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Abstract

We show that any solitonic representation of a conformal (diffeomorphism covariant) net
on S1 has positive energy and construct an uncountable family of mutually inequivalent
solitonic representations of any conformal net, using nonsmooth diffeomorphisms. On the
loop group nets, we show that these representations induce representations of the subgroup
of loops compactly supported in S1 \ {−1} which do not extend to the whole loop group.

In the case of the U(1)-current net, we extend the diffeomorphism covariance to the
Sobolev diffeomorphisms Ds(S1), s > 2, and show that the positive-energy vacuum represen-
tations of Diff+(S

1) with integer central charges extend to Ds(S1). The solitonic representa-
tions constructed above for the U(1)-current net and for Virasoro nets with integral central
charge are continuously covariant with respect to the stabilizer subgroup of Diff+(S

1) of −1
of the circle.

1 Introduction

In two-dimensional quantum field theory, solitons appear in the presence of inequivalent vacuum
sectors. In [Frö76], Frölich proposed an operator-algebraic formulation of solitons as supers-
election sectors localized in a half-space. Existence of such solitons has been obtained for a
wide class of models [Sch96, Sch98, Müg99], and general structural results have been obtained
[Fre93, Reh98]. In two-dimensional conformal field theory, the vacuum is unique due to dilation
invariance [Rob74] and translation-invariant states are not always localized in half-space [Tan18],
yet solitons appear through α-induction [LR95, BE98, BE99a], and the interrelationship between
solitons has led to the operator-algebraic formulation of modular invariant [BE99b]. In this way,
solitons play a crucial role in the study of conformal field theories.

In the operator-algebraic framework, a conformal field theory is realized as a family of von
Neumann algebras satisfying certain axioms (conformal net), and the superselection sectors,
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including solitons, are the equivalence classes of its representations. When a conformal net has a
subnet, α-induction yields solitons for the larger net from a sector of the smaller net. Note that
the Virasoro nets, the conformal nets generated by the stress-energy tensor alone, do not have
any Möbius covariant subnet [Car98]. Therefore, it is a natural question whether the Virasoro
nets admit any nontrivial soliton. Recently Henriques in [Hen17a] proved that the category
of solitons Sol(A) of a completely rational conformal net A is a bicommutant category whose
Drinfel’d center corresponds to the category of DHR sectors of A. This fact implies the existence
of non-trivial solitons for all the conformal nets with central charge c < 1 and µ-index > 1 (hence
including the Virasoro nets with c < 1), yet the existence of such solitons is only implicit. In
this paper, we construct for any conformal net a family of concrete, proper, automorphic solitons
(with index 1) parametrized by R+ using nonsmooth diffeomorphisms.

The (smooth) diffeomorphism covariance is the defining property of conformal nets. This large
spacetime symmetry can be further extended to certain nonsmooth diffeomorphisms depending
on their regularity [CW05, Wei06]. Here, we show that the representation cannot be extended
to some less-smooth diffeomorphisms, and exploit this to construct proper irreducible solitons (a
similar construction has been implicitly given in [LX04, KLX05] which yielded non irreducible,
type III solitons). We also show that any soliton has positive energy, this time by exploiting
unitarily representable nonsmooth diffeomorphisms1.

This distinction between implementable and non-implementable diffeomorphisms is central
in this work. We say that a nonsmooth diffeomorphism γ is unitarily implemented in a conformal
net if there is a unitary operator whose adjoint action realizes γ on the quantum observables.
When a diffeomorphism is not implementable, its action may give rise to a new sector. In any
conformal net, the Sobolev-class diffeomorphisms Ds(S1) with s > 3 are implementable [CDIT].
Here we show that, using the Tomita-Takesaki modular theory, nonsmooth diffeomorphism which
have discontinuous derivatives are not implementable, although they are implementable when
restricted to local algebras. In this way, we obtain an uncountable family of inequivalent solitons
for any conformal net. On the other hand, the implementability of many nonsmooth diffeomor-
phisms is inherited by sectors, and indeed positivity of energy in any soliton is proved in this
way.

As an application, we construct irreducible unitary projective positive-energy representations
of the subgroup ΛG of the loop group LG, consisting of loops with support not containing the
point −1 which do not extend to LG. The existence of such representations was marked as an
open problem in [PS86, P.174, Remark]. Similar representations are constructed for the group B0

of diffeomorphisms of S1 preserving the point −1. These results can be seen as an application of
the modular theory of von Neumann algebras to the representation theory of infinite-dimensional
groups.

