Ω
σx(A)dν0(x) ∀A ∈ C .

If ν0 = ν1, we say that ν0 is a stationary measure for the Markov chain.
The Markov kernel is called reversible with respect to a measure ν on Ω if

dν(x)dσx(y) = dσy(x)dν(y) ,

as measures on Ω×Ω. In this case ν is a stationary measure of the Markov chain. Given
a ν-reversible Markov kernel σ with the state space Ω, define the Markov operator A
on L1(Ω, ν) by

A(φ)(x) =
∫

Ω
φ(y)dσx(y) . (6)

Note that A preserves positivity: A(φ) > 0 for φ > 0, A(1) = 1, and its operator norm
is 6 1. The reversibility readily yields that the Markov operator A is self-adjoint on
L2(Ω, ν). Denote by 1⊥ the orthogonal complement to the constant function 1 on Ω,
i.e., the space of functions with zero mean. Then A preserves 1⊥. By definition, the
spectral gap γ(A) is defined as

γ(A) = 1 − ‖A|1⊥‖ = inf
φ 6=0

(φ− Aφ, φ)

(φ, φ) − (φ, 1)2
. (7)

With this language, the operator B given by (5) is a Markov operator with the Markov
kernel

t 7→ n((F (s), F (t)))dα(s) . (8)

It is reversible with respect to the stationary measure α.
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3 Spectral gap for quantization

3.1 Berezin transform vs. Laplace-Beltrami operator

Pure POVMs naturally appear in the context of Berezin-Toeplitz quantization of
closed Kähler manifolds (X,ω), which are quantizable in the sense that the cohomology
class [ω] of the Kähler symplectic form ω ∈ Ω2(X,R) is integral. Recall that this last
condition is equivalent to the existence of a holomorphic Hermitian line bundle (L, h)
over X whose Chern connection has curvature −2πiω.

Let us briefly recall the construction of this quantization (see [5, 48, 37] for prelimi-
aries). Let X be a quantizable closed Kähler manifold with dimCX = d, and let (L, h)
be a holomorphic Hermitian line bundle as above. Write Lp for the p-th tensor power
of L, and hp for the Hermitian metric on Lp induced by h, for any p ∈ N∗ c. Then
the Hilbert space of quantum states in the space Hp of global holomorphic sections
of Lp, together with the L2-inner product induced by the Hermitian metric hp on Lp

and the Liouville measure dvX associated to the canonical volume form ωd/d!. We set
np = dimC Hp. The quantity ~ = 1/p plays the role of the Planck constant, so that
the classical limit is given by p → +∞. For all p ∈ N∗ large enough, we define a pure
L (Hp)-valued POVM on X through its density (3) by the formula

dWp = np Fp dαp , (9)

where the map Fp : X → S(Hp) sends a point x ∈ X to the coherent state projector
with kernel the space of sections vanishing at x ∈ X, and where the measure αp is given
at any x ∈ X by

dαp(x) =
Rp(x)

np
dvX(x) , (10)

with density Rp : X → R called the Rawnsley function. From the viewpoint of complex
geometry, the map Fp is given by the Kodaira map and the Rawnsley function is given
by the value on the diagonal of the Bergman kernel, i.e. the Schwarz kernel with respect
to dvX of the orthogonal projection Πp : L2(X,Lp) → Hp. By the Kodaira embedding
theorem, for all p ∈ N∗ large enough, the map Fp is well defined and injective, and we
have Rp(x) 6= 0 for all x ∈ X, so that the L (Hp)-valued measure Wp defines a pure
POVM in the sense of Section 2, called the Berezin-Toeplitz POVM.

In this context, the operator Bp := 1
np
T ∗
p Tp given by formula (5) is known as the

Berezin transform. Recall that for any p ∈ N∗, the operator Bp has a finite-dimensional
image, and all its eigenvalues lie in the interval [0, 1]. There is a finite number of positive
eigenvalues with multiplicities, while 0 has infinite multiplicity. Write

1 = γ0,p > γ1,p > γ2,p > . . . > γk,p > . . . > 0

for the eigenvalues of Bp with multiplicities.

cOur convention is that the set of natural numbers N contains 0. We write N∗ for strictly positive
natural numbers.
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Let ∆f = −div∇f be the (positive) Laplace-Beltrami operator associated with the
Kähler metric, acting on functions on X with eigenvalues

0 = λ0 < λ1 6 λ2 6 . . . 6 λk 6 . . . . (11)

Theorem 3.1. For every integer k ∈ N, we have the following asymptotic estimate as
p → +∞,

1 − γk,p =
1

4πp
λk + O(p−2) . (12)

Furthermore, every sequence in p ∈ N
∗ of L2(X,αp)-normalized eigenfunctions of Bp

corresponding to the eigenvalue γk,p contains a subsequence converging to an eigenfunc-
tion of the Laplace-Beltrami operator corresponding to λk in the C ∞-sense.

The proof of Theorem 3.1 is given in Section 3.5. Note that in the context of
Section 2, Theorem 3.1 is equivalent to the same statement via T ∗

p for the operator
Ep : L (Hp) → L (Hp) defined from Bp by the formula (4). Let us emphasize also that
the remainder O(p−2) in (12) is not uniform in k.

The Berezin transform Bp and its associated operator Ep have prominent cousins,
the QK,p-operator and the Qp-operator, respectively introduced by Donaldson [17, § 4]
in the framework of his program of finding numerical approximation to distinguished
Kähler metrics on complex projective manifolds. They are defined as

QK,p =
Vol(X)

np
ιpTp : L1(X) → L∞(X) ,

Qp =
Vol(X)

np
Tpιp : L (Hp) → L (Hp) ,

(13)

where for any p ∈ N∗, the map ιp : L (Hp) → L∞(X) has been defined in [17, § 2.2.1]
for all A ∈ L (Hp) and x ∈ X by the formula

ιp(A)(x) =
np
∑

j=1

hp(Asj(x), sj(x)) , (14)

where {sj}np

j=1 is an orthonormal basis of Hp. By definition of the coherent state pro-
jector Fp : X → S(Hp) and in the language of Section 2, equation (14) reads

ιp(A)(x) =
1

np
Rp(x)T ∗

p (A)(x) . (15)

On the other hand, by their definitions (13), the non-vanishing parts of the spectra
of QK,p and Qp are finite and coincide together with their multiplicities. Write the
eigenvalues of Qp as

β0,p > β1,p > β2,p > . . . > βk,p > . . . , (16)
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and set

p′ :=

(

np
Vol(X)

)1/d

.

For some Kähler metrics of constant scalar curvature, Donaldson considered the Qp-
operator as a finite-dimensional approximation of the heat operator and predicted (see

p. 611 in [17]) that as p → +∞, the spectrum of Qp approximate the spectrum of e
− ∆

4πp′ ,

and an approximation to eigenfunctions of e
− ∆

4πp′ can be extracted from the eigenvec-
tors of Qp. The following result, which follows from Theorem 3.1 using the classical
asymptotics of the Rawnsley function as p → +∞, confirms Donaldson’s prediction for
all Kähler metrics of constant scalar curvature. A detailed proof is given in Section 3.5.

Theorem 3.2. Assume that the Kähler metric of X has constant scalar curvature. For
every integer k ∈ N, we have the following asymptotic estimate as p → +∞,

1 − βk,p =
1

4πp′
λk + O(p−2) . (17)

Furthermore, for every sequence in {Ap}p∈N∗ of normalized eigenvectors of Qp in L (Hp)
corresponding to the eigenvalue βk,p for all p ∈ N∗, there is a subsequence of

{

ιpAp
‖ιpAp‖p

}

p∈N∗
(18)

converging to an eigenfunction of the Laplace-Beltrami operator corresponding to λk in
the C ∞-sense, where ‖ · ‖p is the norm on L2(X,αp).

We refer to [23, 34] for a related study of the asymptotic behaviour of the spectrum
of certain geometric operators arising in Donaldson’s program.

Let us introduce the following useful notion [17, 24].

Definition 3.3. Let (X,ω) be a closed Kähler manifold, and let (L, h) be a Hermitian
holomorphic line bundle over X whose Chern connection has curvature −2πiω. Fix a
positive integer p ∈ N

∗ so that the Kodaira map X → H0(X,Lp) is an embedding.
We say that the data (X,Lp, hp) is balanced if the corresponding Rawnsley function
Rp : X → R is constant.

Note that for the balanced data (X,Lp, hp) the Berezin transform Bp and the QK,p-
operator coincide, as well as Ep and the Qp-operator. In that case, the result of Theorem
3.1 is relevant in [17, § 4.3]. We refer the reader to [17, § 4.1] and to [22, § 1.4.1] for
an interpretation of these operators in terms of complex geometry of (X,Lp). Let us
finally mention that the approximation of the heat operator by the QK-operator has
been explored by Liu and Ma in [38], and that the analogue of the refined Karabegov-
Schlichenmaier expansion of Proposition 3.8 for the QK-operator has been shown by
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Ma and Marinescu in [42, Th. 6.1]. Some ingredients of their approach are instrumental
for us.

It follows from Theorem 3.1 that the spectral gap of the Berezin-Toeplitz POVM
equals

γ(Wp) =
~

4π
λ1 + O(~2) , ~ = 1/p . (19)

In particular, this yields that the eigenvalue 1 of Bp is simple (i.e., has multiplicity 1)
for all sufficiently large p.

Example 3.4. Take the projective line X = CP 1 = S2 of area 1. Let L = O(1)
be the holomorphic line bundle over X dual to the tautological one. The quan-
tum Hilbert space Hp of global holomorphic sections of Lp can be identified with the
(p + 1)-dimensional space of homogeneous polynomials of degree p of 2 variables. A
representation-theoretical argument (see [50, 17] and Remark 6.7 below) shows that the
eigenvalue γ1 of the Berezin transform equals p/(p + 2). The Kähler metric on X has
constant curvature. For such metrics the first eigenvalue λ1 of the Laplace-Beltrami
operator equals 8π/Area = 8π. We get that

γ = 1 − γ1 =
2

p + 2
=

1

4πp
λ1 + O(p−2) ,

as predicted by (19).

The upper bound in (19) immediately follows from the Karabegov-Schlichenmaier
asymptotic expansion (1) of the Berezin transform [31]

Bp(f) = f − 1

4πp
∆f + O(p−2) ,

for every smooth function f on X, where the remainder O(p−2) depends on f . Indeed,
choosing f to be the L2(X,αp)-normalized first eigenfunction of ∆, we see that

γ(Wp) 6 ((1l − Bp)f, f)p 6
1

4πp
λ1 + O(p−2),

where (·, ·)p is the scalar product on L2(X,αp).
The prototypical example illustrating a link between the Berezin transform and the

Laplace-Beltrami operator is the flat space R2n, where the Berezin transform Bp simply
coincides with the heat operator e−~∆/4π (see [3]). It would be interesting to explore
the following problem motivated by a conversation with J.-M. Bismut. Denote by χ(t)
the indicator function of the interval [0, 1].

Problem 3.5. Call a non-decreasing sequence r(p) in p ∈ N∗ admissible if
∥

∥

∥

∥

∥

(Bp − e− ∆
4πp )χ

(

∆

r(p)

)∥

∥

∥

∥

∥

= O(p−2) ,
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where the norm stands for the operator norm in L2. According to Theorem 3.1, the
constant sequence r(p) = C is admissible for all C. Is the sequence r(p) = pτ admissible
for τ > 0? What is the maximal possible growth rate of an admissible sequence?

Let us finally make a couple of comments on the physical intuition behind the
Berezin transform. It has been noted in the introduction that the Berezin transform
can be defined as the composition of the quantization and the dequantization. It is
instructive to interpret it in terms of the quantization only. Let σ be a classical state,
i.e. a Borel probability measure on X, and following [9], define its quantization as

Θp(σ) =
∫

X
F (x)dσ(x) ,

where as earlier F (x) stands for the coherent state projector at x ∈ X. Let further
f ∈ L2(X) be a classical observable. It was noticed in [9, (11)] that the expectation
((Tp(f),Θp(σ))) of the value of the quantized observable Tp(f) in the quantized state
Θp(σ) equals the classical expectation

∫

X B(f) dσ of the Berezin transform B(f) in the
classical state σ. Thus in the context of Berezin-Toeplitz quantization, we get another
interpretation of the blurring of quantization measured by B. Furthermore, in view of
Theorem 3.1, we know that B is a Markov operator with strictly positive spectral gap.
Thus it has unique stationary measure αp whose density against the phase volume is
given by Rp/np, as in formula (10). Interestingly enough, this provides an interpretation
of the Rawnsley function without appealing to a specific choice of coherent states.

