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INTERRELATION OF THE EQUATION OF RSJ MODEL OF

JOSEPHSON JUNCTION AND THE SPECIAL DOUBLE

CONFLUENT HEUN EQUATION

S.I. TERTYCHNIY

VNIIFTRI, RUSSIA

Abstract. An explicit representation of the maps interconnecting the sets
of solutions to the special double confluent Heun equation and the equation
of the RSJ model of overdamped Josephson junction in case of shifted sinu-
soidal bias is given. The approach leans on specific properties of eigenfunctions
of a remarkable linear operator acting on functions holomorphic on the uni-
versal cover of the punctured complex plane. The functional equation the
eigenfunctions noted obey is derived. The matrix form of the monodromy
transformation they manifest is given.

Introduction

In a sense, the non-linear first-order ordinary differential equation

9ϕptq ` sinϕptq “ B ` A cosωt, (1)

where the symbols A,B, ω denote real constants, stands out in the dispersed total-
ity of particular instances of differential equations due to its emerging in a number
of problems of physics, mechanics, dynamical systems theory, geometry [1, 2, 3].
Perhaps most frequently this equation and its generalizations appear in investiga-
tions concerning with theoretical study of dynamics of Josephson junctions [4, 5].
Eq. (1) seems to be the most simple equation (or, at least, should be considered
among the most simple ones) which is able to properly embody the so called phase
lock effect utilized in many devices built upon capabilities of the Josephson effect.
The latter was theoretically predicted in 1962 and was recognized in an experiment
reported in 1963. Thereafter, in 1968, a heuristic model of behavior of a Josephson
junction incorporated in a circuit with given properties was proposed [6, 7] which
is currently referred to as RSJ (or sometimes as RCSJ) model. Eq. (1) follows
from it in the limiting case of a small effective junction capacitance under condi-
tions when its effect is negligible. Besides, the right-hand side of (1) corresponds
to excitation (“bias”) of a Josephson junction by a controllable DC (described by
the dimensionless parameter B) combined with an also controllable sinusoidal AC
of the dimensionless frequency ω, of the fixed (zero) initial phase, and of the given
amplitude (characterized by the dimensionless parameter A).

Eq. (1) suits well for a fast and accurate numerical integration and is thus conve-
nient for application in numerical simulations. At the same time, perhaps somewhat
surprisingly, “the pure mathematics” associated with it proves to be fairly profound
and is definitely of considerable interest. Several approaches can be here employed

1

http://arxiv.org/abs/1811.03971v2


while the most efficient one starts with an appropriate complexifcation of the equa-
tion in question. We consider below this step in details and establish equivalence
(mentioned for the first time in Ref. [16]) of Eq. (1) to a double confluent Heun
equation. The latter, in turn, can be further explored by the methods of complex
analysis and the theory of linear differential equations in the complex domain.

Transition of Eq. (1) to Complex Domain

To begin with, let us notice that the right-hand side of (1) does not depend on
ϕ and is periodic in the free real variable t. We embody this periodicity in the
circular motion coupled to the varying real t in the complex plane C around zero.
In other words, denoting a generic point in C as z we associate z “ eiωt to processes
described by the function ϕ obeying Eq. (1).

Similarly, the left-hand side of the equation, involving all the entries of ϕ, is
invariant with respect to the shifts ϕ Ø ϕ ˘ 2π. It suggest us to utilize in complex
domain the exponent Φ “ eiϕ instead of the original ϕ. The next natural step is
to consider Φ as a holomorphic function of z and assume that the above equality
takes place on the unit circle, i.e. when z “ eiωt. In other words, it is assumed
that for real t it holds Φpeiωtq “ eiϕptq. At the same time, for generic z, the
function Φpzq becomes the analytic continuation of its instantiation on the above
circle, being therefore not pointwise representable through values of ϕ. The next
and also last action in the constructing of the transformation we search for is the
selecting of a differential equation constraining holomorphic Φpzq in such a way
that, when restricted to the unit circle, it would turn into Eq. (1), provided the
above identifications are taken into account. Such an equation can easily be found.
It reads

z2Φ1 “ p2iωq´1z p1 ´ Φ2q `
`

ℓ z ` µpz2 ` 1q
˘

Φ. (2)

Here ℓ “ B{ω, µ “ A{2{ω are the new but cognate constant parameters.
The non-linear ODE (2) belongs to the Riccati’ family. It is well known that

all these equations are convertible to certain linear second-order ODEs. We are
going to employ such an equivalence leading, in our case, to a double confluent
Heun equation. However, we make here use of an indirect method for its derivation
which is based on inspection of properties of a remarkable linear operator LC defined
in the next section and having, at first glance, no relation to the equation of RSJ
model.

Operator LC

Let us consider the linear operator LC which sends a holomorphic function E of
the complex argument z to the function LC rEs of the same argument as follows

LC : Epzq ÞÑ LCrE spzq “ 2ω z´ℓ´1
Z

zØz´1

`

E1pzq ´ µEpzq
˘

. (3)

Here the symbols ℓ, µ, ω denote the constant parameters which are, for now, consid-
ered arbitrary except for the claim of fulfillment of the non-degeneracy conditions
µ ­“ 0 ­“ ω. The mark tzØz´1 indicates the operation of replacement of the variable
in the expression situated to the right of it. The function LCrEspzq is obviously
holomorphic in the correspondingly transformed domain, provided the latter does
not contain zero.