We also pursue the question of which nonsmooth diffeomorphisms are implementable. We
take the U(1)-current net (the derivative of the massless free field, or the Heisenberg algebra)
which has the central charge c = 1, and show that it is covariant with respect to Sobolev-class
diffeomorphisms Ds(S1), s > 2. This is done by the Shale(-Steinspring) criterion of unitary
implementation [Sha62], and improve the implementation with s > 3 for general conformal nets
[CDIT]. This implies that some unitary representations of Diff+(S

1) with integer c can be
extended to Ds(S1)-diffeomorphisms with s > 2. This is to our knowledge the largest group
which is implementable for some c, and no other implementable diffeomorphism is known. As a
consequence, the solitons we construct in Section 3.2 are continuously B0-covariant in this case.

This paper is organized as follows: in Section 2 we recall the notions of conformal net and
its representation theory together with some facts about the diffeomorphisms groups and loop
groups. In Section 3.1 we prove that every soliton is translation covariant with positive energy.

1Positivity of energy has been proved for finite index representations without using conformal covariance
[BCL98]. Our proof depends on conformal covariance and normality on half lines, but makes no assumption on
the index.
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The covariance can be further extended, but we do not know the continuity. In Section 3.2
we construct a family of proper solitons arising from nonsmooth diffeomorphisms. It is shown
in Section 3.3 that a soliton which is locally Möb-covariant (not just covariant with respect

to the universal covering M̃öb) extends to a DHR representation. Section 4 is dedicated to
concrete examples: we use the results in Section 3 to prove that there exist irreducible positive
energy representations of B0 and ΛG which do not extend to Diff+(S

1) and LG, respectively.
Furthermore, in Section 5 we show that the U(1)-current net and the Virasoro nets with positive
integer central charge are Ds(S1)-covariant, s > 2. In Section 6 we summarize open problems.
In Appendix, we prove that any conformal net is covariant with respect to piecewise smooth
C1-diffeomorphisms.

2 Preliminaries

2.1 Conformal nets

Let I be the set of nonempty, non-dense, connected open intervals of the unit circle S1. For
I ∈ I , Ic denotes the interior of the complement of the interval I ∈ I , namely Ic = (S1 \ I)◦.
The Möbius group Möb = PSL(2,R) acts on S1 by linear fractional transformations (see Section
2.3.1).

A Möbius covariant net on S1 (A, U,Ω) consists of a family {A(I), I ∈ I} of von Neu-
mann algebras acting on a separable complex Hilbert space H, a strongly continuous unitary
representation U of Möb and a “vacuum” vector Ω ∈ H satisfying the following properties:

(CN1) Isotony: if I1 ⊂ I2, I1, I2 ∈ I , then A(I1) ⊂ A(I2).

(CN2) Locality: if I1 ∩ I2 = ∅, I1, I2 ∈ I , then A(I1) ⊂ A(I2)′.

(CN3) Möbius covariance: for g ∈ Möb, I ∈ I , AdU(g)(A(I)) = A(gI).

(CN4) Positivity of energy: the representation U has positive energy, i.e. the conformal
Hamiltonian L0 (the generator of rotations) has non-negative spectrum.

(CN5) Vacuum: Ω is the unique (up to a scalar) vector such that U(g)Ω = Ω for g ∈ Möb, and
Ω is cyclic for

∨
I∈I A(I).

Positivity of energy is actually equivalent to positivity of the generator of translations [Kös02,
Proposition 1], see Section 2.3.1. With these assumptions, the following automatically hold, see
[GF93, Lemma 2.9, Theorem 2.19(ii)][FJ96, Section 3] and the arguments of [Bau95, Theorem
1.2.6]:

(CN6) Haag duality: for every I ∈ I , A(I ′) = A(I)′ where A(I)′ is the commutant of A(I).

(CN7) Additivity: if I, Iα ∈ I and I ⊂ ⋃α Iα, then A(I) ⊂ ∨αA(Iα).

(CN8) Bisognano-Wichmann property: if I(0,π) = {z ∈ S1 : Im(z) > 0} ∈ I and ∆I(0,π)
is

the modular operator associated to A(I(0,π)) and Ω then

∆it
I(0,π)

= U(δ(−2πt)),

where δ is the one parameter group of dilations (as a subgroup of Möb through the Cayley
transform, see Section 2.3.1).

(CN9) Irreducibility: each A(I) is a type III factor and
∨

I∈IR
A(I) = B(H), where IR is the

set of intervals not containing the point −1, see Section 2.2.

