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Abstract

We study effects of perturbation Hamiltonian to quantum spin systems which can include quenched

disorder. Model-independent inequalities are derived, using an additional artificial disordered per-

turbation. These inequalities enable us to prove that the variance of the perturbation Hamiltonian

density vanishes in the infinite volume limit even if the artificial perturbation is switched off. This

theorem is applied to spontaneous symmetry breaking phenomena in a disordered classical spin model,

a quantum spin model without disorder and a disordered quantum spin model.

1 Introduction

We study quantum spin systems on a finite set VN := [1, N ] ∩ Z. A spin operator Sp
j (p = x, y, z) at a

site j ∈ VN on a Hilbert space H :=
⊗

j∈VN
Hj is defined by a tensor product of the spin matrix acting

on Hj ≃ C2S+1 and unities, where S is an arbitrary fixed half integer. These operators are self-adjoint
and satisfies the commutation relations

[Sx
j , S

y
k ] = iδj,kS

z
j , [Sy

j , S
z
k ] = iδj,kS

x
j , [Sz

j , S
x
k ] = iδj,kS

y
j ,

and the spin at each site i ∈ VN has a fixed magnitude

∑

a=x,y,z

(Sa
j )

2 = S(S + 1)1.

Let us consider an unperturbed Hamiltonian HV (S), which can include also a sequence of i.i.d. random
variables J = (JX)X⊂VN

as quenched disorder. One can assume a symmetry of the Hamiltonian HV (S),
if one is interested in symmetry breaking phenomena. To detect a spontaneous symmetry breaking, long-
range order of order operator hV (S) is utilized in the symmetric Gibbs state. Although the symmetric
Gibbs state with long-range order is mathematically well defined, such state is unstable due to strong
fluctuation and it cannot be realized. On the other hand, it is believed that a perturbed Gibbs state with
infinitesimal symmetry breaking Hamiltonian is stable and realistic. Consider a perturbed Hamiltonian
as a function of spin operators S = (Sp

j )j∈VN ,p=x,y,z

H := HV (S,J)−NλhV (S), (1)

where hV (S) is a bounded operator and λ ∈ R. To study spontaneous symmetry breaking, one can regard
hV (S) as an order operator which breaks the symmetry. Assume an upper bound on the operator hV (S)

‖hV (S)‖ ≤ Ch, (2)

where the operator norm is defined by ‖O‖ := supφ∈H |(φ,Oφ)| for an arbitrary linear operator O on H
and Ch is a constant independent of the system size N . For instance, hV is a spin density

hV (S) =
1

N

∑

j∈VN

Sz
j .

In the present paper, to evaluate correlations of order operators in their perturbing models, we consider
an extra perturbation Hamiltonian with a quenched disorder. Let us consider the following perturbed
Hamiltonian

H = HV (S,J)− (Nλ+Nαµg)hV (S). (3)
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where g is a standard Gaussian random variable and µ ∈ R is a coupling constant. We choose an
exponent α > 0 to take the infinite volume limit after evaluations of physical quantities depending on
the unperturbed Hamiltonian HV . The introduced random variable g is artificial and our final goal is to
study the model at µ = 0. The symbol E denotes the expectation over all random variables J, g.

Define Gibbs state with the Hamiltonian (1). For β > 0, the partition function is defined by

ZN(β, λ, µg) := Tre−βH (4)

where the trace is taken over the Hilbert space H. Let f be an arbitrary function of spin operators. The
expectation of f in the Gibbs state is given by

〈f(S)〉λ,µg =
1

ZN (β, λ, µg)
Trf(S)e−βH . (5)

Define the following function from the partition function

ψN (β, λ, µg) :=
1

N
logZN (β, λ, µg),

and its expectation
pN (β, λ, µ) := EψN (β, λ, µg).

The function −N
β
ψN is called free energy of the sample in statistical physics.

Here, we introduce a fictitious time t ∈ [0, 1] and define a time evolution of operators with the
Hamiltonian. Let O be an arbitrary self-adjoint operator, and we define an operator valued function O(t)
of t ∈ [0, 1] by

O(t) := e−tHOetH . (6)

Furthermore, we define the Duhamel expectation of time dependent operators O1(t1), · · · , Ok(tk) by

(O1, O2, · · · , Ok)λ,µg :=

∫

[0,1]k
dt1 · · · dtk〈T[O1(t1)O2(t2) · · ·Ok(tk)]〉λ,µg ,

where the symbol T is a multilinear mapping of the chronological ordering. If we define a partition
function with arbitrary self adjoint operators O1, · · · , Ok and real numbers x1, · · · , xk

Z(x1, · · · , xk) := Tr expβ

[

−H +

k
∑

i=1

xiOi

]

,

the Duhamel function of k operators represents the k-th order derivative of the partition function [5, 8, 23]

βk(O1, · · · , Ok)λ,µg =
1

Z

∂kZ

∂x1 · · ·∂xk
.