3.2 Comments on the proof

The proof of Theorem 3.1 occupies the rest of this section, and we will deduce
Theorem 3.2 as a consequence of it in Section 3.5. Our argument has the same structure
as the one in a paper by Lebeau and Michel [36] on the Markov operator associated
to the semiclassical random walk on manifolds. The key intermediate results are as
follows:

(i) An apriori estimate stating that for any eigenfunction f of Bp whose eigenvalue
is sufficiently bounded away from 0, any Sobolev norm ‖f‖Hq is bounded by
Cq‖f‖L2

. See Lemma 3.10 below which is a counterpart of Lemma 5 in [36].

(ii) The operators Ap := p(1l−Bp) and ∆
4π

turn out to be ∼ p−1-close as operators from
L2 to Hq for the Sobolev space Hq with some sufficiently large q, see formula
(49) below which is a counterpart of formula (3.28) in [36], and which can be
considered as a refinement of the expansion (1) obtained in [31].

Combining (i) and (ii) we conclude that, roughly speaking, eigenfunctions of Ap as in
(i) are “approximate" eigenfunctions of the Laplacian, which eventually implies that
the spectra of Ap and ∆ are close to one another, which yields the desired result (see
the ending of our proof which is parallel to the one in [36]).
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Proving (i) and (ii) forms the main bulk of the work. In contrast to [36], our proof
does not involve micro-local analysis. The main ingredients we use is the expansion of
the Bergman kernel due to Dai, Liu and Ma [13] (see Theorem 3.7) and a comparison
between the Berezin transform and the heat operator motivated by the work of Liu and
Ma on Donaldson’s QK-operator [38] (see Proposition 3.9 below).

Finally, an acknowledgment is in order. After a weaker version of Theorem 3.1 was
posted and formula (19) was stated as a question, Alix Deleporte kindly shared with
us his ideas concerning the proof of (19). He sent us notes [14] containing a number of
preliminary steps in the direction of (i) and (ii) above. While the original arguments
of Deleporte dealt with the case of real-analytic Kähler manifolds and line bundles and
were based on the asymptotic expansion from [46, 14], he informed us that they also
could be adjusted to the C ∞-case.

3.3 Preparations

Recall that the measure dvX associated to the canonical volume form ωd/d! is also
the Riemannian volume form of X. Let 〈·, ·〉L2

be the usual L2-scalar product on
C ∞(X,C), and let ‖ · ‖L2

be the associated norm. For all j ∈ N, let ej ∈ C ∞(X,C)
be the normalized eigenfunction associated with the j-th eigenvalue of the Laplace-
Beltrami operator, so that ‖ej‖L2

= 1 and ∆ej = λjej as in (11) for all j ∈ N. Then
for any f ∈ C ∞(X,C), we have the following equality in L2,

f =
+∞
∑

j=0

〈f, ej〉L2
ej . (20)

For any F : R → R bounded, we define the bounded operator F (∆) acting on L2(X,C)
by the formula

F (∆)f =
+∞
∑

i=0

F (λj)〈f, ej〉L2
ej . (21)

The bounded operator e−t∆ thus defined for all t > 0 is called the heat operator. For
any m ∈ N, let | · |C m be a Cm norm on C ∞(X,C). The following result is classical and
can be found for example in [32], [4, Th. 2.29, (2.8)].

Proposition 3.6. For any m ∈ N, there exists Cm > 0 such that for any f ∈ C ∞(X,C)
and all t > 0, we have

|e−t∆f − f + t∆f |C m 6 Cmt
2|f |C m+4 . (22)

For any m ∈ N∗, let ‖ · ‖Hm be a Sobolev norm of order m on C ∞(X,C). Using the
elliptic estimates for the Laplace-Beltrami operator, for m even we define ‖ · ‖Hm by

‖f‖Hm := ‖∆m/2f‖L2
+ ‖f‖L2

. (23)

Note that the Laplacian ∆ is symmetric with respect to the corresponding scalar prod-
uct on Hm. By convention, we set ‖f‖H0 := ‖f‖L2

.
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Next, turn to the Berezin transform. Recall that the Hermitian product on L and
the Riemannian measure dvX induce an L2-scalar product on sections of Lp for any
p ∈ N∗, and write L2(X,Lp) for the associated Hilbert space. The central tool for
the study of the Berezin transform is the Schwartz kernel Πp(x, y) of the orthogonal
projector Πp : L2(X,Lp) → Hp, called the Bergman kernel. Recall that for fixed x and
y, this is an element of Lpx ⊗ L̄py, where Lpx denotes the fiber of Lp at x ∈ X and the
bar stands for the conjugate line bundle. Since the bundle L comes with a Hermitian
metric, we can measure the point-wise norm |Πp(x, y)|. By Corollary 9.1.4 (2) in [37],
we have that |Πp(x, y)| = |〈ξx,p, ξy,p〉|, where ξx,p is the non-normalized coherent state
at x ∈ X defined up to a phase factor (see e.g. [8, 37] for the definition). The Rawnsley
function Rp is given by Rp(x) = |ξx,p|2, and thus satisfies Rp(x) = Πp(x, x). Since Fp(x)
is the projector to ξx,p, we have that

|Πp(x, y)|2 = ((Fp(x), Fp(y)))Rp(x)Rp(y) .

It follows from (8) and (10) that

(Bpf)(x) = np

∫

X
((Fp(x), Fp(y)))f(y)dαp(y) =

1

Rp(x)

∫

X
|Πp(x, y)|2f(y)dvX(y) , (24)

so that the Schwarz kernel of Bp with respect to dvX is given by

Bp(x, y) =
|Πp(x, y)|2
Rp(x)

. (25)

Let ‖ · ‖p be the norm on L2(X,αp). From the classical asymptotic expansion of Rp as
p → +∞, we get a constant C > 0 such that

(

1

Vol(X)
− Cp−1

)

‖ · ‖L2
6 ‖ · ‖p 6

(

1

Vol(X)
+ Cp−1

)

‖ · ‖L2
. (26)

3.4 Asymptotic expansion of the Berezin transform

For a comprehensive account on the off-diagonal expansion of the Bergman kernel
as well as tools of Berezin-Toeplitz quantization in this context, we refer to [40].

We always assume that p ∈ N∗ is as large as needed. For any s > 0, we use the
notation O(p−s) as p → +∞ in the usual sense, uniformly in Cm-norm for all m ∈ N

∗.
The notation O(p−∞) means O(p−s) for any s > 0.

Let ε0 > 0 be smaller than the injectivity radius of X. Fix a point x0 ∈ X, and let
Z = (Z1, ..., Z2d) ∈ R2d with |Z| < ε0 be geodesic normal coordinates around x0, where
| · | is the Euclidean norm of R2d. In these coordinates, the canonical volume form is
given by

dvX(Z) = κx0
(Z)dZ , (27)

with κx0
(0) = 1. For any kernel K(·, ·) ∈ C ∞(X × X,C), we write Kx0

(·, ·) for its
image in these coordinates, and we write |Kx|C m(X) for the Cm-norm of the family of
functions Kx with respect to x ∈ X.
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Let dX be the Riemannian distance on X. We will derive Theorem 3.1 as a conse-
quence of the following asymptotic expansion as p → +∞ of the Schwartz kernel of the
Berezin transform.

Theorem 3.7. For any m, k ∈ N and ε > 0, there is C > 0 such that for all p ∈ N∗

and x, y ∈ X satisfying dX(x, y) > ε,

|Bp(x, y)|C m 6 Cp−k . (28)

For any m, k ∈ N, there is N ∈ N and C > 0 such that for any x0 ∈ X, |Z|, |Z ′| < ε0

and for all p ∈ N∗, we have

∣

∣

∣

∣

p−dBp,x0
(Z,Z ′) −

k−1
∑

r=0

p−r/2Jr,x0
(
√
pZ,

√
pZ ′) exp(−πp|Z − Z ′|2)κ−1

x0
(Z ′)

∣

∣

∣

∣

C m(X)

6 Cp− k
2 (1 +

√
p|Z| +

√
p|Z ′|)N exp(−√

p|Z − Z ′|/C) +O(p−∞) , (29)

where {Jr,x0
(Z,Z ′)}r∈N is a family of polynomials in Z,Z ′ ∈ R2n of the same parity as

r, depending smoothly on x0 ∈ X. Furthermore, for any Z,Z ′ ∈ R2n we have

J0,x0
(Z,Z ′) = 1 and J1,x0

(Z,Z ′) = 0 . (30)

This readily follows from formula (25) expressing the Schwarz kernel of the Berezin
transform via the Bergman kernel Πp and the analogous result of Dai, Liu and Ma in
[13, Th. 4.18’] for the Bergman kernel.

For any x ∈ X, let BX(x, ε0) be the geodesic ball of radius ε0 > 0 around x,
and write B(0, ε0) ⊂ R2d for the Euclidean ball of radius ε0 around 0. The following
proposition is a refinement of the Karabegov-Schlichenmaier expansion [31, (1.2)] of the
Berezin transform, where we make explicit the remainder term.

Proposition 3.8. For any m ∈ N, there exists Cm > 0 such that for any f ∈ C ∞(X,C)
and all p ∈ N

∗, we have

∣

∣

∣

∣

∣

Bpf − f +
∆

4πp
f

∣

∣

∣

∣

∣

C m

6
Cm
p2

|f |C m+4 . (31)

Proof. For any x ∈ X, write fx for the image of f restricted to BX(x, ε0) in normal
coordinates around x. From (28), we know that for any ε > 0 and x ∈ X,

(Bpf)(x) =
∫

X
Bp(x, y)f(y)dvX(y)

=
∫

BX (x,ε0)
Bp(x, y)f(y)dvX(y) +O(p−∞) |f |C 0

=
∫

B(0,ε0)
Bp,x(0, Z)fx(Z)κx(Z)dZ +O(p−∞) |f |C 0 .

(32)
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For any k ∈ N∗ and m ∈ N, we will use the following Taylor expansion of fx up to order
k − 1, for all p ∈ N∗ and |Z| < ε0,

fx(Z) =
∑

06|α|6k−1

∂|α|fx
∂Zα

Zα

α!
+Om(|Z|k)|f |C m+k

=
∑

06|α|6k−1

p−
|α|
2
∂|α|fx
∂Zα

(
√
pZ)α

α!
+ p− k

2Om(|√pZ|k)|f |C m+k ,

(33)

where Om means that the expansion is uniform in x ∈ X as well as all its derivatives
up to order m ∈ N, and does not depend on f .

We will compute the asymptotic expansion as p → +∞ of (32) using the Taylor
expansion (33) of f and the asymptotic expansion (29) of the Berezin transform up to
order 3. First, using the fact that Bp1 = 1 for all p ∈ N∗, we know that the polynomials
Jr,x(Z,Z

′) of the asymptotic expansion (29) of the Berezin transform satisfy
∫

R2n
Jr,x(0, Z) exp(−πp|Z|2)dZ = 0 , (34)

for all x ∈ X and r ∈ N∗. On another hand, recall from (30) that J0,x ≡ 1 and J1,x ≡ 0
for all x ∈ X. Using the parity of Gaussian functions, a change of variable Z 7→ Z/

√
p

and the Taylor expansion (33) for k = 4, we get that

pd
∫

B(0,ε0)
exp(−πp|Z|2)fx(Z)dZ

= f(x) + p−1
2n
∑

j=1

∂2fx
∂Z2

j

(0)
∫

R2n

Z2
j

2
exp(−π|Z|2)dZ + |f |C m+4Om(p−2)

= f(x) − p−1 ∆

4π
f(x) + |f |C m+4Om(p−2) . (35)

Recall that Jr,x(0, Z) ∈ C[Z] is a polynomial in Z ∈ R
2n of the same parity than r ∈ N,

so that using (33), (34) and the parity of Gaussian functions, we get in the same way

pd
∫

B(0,ε0)
J2,x(0,

√
pZ) exp(−πp|Z|2)fx(Z)dZ

= f(x)
∫

R2n
J2,x(0, Z) exp(−π|Z|2)dZ +Om(p−1)|f |C m+2

= Om(p−1)|f |C m+2 ,

pd
∫

B(0,ε0)
J3,x(0,

√
pZ) exp(−πp|Z|2)fx(Z)dZ = Om(p−1/2)|f |C m+1 .