By a conformal net (or diffeomorphism covariant net) we shall mean a Möbius covariant
net which satisfies the following:
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(CN10) U extends to a projective unitary representation of Diff+(S
1) on H such that for all I ∈ I

we have
AdU(γ)(A(I)) = A(γI), γ ∈ Diff+(S

1),

and

AdU(γ)(x) = x, x ∈ A(I), suppγ ∈ I ′, (2.1)

where suppγ is the closure of the complement of the set of z ∈ S1 such that γ(z) = z.

In a conformal net, the following is automatic [MTW18]:

(CN11) The split property: if I ⊂ Ĩ where I is the closure of I, then there is a type I factor
RI,Ĩ such that A(I) ⊂ RI,Ĩ ⊂ A(Ĩ).

2.2 Representations of conformal nets

DHR representations. A DHR (Doplicher-Haag-Roberts) representation ρ of a con-
formal net A is a family of maps {ρI}I∈I where ρI is a normal (σ-weakly continuous) repre-
sentation of the von Neumann algebra A(I) on a fixed Hilbert space Hρ with the compatibility
property ρI2 |A(I1) = ρI1 , I1 ⊂ I2.

We say that two representations ρ1, ρ2 are unitarily equivalent if there exists an intertwining
unitary operator U from Hρ1 and Hρ2 , i.e. Uρ1,I(x) = ρ2,I(x)U for every x ∈ A(I) and I ∈ I . A
representation ρ is said to be irreducible if

∨
I∈I ρI(A(I)) = B(Hρ). The collection of identity

maps ρ0 = {ρ0,I} where ρ0,I(x) = x, x ∈ A(I) is called the vacuum representation.
A group G may act on S1. In this paper, G will be either Möb,Diff+(S

1) or some groups
which contain Diff+(S

1) such that U can be extended to them (see Sections 3.2 and 5). A DHR
representation ρ is said to be G-covariant if there exists a unitary projective representation Uρ

of G such that

AdUρ(γ)(ρI(x)) = ργI(AdU(γ)(x)),

for all γ ∈ G. If G is a topological group and acts on S1 continuously, we often require that U
is continuous in the strong operator topology.

Solitons. Let IR be the set of open, non-empty, connected subsets of the real line R, identified
with S1 \ {−1} ⊂ C via Cayley transform (see Section 2.3.1). Namely, IR is the family of
bounded open intervals and open half-lines of R.

A soliton (or solitonic representation to be precise) σ of a conformal net A is a family of
maps {σI}I∈IR

where σI is a normal representation of the von Neumann algebra A(I) on a fixed
Hilbert space Hσ with the compatibility property ρI2 |A(I1) = ρI1 , I1 ⊂ I2. We say that the
soliton σ is proper if there is no DHR representation of the conformal net A which agrees with
σ when restricted to the family of intervals IR.

Let G again be a group acting on S1, and G0 ⊂ G be a subgroup whose elements preserve the
point −1 ∈ S1. A soliton σ of A is G0-covariant if there is a unitary projective representation
Uσ of G0 such that AdUσ(γ)(σI (x)) = σγI(AdU(γ)(x)) with x ∈ A(I). Similarly, a soliton σ
is locally G-covariant2 if there is a unitary projective representation Uσ of G such that for a
neighborhood U of the unit element of G and I ∈ IR such that γI ⊂ R for γ ∈ U , it holds that
AdUσ(γ)(σI(x)) = σγI(AdU(γ)(x)), x ∈ A(I), γ ∈ U .

Consider the case where G0 includes the translation group of R. We say that a soliton σ has
positive energy if the unitary representation Uσ above can be chosen in such a way that the

2In [CHK+15, Definition 2.2], the notion “G-covariance” is defined through a unitary projective representation

of the universal covering group G̃. Differently from this, we distinguish explicitly projective representations of G
and of G̃ and add “locally”.
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restriction to the one-parameter subgroup of translations is continuous in the strong operator
topology and has a positive generator. Note that, if σ is not irreducible, Uσ which implements
covariance is not unique, and other implementations may fail to have positive generator.

With R± considered as intervals in IR, we define the index of σ as the Jones index of
the inclusion σ(A(R+)) ⊂ σ(A(R−))′. This is a natural generalization of the index of DHR
representations.

2.3 The spacetime symmetry groups

2.3.1 The Möbius group

The group SL(2,R) of 2 × 2 real matrices with determinant one acts on the compactified real
line R ∪ {∞} by linear fractional transformations:

g : t→ gt :=
at+ b

ct+ d
for g =

(
a b
c d

)
∈ SL(2,R).

The kernel of this action is {±1}. By identifying the compactified real line R ∪ {∞} with the
circle S1 via Cayley transform

C : S1 \ {−1} → R, z 7→ i
1− z
1 + z

, (2.2)

with inverse

C−1 : R→ S1 \ {−1}, t 7→ 1 + it

1− it , (2.3)

the group PSL(2,R) := SL(2,R)/ {±1} can be identified with a subgroup of diffeomorphisms of
the circle S1, the Möbius group Möb.