Furthermore, a truncated Duhamel function is defined by

βk(O1; · · · ;Ok)λ,µg =
∂k

∂x1 · · · ∂xk
logZ.

In the present paper, we prove the following main theorem for an arbitrary spin model with a Hamiltonian
defined by (3) at µ = 0.

Theorem 1.1 Consider a quantum spin model defined by the Hamiltonian (3) at µ = 0. The expectation
of the perturbation operator

lim
Nր∞

E〈hV (S)〉λ,0,

exists in the infinite volume limit for almost all λ and its variance in the Gibbs state and the distribution
of disorder vanishes

lim
Nր∞

E〈(hV (S)− E〈hV (S)〉λ,0)2〉λ,0 = 0, (7)

in the infinite volume limit for almost all λ ∈ R.
Theorem 1.1 implies also the existence of the following infinite volume limit for almost all λ ∈ R

lim
Nր∞

E〈hV (S)2〉λ,0 = ( lim
Nր∞

E〈hV (S)〉λ,0)2.

The perturbation operator hV is self-averaging in the perturbed model. We apply Theorem 1.1 to
spontaneous symmetry breaking phenomena in several examples.
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2 Proof

First, we assume some properties of the perturbed model defined by the Hamiltonian (1).
Assumption 1 The infinite volume limit of the function pN

p(β, λ, 0) = lim
Nր∞

pN(β, λ, 0),

exists for each (β, λ) ∈ (0,∞)× R.

Assumption 2 The variance of ψN vanishes at µ = 0 in the infinite volume limit

lim
Nր∞

E[ψN (β, λ, 0) − pN(β, λ, 0)]2 = 0,

for each (β, λ) ∈ (0,∞)× R

Assumption 3 The following commutation relation of the perturbation operator hV and the Hamiltonian
vanishes in the infinite volume limit

lim
Nր∞

‖[hV (S), [H,hV (S)]]‖ = 0.

The following lemma can be shown in the standard convexity argument to obtain the Ghirlanda-
Guerra identities [1, 4, 7, 16, 17, 21, 25] in classical and quantum disordered systems. The proof can be
done on the basis of of convexity of functions ψN , pN , p and their almost everywhere differentiability.

Lemma 2.1 For almost all λ ∈ R, the infinite volume limit

∂p

∂λ
(β, λ, 0) = lim

Nր∞
E〈hV (S)〉λ,0 (8)

exists and the following variance vanishes

lim
Nր∞

[E〈hV (S)〉2λ,0 − (E〈hV (S)〉λ,0)2] = 0. (9)

Proof. Regard pN (λ) p(λ) and ψN (λ) as functions of λ for lighter notation. Define the following functions

wN (ǫ) :=
1

ǫ
[|ψN (λ+ ǫ)− pN(λ+ ǫ)|+ |ψN (λ− ǫ)− pN(λ − ǫ)|+ |ψN (λ) − pN(λ)|]

eN(ǫ) :=
1

ǫ
[|pN (λ+ ǫ)− p(λ+ ǫ)|+ |pN(λ − ǫ)− p(λ− ǫ)|+ |pN(λ) − p(λ)|],

for ǫ > 0. Assumption 1 and Assumption 2 on ψN give

lim
Nր∞

EwN (ǫ) = 0, lim
Nր∞

eN (ǫ) = 0, (10)

for any ǫ > 0. Since ψN , pN and p are convex functions of λ, we have

∂ψN

∂λ
(λ) − ∂p

∂λ
(λ) ≤ 1

ǫ
[ψN (λ+ ǫ)− ψN (λ)]− ∂p

∂λ

≤ 1

ǫ
[ψN (λ+ ǫ)− pN (λ+ ǫ) + pN(λ + ǫ)− pN (λ) + pN (λ)− ψN (λ)

−p(λ+ ǫ) + p(λ+ ǫ) + p(λ)− p(λ)]− ∂p

∂λ
(λ)

≤ 1

ǫ
[|ψN (λ+ ǫ)− pN (λ+ ǫ)|+ |pN (λ)− ψN (λ)| + |pN(λ + ǫ)− p(λ+ ǫ)|

+|pN (λ)− p(λ)|] + 1

ǫ
[p(λ+ ǫ)− p(λ)]− ∂p

∂λ
(λ)

≤ wN (ǫ) + eN (ǫ) +
∂p

∂λ
(λ+ ǫ)− ∂p

∂λ
(λ).