It is natural to adopt as the domain Ω of the operator LC some set (say, a linear
space) of functions which is preserved under its action. This assumption requires
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of the domain Θ of the members of Ω to be invariant with respect to the map
C : z ÞÑ z´1 or, at least, to produce a nonempty intersection CΘ X Θ ­“ H. The
punctured complex plane C˚ “ C K 0 is an example of such a domain. For the sake
of definiteness, we shall utilize it, provisionally, in the role of Θ. This turns out
to be not the best solution but later on we shall become able to specify a more
appropriate Θ realization.

The following statement holds true.

Lemma 1. The squared (composed with itself) transformation LC preserves its
argument, i.e.

LC ˝ LCrEs “ E, (4)

if and only if the function E “ Epzq obeys the equation

z2E2 `
`

pℓ ` 1qz ` µp1 ´ z2q
˘

E1 ` p´µpℓ ` 1qz ` λqE “ 0, (5)

where λ “ p2ωq´2 ´ µ2. (6)

Proof. The above assertion immediately follows from the identity

LC ˝ LCrEspzq ” Epzq ´ p2ωq2 ¨ lhs(5), (7)

where ‘lhs(5)’ stands for the left-hand side expression of Eq. (5) considered as a
function of z. In particular, the equality (6) also follows from a straightforward
computation verifying Eq. (7) by means of expansion of its left-hand side. �

It has to be noted that the ordinary second order linear homogeneous differential
equation (5) belongs to the family of so called double confluent Heun equations
(often referred to as DCHE or similarly). They are discussed in Ref.s [8, 9]; see
also the online resource [10] and Ref. [11] for more recent bibliography. A generic
DCHE is identified by four constant parameters while Eq. (5) involves only three
ones. Accordingly, it was suggested to name Eq. (5) the special double confluent
Heun equation (which may be referred as sDCHE, accordingly) and the term is here
adopted for definiteness as well.

The clarification of relationship between the equations (5) and (1) can be built
upon the study of the eigenfunctions of the operator (3). The principal point is
here that any such eigenfunction is automatically a solution to Eq. (5) (for the
appropriate value of the parameter λ). Indeed, the following statements holds true:

Lemma 2. An eigenfunction of the operator LC with eigenvalue ν ­“ 0 obeys Eq. (5)
with λ “ ν2{p2ωq2 ´ µ2. If the parameter link (6) is met then ν2 “ 1.

Proof. The lemma assertion follows in obvious way from the same identity (7). �

Remark 1. Omitting above the case ν “ 0, we are not at risk to forfeit any
non-trivial relationship since, obviously, the only eigenfunction of LC with null
eigenvalue is the exponent Epzq “ exppµzq which can at any moment be taken
into account, if necessary.

Motivated by the two above lemmas, we may adopt the set of solutions to Eq. (5),
which constitutes a 2-dimensional linear space, as the functional space Ω on which
the action of the operator LC has to be considered.

3



Remark 2. In canonical representation (i.e. when resolved with respect to the
higher derivative) the linear differential equation (5) suffers of the only singularity
situated at z “ 0. Its solutions are thus holomorphic everywhere except at zero.
The singularity of the equation at the center of C is irregular. However solutions
holomorphic thereat may, in principle, exist. This can occur only on some special
subset of “tuned” constant parameters of lower dimension, see Ref.s [12, 13, 14].
Moreover, even on it, only a single (unique up to a constant factor) solution is
regular at zero whereas all other ones are not. It means that, when considering
the common domain Θ of functions constituting Ω, one must remove from it
the center z “ 0. Then, starting from the complex plane, the punctured one
C˚ “ C K 0 arises. It is not simply connected and as a consequence a generic
solution E to Eq. (5), excluding the mentioned exceptional cases of regularity
at zero, can not live on it. The point is that the analytic continuation of a
generic solution to Eq. (5) along non-homotopic curves evading zero may produce
different values at the point where they meet, leading therefore to a multi-valued
function. The non-uniqueness arises here since the genuine domain for solutions
to Eq. (5) is not a subset of C (such as C˚) but a Riemann surface reducing here

to the universal cover C̃˚ of C˚. This surface is diffeomorphic to C, the covering

projection Π : C̃˚ » C
expÞÑ C˚ being realized by the natural exponential function.

As a consequence, when lifted to C̃˚, the map

C : z ÞÑ z´1 (8)

involved in the transformation (3) in the form of replacement of the free variable
loses the uniqueness of its “implementation”. Indeed, C may now have only a
single fixed point. Hence one has either Cp1q “ 1 and Cpzq ­“ z for all the other
points z of the E domain including the (lifts of) ´1, or it holds Cp´1q “ ´1 and
Cpzq ­“ z otherwise. There is therefore no unaffected point playing role of ´1 in
the former case (the first C “implementation” ) and similarly for `1 in the latter
case (for the alternative “implementation” of the map C).
These subtleties go beyond the scope of the present notes, however. In order

to focus on the principal points of the relationship in question, we restrict our
consideration to a subset (subdomain) of the genuine domain of functions veri-
fying Eq. (5). Namely, we consider it to be the open set obtained from C˚ by a
removal of the ray of negative reals, Θ˚ “ C˚

KRă0. The resulting subdomain
is simply connected and any function holomorphic in it, including solutions to
Eq. (5), is single-valued. Besides, the behavior of the transformation C remains
(locally) “standard” and claims no precautions, all this at a price of the dropping
out from consideration the value ´1 R Θ˚ of the argument z as well as all the
other negative real numbers.