The following are important subgroups of PSL(2,R):

R(θ) =

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
, δ(t) =

(
et/2 0

0 e−t/2

)
, τ(t) =

(
1 t
0 1

)
,

and they are called the rotation, dilation and translation subgroup, respectively, and act in the
following way:

R(θ)z = eiθz on S1,

δ(t)s = ets on R,

τ(t)s = s+ t on R.

The expressions of δ(t) and τ(t) in the circle picture are available in [Wei05, (A.6)].

2.3.2 The (smooth) diffeomorphism groups

The Lie group. Let us denote by Diff+(S
1) the group of orientation preserving, smooth

diffeomorphisms of the circle S1 := {z ∈ C : |z| = 1} and Vect(S1) denote the set of smooth
vector fields on S1. The group Diff+(S

1) is an infinite-dimensional Lie group whose Lie algebra
is identified with the real topological vector space Vect(S1) of smooth vector fields on S1 with
C∞-topology [Mil84]. The exponential map Exp : Vect(S1)→ Diff+(S

1) maps tf ∈ Vect(S1) to
the one-parameter group Exp(tf) ∈ Diff+(S

1) of diffeomorphisms of S1 satisfying the ordinary
differential equation

dExp(tf)(z)

dt
= f(Exp(tf)(z)), Exp(0)(z) = z.

5



We identify Vect(S1) with C∞(S1,R) and for f ∈ C∞(S1,R) we denote by f ′ the derivative of
f with respect to the angle θ:

f ′(z) =
d

dθ
f(eiθ)

∣∣∣∣
eiθ=z

.

We consider a diffeomorphism γ ∈ Diff+(S
1) as a map from S1 ⊂ C in S1. With this convention,

its action on f ∈ Vect(S1) is

(γ∗f)(e
iθ) = −ie−iθ d

dϕ
γ(eiϕ)

∣∣∣∣
eiϕ=γ−1(eiθ)

f(γ−1(eiθ)).

The Lie algebra. The space Vect(S1) is endowed with the Lie algebra structure with the Lie
bracket given by

[f, g] = f ′g − fg′.
As a Lie algebra, Vect(S1) admits the Gelfand–Fuchs 2-cocycle

ω(f, g) =
1

48π

∫

S1

(f(eiθ)g′′′(eiθ)− f ′′′(eiθ)g(eiθ))dθ.

The Virasoro algebra Vir is the central extension of the complexification of the algebra generated
by the trigonometric polynomials in Vect(S1) defined by the 2-cocycle ω. It can be explicitly
described as the complex Lie algebra generated by Ln, n ∈ Z, and the central element κ, with
brackets

[Ln, Lm] = (n−m)Ln+m + δn+m,0
n3 − n
12

κ.

Positive-energy representations. Consider a representation πV : Vir → End(V ) of Vir on
a complex vector space V endowed with a non-degenerate, positive-definite scalar product 〈·, ·〉.
We call πV a unitary positive energy representation if the following hold:

• Unitarity: 〈v, πV (Ln)w〉 = 〈πV (L−n)v,w〉 for every v,w ∈ V and n ∈ Z;

• Positivity of the energy: V =
⊕

λ∈R+∪{0} Vλ, where Vλ := ker(πV (L0)− λ1V ). The lowest
eigenvalue of πV (L0) is called lowest weight;

• Central charge: πV (κ) = c1V ;

There exists an irreducible unitary positive energy representation πc,h with central charge c and
lowest weight h if and only if c ≥ 1 and h ≥ 0 (continuous series representation) or (c, h) =

(c(m), hp,q(m)), where c(m) = 1 − 6
(m+2)(m+3) , hp,q(m) = (p(m+1)−qm)2−1

4m(m+1) , m = 3, 4, · · · , p =

1, 2, · · · ,m − 1, q = 1, 2, · · · , p, (discrete series representation) [KR87, DMS97]. In this case
the representation space V is denoted by Hfin(c, h). We denote by H(c, h) the Hilbert space
completion of the vector space Hfin(c, h) associated with the unique irreducible unitary positive
energy representation of Vir with central charge c and lowest weight h.

The stress-energy tensor. In a (possibly infinite) direct sum representation πH of πc,hj
with

the same central charge c, the conformal Hamiltonian L0 is diagonalized, and on the linear span
of its eigenvectors Hfin (the space of finite energy vectors), the Virasoro algebra acts algebraically
as unbounded operators. With a slight abuse of notation, we denote by Ln the elements of Vir
represented in H.