As in the same calculation, we have

∂ψN

∂bλ
(λ) − ∂p

∂λ
(λ) ≥ 1

ǫ
[ψN (λ)− ψN (λ − ǫ)]− ∂p

∂λ
(λ)

≥ −wN (ǫ)− eN(ǫ) +
∂p

∂λ
(λ− ǫ)− ∂p

∂λ
(λ).
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Then,

E

∣

∣

∣

∂ψN

∂λ
(λ)− ∂p

∂λ
(λ)

∣

∣

∣
≤ EwN (ǫ) + eN (ǫ) +

∂p

∂λ
(λ+ ǫ)− ∂p

∂λ
(λ− ǫ).

Convergence of pN in the infinite volume limit implies

lim
Nր∞

E

∣

∣

∣
β〈hV (S)〉λ,0 −

∂p

∂λ
(λ)

∣

∣

∣
≤ ∂p

∂λ
(λ+ ǫ)− ∂p

∂λ
(bλ− ǫ),

The right hand side vanishes, since the convex functionp(λ) is continuously differentiable almost every-
where and ǫ > 0 is arbitrary. Therefore

lim
Nր∞

E

∣

∣

∣
β〈hV (S)〉λ,0 −

∂p

∂λ
(λ)

∣

∣

∣
= 0. (11)

for almost all λ. Jensen’s inequality gives

lim
Nր∞

∣

∣

∣
Eβ〈hV (S)〉λ,0 −

∂p

∂λ
(λ)

∣

∣

∣
= 0. (12)

This implies the first equality (8). These equalities imply also

lim
Nր∞

E|〈hV (S)〉λ,0 − E〈hV (S)〉λ,0| = 0.

The bound on hV (S) concludes the following limit

lim
Nր∞

E(〈hV (S)〉λ,0 − E〈hV (S)〉λ,0)2 ≤ 2Ch lim
Nր∞

E|〈hV (S)〉λ,0 − E〈hV (S)〉λ,0| = 0.

This completes the proof. �

Note that Lemma 2.1 guarantees the existence of the following infinite volume limit for almost all
λ ∈ R

lim
Nր∞

E〈hV (S)〉2λ,0 = ( lim
Nր∞

E〈hV (S)〉λ,0)2

Lemma 2.2 Let f be a function of spin operators bounded by constant Cf independent of N

‖f(S)‖ ≤ Cf .

For any (β, λ, µ) ∈ [0,∞)×R2, any positive integer N and k, an upper bound on the following k-th order
derivative is given by

∣

∣

∣
E
∂k

∂λk
〈f(S)〉λ,µg

∣

∣

∣
≤

√
k!Cfµ

−kNk(1−α). (13)

Proof. Let g, g′ be i.i.d. standard Gaussian random variables and define a function with a parameter
u ∈ [0, 1]

G(u) :=
√
ug +

√
1− ug′.

Define a generating function χf of the parameter u ∈ [0, 1] for f by

χf (u) := E[E′〈f(S)〉λ,µG(u)]
2, (14)

where E′ is expectation over only g′ and E is expectation over all random variables. This generating
function χf is a generalization of a function introduced by Chatterjee [3]. First we prove the following
formula

dkχf

duk
(u) = N2(α−1)kµ2k

E

[

E
′ ∂

k

∂λk
〈f(S)〉λ,µG(u)

]2

. (15)

The following inductivity for a positive integer k proves this formula.
For k = 1, the first derivative of χf is

χ′
f (u) = NαβµEE′〈f(S)〉λ,µG(u)E

′
( g√

u
− g′√

1− u

)

(f(S);hV (S))λ,µG(u)

= NαβµE
[ 1√

u

∂

∂g
E
′〈f(S)〉λ,µG(u)E

′(f(S);hV (S))λ,µG(u)

−E
′〈f(S)〉λ,µG(u)E

′ 1√
1− u

∂

∂g′
(f(S);hV (S))λ,µG(u)

]

= N2αβ2µ2
E[E′(f(S);hV (S))λ,µG(u)]

2 = N2(α−1)µ2
E

[

E
′ ∂

∂λ
〈f(S)〉λ,µG(u)

]2

,
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where integration by parts over g and g′ has been used. If the validity of the formula (15) is assumed for
an arbitrary positive integer k, then (15) for k+1 can be proved using integration by parts. The formula
(15) shows that k-th derivative of χf (u) is positive semi-definite for any k, then it is a monotonically
increasing function of u. From Taylor’s theorem, there exists v ∈ (0, u) such that

χf (u) =

k−1
∑

n=0

un

n!
χ
(n)
f (0) +

uk

k!
χ
(k)
f (v).

Each term in this series is bounded from the above by

χf (1) = E〈f(S)〉2λ,µg ≤ ‖f‖2 ≤ C2
f .

Jensen’s inequality gives

N2(α−1)kµ2k
[

E
∂k

∂λk
〈f(S)〉λ,µG(u)

]2

≤ N2(α−1)kµ2k
E

[

E
′ ∂

k

∂λk
〈f(S)〉λ,µG(u)

]2

≤ dkχf

duk
(0) ≤ k!χf(1) ≤ k!C2

f .