(36)

Finally, again using a change of variable Z 7→ Z/
√
p, we get for any N ∈ N∗ and p ∈ N∗,

pd
∫

B(0,ε0)
(1 + |√pZ|)N exp(−√

p|Z|/C)fx(Z)dZ = Om(1)|f |C m . (37)

This completes the proof of (31).
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In view of Proposition 3.6 and Proposition 3.8, it is natural to compare the Berezin
transform with the heat operator by setting t = (4πp)−1. This leads to the following
result, which is essentially a refinement of [38, Th. 0.1].

Proposition 3.9. For any m ∈ N, there exists Cm > 0 such that for any f ∈ C ∞(X,C)
and all p ∈ N∗, we have

∥

∥

∥

∥

(e− ∆

4πp − Bp)f

∥

∥

∥

∥

Hm

6
Cm
p

‖f‖Hm . (38)

Proof. Set Sp := e
∆

4πp − Bp, which acts on L2(X,C) for all p ∈ N∗ and admits a smooth
Schwartz kernel Sp(·, ·) with respect to dvX . Comparing Theorem 3.7 with the classical
asymptotic expansion of the heat kernel, as given for example in [4, Th. 2.29],[32], we
see that

Sp(x, y) = O(p−∞) , (39)

for all x, y ∈ X satisfying dX(x, y) > ε0, and using the formula (30) for the first two
coefficients, we get for any m ∈ N a constant C > 0 and N ∈ N such that

|Sp,x0
(Z,Z ′)|

C m(X) 6 Cp−1(1 +
√
p|Z| +

√
p|Z ′|)N exp(−√

p|Z − Z ′|/C)

+O(p−∞) . (40)

Let us first show (38) for m = 0. For any f ∈ C ∞(X,C) and any ε > 0, by Cauchy-
Schwarz inequality and (39) for Sp, we get the following version of the Schur test for
all p ∈ N∗,

‖Spf‖2
L2

6
∫

X

(∫

X
|Sp(x, y)| dvX(y)

)(∫

X
|Sp(x, y)| |f(y)|2 dvX(y)

)

dvX(x)

6 sup
x∈X

(
∫

X
|Sp(x, y)| dvX(y)

)

sup
y∈X

(
∫

X
|Sp(x, y)| dvX(x)

)

‖f‖2
L2

6 sup
x∈X

(

∫

B(x,ε0)
|Sp(x, y)| dvX(y)

)

sup
y∈X

(

∫

B(x,ε0)
|Sp(x, y)| dvX(x)

)

‖f‖2
L2

+O(p−∞)‖f‖2
L2
.

(41)

Then (38) for m = 0 follows from (40) with Z = 0 or Z ′ = 0 respectively, as in (37).
To deal with the case of arbitrary m ∈ N

∗, let us assume by induction that (38) is
satisfied for m−1. Considering the estimates (39) and (40) with corresponding m ∈ N∗,
note that for any differential operator Dx of order m in x ∈ X, there exists a differential
operator D′

x,y in x, y ∈ X of total order m but of order at most m− 1 in x ∈ X, such

that the operator S(m)
p defined through its kernel for all x, y ∈ X by

S(m)
p (x, y) := DxSp(x, y) + D′

x,ySp(x, y) (42)

also satisfies (39) and (40). Then for all x ∈ X and p ∈ N∗, we get
∫

X
DxSp(x, y)f(y)dvX(y) = −

∫

X
(D′

x,ySp(x, y))f(y)dvX(y) + (S(m)
p f)(x)

=
∫

X
D′
xSp(x, y)(D′′

yf(y))dvX(y) + (S(m)
p f)(x) ,

(43)
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where D′
x and D′′

y are differential operators, respectively in x and in y, obtained from
D′
x,y using a partition of unity and integration by parts in local charts, so that in

particular D′
x is of order m − 1 in x ∈ X. Then using the induction hypothesis, the

inequality (38) for m follows from the same inequality for m − 1 replacing f by any
number of derivatives of f , and from the estimates (40) and (41) for S(m)

p in the same
way than before.

3.5 Spectrum

Recall that ‖ · ‖p denotes the norm on L2(X,αp). In this section, we consider a
sequence {fp}p∈N∗, with fp ∈ C ∞(X,C) such that

‖fp‖p = 1 , Bpfp = µpfp , (44)

for some µp ∈ Spec(Bp) for all p ∈ N∗. The following estimate is crucial for the proof
of Theorem 3.1.

Lemma 3.10. Assume that the sequence {p(1 − µp)}p∈N∗ is bounded by some constant
L > 0. Then for all m ∈ N, there exists CL,m > 0 such that for all p ∈ N∗, we have

‖fp‖H2m 6 CL,m . (45)

Proof. Note that (45) is automatically verified form = 0 by (26) and (44). By induction
on m ∈ N, let us assume that (45) is satisfied for m− 1. Let us write

p(e− ∆
4πp − Bp)fp = p(1 − µp)fp − p(1l − e− ∆

4πp )fp

= p(1 − µp)fp − ∆F (∆/p)fp ,
(46)

where the bounded operator F (∆/p) acting on L2(X,C) is defined as in (21) for the
continuous function F : R → R given for any s ∈ R∗ by F (s) = 4π(1 − e−s/4π)/s. As
|p(1 − µp)| < L for all p ∈ N

∗, by Proposition 3.9 and formula (23) for ‖ · ‖H2m , this
gives a constant Cm > 0 such that

‖F (∆/p)fp‖H2m 6 Cm‖fp‖H2m−2 . (47)

On the other hand, note that by hypothesis, we have µp → 1 as p → +∞. Using
Proposition 3.9 again, we then get εm > 0 and pm ∈ N∗ such that for all p > pm,

‖F (∆/p)fp‖H2m > ‖F (∆/p)fp + (Bp − e− ∆
4πp )fp‖H2m − ‖(Bp − e− ∆

4πp )fp‖H2m

> inf
s>0

{F (s) + µp − e−s/4π} ‖fp‖H2m − Cmp
−1‖fp‖H2m

> εm‖fp‖H2m .

(48)

This together with (47) gives (45).
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Proof of Theorem 3.1. For any f ∈ C ∞(X,C), by Proposition 3.8, we get that
∥

∥

∥

∥

∥

p(1l − Bp)f − ∆

4π
f

∥

∥

∥

∥

∥

L2

6 Cp−1|f |C 4 6 Cp−1‖f‖Hq , (49)

with q even and large enough. The inequality on the right follows from Sobolev embed-
ding theorem, and the same is true in L2(X,αp)-norm by (26). Let now j ∈ N be fixed.
If ej ∈ C ∞(X,C) satisfies ∆ej = λjej and ‖ej‖L2

= 1, then by (49) we get Cj > 0 not
depending on p ∈ N∗ such that

∥

∥

∥

∥

∥

p(1l − Bp)ej − λj
4π
ej

∥

∥

∥

∥

∥

p

6 Cjp
−1 . (50)

Thus if mj ∈ N is the multiplicity of λj as an eigenvalue of ∆, the estimate (50) for all
eigenfunctions of ∆ associated with λj gives a constant C > 0 such that

#

(

Spec
(

p(1l − Bp)
)

∩
[

λj
4π

− Cp−1,
λj
4π

+ Cp−1

])

> mj . (51)

This immediately follows from the variational principle for the operator p(1l−Bp)− λj

4π
1l

acting on L2(X,αp).
Consider now for every p ∈ N∗ a normalized eigenfunction fp ∈ C ∞(X,C) of Bp as

in (44) such that the associated sequence {p(1 − µp)}p∈N∗ of eigenvalues of p(1l − Bp) is
bounded. Combining Lemma 3.10 with the right inequality in (49), we get C > 0 such
that

‖p(1 − µp)fp − ∆fp‖L2
6 Cp−1 . (52)

In particular, we get that

dist (p(1 − µp), Spec ∆) 6 Cp−1 . (53)

Finally, let us show that there exists p0 ∈ N
∗ such that (51) is in fact an equality

for p > p0. To this end, let l ∈ N∗ with l > mj be such that for all p ∈ N∗, there
exists an orthonormal family fk,p, 1 6 k 6 l, of eigenfunctions of Bp in L2(X, dαp) with
associated eigenvalues µk,p ∈ R, 1 6 k 6 l, satisfying

p(1 − µk,p) ∈ [λj − Cp−1, λj + Cp−1] , for all 1 6 k 6 l . (54)

As the inclusion of the Sobolev space Hq in Hq−1 is compact, by Lemma 3.10 there
exists a subsequence of {fk,p}p∈N∗ converging to a function fk in Hq−1-norm, for all
1 6 k 6 l. In particular, taking q > 2, the family fk, 1 6 k 6 l, is orthonormal in
L2(X,C) and satisfies ∆fk = λjfk for all 1 6 k 6 l by (52). By definition of the
multiplicity mj ∈ N of λj, this forces l = mj .

Let us sum up our findings. First, the equality

#

(

Spec
(

p(1l − Bp)
)

∩
[

λj
4π

− Cp−1,
λj
4π

+ Cp−1

])

= mj ,
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where mj is the multiplicity of λj as the eigenvalue of ∆, together with (53) readily
yields the first statement of the theorem:

1 − γk,p =
1

4πp
λk + O(p−2) .

Second, observe that we got a subsequence of fk,p, p ∈ N∗ converging to fk in the
Sobolev Hq−1 sense, where q even can be chosen arbitrarily large. By the Sobolev
embedding theorem, this yields a subsequence which C l-converges to fk with arbitary
l. Iterating this argument for this subsequence we get that there exists a sequence
pl → +∞ such that

|fk,pl
− fk|C l 6 1/l ,

which means that fk,pl
converges to fk in the C ∞-sense. This completes the proof.

Proof of Theorem 3.2. For any p ∈ N∗, using equation (15) for ιp and combining
the definition (13) of the QK,p-operator with formula (24) for the Berezin transform
Bp = 1

np
T ∗
p Tp acting on f ∈ C ∞(X,C), we get

(QK,pf)(x) =
Vol(X)

np
Rp(x)Bp(f)(x) =

Vol(X)

np

∫

X
|Πp(x, y)|2 f(y) dvX(y) . (55)

We will show that when the scalar curvature is constant, the analogue of Theorem 3.1
holds for this operator. As p′/p = 1 + O(p−1) by the Riemann-Roch theorem, this will
imply Theorem 3.2 via the morphism ιp which relates Qp with QK,p, see (13).

Recall that Rp : X → R denotes the Rawnsley function, and that np = dimC Hp.
By the classical asymptotic expansion of the Bergman kernel, which can be found for
example in [40, § 4.1.1], we know that when the scalar curvature is constant, we have

Vol(X)

np
Rp = 1 +O(p−2) . (56)

As this expansion holds in Cm-norm for all m ∈ N
∗ and by the definition Bp and QK,p

in formulas (24) and (55) respectively, we get a constant Cm > 0 for any m ∈ N∗ such
that

‖QK,p − Bp‖Hm 6 Cmp
−2. (57)

It is then easy to see that Lemma 3.10 holds for any sequence {fp}p∈N∗ with fp ∈
C ∞(X,C) such that

‖fp‖L2
= 1 , QK,pfp = µpfp , (58)

with {p(1 − µp)}p∈N∗ bounded, simply using the estimate (57) to replace Bp by QK,p

in (46) and (48). We can then follow the proof of Theorem 3.1 above to get the same
result for QK,p, using the estimate (57) to replace Bp by QK,p in (49) and (50), and
using (26) to replace ‖ · ‖p by ‖ · ‖L2

in (50). Finally, the form (18) for the normalized
sequence of eigenfunction of QK,p follows from the fact that ιpQp = QK,pιp by definition
(13) of Qp and QK,p. This completes the proof.
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Remark 3.11. Theorem 3.1 can be extended to the case of a general closed symplec-
tic manifold (X,ω) of real dimension 2d, and (L, h,∇) a Hermitian line bundle with
Hermitian connection ∇ of curvature −2πiω. In fact, one can in general consider the
following renormalized Bochner Laplacian acting on C ∞(X,Lp) for any p ∈ N∗, first
introduced by Guillemin and Uribe [26],

∆p := ∆Lp − 2πdp , (59)

where ∆Lp

stands for the usual Bochner Laplacian on Lp. By [26, Th. 2.a], the spectrum
of ∆p is contained in I ∪ (C1p−C2,+∞) for all p ∈ N∗, for some C1, C2 > 0 and some
interval I ⊂ R containing 0. We can then consider Πp as the associated spectral projec-
tion corresponding to I and set Hp = Im(Πp). Using the work [41] of Ma and Marinescu
on the kernel of Πp, we can then consider the Berezin-Toeplitz POVM of Section 3.1.
By [39, (2.31), (3.2)], the Berezin transform admits an asymptotic expansion similar
to Theorem 3.7, except for the formula (30), where we only have J1,x0

(0, Z ′) = 0 for
all Z ′ ∈ R

2d as a consequence of [29, Lem.6.1, Lem.6.2] (see also [41, (2.32)]). Then
Propositions 3.8 and 3.9 hold, and it is straightforward to adapt the rest of the proof of
Theorem 3.1 in Section 3.5. Note that the corresponding estimates in Proposition 3.8
and Proposition 3.9 can be seen as refinements of [39].