For a smooth complex-valued function f on S1 with finitely many non-zero Fourier coeffi-
cients, the (chiral) stress-energy tensor associated with f is the operator

T (f) =
∑

n∈Z
Lnf̂n

6



acting on H, where

f̂n =

∫ 2π

0

dθ

2π
e−inθf(eiθ)

The stress-energy tensor T can be extended to certain nonsmooth real functions f ∈ S 3
2
(S1,R)

by the linear energy bounds, yielding a self-adjoint unbounded operator T (f). We will review
these results in detail in Section 2.3.3.

Such a representation integrates to a projective unitary representation of the universal cov-

ering group ˜Diff+(S1) of Diff+(S
1), namely, there is a projective unitary representation U of

˜Diff+(S1) such that U(Exp(f)) = eiT (f) up to a scalar3. If the hj ’s appearing in the direct
summand differ from each other by an integer, then U reduces to a projective representation of
Diff+(S

1) (2π-rotation is a scalar).
The stress-energy tensor T satisfies the following covariance [FH05, Proposition 5.1, Propo-

sition 3.1]:

Proposition 2.1. The stress-energy tensor T on H and its integration U as above satisfy

AdU(γ)(T (f)) = T (̊γ∗(f)) + β(̊γ, f)

β(̊γ, f) :=
c

24π

∫ 2π

0
{̊γ, z}|z=eiθf(e

iθ)ei2θdθ

on vectors in Hfin, for f ∈ Vect(S1) and γ ∈ ˜Diff+(S1), where γ̊ ∈ Diff+(S
1) is the image of γ

under the covering map. Furthermore, the commutation relations

i[T (g), T (f)] = T (g′f − f ′g) + cω(g, f),

hold for arbitrary f, g ∈ C∞(S1), on vectors ψ ∈ Hfin, where

{̊γ, z} =
d3

dz3 γ̊(z)
d
dz γ̊(z)

− 3

2

(
d2

dz2 γ̊(z)
d
dz γ̊(z)

)2

is the Schwarzian derivative of γ̊ and d
dz γ̊(z) = −iz̄ d

dθ γ̊(e
iθ)

∣∣∣∣
eiθ=z

.

If we consider the Cayley transform (2.2)(2.3), a vector field f ∈ Vect(S1) in real line coor-
dinates is given by

C∗(f)(t) =
2

(1 + t2)
f(C−1(t)).

With the Schwarz class functions S (R), the stress energy tensor satisfies the following quantum-
energy inequalities [FH05, Theorem 4.1].

Theorem 2.2. Let f ∈ Vect(S1) with C∗(f) ∈ S (R) and C∗(f)(t) ≥ 0 ∀t ∈ R. For ψ ∈ D(L0),
it holds that

(ψ, T (f)ψ) ≥ − c

12π

∫

R

(
d

dt

√
C∗(f)(t)

)2

dt,

where the derivative is given by

d

dt

√
C∗(f)(t) =

{
( d
dtC∗(f)(t))/(2

√
C∗(f)(t)) if C∗(f)(t) 6= 0

0 if C∗(f)(t) = 0.
3This scalar cannot be made trivial [FH05, (5.11)].
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Translations The generator of translations is by definition t(t) := ∂
∂s (τ(t)s)

∣∣∣∣
s=0

= 1. The

corresponding field on S1 is

t(eiθ) = 1 + cos θ.

Subgroups Bn The subgroup B0 ⊂ Diff+(S
1) of the stabilizers of −1 is a Lie subgroup with

Lie algebra given by those vector fields f ∈ Vect(S1) such that f(−1) = 0. The dilation and
translation subgroups of Diff+(S

1) are in B0. Similarly, Bn is the subgroup of B0 whose element
have vanishing 1st, 2nd, · · · , n-th derivatives. The group B1 still contains translations, but not
dilations. These groups have the natural C∞ topology, but we often treat them without topology.

2.3.3 Piecewise smooth diffeomorphisms

Let Diff1,ps
+ (S1) be the group of piecewise smooth C1-diffeomorphisms of S1, namely, γ ∈

Diff1,ps
+ (S1) is a C1-diffeomorphism and S1 can be decomposed into a finitely many closed inter-

vals (with a possibly common end point) on each of which γ is smooth and has the derivatives
in all orders at the end points. It has been known that some elements of Diff1,ps

+ (S1) can be
implemented in a conformal net [CW05, Wei06]. Let us recall these elements.