This completes the proof. �

Lemma 2.3 The function p(β, λ, µ) is continuous at µ = 0 for arbitrary (β, λ) ∈ (0,∞) × R and for
α ≤ 1, namely

lim
µ→0

p(β, λ, µ) = p(β, λ, 0).

Proof. Integration of the derivative function of pN over the interval (0, µ) gives

pN (β, λ, µ) − pN(β, λ, 0) =

∫ µ

0

dx
∂

∂x
pN (β, λ, x) =

∫ µ

0

dxENα−1βg〈hV (S)〉λ,xg

=

∫ µ

0

dxEN2α−1β2x(hV (S);hV (S))λ,xg =

∫ µ

0

dxxN2α−2β
∂

∂λ
E〈hV (S)〉λ,xg

≤
∫ µ

0

dxNα−1βCh = Nα−1βµCh.

We have used Lemma 2.2. The infinite volume limit can be taken for α ≤ 1, and we have the continuity
of p at µ = 0. �

Lemma 2.3 and Assumption 1 guarantee the existence of p(β, λ, µ) for each (β, λ, µ) ∈ (0,∞)× R.

Lemma 2.4 The variance of ψN (β, λ,J, µg) vanishes in the infinite volume limit for α < 1 for each
(β, λ, µ) ∈ (0,∞)× R2.
Proof. Here, we regard the function ψN (J, µg) as the i.i.d. standard Gaussian random variables
J = (JX)X⊂VN

and g. Define interpolating function

J (u) :=
√
uJ+

√
1− uJ′, G(u) :=

√
ug +

√
1− ug′

and a generating function
γ(u, µ) := E[E′ψN (J (u), µG(u))]2,

where J′ = (J ′
X)X⊂VN

and g′ are also i.i.d. standard Gaussian random variables and E′ stands for the
expectation over only J′, and g′. Its derivative in u is evaluated as

∂

∂u
γ(u, µ) =

β

N
EE

′ψN

[

∑

X⊂VN

E
′J ′

X(u)
∂ψN

∂JX

+NαµE′
( 1√

u
g − 1√

1− u
g′
)∂ψN

∂G

]

= γu(u, 0) +N2α−2β2µ2
E(E′〈hV 〉u)2 ≤ γu(u, 0) +N2(α−1)β2C2

hµ
2.

The variance of ψN is given by

EψN (β, λ, µg)2 − pN(β, λ, µ)2 =

∫ 1

0

duγu(u, µ) ≤ γ(1, 0)− γ(0, 0) +N2(α−1)C2
hβ

2µ2

≤ EψN (β, λ, 0)2 − pN (β, λ, 0)2 +N2(α−1)C2
hβ

2µ2.
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From Assumption 2, the variance of ψN (β, λ, µ) vanishes in the infinite volume limit for α < 1 and for
arbitrary (β, λ, µ) ∈ (0,∞)× R2. �

Lemma 2.4 shows that the perturbed model for µ 6= 0 and α < 1 has a healthy behavior as well as
the original model at µ = 0. Next, we prove a continuity of an expectation value of an arbitrary bounded
operator at µ = 0 in a method similar to that used in Ref [18].

Lemma 2.5 Let f be a bounded function of spin operators, such that

lim
Nր∞

E〈f(S)〉λ,µg

exists for sufficiently small |µ|. Then the following function is continuous at µ = 0 in the infinite volume
limit for α ≤ 1 for almost all λ ∈ R

lim
µ→0

lim
Nր∞

E〈f(S)〉λ,µg = lim
Nր∞

E〈f(S)〉λ,0. (16)

Proof. Integration of the derivative function over the interval (0, µ) for an arbitrary µ ∈ R gives

E〈f(S)〉λ,µg − E〈f(S)〉λ,0 =

∫ µ

0

dx
∂

∂x
E〈f(S)〉λ,xg =

∫ µ

0

dxENαβg(f(S);hV (S))λ,xg

=

∫ µ

0

dxEN2αβ2x(f(S);hV (S);hV (S))λ,xg =

∫ µ

0

dxxN2(α−1) ∂
2

∂λ2
E〈f(S)〉λ,xg.

Integration over an arbitrary interval of λ and Lemma 2.2 imply

∣

∣

∣

∫ b

a

dλ[E〈f(S)〉λ,µg − E〈f(S)〉λ,0]
∣

∣

∣
=

∣

∣

∣

∫ µ

0

dxxN2(α−1)
[ ∂

∂b
E〈f(S)〉b,xg −

∂

∂a
E〈f(S)〉a,xg

]∣

∣

∣

≤
∣

∣

∣

∫ µ

0

dxxN2(α−1)
[∣

∣

∣

∂

∂b
E〈f(S)〉b,xg

∣

∣

∣
+
∣

∣

∣

∂

∂a
E〈f(S)〉a,xg

∣

∣

∣

]∣

∣

∣
≤ 2Nα−1

∣

∣

∣

∫ µ

0

dxCf

∣

∣

∣
= 2Nα−1Cf |µ|.