Let us consider now the properties of the operator LC in more details and show
how they enables one to establish the explicit form of the relationship of the equa-
tions (5) and (2) of which the latter is directly related, in turn, to Eq. (1).

Eigenfunctions of the Operator LC and Their Properties

Let the equation (5) with fixed parameters ℓ, λ, µ such that λ`µ2 ­“ 0 be given.
Then one can resolve Eq. (6) with respect to ω (the scaling parameter in (3)), i.e.
select it obeying the equation

4ω2pλ ` µ2q “ 1.
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Given such ω, we define the operator LC by the formula (3) treated “as it stands”
in vicinity of z “ 1 and assume that it acts on the linear space Ω of solutions to
Eq. (5). In view of the lemma 2, an eigenfunction of the operator LC belonging
to Ω may only correspond to either the eigenvalue `1 or to the eigenvalue ´1.
We denote such eigenfunctions (if they exist) by the the symbols Et̀ u and Et́ u,
respectively.

The following simple but important statements hold true.

Lemma 3.

‚ If a solution E “ Epzq to Eq. (5) is an eigenfunction of the operator LC

then it solves the Cauchy problem for this equation posed at z “ 1 with the
initial data obeying one of the two constraints

E1p1q “ p˘p2ωq´1 ` µqEp1q. (9)

These correspond to the eigenvalues ˘1, respectively.
‚ The eigenfunctions Et̆ u, if exist, obey the functional equation

Et̀ upzqEt́ up1{zq ` Et́ upzqEt̀ up1{zq “ 2 eµpz`1{z´2qEt̀ up1qEt́ up1q. (10)

Corollary 4.

‚ Et̆ up1q ­“ 0 for any eigenfunction of the operator LC .
‚ There may exist not more than two, up to constant factors, eigenfunctions

of the operator LC ; their eigenvalues are distinct and amount to ˘1.

Accordingly, the two eigenfunctions Et̆ uare linearly independent and hence provide
the basis of the linear space Ω of solutions to Eq. (5).

Lemma proof. In accordance with lemma 2, each eigenfunction of the operator LC

verifies Eq. (5). Next, by definition, the property of being an eigenfunction of LC

with the eigenvalue either `1 or ´1 is equivalent to the equalities

E1
t̆ upzq “ ˘p2ωq´1z´ℓ´1Et̆ up1{zq ` µEt̆ upzq, (11)

respectively. Evaluating them at z “ 1, one obtains Eq.s (9).
Further, considering Eq. (10), let us denote as U “ Upzq the difference of its left-

and right-hand sides. Computing its derivative and eliminating the derivatives E1
t̆ u

by means of the equations (11), the equation U 1 “ µ ¨ pz ´ 1{zq ¨ U arises. Since
Up1q “ 0, obviously, this linear homogeneous first order ODE forces U to coincide
with its trivial null solution implying Upzq ” 0. The lemma is proven. �

Remark 3. Yet another quite predictable constraint which the eigenfunctions Et̆ u

obey reads

E1
t̀ upzqEt́ upzq ´ Et̀ upzqE1

t́ upzq “ ω´1z´ℓ´1eµpz`1{z´2qEt̀ up1qEt́ up1q

It follows from consideration of the Wronskian for Eq. (5) which applies since the
eigenfunctions Et̆ u verify the latter.
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Explicit Representations of Eigenfunctions of LC

As it has been mentioned, the eigenfunctions of the operator LC can be utilized
for description of the space of solutions to Eq. (5). However, we should show, at
first, that they do exist. We remind that the defining property of the functions
Et̆ u is equivalent to the claim of fulfillment of one of the equations (11). The latter
are however not the “classical” ODEs since an unknown function involved therein is
invoked with two distinct arguments. Hence the corresponding standard theorem
of existence of solutions of ODE is here not directly applicable and a separate proof
of existence of eigenfunctions of the operator LC has to be given. To that end, let
us consider the following

Lemma 5. Let the holomorphic function Φ “ Φpzq defined in a simply connected
vicinity of the point z “ 1 obey the Riccati equation (cf. Eq. (2))

zΦ1 ` p2iωq´1pΦ2 ´ 1q “ pℓ ` µpz ` z´1qqΦ, (12)

and the holomorphic function Ψ “ Ψpzq obey the (subsidiary) decoupled linear ho-
mogeneous first order ODE

2iωzΨ1 “ pΦ ` Φ´1qΨ. (13)

Let also

|Φp1q| “ 1 and Ψp1q “ 1. (14)

Then the expressions

Et̆ upzq “ 2´1eµpz`1{z´2q{2z´ℓ{2ˆ
$

’

’

%

1 ˘ i?
2

pΨpzqΦpzqq1{2 ` 1 ¯ i?
2

pΨp1{zq{Φp1{zqq1{2

,

/

/

-

(15)

determine the two eigenfunctions of the operator LC with eigenvalues ˘1, respec-
tively, provided neither of them is the identically zero function. In the exceptional
case pointed out, another function from the pair (15) is still a proper (non-trivial)
eigenfunction of LC .