Remark 3.12. On the other hand, Theorem 3.1 can be extended to the case of weighted
Berezin transforms, introduced by Englis in [19] in the case of pseudoconvex domains.
This corresponds to the case where one replaces the canonical volume form ωd/d! by
a general smooth volume form ν in the setting of Section 3.1. In fact, let us consider
the Hilbert space Hν,p of global holomorphic sections of Lp together with the L2-inner
product with respect to the measure dν instead of the Liouville measure dvX . Then
using the trick of Ma and Marinescu in [40, § 4.1.9], we can define for any p ∈ N∗ large
enough the L (Hν,p)-valued POVM

dWν,p = npFν,pdαν,p , (60)

where Fν,p : X → S(Hν,p) is the map sending x ∈ X to the orthogonal projector with
kernel the space of sections vanishing at x ∈ X and αp,ν is given by

dαν,p(x) =
Rν,p(x)

np
dν(x) , (61)

where Rν,p : X → R is the weighted Rawnsley function, given by the value on the
diagonal of the Schwarz kernel with respect to ν of the orthogonal projector operator
Πν,p : L2(X,Lp, dν) → Hν,p. Using [40, § 4.19] again as well as the general version of the
expansion Theorem 3.7 given in [13, Th. 4.18’], the proof of Theorem 3.1 above extends
verbatim to this case, to get the estimate

1 − γν,k,p =
1

4πp
λk + O(p−2) (62)
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as p → ∞, where γν,k,p is the k-th eigenvalue of the Berezin transform of Wν,p and
λk is the k-th eigenvalue of the Laplace-Beltrami operator associated with the Kähler
metric, for all k ∈ N. Note in particular that the first term of the right hand side of
equation (62) does not depend on the choice of the smooth volume form ν. It would
be interesting to understand the general mechanism behind this fact, in the spirit of
Theorem 5.4.(ii), showing that the spectral gap of Wν,p is constant up to O(1/p2) under
deformations of ν.

4 Berezin transform and Donaldson’s iterations

In [17] Donaldson, as a part of his program of developing approximate methods for
detecting canonical metrics on Kähler manifolds, discovered a remarkable class of dy-
namical systems on the space of all Hermitian inner products on a given complex vector
space. We shall show in this section that the linearization of such a system at a fixed
point can be identified with the quantum channel introduced in (4) above and prove
that under certain natural assumptions, it is injective and has strictly positive spectral
gap. Using earlier results by Donaldson, we will then deduce the main result of this
section, Theorem 4.4, stating that the iterations of this system converge exponentially
fast to the fixed point.

For a complex n-dimensional vector space V, denote by Prod(V) the space of Her-
mitian inner products on V. Given such a q ∈ Prod(V), let H := (V, q) be the corre-
sponding Hilbert space, and define a map

Φq : P(V∗) −→ L (H) (63)

sending a hyperplane H ⊂ V, naturally seen as an element of P(V∗) via the kernel
of linear forms, to the unique orthogonal projector Φq(H) ∈ L (H) with respect to q
satisfying Ker Φq(H) = H .

Let ν be a Borel measure on P(V∗), so that |ν| := ν(P(V∗)) < ∞. Following
Donaldson [17, p. 581], we say that q ∈ Prod(V) is ν-balanced if the operator-valued
measure

dWq(z) := nΦq(z)
dν(z)

|ν| , (64)

defines an L (H)-valued POVM on P(V∗) as in (3). This translates into the condition

n
∫

P(V∗)
Φq(z)

dν(z)

|ν| = 1l . (65)

Example 4.1. Consider a Hilbert space H = (V, q) with dimC H = n, and let W be a
pure L (H)-valued POVM, defined as in formula (3). Let us identify the measure α on
Ω with a measure on P(V∗) via push-forward by the associated map

F : Ω −→ P(V∗) , (66)
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where P(V∗), seen as the set of hyperplanes in V, is identified with the set of rank
one projectors in S(H) ⊂ L (H) via their kernel as above. It is then an immediate
consequence of the definitions that q ∈ Prod(V) is α-balanced.

Example 4.2. As a particular case of Example 4.1, consider the Berezin-Toeplitz
POVM Wp on a closed quantizable Kähler manifold X associated to a Hermitian holo-
morphic line bundle L for p ∈ N∗ large enough, as in Section 3.1. The associated Hilbert
space is Hp = (H0(X,Lp), qp), where H0(X,Lp) is the space of holomorphic sections
of Lp and qp ∈ Prod(H0(X,Lp)) is the L2-Hermitian product induced by the Kähler
metric. In this case, the map (66) is given by the Kodaira embedding

Fp : X −→ P(H0(X,Lp)∗) , (67)

and we get as a special case of the previous example that qp ∈ Prod(H0(X,Lp)) is
αp-balanced. Then following e.g. [24, Prop. 8.3] and by formula (10) for αp, the data
(X,Lp, hp) is balanced in the sense of Definition 3.3 if and only if the product qp is
dvX-balanced.

Example 4.3. Let X be a complex manifold together with a holomorphic line bundle
L over X such that the Kodaira map Fp given by (67) is an embedding for p ∈ N∗

sufficiently large, and let ν be a smooth volume form over X. Then Lp over X is
naturally identified with the pullback by Fp of the dual of the tautological line bundle
over P(H0(X,Lp)∗), and given a Hermitian inner product qp ∈ Prod(H0(X,Lp)) on
H0(X,Lp), we write hp for the Hermitian metric induced on Lp by the corresponding
Fubini-Study metric. Then by e.g. [17, p. 581], the product qp ∈ Prod(H0(X,Lp))
is ν-balanced if and only if it coincides up to constant with the L2-inner product
on H0(X,Lp) induced by hp and the measure dν. On the other hand, following [40,
§ 4.19,§ 5.1.4], the last assertion of Example 4.2 holds in the same way when one re-
places dvX by dν, so that the weighted Rawnsley function Rν,p : X → R of Remark
3.12 is constant if and only if qp is ν-balanced. This shows that if qp is ν-balanced, the
induced POVM (64) coincides with the Berezin-Toeplitz POVM (60) weighted by ν of
Remark 3.12.

Donaldson proved [17, p. 582] (see also an extensive discussion below) that for every
p ∈ N∗ large enough, there always exists a unique ν-balanced Hermitian inner product
qp ∈ Prod(H0(X,Lp)). For p ∈ N∗ large enough, consider the symplectic form ωp on
X obtained by the pull-back under the Kodaira map Fp of the Fubini-Study form on
P(H0(X,Lp)∗) corresponding to qp. Equivalently, −2iπωp is the Chern curvature of hp.
By [17, p. 584] (see also [33]), the sequence {1

p
ωp}p converges as p → ∞ to the unique

Kähler form ω∞ in c1(L) solving the Calabi problem ωd = cν, for some c > 0. This
illustrates the role of ν-balanced products as finite-dimensional approximations of the
solution of the Calabi problem.
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Under some natural assumptions on the measure ν, the existence of ν-balanced
Hermitian inner products was established by Bourguignon, Li and Yau [6], where they
use such products to give an upper bound for the first eigenvalue of the Laplacian of
complex manifolds embedded in the projective space. This generalizes the seminal work
of Hersch [28], where he shows that the first eigenvalue of any metric over S2 is smaller
than the one of the round metric, using the notion of balanced product in its simplest
form.

Following instead Donaldson in [17], let us associate to a measure ν on P(V∗) the
dynamical system Tν : Prod(V) → Prod(V) defined for all q ∈ Prod(V) by

Tν(q) := n
∫

P(V∗)
q (Φq(z) · , · )

dν(z)

|ν| . (68)

Using condition (65), we then see that q ∈ Prod(V) is ν-balanced if and only if it is
a fixed point of Tν . Under mild conditions on the measure ν, Donaldson proved that
for every initial condition q0 ∈ Prod(V), the iterations T r

ν (q0) converge to such a fixed
point as r → +∞, and that this fixed point is unique up to the action of R+ on Prod(V)
by scalar multiplication.

The main result of this section is the exponential convergence of Donaldson’s itera-
tion process to the ν-balanced product, for all initial conditions.

Theorem 4.4. Suppose that the measure ν on P(V∗) is supported on a complex sub-
variety Y ⊂ P(V∗), with ν absolutely continuous on every irreducible component of Y .
Assume that

(i) for any projective subspace Σ of P(V∗), we have

ν(Σ)

dim Σ + 1
<

|ν|
n

; (69)

(ii) at least one irreducible component of Y is not contained in any proper projective
subspace of P(V∗).

Then for any q0 ∈ Prod(V), there exists a ν-balanced product q ∈ Prod(V) and con-
stants C > 0, β ∈ (0, 1), such that for all r ∈ N, we have

dist(T r
ν (q0), q) 6 Cβr . (70)

Note that if Y is irreducible, assumptions (i) and (ii) are satisfied as soon as Y is
not contained in a proper projective subspace of P(V∗). Thus Theorem 4.4 applies in
particular to the important case of Example 4.3, where ν is induced by a smooth volume
form over a complex manifold Y embedded in a projective space via Kodaira embedding.
Conversely, if the whole variety Y (in contrast with its irreducible components) lies in
a proper projective subspace of P(V∗), then there exists u ∈ V such that Φq(z) u = 0
for all z ∈ Y , contradicting condition (65), so that there does not exist any ν-balanced
Hermitian product.
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The proof of Theorem 4.4 will rely on the Propositions 4.6, 4.7 and 4.8 below. In
particular, Proposition 4.6 generalizes the result of Donaldson in [17, p. 581], which
essentially states that the iterations T r

ν (q0) converge to a ν-balanced product as r →
+∞ for all q0 ∈ Prod(V) if either Y is a complex variety which is not contained
in any proper projective subspace, or Y is a finite collection of points satisfying (i).
Specifically, Donaldson’s assumption 2 in [17, p. 581] is precisely assumption (i) in the
case dim Y = 0, and Donaldson’s assumption 1 in [17, p. 581] is satisfied in the case Y
is a complex variety which is not contained in any proper projective subspace, but do
not imply assumption (ii) in general. The proof of Proposition 4.6 follows closely the
lines of [17, p. 581].

On the other hand, the role of Propositions 4.7 and 4.8 in the proof of Theorem
4.4 is based on the key observation, which is a reformulation of [17, p. 609], that the
linearization of Tν at a fixed point q ∈ Prod(V) coincides with the quantum channel
(4) of the POVM (64) associated with q.

To see this, let us first choose a base point q0 ∈ Prod(V) and identify (V, q0) with
(Cn, 〈·, ·〉), where 〈z, w〉 =

∑

j zjw̄j. Writing L (Cn)+ for the set of positive Hermitian
n × n matrices, this identifies G ∈ L (Cn)+ with q(·, ·) := 〈G·, ·〉 ∈ Prod(V). Next,
identify [z] ∈ CP n−1 with the hyperplane

{w : 〈z, w〉 = q(G−1z, w) = 0} .

From the definition (63) of Φq we have

Φq([z])ξ =
〈Gξ,G−1z〉

〈GG−1z,G−1z〉G
−1z = G−1

(

〈ξ, z〉
|z|2 z

)

· |z|2
〈G−1z, z〉 = G−1Πzξ · |z|2

〈G−1z, z〉 ,

where Πz denotes the orthogonal projector with respect to 〈·, ·〉 to the line generated
by z ∈ Cn\{0}. Thus,

q(Φq(z)ξ, ξ) = 〈Πzξ, ξ〉 · |z|2
〈G−1z, z〉 .