For a real-valued continuous function f of the circle, set

‖f‖ 3
2
:=
∑

n∈Z
|f̂n|(1 + |n|

3
2 ),

where f̂n := 1
2π

∫ 2π
0 e−inθf(eiθ)dθ is the n-th Fourier coefficient4 of f . We denote with S 3

2
(S1,R)

the class of functions f ∈ L1(S1,R) such that ‖f‖ 3
2

is finite endowed with the topology induced

by the norm ‖ · ‖ 3
2
. By [Wei06, Lemma 2.2], if f is piecewise smooth and and C1 on the whole

S1, then f ∈ S 3
2
(S1,R).

Let T be the stress-energy tensor on H =
⊕

j H(c, hj). In [CW05, Proposition 4.2, Theo-

rem 4.4, Proposition 4.5] it has been shown that, if f ∈ S 3
2
(S1,R), then the operator T (f) =

∑
n∈Z Lnfn on the domain Hfin is convergent and essentially self-adjoint on any core of L0. In

addition, if ‖f − fn‖ 3
2
→ 0 for f, fn ∈ S 3

2
(S1,R), then T (fn) → T (f) in the strong resolvent

sense.
From these results, it follows that certain piecewise smooth C1-diffeomorphisms of the form

Exp(f) are implemented in a conformal net. Actually, we prove in Appendix A that any confor-
mal net is Diff1,ps

+ (S1)-covariant. We do not consider topology on Diff1,ps
+ (S1). It follows that any

soliton is Diff1,ps
+,1 (S

1)-covariant, where Diff1,ps
+,1 (S

1) := {γ ∈ Diff1,ps
+ (S1) : γ(−1) = −1, γ′(−1) =

1} (Theorem 3.4). The solitons we construct in Section 3.2 are Diff1,ps
+,0 (S

1)-covariant where

Diff1,ps
+,0 (S

1) := {γ ∈ Diff1,ps
+ (S1) : γ(−1) = −1}.

2.3.4 The Groups of Sobolev-class diffeomorphisms

For s real, the Sobolev spaces Hs(S1) are defined by

Hs(S1) := {f ∈ L2(S1) : ‖f‖Hs <∞}, where ‖f‖Hs :=

(
∑

k∈Z
(1 + k2)s|f̂k|2

) 1
2

.

If s > 3
2 , then the set Ds(S1) of Sobolev-class diffeomorphisms

Ds(S1) := {γ ∈ Diff1
+(S

1) : γ̃ − ι ∈ Hs},
4This should be distinguished from a sequence of functions fn.
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where γ̃ is a lift of γ to R, is a topological group [IKT13, Theorem B.2] (see also [CDIT, Lemma
2.5]). We also have the following continuity of the action on Hs(S1) [IKT13, Theorem B.2].

Lemma 2.3. For s > 3/2, the map (f, γ) 7→ f ◦ γ from Hs(S1) × Ds(S1) into Hs(S1) is
continuous.

3 General results on solitons

Throughout this Section, (A, U,Ω) is a conformal net in the sense of Section 2.
It has been observed [Hen17b, Section 3.3.1] that, by [Wei06], any soliton can be made

translation covariant. In the next Section we show further that it has always positive energy,
proving [Hen17b, Conjecture 32]. We suspect that the converse implication [Hen17b, Conjecture
34] could be negative, cf. [Tan18, Tan11]. In addition, we present a general scheme to construct
solitons for any conformal net.

3.1 Positivity of energy

Let us first observe that Exp(tg) makes sense if g is C1, because then the existence and uniqueness
of solution of the ordinary differential equation are assured [CL55, Chapter 1, Theorem 2.3]. We
need some preparatory results on representations of these elements.

Lemma 3.1. Let g ∈ C∞(S1,R) and f be a real piecewise smooth and C1-function on S1. Then
it holds that

Ad eiT (g)(T (f)) = T (Exp(g)∗(f)) + β(Exp(g), f)

Proof. Let us fix s such that 2 < s < 5
2 . Note that f ∈ Hs(S1). Indeed, f ′′ is defined except a

finite number of points and of bounded variation, and by the proof of [Wei06, Lemma 2.2], we

have |k2f̂k| ≤
∣∣∣Var(f

′′)
k

∣∣∣, where Var(f ′′) is the variation of f ′′, see [Kat04, Theorem 4.5]. From

this it is immediate that |k|2s|f̂k|2 ≤
∣∣∣Var(f

′′)2

k6−2s

∣∣∣ and the right-hand side is summable in k as

6− 2s > 1, hence f ∈ Hs(S1).
Next, let us observe that Hs(S1) ⊂ S 3

2
(S1). Indeed,

∑

k

(1 + |k|) 3
2 |f̂k| ≤

∑

k

(1 + |k|)s|f̂k| · (1 + |k|)
3
2
−s ≤ 2

∑

k

(1 + |k|2) s
2 |f̂k| · (1 + |k|)

3
2
−s

and the right-hand side can be seen as a scalar product of two ℓ2(Z) sequences (because s > 2),
hence it holds that ‖f‖ 3

2
≤ Const.‖f‖Hs , where the constant depends on s but not on f .