Proof outline. To verify the asserted property of a function Et̆ upzq (where one
among the two sign symbols has been chosen and fixed), one has to compute its
derivative and to examine the fulfillment of the corresponding equation among
Eq.s (11). In our case, utilizing the equations (12) and (13), the aforementioned
derivative is expressed in terms of products of the same functions Φ and Ψ with the
same arguments z and 1{z which are involved in the definition (15). Subsequent
algebraic simplification establishes the identical vanishing of the coefficients in front
of all the remaining products of Ψ and Φ. �

The existence of the functions Φ and Ψ in vicinity of the point z “ 1 is ensured
by the wellknown theorem of existence of local solution of Cauchy problem for
ordinary differential equations. In case of Eq.s (12) and (13), one can state even
more according to the following

Lemma 6. Let the parameters ℓ, µ, ω be real and ω ą 0. In case of initial conditions
obeying the constraints (14), the solution Φpzq, Ψpzq of the Cauchy problem for the
system of equations (12) and (13) exists in some vicinity of the “punctured unit
circle”

8S1 “ tz P C, |z| “ 1, z ­“ ´1u, (16)
6



both functions Φpzq, Ψpzq having also no zeros therein.

Proof. Let us restrict Eq. (12) to the unit circle embedded into C and parameterized
by means of the substitutions

z Ø eiωt, Φpzq Ø eiϕptq, t P Ξ “ p´πω´1, πω´1q Ă R. (17)

Then we obtain exactly Eq. (1) with the parameters

A “ 2ωµ, B “ ωℓ. (18)

Similar conversion of Eq. (13) leads to the equation

9P ptq “ cosϕptq,
where the function P ptq is related to the original unknown Ψpzq through the equa-
tion

eP ptq “ Ψpeiωtq.
For any real A,B, and ω, Eq. (1) is solvable on any segment of the real axis

for any real initial data ϕpt0q “ ϕ0 set up at any prescribed real t0. Moreover,
the corresponding solution is a real-analytic function. Accordingly, let some real
ϕ0 be fixed and let the real-analytic function ϕptq verify Eq. (1) on the segment
Ξ, obeying the initial condition ϕp0q “ ϕ0. Let us also introduce the real-analytic

function P ptq “
şt

0
cosϕpt̃q d t̃ on the same domain Ξ.

The analytic continuation of the map (C Ą R ĄqΞ Q t ÞÑ eiωt P 8S1pĂ C˚q
establishes the holomorphic diffeomorphism of some vicinity of the segment Ξ to a
vicinity of “the punctured unit circle” 8S1 (16), the former being in smooth bijection
with the latter. The holomorphic functions Φ and Ψ arising as the induced pullbacks
of analytic continuations of the real analytic functions eiϕptq and eP ptq, respectively,
verify Eq.s (12), (13). By definition, they have no zeros on 8S1; moreover, |Φ| “ 1

whereas Ψ is real and strictly positive therein. Hence there exist no their zeros in
some vicinity of 8S1 as well. Besides, in accordance with definitions and the posing
of the Cauchy problem for the function ϕ, it holds

Φp1q “ eiϕ0, Ψp1q “ 1 (19)

(where ϕ0 can be chosen arbitrary real). Eq.s (14) are thus also fulfilled. The
lemma is proven. �

Remark 4. The non-uniqueness of the square root function involved in Eq. (15)
is to be eliminated by means of the assignment to the functions Φ1{2, Φ´1{2,
and Ψ1{2 (the pullbacks of) the analytic continuations of the functions exp i

2
ϕptq,

exp ´i
2
ϕptq, and exp 1

2

şt

0
cosϕpt̃qdt̃, respectively.

Remark 5. The requirement of the above lemma claiming of the constant pa-
rameters to be real is motivated by Eq.s (18), in which the constants A,B, ω

are constrained by their meaning inferred from physical or geometrical problems
in which Eq. (1) is utilized. Similarly, the variable t is there interpreted as a
(rescaled dimensionless) time or length. While maintaining contact with applica-
tions, we assume below the above reality conditions to be fulfilled throughout. At
the same time, it is worth noting that the existence results (and most formulas
evading application of complex conjugation) remain valid, at least, for sufficiently
small variations of the parameters shifting them from the real axis to C.
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We see that any solution to Eq. (1) generates a pair of eigenfunctions of the
operator LC which are defined by Eq.s (15) in terms of the functions Φpzq and
Ψpzq the above lemma operates with. However, one of them (not both, though)
may prove to be identical zero. To clarify conditions of appearance of such a
“pathology”, we need the following property of the eigenfunctions of LC .

Lemma 7. Let us define the sequence of pairs of functions takpzq, bkpzqu,
k “ 1, 2, . . . , holomorphic everywhere except zero, by means of the following recur-
rent scheme:

a1 “ µ, b1 “ ˘p2ωq´1z´ℓ´1; (20)

ak`1 “ µak ¯ p2ωq´1zℓ´1bk ` a1
k,

bk`1 “ ˘p2ωq´1z´ℓ´1ak ´ µz´2bk ` b1
k.

(21)

Let also the functions Et̆ u obey the equations LCEt̆ u “ ˘Et̆ u. Then their deriva-
tives admit the following representations:

dk

dzk
Et̆ upzq “ akpzqEt̆ upzq ` bkpzqEt̆ up1{zq, k “ 1, 2, . . . (22)

In particular, it holds

dk

dzk
Et̆ up1q “ pakp1q ` bkp1qqEt̆ up1q, k “ 1, 2, . . .