Therefore, we can reformulate the definition (68) of Tν in coordinates by the formula

Tν(G) = n
∫

CPn−1
Πz

|z|2
〈G−1z, z〉

dν(z)

|ν| . (71)

Recall that the tangent space of Prod(V) at any q ∈ Prod(V) is canonically identified
with the space of Hermitian operators L (H) of H := (V, q). Then if q ∈ Prod(V) is
ν-balanced, so that Tν(q) = q, the differential DqTν of Tν at q acts on L (H).

Lemma 4.5. For any ν-balanced Hermitian product q ∈ Prod(V), the differential of
Tν at q satisfies DqTν = Eq, where Eq is the quantum channel (4) of the associated
POVM Wq defined by (64).
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Proof. Let q ∈ Prod(V) be a ν-balanced Hermitian product, and let us identify (V, q)
with (Cn, 〈·, ·〉) as above. Let G(t) ∈ L (Cn)+ be a path such that G(0) = 1l. Abbrevi-
ating Ġ := Ġ(0) and using formula (71), we get

d

dt

∣

∣

∣

∣

t=0
Tν(G(t)) = n

∫

CPn
Πz

〈Ġz, z〉
|z|2

dν(z)

|ν| .

Recall that ((·, ·)) denotes the natural scalar product on L (H). Then noticing that
〈Ġz, z〉/|z|2 = ((Ġ,Πz)), we get

d

dt

∣

∣

∣

∣

t=0
Tν(G(t)) = n

∫

CPn
Πz((Ġ,Πz))

dν(z)

|ν| ,

which is precisely formula (4) for the quantum channel associated to Wq defined by
(64), as we have Φq(z) = Πz for all z ∈ Cn\{0} in the identification of (V, q) with
(Cn, 〈·, ·〉). This concludes the proof.

Recall that the quantum channel Eq : L (H) → L (H) satisfies Eq(1l) = 1l, and that
its spectral gap is the quantity γ = 1 − λ1, where

1 = λ0 > λ1 > λ2 > · · · > 0 (72)

is the decreasing sequence of eigenvalues of Eq. Then Proposition 4.7 establishes the
positivity of the spectral gap of Eq = DqTν under assumption (i), showing that Don-
aldson’s prediction in [17, § 4.1] on the largest eigenvalue of the linearization of Tν

at a ν-balanced product in fact holds for general projective smooth manifolds Y , as
assumption (i) is automatically satisfied as soon as Y is not contained in any proper
projective subspace.

Proposition 4.8 shows the invertibility of Eq = DqTν under assumption (ii). This is
a key assumption in the classical Grobman-Hartman theorem, which we use in Theorem
4.4 to show that the iterations of the dynamical system Tν converge exponentially fast
to a fixed point. As assumption (ii) is automatically satisfied for a projective smooth
manifold Y not contained in any proper projective subspace, this strengthens Donald-
son’s prediction in [17, § 4.1] on the asymptotic rate of convergence of the dynamical
system Tν . Namely, with only the positivity of the spectral gap, we expect that the
rate of convergence is exponentially fast for almost all initial conditions, while Theorem
4.4 shows that it actually holds for all initial conditions.

Proposition 4.6. Assume that assumption (i) of Theorem 4.4 holds. Then for any
q0 ∈ Prod(V), the iterations T r

ν (q0) converge to a fixed point as r → +∞, unique up
to the action of R+ by scalar multiplication.

Proof. Fix q0 ∈ Prod(V), and identify (V, q0) with (Cn, 〈·, ·〉), where 〈·, ·〉 denotes the
canonical Hermitian product of C

n. Recall that L (Cn)+ denotes the set of positive
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Hermitian n × n matrices. Following [17, p. 582], for any [z] ∈ CP n−1, let z ∈ Cn be a
lift of norm 1, and for any G ∈ L (Cn)+, set

ψ[z](G) := log 〈G−1z, z〉 +
1

n
log detG. (73)

This quantity does not depend on the choice of a lift of [z] ∈ CP n−1 of norm 1, and the
second term makes it invariant under multiplication of G by a positive scalar. Given a
Borel measure ν on CP n−1, we then define a functional on L (Cn)+ by the formula

Ψν(G) =
∫

CPn−1
ψ[z](G) dν([z]), (74)

for any G ∈ L (Cn)+. Using formula (71), we see that G ∈ L (Cn)+ is a critical point
of Ψν if and only if it is a fixed point of Tν . Thus to show the existence and unicity of
such a fixed point up to the action of R+, we can restrict Ψν to the space L (Cn)1

+ of
positive Hermitian matrices of determinant 1, and it suffices to show that Ψν is strictly
convex and proper along any geodesic of L (Cn)1

+ for its natural Riemannian metric
as a symmetric space. In fact, any strictly convex and proper function over R has a
unique absolute minimum, which is also its unique critical point. Now as two points
can always be joined by a geodesic, we conclude in that case that a fixed point of Tν

on L (Cn)1
+ coincide with a minimum of Ψν , which exists and is unique.

Recall that the structure of symmetric space on L (Cn)1
+ is given by the map

SLn(C) −→ L (Cn)1
+

G 7−→
√
G∗G ,

(75)

which realizes L (Cn)1
+ as the quotient of the special linear group SLn(C) by the special

unitary group SU(n). The usual scalar product ((·, ·)) on the space of n × n matrices
induces a Riemannian metric on L (Cn)1

+ through the identification of its tangent space
at any point with the space of traceless matrices. By general theory of symmetric
spaces, geodesics are simply the images of 1-parameter groups of SLn(C) through the
above map, so that up to the action of SU(n) by conjugation, they are of the form
Gt ∈ L (Cn)1

+, with
Gt = diag(eλ1t, eλ2t, · · · , eλnt) , (76)

for all t ∈ R, where λ1 > λ2 > · · · > λn satisfy
∑n
j=1 λj = 0. Now if ν satisfies assump-

tion (i) of Theorem 4.4, its pullback by the action of a unitary matrix also satisfies this
assumption, and thus we are reduced to show strict convexity and properness of

t 7−→ Ψν(Gt) =
∫

CPn−1
log





n
∑

j=1

eλjt|zj |2


 dν([z]), t ∈ R . (77)

Now convexity follows from a direct computation, with strict convexity as long as
the total mass of ν is not contained in any projective subspace of CP n−1, which is a
straightforward consequence of assumption (i).
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Let us now show properness, i.e. that Ψν(Gt) → +∞ when t → ±∞. By considering
the geodesic going to the opposite direction, it suffices to show it when t → +∞.
Consider an irreducible component Z ⊂ Y , and let k 6 n be the largest integer such
that Z is contained in the projective subspace

Σk := {[0 : · · · : 0 : zk : · : zn] ∈ CP n−1} ⊂ CP n−1 (78)

As ν is absolutely continuous over the smooth part of Z, this means in particular that
the function log |zk|2 restricted to Z is integrable with respect to ν. We thus get a
constant CZ > 0 such that

∫

Z
log





n
∑

j=1

eλjt|zj |2


 dν([z]) >
∫

Z
log

(

eλkt|zj|2
)

dν([z])

> λktν(Z) − CZ .

(79)

For any k 6 n, write νk > 0 for the total mass of the irreducible components of Y for
which k is the largest integer such that they are not contained in Σk as above. We then
get a constant CY > 0 such that

Ψν(Gt) > t
n
∑

j=1

λjνj − CY . (80)

We are thus reduced to show that
∑n
j=1 λjνj > 0. Notice now that assumption (i)

implies
n
∑

j=k

νj <
n− k

n

n
∑

j=1

νj, for all 1 6 k 6 n . (81)

Using λ1 > λ2 > · · · > λn and
∑n
j=1 λj = 0, we then get

n
∑

j=1

λjνj = λ0

n
∑

j=1

νj +
n
∑

k=1

(λk − λk−1)
n
∑

j=k

νj

>

(

λ0 +
n
∑

k=1

n − k

n
(λk − λk−1)

)

n
∑

j=1

νj

>

(

1

n

n
∑

k=1

λk

)

n
∑

j=1

νj = 0 .

(82)

This implies properness.
Let us now show the convergence of iterations of Tν to a fixed point. We will first

show that Tν decreases Ψν , so that iterations have an accumulation point by properness,
and we will then show that this accumulation point is in fact a fixed point. First note
that for any G ∈ L (Cn)+, using the fact that projectors are of trace 1, formula (65),
together with (71), gives tr [Tν(G)G−1] = n. Using the strict concavity of the logarithm,
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we thus get

1

n
log det (Tν(G)) − 1

n
log det (G) =

1

n
log det

(

Tν(G)G−1
)

6 log

(

tr [Tν(G)G−1]

n

)

= 0 ,
(83)

with equality if and only if Tν(G)G−1 = 1l. Thus to show that Ψν(Tν(G)) 6 Ψν(G),
by definition (74) of Ψν , we only need to show that Tν decreases the integral against ν
of the first term of formula (73). Again by concavity of the logarithm, we get

∫

CPn−1
log 〈Tν(G)−1z, z〉 dν([z]) −

∫

CPn−1
log 〈G−1z, z〉 dν([z])

6 log

(

∫

CPn−1

〈Tν(G)−1z, z〉
〈G−1z, z〉 dν([z])

)

6 log
(

1

n
tr
[

Tν(G)Tν(G)−1
]

)

= 0 ,

(84)

where we used formula (71) for Tν(G) together with the fact that 〈Az, z〉 = |z|2 Tr [ΠzA]
for all z ∈ Cn\{0} and A ∈ End(Cn). Equations (83) and (84), together with the
definition of Ψν given by formulas (73) and (74), show that Ψν(Tν(G)) 6 Ψν(G) for all
G ∈ L (Cn)+.

To conclude, note first that properness over L (Cn)1
+ and invariance under the action

of R+ implies that Ψν is bounded from below over the whole L (Cn)+. Thus for anyG0 ∈
L (Cn)+, we get that the decreasing sequence {Ψν(T

r
ν (G0))}r∈N converges to its lower

bound. As both terms in the definition of Ψν are decreasing under iterations of Tν by
(83) and (84), we then deduce that {log det(T r

ν (G0))}r∈N, thus also {det(T r
ν (G0))}r∈N,

are bounded in R, and that

1

n
log det

(

T
r+1
ν (G0)T r

ν (G0)
−1
)

−→ 0, as r → +∞ . (85)

Now from properness of Ψν over L (Cn)1
+ and boundedness in R of the sequences

{Ψν(T
r
ν (G0))}r∈N and {det(T r

ν (G0))}r∈N, we get that the sequence {T r
ν (G0)}r∈N ad-

mits an accumulation point G∞ ∈ L (Cn)+. On the other hand, by strict concavity of
the logarithm, formula (85) and the equality case in formula (83) imply

T
r+1
ν (G0)T r

ν (G0)
−1 −→ 1l, as r → +∞ . (86)

We thus get that G∞ ∈ L (Cn)+ is the unique accumulation point, and satisfies
Tν(G∞) = G∞. This concludes the proof.

In the following Proposition, we use the result that a fixed point of Tν exists as soon
as ν satisfies assumption (i), which was proved in the previous Proposition.
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Proposition 4.7. Assume that assumption (i) holds. Then for any ν-balanced product
q ∈ Prod(V), the associated quantum channel Eq as in Lemma 4.5 has positive spectral
gap.

Proof. Let q ∈ Prod(V) be a ν-balanced product, and identify (V, q) with (Cn, 〈·, ·〉),
so that Φq(z) = Πz for all z ∈ Cn\{0} in the definition (64) of Wq, where Πz is the
orthogonal projector on [z] with respect to 〈·, ·〉. Assume that ν satisfies assumption
(i) of Theorem 4.4, and normalize it by setting α := ν/|ν|. For any z ∈ Cn\{0}, we
denote by [z] its class in CP n−1. For any z, w ∈ C

n\{0}, we write

Bq([z], [w]) = n
|〈z, w〉|2
|z|2|w|2 (87)

for the Schwartz kernel with respect to α of the Berezin transform (5) on L2(CP n−1, ν)
associated with Wq. Let Y1, . . . , Yk be the irreducible components of Y . Since (z, w) 7→
〈z, w〉 is holomorphic in z and anti-holomorphic in w, for every i, j 6 k, we get that

(a) either Bq([z], [w]) = 0 for all ([z], [w]) ∈ Yi × Yj ,

(b) or Bq([z], [w]) 6= 0 for almost all ([z], [w]) ∈ Yi × Yj .