The right hand side converges in the infinite volume limit for α ≤ 1. Since the integration interval (a, b)
is arbitrary, the integrand in the left hand side vanishes for almost all λ in the limit µ → 0 after the
infinite volume limit. This completes the proof. �

Lemma 2.6 The following function is continuous at µ = 0 in the infinite volume limit for α ≤ 1 for
almost all λ ∈ R

lim
µ→0

lim
Nր∞

E〈hV (S)〉2λ,µg = lim
Nր∞

E〈hV (S)〉2λ,0. (17)

Proof. Integration of the derivative function over the interval (0, µ) for an arbitrary µ ∈ R gives

E〈hV (S)〉2λ,µg − E〈hV (S)〉2λ,0,0 =

∫ µ

0

dx
∂

∂x
E〈hV (S)〉2λ,xg

= 2

∫ µ

0

dxENαβg(hV (S);hV (S))λ,xg〈hV (S)〉λ,xg

= 2

∫ µ

0

dxENαβ
∂

∂g
(hV (S);hV (S))λ,xg〈hV (S)〉λ,xg

= 2β

∫ µ

0

dxxN2α−1 ∂

∂λ
E(hV (S);hV (S))λ,xg〈hV (S)〉λ,xg

Integration over an arbitrary interval of λ and Lemma 2.2 imply

∣

∣

∣

∫ b

a

dλ[E〈hV (S)〉2λ,µg − E〈hV (S)〉2λ,0,0]
∣

∣

∣

=
∣

∣

∣
2β

∫ µ

0

dxxN2α−1
[

E(hV (S);hV (S))b,xg〈hV (S)〉b,xg − E(hV (S);hV (S))a,xg〈f(S)〉a,xg
]∣

∣

∣

≤ 2β
∣

∣

∣

∫ µ

0

dxxN2α−1
[

E|(hV (S);hV (S))b,xg||〈hV (S)〉b,xg|+ E|(hV (S);hV (S))a,xg||〈hV (S)〉a,xg|
]∣

∣

∣

≤ 2βCh

∣

∣

∣

∫ µ

0

dxxN2α−1
[

E(hV (S);hV (S))b,xg + E(hV (S);hV (S))a,xg

]
∣

∣

∣

= 2Ch

∣

∣

∣

∫ µ

0

dxxN2(α−1)
[ ∂

∂b
E〈hV (S)〉b,xg +

∂

∂a
E〈hV (S)〉a,xg

]∣

∣

∣

≤ 4Nα−1
∣

∣

∣

∫ µ

0

dxC2
h

∣

∣

∣
= 4Nα−1C2

h|µ|.

6



The right hand side converges in the infinite volume limit for α ≤ 1. Since the integration interval (a, b)
is arbitrary, the integrand in the left hand side vanishes for almost all λ in the limit µ → 0 after the
infinite volume limit. This completes the proof. �

Proof of Theorem 1.1
Lemma 2.2 yields

E(hV (S);hV (S))λ,µg ≤ Ch

β|µ|N
−α, (18)

for arbitrary λ, µ ∈ R. Harris’ inequality of the Bogolyubov type between the Duhamel function and the
Gibbs expectation of the square of arbitrary self-adjoint operator O [13]

(O,O)λ,µg ≤ 〈O2〉λ,µg ≤ (O,O)λ,µg +
β

12
〈[O, [H,O]]〉λ,µg , (19)

and Assumption 3 enable us to obtain

lim
Nր∞

E〈hV (S)2〉λ,µg = lim
Nր∞

E(hV (S), hV (S))λ,µg .

This for u = 0 and the bound (18) imply

lim
Nր∞

E[〈hV (S)2〉λ,µg − 〈hV (S)〉2λ,µg ] = lim
Nր∞

E(hV (S);hV (S))λ,µg = 0,

for µ 6= 0. This is true also for µ = 0 by Lemma 2.5 and Lemma 2.6

lim
Nր∞

E[〈hV (S)2〉λ,0 − 〈hV (S)〉2λ,0] = 0.

Therefore, this and Lemma 2.1 give

lim
Nր∞

[E〈hV (S)2〉λ,0 − (E〈hV (S)〉λ,0)2] = 0. (20)

This completes the proof of Theorem 1.1. �

3 Applications to several models

3.1 Random energy model

Random energy model is a well known simple model where replica symmetry breaking appears. This
model contains only (Sz

i )i∈VN
with spin S = 1

2 . The possible state is represented in a spin configuration
σ = (σi)i∈VN

∈ ΣN := {1,−1}VN , which is a sequence of eigenvalues of the operators (2Sz
i )i∈VN

. The
unperturbed Hamiltonian on VN is defined by

HV (σ) := −
√
NJσ

where J = (Jσ)σ∈ΣN
are i.i.d. standard Gaussian random variables. The Hamiltonian defines a partition

function
ZN (β, J) :=

∑

σ∈ΣN

exp(βH(σ)). (21)

Consider a n-replicated random energy model whose state is given by n spin configurations (σ1, · · · , σn) ∈
Σn

N . The Hamiltonian of this model is given by

HV (σ
1, · · · , σn) :=

n
∑

a=1

HV (σ
a).