Proof. Let us apply the mathematical induction. The induction base, the case
k “ 1, reduces to the equality which, in view of (20), is equivalent just to the
corresponding equation LCEt̆ u “ ˘Et̆ u fulfilled by construction. Next, let us
compute the derivative of the both sides of Eq. (22) for some fixed k, eliminating
afterwardsE1

t̆ uon the right by means of Eq. (22) get with k “ 1, and eliminating the

derivatives a1
k, b

1
k with the help of Eq.s (21). As it can be shown by a straightforward

computation, the result reduces to the same equation (22) in which the index k is
replaced by k ` 1. The induction step has thus been carried out and the lemma
proof is accomplished. �

Corollary 8. The function Et̆ upzq defined by Eq. (15) is the identically zero func-
tion if and only if Et̆ up1q “ 0.

We apply the corollary 8 to clarification of the conditions leading to identically
zero function Et̆ u defined by Eq. (15). Indeed, substituting therein z “ 1 and
taking into account Eq.s (19), one gets

Et̆ up1q “ ¯ sin 1
2

pϕ0 ¯ π{2q.
Hence one of the functions Et̀ u and Et́ u can, indeed, be identical zero and this
takes place if and only if ϕ0 “ π{2 pmod πq.

Remark 6.

‚ The varying of the initial value ϕ0 “ ϕp0q of a solution to Eq. (1) results in
appearance of some additional constant factors. This is the only distinction
of the functions Et̆ u, obtained by means of Eq.s (15), from the “fiducial”
ones corresponding to, say, ϕ0 “ 0. Besides, with respect to the case ϕ0 “ 0,
the absolute values of these ϕp0q-dependent factors do not exceed 1.

8



‚ In case of the identical vanishing of one of the functions Et̆ u, the corre-
sponding sum in brackets in Eq.s (15) vanishes. Then the same sum but
with the opposite choice of the signs amounts to twice its first summand.
Accordingly, the following factorized representation of the nontrivial eigen-
function Eẗu still produced by one of Eq.s (15) arises:

Eẗu 9 peµpz`1{z´2qz´ℓΨpzqΦpzqq1{2.

As we have mentioned, this situation occurs if ϕ0 “ π{2 pmod πq.

Resuming, we have our first key

Theorem 9. Let a solution ϕptq to the equation (1) on the segment
Ξ “ p´πω´1, πω´1q be given. Then the analytic continuations of the functions

exppiϕptqq and expp
şt

0
cosϕptqdtq from Ξ to some vicinity of Ξ in C, converted by

means of the transformation (17) to the functions Φpzq and Ψpzq holomorphic in
the corresponding vicinity of the punctured circle (16), determine therein the two
solutions Et̆ u “ Et̆ upzq to Eq. (5) by means of the formulas (15). The functions
Et̆ u are linearly independent unless one of them is the identically zero function
that takes place if and only if either ϕp0q “ π{2 pmod 2πq (leading to Et̀ upzq ” 0)
or ϕp0q “ ´π{2 pmod 2πq (leading to Et́ upzq ” 0, respectively). In case of linear
independence the functions Et̆ u constitute the basis of the space Ω of solutions to
Eq. (5).
The functions Et̆ u are also the eigenfunctions with eigenvalues ˘1, respectively,
of the linear operator LC defined by Eq. (3); LC is, thus, represented in the basis
tEt̀ u, Et́ uu by the diagonal matrix diagp1,´1q. The linear space Ω is invariant
with respect to the operator LC which acts on it as an involutive automorphism.

Corollary 10. The eigenfunctions of the operator LC with eigenvalues ˘1 are
exactly the non-trivial solutions to Eq. (5) which obey the initial data constraint
(9).

Remark 7. Since the operator LC is involutive any non-trivial solution to Eq. (5)
is either its eigenfunction itself or the expressions const ¨ pE ˘LCEq constitute a
pair of such eigenfunctions which are linearly independent. Adjusting the above
factor const, they can be made real (self-conjugated, see the next section).

Self-Conjugation Property of Eigenfunctions of the Operator LC

The explicit formulas for eigenfunctions of the operator LC enables one an easy
establishing of their invariance with respect to the complex conjugation. However,
the analogous relations for the functions Φ and Ψ involved in Et̆ u definition (15)
have to be derived beforehand. To that end, let us introduce the following auxiliary
working definition.

Definition. Let Υpzq be any function holomorphic in some connected and simply
connected open subset of C containing the point z “ 1. We shall name the function

Υ̃pzq “ Υp1{zq (23)

dual to the function Υpzq.

Remark 8. The above definition obviously implies that
9



‚ The function dual to a holomorphic function is also holomorphic in some
open set containing the point z “ 1; the intersection of the domains of Υ
and Υ̃ is open, non-empty, and also contains 1.

‚ “The duality map” ˜: Υ ÞÑ Υ̃ is involutive; in particular, the function Υpzq
is, in turn, dual to the function Υ̃pzq.