Consider a graph Γ with vertices 1, . . . , k, where i, j are connected by an edge whenever
(b) occurs of Yi × Yj . In particular, each i is connected by an edge to itself.

Recall that ∫

Bq(x, y)dα(y) =
∫

Bq(x, y)dα(x) = 1 .

Using the Schur test as in formula (41) above, we apply Cauchy-Schwarz inequality on
the formula

∫

Bq(x, y)φ(y)dα(y) =
∫

Bq(x, y)1/2 Bq(x, y)1/2φ(y)dα(y) , (88)

to get for any φ ∈ L2(CP n−1, ν),

‖Bqφ‖2
L2

=
∫ (∫

Bq(x, y)φ(y)dα(y)
)2

dα(x)

6
∫ (∫

Bq(x, y)dα(y) ·
∫

Bq(x, y)φ2(y)dα(y)
)

dα(x) = ‖φ‖L2
.

(89)

In particular, the equality Bqφ = φ can hold only if the inequality above is an equality,
and by the equality case of Cauchy-Schwarz inequality, this implies that for α-almost
all x, there exists c 6= 0 such that cBq(x, y)1/2

q = B(x, y)1/2φ(y) for α-almost all X. In
terms of the graph defined in the previous step, this yields that φ is constant on every
subset of the form

⋃

j∈star(i) Yj, where i = 1, . . . , k. Thus if φ is a non constant function
satisfying Bqφ = φ, it follows that Γ is disconnected. Denote by Γi, i = 1, . . . , k the
connected components, and put Zi =

⋃

j∈Γi
Yj.

Assuming that there exists a non-constant φ satisfying Bqφ = φ as above, we will
show that assumption (i) can not hold. Recall that we work with the POVM dWq(x) =
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nΠxdα(x), where Πx is the orthogonal projector to the line x ∈ CP n−1 with respect
to 〈·, ·〉. With this notation, Bq(x, y) = 0 yields ΠxΠy = 0. Write P = Wq(Z1) and
P ′ = Wq(Z2∪· · ·∪Zk). It follows that P+P ′ = 1l and PP ′ = 0. Thus P is an orthogonal
projector whose image is a proper projective subspace Σ of CP n−1 of dimension m− 1,
with

m = tr [P ] = tr [Wq(Z1)] = nα(Z1) = n
ν(Z1)

|ν| .

Observe also that if Pz = 0, we get

∫

Z1

〈Πxz, z〉 dν(x) = 0 ,

and hence 〈Πxz, z〉 = 0 for ν-almost all x. Since ν is absolutely continuous on each
irreducible component of X, it follows that x is orthogonal to z for all x ∈ Z1, and
hence Z1 ⊂ Σ. We conclude that

ν(Σ)

m
>
ν(Z1)

m
=

|ν|
n
,

so that assumption (i) does not hold.

The proof of this last Proposition is a variation on the theme of [5, Proposition 4.1].

Proposition 4.8. Assume that assumption (ii) holds. Then for any ν-balanced product
q ∈ Prod(V), the associated quantum channel Eq as in Lemma 4.5 is invertible.

Proof. Let q ∈ Prod(V) be ν-balanced, and identify (V, q) with (Cn, 〈·, ·〉). For any
z ∈ Cn\{0}, we denote by [z] its class in CP n−1.

Denote by
∼
Y the cone of Y in Cn. Assume on the contrary that an Hermitian matrix

A 6= 0 lies in the kernel of Eq, and set

FA([z], [w]) :=
〈Az,w〉
|z| · |w| .

Since Eq = n−1TT ∗ and T ∗(A)([z]) = FA([z], [z]) by the results of Section 2, we have
FA([z], [z]) = 0 for all [z] ∈ Y . Noticing that the function (z, w) 7→ 〈Az,w〉 is holomor-

phic in z and anti-holomorphic in w and that it vanishes on the diagonal of
∼
Y × ∼

Y , we
conclude that F vanishes on Z × Z for every irreducible component Z of Y .

Pick any irreducible component Z. If it fully lies in KerA, we have that Z is
contained in a proper projective subspace. Otherwise, pick [u] ∈ Z so that Au 6= 0.
We thus proved that any other [z] ∈ Z satisfies a linear equation 〈z, Au〉 = 0, meaning
that Z lies in a proper projective subspace. This is in contradiction with assumption
(ii).
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Using the Propositions above, we are then ready to prove Theorem 4.4.

Proof of Theorem 4.4: Suppose that ν satisfies the assumptions (i) and (ii), and
fix q0 ∈ Prod(V). By Proposition 4.6, the iterations T r(q0) converge to a fixed point
q ∈ Prod(V) as r → +∞, so that we can use it to identify (V, q) with (Cn, 〈·, ·〉).
Identify diffeomorphically L (Cn)+ with L (Cn)1

+ × R+ via the map

Θ : G 7−→ (D(G), det(G)) , where D(G) :=
G

det(G)1/n
.

Then for every r ∈ N,

ΘT
r
ν Θ−1(G, g) = (D(T r

ν (G)), g · det T
r
ν (G)) . (90)

Recall that by Lemma 4.5, the differential of Tν at q coincides with the quantum
channel Eq, and recall that q ∈ Prod(V) is sent to the identity 1l ∈ L (Cn)+ in the
identification of (V, q) with (Cn, 〈·, ·〉). Since L (Cn)1

+ is a slice of the R+-action and
Tν is R+-equivariant, the differential of D ◦ Tν equals to the restriction of Eq to the
tangent space T1lL (Cn)1

+, which consists of all trace 0 Hermitian matrices. Then by
Propositions 4.7 and 4.8, the spectrum of this differential is contained in (0, 1), so that
D ◦ Tν is a local diffeomorphism of L (Cn)1

+ in a neighborhood its hyperbolic fixed
point 1l, and conjugate through a local homeomorphism to its linearization at 1l by the
classical Hartman-Grobman theorem. In particular, taking β ∈ (0, 1) as the largest
eigenvalue of E in (0, 1), we get a constant C > 0 such that

dist (D(T r
ν (G0)), 1l) 6 Cβr , for all r ∈ N , (91)

where G0 ∈ L (Cn)+ denotes the image of q0 ∈ Prod(V) in the identification of (V, q)
with (Cn〈·, ·〉). By (90), in order to complete the proof of the exponential convergence
of the orbit of G0 to 1l, we need to show that for r large enough

|det T
r
ν (G0) − 1| < Cβr . (92)

To this end recall that the functional Ψν of the proof of Proposition 4.6 is decreasing
under iterations of Tν and invariant with respect to the action of R+ by multiplication.
By (91) and the differentiability of Ψν at 1l, there exists a constant C > 0 such that

0 6 Ψν(T
r
ν (G0)) − Ψν(1l) 6 Cβr . (93)

Now as both (83) and (84) are non-positive and as T r
ν (G0) → 1l as r → +∞, recalling

the definition (73)-(74) of Ψν we deduce in particular that

0 6 log det(T r
ν (G0)) 6 Cβr . (94)

Since for x close to 1, we have 2| logx| > |1 − x|, this yields (92). The proof is
complete.
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Remark 4.9. Consider the setting of Example 4.3 above for all p ∈ N∗ large enough,
where qp ∈ Prod(H0(X,Lp)) is the unique ν-balanced product and hp the induced
Fubini-Study metric on Lp over X, with Chern curvature −2iπωp. Recall that in that
case, the induced POVM (64) coincides with the weighted Berezin-Toeplitz POVM
(60) of Remark 3.12. Then using a refined version of Theorem 3.1 and Lemma 4.5,
one can show that the exponential convergence rate βp > 0 of Donaldson’s iterations in
Theorem 4.4 satisfies as p → ∞ the estimate

βp =
λ1(ω∞)

4πp
+ o(p−1) , (95)

where λ1(ω∞) is the first eigenvalue of the Laplace-Beltrami operator associated with
the metric induced by the unique Kähler form ω∞ in c1(L) solving the Calabi problem
ωd = cν for some c > 0. This follows from the estimate (62) on the spectral gap of the
weighted Berezin transform, together with the uniformity on the metric in the estimates
of [13, Th. 4.18’] and the fact that the sequence {1

p
ωp} converges to ω∞ as p → ∞. This

complements a result of Keller in [33, Prop. 4.7].

5 POVMs and geometry of measures

Assume that we are given an L (H)-valued POVM on Ω satisfying equation (3), i.e.,
of the form dW = nF dα for some F : Ω → S(H). In this section we discuss spectral
properties of the Berezin transform associated to W in terms of the geometry of the
measure

σW := F∗α (96)

on S(H), focusing on its multi-scale features, and on stability of the spectral gap un-
der perturbations of the measure. Recall that for pure POVMs we have encountered
measure (96) in Example 4.1.

Write V ⊂ L (H) for the affine subspace consisting of all trace 1 operators, dist for
the distance on V associated to the scalar product ((A,B)) = tr(AB) on L (H). Given
a compactly supported probability measure σ on V, introduce the following objects:

• the center of mass C(σ) =
∫

V vdσ(v);

• the mean squared distance from the origin,

I(σ) =
∫

V
dist(C, v)2dσ(v) ;

• the mean squared distance to the best fitting line

J(σ) = inf
ℓ

∫

V
dist(v, ℓ)2dσ(v) ,

where the infimum is taken over all affine lines ℓ ⊂ V.
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The infimum in the definition of J is attained at the (not necessarily unique) best fitting
line which is known to pass through the center of mass C (Pearson, 1901; see [20, p. 188]
for a historical account). d

Observe that the center of mass C(σW ) for the measure σW given by (96) coincides
with the maximally mixed state 1

n
1l.

Theorem 5.1. The spectral gap γ(W ) depends only on the push-forward measure σW
on S(H):

γ(W ) = 1 − n(I(σW ) − J(σW )) .

Proof. Let ℓ ⊂ V be any line passing through the center of mass 1
n
1l generated by a

trace zero unit vector A ∈ L (H). For a point B ∈ V we have

dist(B, ℓ)2 = ((B − 1

n
1l, B − 1

n
1l)) − ((B − 1

n
1l, A))2 .

Integrating over σW and taking infimum over ℓ we get that

J(σW ) = I(σW ) −K , (97)

with
K = sup

tr(A)=0
tr(A2)=1

∫

V
((B,A))2dF∗α(B) . (98)

The latter integral can be rewritten as

∫

Ω
((F (s), A))2dα(s) = n−1((E(A), A)) , (99)

so by definition K = n−1γ1 = n−1(1 − γ(W )). Substituting this into (97), we deduce
the theorem.

Remark 5.2. Observe that the supremum in (98) is attained at a unit vector A gen-
erating the best fitting line. By (99), A is an eigenvector of E with the eigenvalue
γ1.

Example 5.3. For a pure POVM W , i.e. when F is a one-to-one map from Ω to the
set of rank-one projectors,

dist(C, F (s))2 = tr

[

(

1

n
1l − F (s)

)2
]

= 1 − 1/n

dThe problem of finding J and the corresponding minimizer ℓ appears in the literature under several
different names including “total least squares" and “orthogonal regression".
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for all s ∈ Ω, and hence I(σW ) = 1 − 1/n. Thus, by Theorem 5.1,

J(σW ) =
n − 2 + γ

n
. (100)

For instance, consider the (pure!) Berezin-Toeplitz POVM Wp from Example 4.2.
Let us use formula (100) in order to calculate J . Recall that by the Riemann-Roch
theorem (see [24], Propositions 2.25 and 4.21)

np = V pd + Upd−1 + O(pd−2) ,

where
V = Vol(X) = [ω]d/d!, U = c1(X) ∪ [ω]d−1/(d− 1)! .

It follows from formula (19) for γp that

J(σWp
) = 1 − 2

V
p−d +

8πU + V λ1

4πV 2
p−d−1 + O(p−d−2) .

For instance, for the dual to the tautological bundle over CP 1 in Example 3.4
n = p+ 1 and γ = 2/(p+ 2) so by (100) J = 1 − 2

p+2
.