Here we attach index V to the Hamiltonian on VN for later convenience. This Hamiltonian is invariant
under a permutation s

HV (σ
s(1), · · · , σs(n)) = HV (σ

1, · · · , σn),
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where s : {1, 2, · · · , n} → {1, 2, · · · , n} is an arbitrary bijection. This symmetry is replica symmetry. To
study the spontaneous replica symmetry breaking, consider the following symmetry breaking perturbation

hV (σ
1, σ2) :=

∏

i∈VN

δσ1

i
,σ2

i

. (22)

Note the upper bound for this operator

‖hV (σ1, σ2)‖ ≤ 1.

Define the function
PN (β, λ) := E log

∑

σ1,··· ,σn

exp[−βH ],

where the Hamiltonian is given by

H := HV (σ
1, · · · , σn)−NλhV (σ

1, σ2). (23)

The following lemma shows that the model satisfies Assumption 1. It is proved by the square root
interpolation of two models [11, 12, 25].

Lemma 3.1 In the n replicated random energy model perturbed by the Hamiltonian (22), the sequence
PN (β, λ) is sub-additive for each (β, λ) ∈ (0,∞)× R, namely for arbitrary positive integers L,M

PL+M (β, λ) ≤ PL(β, λ) + PM (β, λ).

Proof. For positive integers L,M , define N := L+M and two sets V := [1, L]∩ Z and W := [L+ 1, L+
M ]∩Z. Note VN = U ∪W and U ∩W = φ. Decompose the spin configuration σ = (τ, υ) ∈ ΣN into two
parts τ ∈ ΣL and υ ∈ ΣM , and define square root interpolation of the Hamiltonians

H(t) :=
√
tHV (σ

1, · · · , σn) +
√
1− tHU (τ

1, · · · , τn) +
√
1− tHW (υ1, · · · , υn)

− tNλhV (σ
1, σ2)− (1− t)LλhU (τ

1, τ2)− (1 − t)MλhW (υ1, υ2)

Define the following function

Ψ(t) := E log
∑

σ1,··· ,σn

exp−βH(t)

and calculate the derivative function using integration by parts with respect to all random variables and
hV = hUhW

Ψ′(t) = LβλE〈hU (τ1, τ2)(hW (υ1, υ2)− 1)〉t
+ MβλE〈hW (υ1, υ2)(hU (τ

1, τ2)− 1)〉t ≤ 0,

where 〈·〉t denotes the Gibbs expectation defined by the Hamiltonian H(t). This implies

PL+M (β, λ) = Ψ(1) ≤ Ψ(0) = PL(β, λ) + PM (β, λ),

and thus the sequence PN is sub-additive. �

Lemma 3.1 and Fekete’s sub-additive lemma guarantees the infinite volume limit

p(β, λ, 0) = lim
Nր∞

PN (β, λ)

N
.

Assumption 2 is proved in the following lemma.

Lemma 3.2 The variance of ψN (β, λ,J) vanishes in the model defined by (23) for any positive integers
N and for any (β, λ) ∈ (0,∞)× R

Proof. The derivative of the function γ(u, 0) defined in Lemma 2.4 can be evaluated as

∂

∂u
γ(u, 0) =

β2

N
,

for any u ∈ [0, 1]. Then the variance of ψN (β, λ) is

EψN (β, λ) − pN (β, λ) = γ(1, 0)− γ(0, 0) =

∫ 1

0

du
∂

∂u
γ(u, 0) =

β2

N
,

for any positive integers N and for any (β, λ) ∈ (0,∞)× R. �

The following corollary for the perturbed random energy model is obtained from Theorem 1.1.
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Corollary 3.3 In the n replicated random energy model perturbed by the Hamiltonian (22) in the infinite
volume limit, for almost all λ ∈ R and for µ = 0 the expectation of the perturbing operator takes the value

lim
Nր∞

E〈hV (σ1, σ2)〉λ,0 = 0 or 1.

Proof. Note the relation
hV (σ

1, σ2)2 = hV (σ
1, σ2).

Then, Theorem 1.1 implies

lim
Nր∞

E〈hV (σ1, σ2)〉λ,0(1− E〈hV (σ1, σ2)〉λ,0) = 0.

Therefore, lim
n→∞

E〈hV (σ1, σ2)〉λ,0 takes the value either 0 or1. �

Note that this corollary is also true for an arbitrary projection operator satisfying h2V = hV in other
models.