We know that there is a sequence {fn} ⊂ C∞(S1,R), ‖f − fn‖Hs → 0. For fn ∈ C∞(S1,R),
we have by Proposition 2.1

Ad eiT (g)(eiT (fn)) = ei(T (Exp(g)∗(fn))+β(Exp(g),fn)). (3.1)

By the above observations, we have fn → f in S 3
2
(S1,R). By [CDIT, Lemma 2.5(a)] (see

also [IKT13, Lemma B.2]), f 7→ Exp(g)∗(f) is continuous in Hs(S1), hence Exp(g)∗(fn) →
Exp(g)∗(f) in S 3

2
(S1). By [CW05, Proposition 4.5], T (Exp(g)∗(fn)) → T (Exp(g)∗(f)) in the

strong resolvent sense, and it is also clear that β(Exp(g), fn) → β(Exp(g), f). Therefore, by
taking the limit of (3.1), we obtain the claim.

Remark 3.2. If f ∈ C1 and not C2, then f /∈ Hs(S1) for s > 5
2 since with such s it holds that

Hs(S1) ⊂ C2(S1) by the Sobolev-Morrey embedding.
In [Wei06, Proposition 2.3], it is claimed that the same conclusion holds for f ∈ S 3

2
(S1), but

a proof of the convergence fn ◦ γ → f ◦ γ in ‖ · ‖ 3
2

is missing. Yet, the main results of the paper

remain valid because one needs only the conclusion for f which is piecewise smooth and C1.

9



Lemma 3.3. Let g, f ∈ C∞(S1,R) and g(−1) = g′(−1) = f(−1) = f ′(−1) = 0 and compactly
supported. Let I± be disjoint intervals in S1 one of whose boundary points is −1 (see Figure 1.
Let f = f− + f+, f± ∈ S 3

2
(S1) be the decomposition of f into two pieces cut at the point −1

(which is possible by [Wei06, Lemma 2.2]), and similarly introduce g = g− + g+, g± ∈ S 3
2
(S1),

and assume that supp f±, supp g± ⊂ I±.

−1

I−

I+

Figure 1: Intervals I±.

Then it holds that

Ad eiT (g−)(T (f−)) = T (Exp(g−)∗(f−)) + β(Exp(g−), f−),

where β(Exp(g−), f−) is defined by a similar formula as before:

β(Exp(g−), f) :=
c

24π

∫

supp g−

{Exp(g−), z}
∣∣∣∣
z=eiθ

f(eiθ)ei2θdθ, (3.2)

where the integral is restricted to supp g− on which the Schwarzian derivative is defined.

Proof. Let t ∈ R. Since f− is piecewise smooth and C1 and g is smooth, by Lemma 3.1 we have

Ad eiT (g)(eiT (tf−)) = eiT (Exp(g)∗(tf−))eiβ(Exp(g),tf−).

Furthermore, note that

β(Exp(g), tf−) =
c

24π

∫ 2π

0
{Exp(g), z}

∣∣∣∣
z=eiθ

tf−(e
iθ)ei2θdθ

=
c

24π

∫

supp g−

{Exp(g−), z}
∣∣∣∣
z=eiθ

tf−(e
iθ)ei2θdθ

= β(Exp(g−), tf−),

because Exp(g−) and f− has support contained in a common interval and Exp(g−) is smooth
there.

Note that g± ∈ S 3
2
(S1,R), hence eiT (tf±) and eiT (g±) are affiliated to A(I±) by [Wei06,

Proposition 2.3], and it follows that eiT (g) = eiT (g−)eiT (g+). By the assumed support property,
we have

Ad eiT (g)(eiT (tf−)) = Ad (eiT (g−) · eiT (g+))(eiT (tf−)) = eiT (Exp(g−)∗(tf−)) · eiβ(Exp(g−),tf−).

By taking the derivative with respect to t, we obtain

Ad eiT (g)(T (f−)) = Ad eiT (g−)(T (f−)) = T (Exp(g−)∗(f−)) + β(Exp(g−), f−),

on the full domain.
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Theorem 3.4. A soliton σ of a conformal net A is Diff1,ps
+,1 (S

1)-covariant, the translations act
continuously and have positive energy.