Lemma 11. Let the holomorphic function Φ “ Φpzq be a solution to Eq. (12)
obeying the constraint |Φp1q| “ 1 (cf. Eq.s (14)). Then

ΦpzqΦ̃pzq “ 1. (24)

To prove the lemma, we note first that the function Φ̃ “ Φ̃pzq dual to solution Φpzq
to Eq. (12) obeys the equation

zΦ̃1 ` pi2ωq´1pΦ̃2 ´ 1q “ ´pℓ ` µpz ` z´1qqΦ̃. (25)

Then a straightforward computation shows that, as a consequence of (12) and (25),
it holds

d

dz
pΦpzqΦ̃pzq ´ 1q “ p´2iωzq´1pΦpzq ` Φ̃pzqqpΦpzqΦ̃pzq ´ 1q. (26)

Now let us introduce an auxiliary sequence of functions δn (in fact, polynomials)

of the three arguments z,Φ, and Φ̃ which all are regarded here, for a time, as
free complex variables. (It is worth noting that the functions δn depends also on
the parameters ℓ, µ, ω but these their arguments will be suppressed for the sake of
the symbolism simplicity.) The functions δn are defined by means of the following
recurrent scheme:

δ1 “ zpΦ ` Φ̃q, (27)

δn`1 “ pΦ ` Φ̃ ` 4iωnqδn ´ 2iωz
2 Bδn

Bz
(28)

`pzpΦ2 ´ 1q ´ 2iωpℓz ` µpz2 ` 1qqΦq
Bδn
BΦ

`pzpΦ̃2 ´ 1q ` 2iωpℓz ` µpz2 ` 1qqΦ̃q
Bδn

BΦ̃
, n “ 1, 2, ¨ ¨ ¨

We utilize them for introduction of the functions

Λnpz,Φ, Φ̃q “ p´2iωz2q´nδnpz,Φ, Φ̃qpΦΦ̃ ´ 1q, n “ 1, 2, ¨ ¨ ¨ . (29)

Lemma 12. Under the conditions of the lemma 11, it holds

d

dz
Λnpz,Φpzq, Φ̃pzqq “ Λn`1pz,Φpzq, Φ̃pzqq, n “ 1, 2 ¨ ¨ ¨ . (30)

Proof. It is easy to show that, in view of Eq. (12) and Eq. (25), the above assertion
is equivalent to Eq. (27) for n “ 1 and to Eq. (28) for n ą 1. �

Corollary 13. Under the conditions of the lemma 11, it holds

dn

dzn
pΦpzqΦ̃pzq ´ 1q “ Λnpz,Φpzq, Φ̃pzqq, n “ 1, 2, ¨ ¨ ¨ . (31)

Proof. In case n “ 1 the above equation follows from Eq.s (26) and (27), and the
definition (29). It is extended to higher derivative orders n “ 2, 3, ¨ ¨ ¨ by means of
the mathematical induction based on Eq. (30). �

Corollary 14. Under the conditions of the lemma 11, all the derivatives of the
function ΦpzqΦ̃pzq ´ 1 vanish at the point z “ 1.
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Proof. In accordance with Λn definition (29) and Eq. (31), for any n “ 1, 2, ¨ ¨ ¨ the

derivative dnpΦpzqΦ̃pzq ´ 1q{dzn factorizes into a function holomorphic in vicinity

of the point z “ 1 times the function ΦpzqΦ̃pzq ´ 1 itself. The latter is zero at the

unity (since Φp1qΦ̃p1q “ |Φp1q|2 “ 1); accordingly, the above multiple derivative is
zero thereat as well. Thus all such derivatives at z “ 1 are null. �

Proof of the lemma 11 . Since the function ΦpzqΦ̃pzq ´ 1 is analytic at the point
z “ 1, the above corollary implies its identical vanishing and thus the validity of
the assertion of the lemma 11. �

Similarly to above, let us consider how the function Ψ̃ “ Ψ̃pzq dual to solution
Ψ “ Ψpzq to Eq. (13) is related to Ψ. A straightforward computation establishes
the fulfillment of the equation

2iωzΨ̃1 “ pΦ̃ ` Φ̃´1qΨ̃. (32)

As a consequence, it holds

d

dz
pΨ ´ Ψ̃q “ p4iωzq´1pΦ ` Φ̃qpΨ ´ Ψ̃q, (33)

provided the functions Φ “ Φpzq and Φ̃ “ Φ̃pzq (mutually dual) obey Eq. (24). Let

us notice now that, as the functions Φ and Φ̃ are given, Eq. (33) can be regarded
as a linear homogeneous first order ODE for the holomorphic function δ “ δpzq “
Ψpzq ´ Ψ̃pzq which is correctly defined in the intersection of the domains of the

functions Φ and Φ̃ (with zero removed, if necessary). As a consequence, one may
claim that the function δ either has no zeros in its domain or is the identically zero
function. But if the function Ψpzq complies with “the initial condition” (19) then

Ψ̃p1q “ 1 as well implying δp1q “ 0. Thus δpzq ” 0 at least in a connected vicinity
of the point z “ 1. We have therefore proven the following

Theorem 15. Let the functions Φpzq and Ψpzq be holomorphic in some connected
and simply connected open subset of C˚ containing the point z “ 1, obeying therein
the system of equations (12), (13); let the constraints (14) be also fulfilled. Then
the equation (24) and the equation

Ψ̃pzq “ Ψpzq (34)

hold true.

The lemma 6 and the above theorem lead to the following

Corollary 16. Under the conditions of the theorem 15, it holds |Φ| “ 1 and ImΨ “
0 on “the punctured unit circle” (16).

Proof. Since z “ z´1 on the unit circle in C, the assertions to be proven follow
from Eq.s (24) and (34). �

Remark 9. We have shown, in particular, that any holomorphic functions Φ,Ψ

obeying conditions of the theorem 15 determine the smooth real valued functions
ϕptq, P ptq verifying the equations (1) and (19), respectively.