Furthermore, we explore robustness of the gap γ(W ), as a function of the measure
σW , with respect to perturbations in the Wasserstein distances on the space of Borel
probability measures on S(H). They are defined as follows. For compactly supported
Borel probability measures σ1, σ2 on a metric space (X, d) the L2-Wasserstein distance
is given by

δ2 (σ1, σ2) := inf
ν







∫

X×X

dist (x1, x2)2 dν(x1, x2)







1/2

,

and the L∞-Wasserstein distance by

δ∞ (σ1, σ2) := inf
ν

sup
(x1,x2)∈supp (ν)

dist(x1, x2) ,

where in both cases the infimum is taken over all Borel probability measures ν on X×X
with marginals σ1 and σ2.

Theorem 5.4. Let σV and σW be measures on S(H) associated to POVMs V and W
respectively.

(i) |γ(V ) − γ(W )| 6 c(n)δ2(σV , σW ), where c(n) depends on the dimension n =
dim H;

(ii) If in addition V and W are pure POVMs, there exists a universal constant c such
that

|γ(V ) − γ(W )| 6 cδ∞(σV , σW ) . (101)
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Note that this result enables us to compare spectral gaps of POVMs defined on different
sets (but having values in the same Hilbert space). This idea goes back to [44] e. Let us
emphasize that the estimate in (ii) is dimension-free. This is important, for instance,
for comparison of spectral gaps corresponding to different Berezin-Toeplitz quantization
schemes.

Theorem 5.4(i) immediately follows from the fact that C(σ), I(σ) and J(σ) are
Lipschitz in σ with respect to L2-Wasserstein distance. The details will appear in MSc
thesis by V. Kaminker.

For the proof of part (ii), we need the following auxiliary statement. In what follows
we write ‖A‖2 for the Hilbert-Schmidt norm (tr(AA∗))1/2.

Lemma 5.5. Let P,Q be rank 1 orthogonal projectors. Then for every A ∈ L (H),

|tr(A(P −Q))| 6
√

2‖P −Q‖2 (tr(A2(P +Q)))1/2 .

Proof. Suppose that P and Q are orthogonal projectors to unit vectors ξ and η, respec-
tively. By tuning the phase of ξ, we can assume that 〈ξ, η〉 > 0. We have

|tr(A(P −Q))| = |〈Aξ, ξ〉 − 〈Aη, η〉|

= |〈ξ − η, Aξ〉 + 〈Aη, ξ − η〉| 6 |ξ − η|(|Aξ| + |Aη|)
= |ξ − η|(〈A2ξ, ξ〉1/2 + 〈A2η, η〉1/2) 6

√
2|ξ − η|(〈A2ξ, ξ〉 + 〈A2η, η〉)1/2

=
√

2|ξ − η|
(

tr(A2P ) + tr(A2Q)
)1/2

.

But since 0 6 〈ξ, η〉 6 1,

|ξ − η| = (2 − 2〈ξ, η〉)1/2 6 (2 − 2〈ξ, η〉2)1/2

= (tr(P −Q)2)1/2 = ‖P −Q‖2 .

This completes the proof.

Proof of Theorem 5.4 (ii): Denote by P the space of all rank 1 orthogonal projectors
on H. We can assume without loss of generality that pure POVMs V and W are
defined on subsets Ω1 and Ω2 of P, respectively, and that the maps Fi : Ωi → P are
the inclusions. Thus representation (3) in this case can be simplified as

dV (s) = n s dα1(s) , dW (t) = n t dα2(t) ,

where σV = α1 and σW = α2 are Borel probability measures supported in Ω1 and Ω2,
respectively. Let us emphasize that here and below s, t stand for rank 1 orthogonal
projectors. Pick any measure ν on P × P with marginals α1 and α2 and write

∆ := max
(s,t)∈supp (ν)

‖s− t‖2 .

eIn [44] the authors consider the L1-version of this distance, and call it the Kantorovich distance.
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We use the fact that the operators E1, E2 : L (H) → L (H) given by formula (4)
have the same spectrum as the Berezin transform. For A ∈ L (H) with tr(A2) = 1 put

D := |((E1A,A)) − ((E2A,A))| .

One readily rewrites

D = n

∣

∣

∣

∣

∫

Ω1

((F1(s), A))2dα1(s) −
∫

Ω2

((F2(t), A))2dα2(t)

∣

∣

∣

∣

6 n
∫

Ω1×Ω2

|tr((s− t)A)| |tr((s+ t)A)|dν .

By Lemma 5.5,
|tr((s− t)A)| 6

√
2‖s− t‖2 (tr(A2(s+ t)))1/2 .

By Cauchy-Schwarz, writing

(s+ t)A = (s+ t)1/2((s+ t)1/2A) ,

we get

|tr((s+ t)A)| 6 (tr(s+ t))1/2(tr(A2(s+ t)))1/2 =
√

2(tr(A2(s+ t)))1/2 .

It follows that
D 6 2n max

(s,t)∈supp (ν)
‖s− t‖2

∫

tr(A2(s+ t))dν .

The integral on the right can be rewritten as

tr
(

A2
∫

Ω1

sdα1(s)
)

+ tr
(

A2
∫

Ω2

tdα2(t)
)

= 2/n ,

since
∫

Ω1

s dα1(s) =
∫

Ω2

t dα2(t) =
1

n
1l

and tr(A2) = 1. It follow that D 6 4∆. Choosing ν so that ∆ becomes arbitrary close
to δ := δ∞(α1, α2), and taking A with

tr(A) = 0 , tr(A2) = 1 (102)

to be an eigenvector of E1 with the first eigenvalue γ1(E1), we get that

|γ1(E1) − ((E2A,A))| 6 4δ .

But due to the variational characterization of the first eigenvalue, γ1(E2) = max((E2A,A)),
where the maximum is taken over all A satisfying (102). It follows that γ1(E1)−γ1(E2) 6
4δ. By symmetry, γ1(E2) − γ1(E1) 6 4δ, which yields the theorem with c = 4.
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Our next result provides a geometric characterization of the eigenfunction of the
operator B with the eigenvalue γ1. Let A ∈ L (H) be the trace zero unit vector
generating the best fitting line corresponding to W . In view of Theorem 5.1,

γ1 = 1 − γ(W ) = n(I − J) ,

with I = I(σW ) and J = J(σW ).

Theorem 5.6. The function

ψ1 : Ω → R, s 7→ ((F (s), A))√
I − J

(103)

is an eigenfunction of the operator B with the eigenvalue γ1. Furthermore, ‖ψ1‖ = 1.

In other words, up to a multiplicative constant, the first eigenfunction sends s ∈ Ω to
the projection of the density F (s) to the best fitting line.

Proof. By Remark 5.2 above, the operator A generating the best fitting line is an
eigenvector of the quantum channel E : EA = γ1A. Since E = n−1TT ∗ and B = n−1T ∗T ,
we have B(T ∗A) = γ1T

∗A and (T ∗A, T ∗A) = nγ1. Furthermore, T ∗A(s) = n((F (s), A))
and nγ1 = n2(I − J). Choosing ψ1 = T ∗A/‖T ∗A‖, we get (103).

Next, we discuss the diffusion distance on Ω associated to the Markov operator B
(see [11]). This distance, which originated in geometric analysis of data sets, depends
on a positive parameter τ playing the role of the time in the corresponding random
process. Take any orthonormal eigenbasis {ψk} corresponding to eigenvalues 1 = γ0 >

γ1 > γ2 . . . of B such that ψ0 is constant. The diffusion distance Dτ is defined by

Dτ (s, t) =
(

∑

k>1

γ2τ
k (ψk(s) − ψk(t))

2
)1/2 ∀s, t ∈ Ω . (104)

If γ1 < 1, i.e., the spectral gap is positive, this expression decays exponentially.
Suppose now that γ2 < γ1. In this case the asymptotic behavior of Dτ (s, t) as

τ → ∞ is given by

Dτ (s, t) = γτ1
|((F (s) − F (t), A))|

(I − J)1/2
(1 + o(1)) , if ((F (s), A)) 6= ((F (t), A)) , (105)

and Dτ (s, t) = O(γτ2 ) otherwise. The difference in these asymptotic formulas highlights
the multi-scale behaviour of the metric space (Ω, Dτ ). In the first approximation, this
space consists of the level sets of the function s 7→ ((F (s), A)) situated at the distance
∼ γτ1 from one another, while each fiber has the diameter . γτ2 . Viewing POVMs as
data clouds in S opens up a prospect of using various tools of geometric data analysis
for studying POVMs. The above result on the diffusion distance associated to a POVM
can be considered as a step in this direction.
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6 Case study: representations of finite groups

In this section we will be interested in finite POVMs associated to irreducible rep-
resentations of finite groups. We start with some preliminaries from Woldron’s book
[49]. Let G be a finite set.

Definition 6.1. A finite collection {fs}s∈G of non-zero vectors in a finite-dimensional
Hilbert space H is said to be a tight frame if there exists a number A > 0, called the
frame bound, such that

A‖f‖2 =
∑

s∈G

|〈f, fs〉|2, ∀f ∈ H . (106)

Denote by Ps the orthogonal projector to fs. One readily checks that for such a
frame, the operators

Ws :=
‖fs‖2

A
Ps, s ∈ G , (107)

form a L (H)-valued POVM on G.
Suppose from now on that G is a finite group, and we are given its non-trivial

irreducible unitary representation ρ on a dρ-dimensional Hilbert space V . f One can
show [49] that the vectors {fs := 1√

dρ

ρ(s)}s∈G form a tight frame in the operator space

H := End(V ) equipped with the Hermtian product ((C,D)) = tr(CD∗) with the frame
bound A = |G|/d2

ρ. Write n = d2
ρ = dim H. By (107), the corresponding POVM

W = {Ws}, s ∈ G is given by Ws = nPsαs with αs = 1
|G|

. Interestingly enough, the
spectrum of the corresponding Berezin transform can be calculated via the characters
of irreducible unitary representations of G.

Denote by χρ : G → C, χρ(s) := tr(ρ(s)) the character of the representation ρ.
Consider a basis in L2(G) consisting of the indicator functions of the elements of G. It
readily follows from the definition that the Berezin transform B corresponding to the
POVM W is given by a matrix

Bts = n tr(PtPs)αs =
1

|G|u(st−1) ,

where u(s) := |χρ(s)|2. The eigenvalues of this matrix and their multiplicities are given
by the following proposition, see chapter 3E of [16].

Proposition 6.2. The eigenvalues of B are given by

λϕ :=
1

dϕ|G|
∑

s∈G

u(s)χϕ(s) ,

where ϕ runs over irreducible representations of G, and the contribution of each ϕ into
the multiplicity of λϕ is d2

ϕ.

fAll the representations considered below are assumed to be unitary.
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Let us emphasize that it could happen that λϕ = λψ for different representations ϕ and
ψ. Note also that by Lemma 6.5(i) below, λϕ = 1 when ϕ is the trivial one-dimensional
representation.

Remark 6.3. We claim that the gap γ(W ) is rational. Indeed, for a unitary repre-
sentation ψ by complex unitary matrices denote ψ′(s) = ψ(s), where the bar stands
for the complex conjugation. Note that u is the character of the (in general, reducible)
representation θ := ρ⊗ ρ′. By the Schur orthogonality relations,

1

|G|
∑

s∈G

u(s)χϕ(s)

equals the multiplicity of ϕ in the decomposition of θ into irreducible representations,
and hence is an integer. The claim follows from Proposition 6.2.

The main result of this section is the following algebraic criterion of the positivity of
the spectral gap of W . Following chapter 12 in [30] we define the vanishing-off subgroup
V(ρ) to be the smallest subgroup of G such that χρ vanishes on G \ V(ρ):

V(ρ) =< s ∈ G | χρ(s) 6= 0 > .

Since the character χρ is conjugation invariant, V(ρ) is normal.

Theorem 6.4. The following are equivalent:

(i) V(ρ) 6= G;

(ii) γ(W ) = 0, i.e., there exists a non-trivial irreducible unitary representation ϕ of
G with λϕ = 1.

In the next lemma, we collect some standard facts from the representation theory
(see e.g. Chapter 2 of [16]) which will be used in the proof of Theorem 6.4. We write
Irrep for the set of all unitary irreducible representations of G up to an isomorphism.