It is well known that the observation of lim
λց0

lim
Nր∞

E〈hV (σ1, σ2)〉λ,0 = 1 implies the spontaneous replica

symmetry breaking. The replica symmetry breaking is also detect by the replica symmetric Gibbs state.
In the replica symmetric calculation, if the replica symmetric calculation shows

0 < lim
Nր∞

E〈hV (σ1, σ2)〉0,0 < 1,

then this implies the finite variance

lim
Nր∞

[E〈hV (σ1, σ2)2〉0,0 − (E〈hV (σ1, σ2)〉0,0)2] > 0

which gives an instability of the replica symmetric Gibbs state due to the large fluctuation. At the same
time, this implies the non-commutativity of limiting procedure

lim
Nր∞

lim
λց0

E〈hV (σ1, σ2)〉λ,0, 6= lim
λց0

lim
Nր∞

E〈hV (σ1, σ2)〉λ,0.

This is typical phenomenon in spontaneous symmetry breaking. Guerra has studied the replica symmetry
breaking in the random energy model as a spontaneous symmetry breaking phenomenon [10]. He has
shown that the function p(β, λ) for β < βc =

√
2 log 2 for n = 2 becomes

p(β, λ) =

{

2β
√
log 2 + λ (λ > 0)

2β
√
log 2 (λ ≤ 0),

and the order parameter is evaluated as

lim
Nր∞

E〈hV (σ1, σ2)2〉0,0 = 1− βc

β
< 1.

The non-differentiability of p at λ = 0 is observed as pointed out by Mukaida [15]. Corollary 3.3 agrees
with these results.

3.2 Quantum Heisenberg model without disorder

Here we study spontaneous symmetry breaking of SU(2) invariance in the antiferromagnetic quantum
Heisenberg model without disorder. Let VN be a hyper cubic lattice VN := Ld∩Zd and bipartite, namely
there exist two subsets A and B of VN such that VN = A ∪B and A ∩ B = φ. The model Hamiltonian
is defined by

HV (S) :=
∑

i∈A,j∈B

∑

p=x,y,z

Ji,jS
p
i S

p
j , (24)

where Ji,j ≥ 0 is short-ranged and translationally invariant, i.e. there exists c ≥ 1 such that Ji,j = 0 for
any |i− j| > c, and Ji+v,j+v = Ji,j for any i, j, v ∈ VN . Consider an antiferromagnetic order operator as
a perturbation operator

hV (S) :=
1

N

(

∑

i∈A

Sz
i −

∑

j∈B

Sz
j

)

. (25)
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This operator is bounded by ‖hV (S)‖ ≤ S. Define a perturbed Hamiltonian by

H := HV (S)−NλhV (S).

In this model, Assumption 1 is proved in a standard method to show the sequence pN (β, λ) for positive
integers N becomes Cauchy for any (β, λ) ∈ (0,∞) × R. Assumption 2 is trivial for the model without
disorder and Assumption 3 is obvious for short-range interactions.

Theorem 1.1 lim
Nր∞

[〈hV (S)2〉λ,0 − 〈hV (S)〉2λ,0] = 0 and SU(2) invariance 〈hV (S)〉0,0 = 0 yield the

following corollary.

Corollary 3.4 If the SU(2) invariant Gibbs state of the antiferromagnetic quantum Heisenberg model
has a long-range order

lim
Nր∞

〈hV (S)2〉0,0 6= 0,

then we have

lim
λց0

lim
Nր∞

[〈hV (S)2〉λ,0 − 〈hV (S)〉2λ,0] 6= lim
Nր∞

lim
λց0

[〈hV (S)2〉λ,0 − 〈hV (S)〉2λ,0].

for almost all λ ∈ R.

The non-commutativity of limiting procedures in Corollary 3.4 claims the spontaneous SU(2) symme-
try breaking, when a long-range order exists. Koma and Tasaki have shown that the long-range order (
equivalent to a finite variance of order operator ) in the symmetric Gibbs state implies the spontaneous
symmetry breaking in the quantum Heisenberg model with short-range antiferromagnetic interactions
[19]. They have proved

√

lim
Nր∞

〈hV (S)2〉0,0 ≤ lim
λց0

lim
Nր∞

〈hV (S)〉λ,0.

For ferromagnetic case, the corresponding inequality was proved by Griffiths [9]. Even though the sym-
metric Gibbs state with the long-range order is unstable and unrealistic, it is mathematically well defined
and can detect the symmetry breaking in the evaluation result of the finite variance of order operator.
Recently, Tasaki has shown that the variance of order operator vanishes in the symmetry breaking ground
state in the infinite volume limit [26]. Theorem 1.1 for quantum spin models is consistent with his result.