Now a short straightforward computation leaning on Eq.s (24) and (34) proves
the following

11



Theorem 17. Let the functions Φpzq and Ψpzq obey the system of equations (12),
(13) and the constraints (14). Then the functions Et̀ upzq and Et́ upzq defined by
Eq.s (15) are real (self-conjugated), i.e. obey the constraints

Et̆ upzq “ Et̆ upzq. (35)

Representation of general solution to the equation of RSJ model in

terms of solutions to special double confluent Heun equation

Having outlined the way of constructing of solutions to Eq. (5) from solutions to
Eq. (1), we proceed with description of the inverse relationship. It can be expressed
in the form of the following

Theorem 18. Let the holomorphic functions Et̀ upzq and Et́ upzq be the real (self-
conjugated, see Eq. (35)) eigenfunctions of the operator LC defined by Eq. (3) with
the corresponding eigenvalues ˘1; let also α be an arbitrary real constant. We define
the holomorphic functions Φpzq and Θpzq as follows:

Φpzq “ ´iz
l

cosp 1

2
αqEt̀ upzq ` i sinp 1

2
αqEt́ upzq

cosp 1

2
αqEt̀ up1{zq ´ i sinp 1

2
αqEt́ up1{zq

, (36)

Θpzq “ ´i
cosp 1

2
αqEt̀ u

2p1qEt́ upzq ` i sinp 1

2
αqEt́ u

2p1qEt̀ upzq

Et̀ up1qEt́ up1q
`

cosp 1

2
αqEt̀ upzq ` i sinp 1

2
αqEt́ upzq

˘ . (37)

Then

‚ the continuous function ϕptq of the real variable t determined by the equation

eiϕptq “ Φpeiωtq (38)

is well defined, real valued, smooth and verifying Eq. (1);
‚ the functions P ptq and Qptq defined as follows

P ptq “ ´ logp´ImΘpeiωtqq, Qptq “ ReΘpeiωtq
are well defined, real valued, smooth and are related to the function ϕptq by
the subsequent quadratures as follows

P ptq “
ż t

0

cosϕpt̃q d t̃, Qptq “
ż t

0

e´P pt̃q sinϕpt̃q d t̃. (39)

Remark 10. In view of the lemma 5, the both functions Et̆ upzq obey Eq. (5) and
one learns from lemmas 5 and 6 that they always exist. Hence, the functions
Φpzq and Θpzq, as well as the functions ϕptq, P ptq, Qptq which they give rise to,
are built (and always can be built) upon solutions of this equation.

Theorem proof. Let us notice that since the functions Et̆ upzq obey a linear homoge-
neous second order differential equation with coefficients holomorphic everywhere
except at zero (Eq. (5) times z´2), they are themselves holomorphic everywhere ex-
cept, perhaps, at zero. Besides, in accord with the corollary 8, Et̀ up1q ­“ 0 ­“ Et́ up1q
that eliminates the source of an a priori conceivable fault of the definition (37).

Now let us consider the identity

ieiϕptq
`

9ϕptq ` sinϕptq ´ ωpℓ ` 2µ cosωtq
˘

”
`

eiϕptq ´ Φpeiωtq
˘‚

`
´

2´1peiϕptq ` Φpeiωtqq ´ iωpℓ ` 2µ cosωtq
¯

`

eiϕptq ´ Φpeiωtq
˘

,
(40)

which takes place for arbitrary smooth function ϕptq and which is proven by means
of straightforward computation taking into account the Φ definition (36) and Eq.s (11).
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Thus it follows from (40) that if Eq. (38) is fulfilled then ϕptq verifies Eq. (1) with
A “ 2ωµ,B “ ωℓ (cf. Eq.s (18)).

Further, let us note that since the functions Et̆ upzq are real, one obtains in case
of a real α the following equalities:

Φpzq “ iz̄l
cosp1

2
αqEt̀ upz̄q ´ i sinp1

2
αqEt́ upz̄q

cosp1
2
αqEt̀ up1{z̄q ` i sinp1

2
αqEt́ up1{z̄q ” Φp1{z̄q´1.

For z “ eiωt and real t, it holds 1{z̄ “ z. Accordingly, one infers from above

that Φpeiωtq “ Φpeiωtq´1 and, consequently, |Φpeiωtq| “ 1. Then Eq. (38) yields
|eiϕptq| “ 1, and the real-valued smooth function ϕptq is determined in terms of the
logarithm of the non-zero smooth function Φpeiωtq in the standard way. The first
assertion of the theorem is therefore proven.

Addressing now the second assertion, let us introduce, in addition to the function
Θpzq, the function Θ̃pzq as follows:

Θ̃pzq “ i
cosp1

2
αqEt̀ u

2p1qEt́ up1{zq ´ i sinp1
2
αqEt́ u

2p1qEt̀ up1{zq
Et̀ up1qEt́ up1q

`

cosp1
2
αqEt̀ up1{zq ´ i sinp1

2
αqEt́ up1{zq

˘ . (41)

The functions Θ “ Θpzq and Θ̃ “ Θ̃pzq obey the following system of the two
linear homogeneous first order differential equations

iωzΘ1 “ ´Φ´1pΘ ´ Θ̃q, (42)

This is the direct consequence of definitions and Eq.s (11).
A straightforward verification also based on definitions shows that for real eigen-

functions Et̆ u (and for real constant α) it holds Θpzq “ Θ̃p1{z̄q, i.e. the function Θ̃

defined by means of a separate formula (41) is actually dual to the function Θ (see

Eq. (23)). As a consequence, it holds Θ̃peiωtq “ Θpeiωtq. Then Eq.s (42) yield the
equation

d

d t
Θpeiωtq “ ´Φpeiωtq´1

`

Θpeiωtq ´ Θpeiωtq
˘

.