Lemma 6.5. (i) 1
|G|

∑

s∈G |χρ(s)|2 = 1, ∀ ρ ∈ Irrep;

(ii)
∑

ϕ∈Irrep d
2
ϕ = |G|.

Proof of Theorem 6.4:
We begin by proving (ii) ⇒ (i): Assume that there exists a non-trivial irreducible

representation ϕ with λϕ = 1. By using Lemma 6.5 and the explicit formula for the
eigenvalues from Proposition 6.2 we see that

1 =
6.2

1

dϕ|G|
∑

s∈G

|χρ(s)|2χϕ(s) =

=
1

|G|
∑

s∈G

|χρ(s)|2 − 1

dϕ|G|
∑

s∈G

|χρ(s)|2(dϕ − χϕ(s)) =
6.5

= 1 − 1

dϕ|G|
∑

s∈G

|χρ(s)|2(dϕ − χϕ(s))
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By taking the real part of both sides we get

∑

s∈G

|χρ(s)|2 Re(dϕ − χϕ(s)) = 0

Note that since ϕ(s) is unitary, all its eigenvalues are of the form eiθ so |χϕ(s)| =
|tr(ϕ(s))| 6 dϕ and χϕ(s) = dϕ iff ϕ(s) is the identity. Hence Re(dϕ − χϕ(s)) must
be non-negative. Since |χρ(s)|2 is also non-negative, χϕ(s) = dϕ for every s ∈ G with
χρ(s) 6= 0. As we have seen above χϕ(s) = dϕ if and only if ϕ(s) = 1l. It follows that
the vanishing off subgroup V(ρ) is contained in the normal subgroup

Ker(ϕ) := {s | ϕ(s) = 1l} .

Since ϕ is irreducible and non-trivial, the latter subgroup 6= G, and hence V(ρ) 6= G,
as required.

Next, we prove (i) ⇒ (ii): Assume V(ρ) 6= G. Consider the quotient H := G/V(ρ),
which is a non-trivial group, and let π : G → H be the natural projection. Take
any non-trivial irreducible representation ψ of H . Then ϕ := ψ ◦ π is an irreducible
representation of G. We claim that λϕ = 1. Indeed, for s ∈ V(ρ) we have ϕ(s) = 1l and
hence χϕ(s) = dϕ, and for s /∈ V(ρ) holds χρ(s) = 0. It follows that

λϕ =
∑

s∈V(ρ)

1

dϕ|G| |χρ(s)|
2dϕ =

1

|G|
∑

s∈G

|χρ(s)|2 =
6.5

1 .

This proves the claim and hence completes the proof of the theorem.

Corollary 6.6. If G is a simple group, then the gap of W is positive.

Proof. Indeed, otherwise by Theorem 6.4 and the simplicity of G, V(ρ) = {1l}, which
means that χρ(s) = 0 for every s 6= 1l. Then the first statement of Lemma 6.5 yields
|G| = d2

ρ, while the second statement guarantees that |G| > 1+d2
ρ, since ρ is a non-trivial

representation. We get a contradiction.

Let us point out that there exist non-simple groups G admitting an irreducible
representation ρ with V(ρ) = G. Indeed, consider the irreducible representation ρ :
Zm → U(C), ρ(s) = e2πis/m of the abelian cyclic group Zm. Observe that V(ρ) = Zm,
while Zm is simple if and only if m is prime.

Let us describe the diffusion distance Dτ (see (104)) corresponding to the POVM
W associated to a finite group G and a non-trivial irreducible representation ρ. Recall
[16] that for an irreducible representation ϕ : G → U(n), the orthonormal basis of
eigenfunctions corresponding to the eigenvalue λϕ presented in Proposition 6.2 is given

by the matrix coefficients of ϕ multiplied by
√

dϕ. Assume that the gap of G is strictly
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positve, and denote by β1 > · · · > βk all pair-wise distinct eigenvalues of B lying in the
open interval (0, 1). Denote

Rj := {ϕ ∈ Irrep | λϕ = βj} .

Then (104) yields the following expression for the diffusion distance:

Dτ (s, t) =





∑

j=1k

β2τ
j

∑

ϕ∈Rj

dϕ‖ϕ(s) − ϕ(t)‖2
2





1/2

, (108)

where ‖ ‖2 stands for the Hilbert-Schmidt norm ‖C‖2 = (tr(CC∗))1/2. Note that this
expression can be rewritten in terms of the character χϕ since

‖ϕ(s) − ϕ(t)‖2
2 = 2(dϕ − Re χϕ(st−1)) .

Define a normal subgroup Γj :=
⋂

ϕ∈Rj
Ker(ϕ) , j = 1, . . . , k and a normal series

K0 ⊃ K1 ⊃ . . . ... with K0 = G, Kk+1 = {1} and

Km :=
m
⋂

j=1

Γj , m = 1, . . . k .

It follows from (108) that for τ → +∞

Dτ (s, t) ∼ βτp+1 for st−1 ∈ Kp \Kp+1 . (109)

In fact we have a sequence of nested partitions ∆p of G formed by the cosets of Kp. For
every pair of distinct points s, t ∈ G choose maximal p so that s and t lie in the same
element of ∆p. Then asymptotical formula (109) holds, which manifests the multi-scale
nature of the diffusion distance.

Let us illustrate this in the case when G = S4 is the symmetric group, and ρ
a 3-dimensional irreducible representation. The direct calculation with the character
table of S4 shows that the first non-trivial eigenvalue 1/2 corresponds to the unique 2-
dimensional irreducible representation whose kernel coincides with the normal subgroup
K of order 4 of S4 called the Klein four-group. Thus Dτ (s, t) ∼ (1/2)τ if s, t belong
to different cosets of K in S4, and one can calculate that Dτ (s, t) ∼ (1/3)τ if s, t are
distinct and belong to the same coset.

Remark 6.7. A modification of the construction presented in this section is related to
Berezin-Toeplitz quantization. The modification goes in two directions. First, we deal
with unitary representations ρ of compact Lie groups G instead of finite groups, and
second, our POVMs are related to the G–orbits in a representation space H as opposed
to the image of ρ in the endomorphisms of H. Let us very briefly illustrate this in the
following simplest case. Consider the irreducible unitary representation ρj of the group
G = SU(2) in an n = 2j+1-dimensional Hilbert space H, j ∈ 1

2
N. Fix a maximal torus

K = S1 ⊂ G, and let w ∈ H be the maximal weight vector of K, that is ρj(t)w = e4πijtw
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for all t ∈ K. Consider an L (H)-valued POVM W on Ω = G/K = CP 1 of the form
dW ([g]) = nP[g]dα([g]), where [g] stands for the class of g ∈ G in Ω, α is the G-
invariant measure on Ω and P[g] is the rank one projector to gw. Note that W is
nothing else but the Berezin-Toeplitz POVM Wp from Example 3.4 with p = 2j. We
refer to [12, Chapter 7] for the representation theoretic approach to coherent states and
quantization. By using theory of Gelfand pairs (cf. [16, Chapter 3.F]) one can check
that the eigenvalues of the Berezin transform are of the form λϕ = (u, χϕ)L2

, where ϕ
runs over all irreducible unitary representations of G, χϕ stands for the character of ϕ
and u(g) = n|〈ρ(g)w,w〉|2. The multiplicity of λϕ equals dϕ, where dϕ is the dimension
of ϕ. In order to calculate λϕ, recall that

ρj ⊗ ρj =
2j
⊕

k=0

ρk . (110)

Writing v for the vector of weight −j of ρj , we have

u(g) = n〈(ρj ⊗ ρj)(g)ξ, ξ〉, where ξ = w ⊗ v .

In order to complete this calculation, one has to decompose ξ in the sense of (110). This
can be done with the help of explicit expressions for the Clebsch-Gordan coefficients,
and it eventually yields eigenvalues of the Berezin transform, including γ1 = j/(j + 1)
(cf. Example 3.4), in agreement with calculations by Zhang [50] and Donaldson [17,
p. 613]. The details will appear in MSc thesis by D. Shmoish.

7 Two concepts of quantum noise

In the present section we provide two different (and essentially tautological) interpre-
tations of the spectral gap in the context of quantum noise. In quantum measurement
theory, there are two concepts of quantum noise: the increment of variance for unbi-
ased approximate measurements as formalized by the noise operator, see below, and a
non-unitary evolution of a quantum system described by a quantum channel (a.k.a. a
quantum operation, see, e.g. [43, Chapter 8]). Such a non-unitary evolution can be
caused, for instance, by the quantum state reduction in the process of repeated quantum
measurements. Interestingly enough, for pure POVMs, the spectral gap γ(W ) brings
together these two seemingly remote concepts: it measures the minimal magnitude of
noise production in the context of the noise operator, and it equals the spectral gap of
the Markov chain modeling repeated quantum measurements.

Given an observable A ∈ L (H), write A =
∑

λiPi for its spectral decomposition,
where Pi’s are pair-wise distinct orthogonal projectors. According to the statistical
postulate of quantum mechanics, in a state ρ the observable A attains value λi with
probability ((Pi, ρ)). It follows that the expectation of A in ρ equals E(A, ρ) = ((A, ρ))
and the variance is given by Var(A, ρ) = ((A2, ρ))−E(A, ρ)2. In quantum measurement
theory [7], a POVM W represents a measuring device coupled with the system, while Ω
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is interpreted as the space of device readings. When the system is in a state ρ ∈ S(H),
the probability of finding the device in a subset X ∈ C equals µρ(X) := ((W (X), ρ)).
An experimentalist performs a measurement whose outcome, at every state ρ, is dis-
tributed in Ω according to the measure µρ. Given a function φ ∈ L2(Ω, α) (experi-
mentalist’s choice), this procedure yields an unbiased approximate measurement of the
quantum observable A := T (φ). The expectation of A in every state ρ equals ((A, ρ))
and thus coincides with the one of the measurement procedure given by

∫

Ω φdµρ (hence
unbiased), in spite of the fact that actual probability distributions determined by the
observable A (see above) and the random variable (φ, µρ) could be quite different (hence
approximate). In particular, in general, the variance increases under an unbiased ap-
proximate measurement:

Var(φ, µρ) = Var(A, ρ) + ((∆W (φ), ρ)) , (111)

where ∆W (φ) := T (φ2) − T (φ)2 is the noise operator. This operator, which is known
to be positive, measures the increment of the variance. We wish to explore the relative
magnitude of this increment for the “maximally mixed" state θ0 = 1

n
1l. To this end

introduce the minimal noise of the POVM W as

Nmin(W ) := inf
φ

((∆W (φ), θ0))

Var(φ, µθ0
)
,

where the infimum is taken over all non-constant functions φ ∈ L2(Ω, α). It turns out
that the minimal noise coincides with the spectral gap:

Nmin(W ) = γ(W ) . (112)

Indeed, since tr(T (φ2)) = n(φ, φ), we readily get that

((∆W (φ), θ0)) = ((1l − B)φ, φ) ,

where B = n−1T ∗T is the Markov operator given by (5), while

Var(φ, µθ0
) = (φ, φ) − (φ, 1)2 .

Formula (112) follows from the variational principle.

Suppose now that Ω ⊂ S(H) is a finite set consisting of rank one projectors
{P1, . . . , PN} and that W is a pure POVM of the form W (Pi) := nαiPi, where α
is a probability measure on Ω. Given a system in the original state ρ, the result of the
measurement equals Pj with probability p = nαj((Pj, ρ)). Recall the quantum state
reduction (a.k.a. the wave function collapse) axiom for so called Lüders repeated quan-
tum measurements: if the result of the measurement equals Pj, the system moves from
the original state ρ to the new (reduced) state

ρ′ =
1

p
W (Pj)

1/2ρW (Pj)
1/2 = Pj .
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It follows that if the original state ρ is chosen from Ω, the repeated quantum measure-
ments are described by the Markov chain with transition probabilities nαj((Pi, Pj)).
The corresponding Markov operator equals B, and the spectral gap of the Markov chain
coincides with the spectral gap γ(W ) of the POVM W . Furthermore, given an origi-
nal state ρ ∈ Ω, the expected value of the reduced state equals E(ρ). It follows that
if γ(W ) > 0, Ek(ρ), k → ∞ converge to the maximally mixed quantum state 1

n
1l at

the exponential rate ∼ (1 − γ(W ))k. In other words, for pure POVMs the spectral
gap controls the convergence rate to the maximally mixed state under repeated quantum
measurements.
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