3.3 Quantum Edwards-Anderson model

It is quite interesting whether or not, a replica symmetry breaking occurs in short-range disordered spin
systems as in the Sherrington-Kirkpatrick model described by the Parisi formula [22, 24, 25]. Here, we
discuss a replica symmetry breaking as a spontaneous symmetry breaking phenomenon in the quantum
Edwards-Anderson model [6].

Let (Sp
j )j∈VN ,p=x,y,z be spin operators on a d-dimensional hyper cubic lattice VN := [1, L]d∩Zd, where

N = |VN | = Ld. Let A be a bounded subset of VN , such that |A| ≤ C, where C is a positive constant
independent of N . Define a collection of interaction ranges by

CN := {X |X = A+ v ⊂ VN , v ∈ VN}. (26)

Define
S
p
X :=

∏

j∈X

S
p
j

for X ∈ CN and for p = x, y, z. The Hamiltonian has disordered short-range interaction

HV (S,J) := −
∑

X∈CN

∑

p=x,y,z

JXK
pS

p
X , (27)

where (JX)X∈CN
are i.i.d standard Gaussian random variables and positive constants (Kp)p=x,y,z. The

interaction is short-ranged and translationally invariant, where |CN | ≤ |A|N . Consider a n-replicated
model with spin operators (Sp,1

j , · · · , Sp,n
j )j∈VN ,p=x,y,z and define a replica symmetric Hamiltonian

HV (S
1, · · · ,Sn,J) :=

n
∑

a=1

HV (S
a,J). (28)
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Define a spin overlap as a perturbing operator

hV (S
1,S2) :=

1

N

∑

i∈VN

S
z,1
i S

z,2
i , (29)

which breaks the replica symmetry. Note the following bound

‖hV (S1,S2)‖ ≤ S2.

Consider the model defined by

H := HV (S
1, · · · ,Sn,J)−NλhV (S

1,S2). (30)

In this model, Assumption 1 is proved in a standard method to show the sequence pN (β, λ, 0) for positive
integers N becomes Cauchy for any (β, λ, 0) ∈ (0,∞) × R as in the previous model. Assumption 3 is
obvious for short-range interactions. Assumption 2 is proved in the following lemma.

Lemma 3.5 The variance of ψN (β, λ,J) defined by the Hamiltonian (30) vanishes in the infinite volume
limit for each (β, λ) ∈ (0,∞)× R.
Proof. To prove this, we employ the generating function γ(u, 0) defined in Lemma 2.4. Namely, regarding
the function ψN (J) as the i.i.d. standard Gaussian random variables J = (JX)X∈CN

, and

γ(u, 0) := E[E′ψN (
√
uJ+

√
1− uJ′)]2,

where J′ = (JX
′)X∈CN

are also i.i.d. standard Gaussian random variables and E′ stands for the expec-
tation over only J′. Its derivative in u is evaluated as

γu(u, 0) =
β2

N2
E

∑

X∈CN

(

E
′

∑

p=x,y,z

n
∑

a=1

Kp〈Sp,a
X 〉u)

)2

(31)

≤ β2|A|n2S2|A|

N
(

∑

p=x,y,z

Kp)2. (32)

The variance of ψN is given by

EψN (β, λ)2 − pN (β, λ)2 =

∫ 1

0

duγu(u, 0) ≤
β2|A|n2S2|A|

N
(

∑

p=x,y,z

Kp)2.

Then the variance of ψN (β, λ) vanishes in the infinite volume limit for arbitrary (β, λ) ∈ (0,∞)× R. �
Chatterjee’s definition of replica symmetry breaking [2] is the following finite variance of spin overlap

in the replica symmetric Gibbs state with λ = µ = 0

lim
Nր∞

E〈(hV (S1,S2)− E〈hV (S1,S2)〉0,0)2〉0,0 > 0.

Theorem 1.1 gives
lim
λց0

lim
Nր∞

E〈(hV (S1,S2)− E〈hV (S1,S2)〉λ,0)2〉λ,0 = 0,

then this yields the following corollary.

Corollary 3.6 If the replica symmetry breaking defined by Chatterjee occurs in the model defined by the
Hamiltonian (28), the following limiting procedures do not commute

lim
Nր∞

lim
λց0

E〈(hV (S1,S2)− E〈hV (S1,S2)〉λ,0)2〉λ,0 6= lim
λց0

lim
Nր∞

E〈(hV (S1,S2)− E〈hV (S1,S2)〉λ,0)2〉λ,0.

Ref. [18] indicates that the variance of the order operator (29) vanishes by the disordered replica
symmetry breaking perturbation

∑

i∈VN

(νgi + λ)Sz,1
i S

z,2
i ,

with Gaussian random variables gi and constants (λ, ν) ∈ R. Even for v = 0, however, Theorem 1.1
implies that the variance of the order operator (29) vanishes for almost all λ ∈ R.
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