Separating its real and imaginary parts and taking into account Eq. (38), one gets

d

d t
ReΘpeiωtq “ ´ ImΘpeiωtq sinϕptq,

d

d t
ImΘpeiωtq “ ´ ImΘpeiωtq cosϕptq.

In case of a given real valued function ϕptq, the latter equation determining ImΘ

can be integrated by means of a quadrature. Then the former one is integrated by
means of another quadrature. The integration constants are fixed making use of
the initial conditions ReΘpeiωtq|t“0 “ ReΘp1q “ 0, ImΘpeiωtq|t“0 “ ImΘp1q “ ´1

which follow from the Θ definition (37) evaluated at the point z “ 1. The ultimate
result of the integrations is just the formulas (39). The theorem proof has been
accomplished. �

Let us note that for t “ 0 Eq.s (38) and (36) are equivalent to the equation

Et́ up1q sinp1
2
ϕp0q ´ π

4
q sinp1

2
αq ` Et̀ up1q cosp1

2
ϕp0q ´ π

4
q cosp1

2
αq “ 0. (43)

Obviously, it is solvable with respect to the angular parameter α for any given real
ϕp0q (recall that the values of the functions Et̆ u are real when their argument is
real and Et̆ up1q ­“ 0). Conversely, for any α P r0, 2πq some “initial data” ϕ0 “
ϕp0q P r0, 2πq obeying Eq. (43) can be found. We obtain, therefore, the following

13



Corollary 19. Eq.s (38), (36) enable one to obtain any solution to Eq. (1), repre-
senting it in terms of solutions to Eq. (5).

Conclusion

We have here shown that any solution to the equation (1), utilized for the mod-
eling of dynamics of a Josephson junction, can be converted to solutions to Eq. (5)
by means of a quadrature and analytic continuation of two real analytic functions
(theorem 9). Moreover, in a generic case, a basis of the space of solutions to Eq. (5)
can then be produced and it is constituted by the eigenfunctions of the operator
LC (defined by Eq. (3)); moreover, these are real (self-conjugated, see theorem 17).

Conversely, let the two real eigenfunctions of the operator LC with eigenvalues
`1 and ´1 be given. Then all the solutions to Eq. (1) can be obtained making
use of the formulas (36) and (38) (theorem 18, corollary 19). A similar formula,
Eq. (37), yields explicit representations of the integrals (39) which are involved in
the criterion of the so called phase-lock [15, 16], the remarkable property manifested
under certain conditions by solutions to Eq. (1) [4, 5].

In total, the relationships indicated above establish the explicit 1-to-1 correspon-
dence between solutions spaces of Eq. (5) and Eq. (1), essentially, because ambiguity
still retained can be considered trivial.

It is also worth noting that the eigenfunctions of the operator LC (as well as this
operator on its own, of course) are the important tools proving to be efficient in
investigation of various problems related to sDCHE (5). In particular, the following
explicit matrix representation M of the monodromy transformation1 of its space of
solution with respect to the basis tEt̀ u, Et́ uu can be obtained2:

M “ e4µ
`

2Et̀ up1qEt́ up1q
˘´1 ˆ (44)

˜

Et̀ up
ð
-1qEt́ up

ð
-1 q ` Et̀ up

ñ

-1qEt́ up

ñ

-1q Et̀ up
ð
-1 q2 ´ Et̀ up

ñ

-1q2
Et́ up

ð
-1 q2 ´ Et́ up

ñ

-1q2 Et̀ up
ð
-1qEt́ up

ð
-1 q ` Et̀ up

ñ

-1qEt́ up

ñ

-1q

¸

.

Here the symbols
ð
-1 and

ñ

-1 denote the preimages of ´1 P C˚ in the Riemann
surface C̃˚, the domain of generic solutions to Eq. (5), “branching” over C˚ around
“the axis” passing through the removed zero (see the remark 2). More exactly, these
preimages of ´1 are selected as the closest ones to the preimage of 1, the fixed point
of lifting of the transformation (8), which we may denote just as 1. Of them,

ð
-1

is reached from 1 along an arc passed in the counterclockwise direction while for

ñ

-1 similar arc is directed clockwise. The above formula shows, in particular, that
the diagonal elements of M are real and coincide while the off-diagonal ones are
pure imaginary. It also follows from the equation (10) that detM “ 1. The two
eigenvalues of the matrix (44) coincide if and only if one of its off-diagonal elements
vanishes and this observation can be utilized as the base of yet another criterion of

1Here the monodromy transformation sends a solution to Eq. (5) to another its solution which
is obtained from the former by means of point-wise analytic continuation along counterclockwise
oriented full circle arcs encircling the singular center z “ 0. On the set of solutions to Eq. (1),
the monodromy transformation of solutions to Eq. (5) is converted to the map ϕptq ÞÑ Mϕptq “
ϕpt ` 2π{ωq. Given M, the making use of Eq.s (15), (36), (37), etc enables one to obtain an
explicit representation of this transformation.

2The formula (44) had been derived in case of integer orders ℓ. The cases of other ℓ require
additional examination.
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the phase-lock behavior for solutions to Eq. (1), this time referring to properties of
eigenfunctions of the operator LC .
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