Proof. Our strategy is to write the translation as a product of three elements localized in half-lines
or an interval, in each of which σ is normal. For this purpose, let I(θ1,θ2) = {eiθ : θ1 < θ < θ2} be
an interval on S1 and we take a C∞-function h+ : S1 \ {−1} → R which is equal to 0 on I(−π,0)

and equal to 1 on I(π
2
,π). Similarly, let h−(x) be a C∞-function which is equal to 1 on I(−π,−π

2
)

and equal to 0 on I(0,π). They have disjoint supports.
Let us first prove the following relation:

Ad eitT (h−t)(T (t)) = T (Exp(th−t)∗(t)) + β(Exp(th−t), t), (3.3)

where t(eiθ) = 1 + cos θ is the generator of translations (see Section 2.3.2) Note that h−t is
supported in a certain interval I−, one of whose boundary is −1, hence so is Exp(th−t). We
decompose t into two pieces t+, t− ∈ S 3

2
(S1,R) such that t−(θ) = t(θ) on I− and t+ = t − t−.

Note that β(Exp(th−t), t−) = β(Exp(th−t), t), since the supports of Exp(th−t) and of t+ are
disjoint, see (3.2). As h−t coincides with t on an interval, one of whose boundary point is −1,
we can apply Lemma 3.3 to obtain

Ad eitT (h−t)(T (t−)) = T (Exp(th−t)∗(t−)) + β(Exp(th−t), t−)

= T (Exp(th−t)∗(t−)) + β(Exp(th−t), t). (3.4)

One the other hand, since h−t and t+ have disjoint support (see Figure 2), we have

t

h−t t− h+t

Figure 2: Vector fields h−t, t−, h+t in the real line picture.

Ad eitT (h−t)(T (t+)) = T (t+). (3.5)

Note that Exp(th−t)∗t = Exp(th−t)∗t+ + Exp(th−t)∗t− = t+ + Exp(th−t)∗t−. By adding the
sides of (3.4) and (3.5), we obtain on the intersection of the domains

Ad eitT (h−t)(T (t)) = T (Exp(th−t)∗(t)) + β(Exp(th−t), t).

The intersection of the operators in (3.4)(3.5) includes C∞(L0) =
⋂

n D(Ln
0 ), hence so does the

sum. The right-hand side of the last expression is essentially self-adjoint by [CW05, Theorem
4.4] (cited in Section 2.3.3). Hence the left-hand side is a self-adjoint extension of the right-hand
side, and therefore, they must coincide on the full domain.

Next, we write eitT (t) as

eitT (t) = eitT (h−t) · e−itT (h−t)eitT (t)e−itT (h+t) · eitT (h+t).

We claim that e−itT (h−t)eitT (t)e−itT (h+t) is localized on an interval whose closure does not contain
−1 (such an interval depends on t). This follows from (3.3). Indeed, Exp(th−t)∗(t) agrees with
t in a neighborhood of −1 (depending on t) and

e−itT (h−t)eitT (t)e−itT (h+t) = eitT (Exp(h−t)∗(t))eiβ(Exp(th−t),t) · e−itT (h−t)e−itT (h+t)

= eitT (Exp(h−t)∗(t))eiβ(Exp(th−t),t)e−itT (h−t+h+t),
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where we used the linearity of T on functions of class S 3
2
(S1,R), and the last expression is local-

ized in a bounded interval: as h−t+h+t equals t in a neighborhood of −1 ∈ S1, Ad e−itT (h−t+h+t)

implements the same action on A(It,ǫ) for some neighborhood It,ǫ for small t as the action of
Ad eitT (Exp(h−t)∗(t)). In other words, Ad eitT (Exp(h−t)∗(t))e−itT (h−t+h+t) is trivial on A(It,ǫ), which
implies that eitT (Exp(h−t)∗(t))e−itT (h−t+h+t) is localized in I ′t,ǫ.

We introduce a representation of the translation group by

Uσ(t) := σ(eitT (h−t))σ(e−itT (h−t)eitT (t)e−itT (h+t))σ(eitT (h+t))

Note first the relation β(γ1 ◦γ2, f) = β(γ1, γ2∗(f))+β(γ2, f) for smooth γ, which is equivalent to
0 = β(id, f) = β(γ−1, γ∗f) + β(γ, f). This continues to hold for nonsmooth γ = Exp(th±t) and
f = t. Indeed, Exp(th±t) can be continued to a smooth diffeomorphisms with compact support,
say I, and let I± be the intervals obtained by removing −1 from I. The function β(Exp(th±t), t)
is defined by the integral (3.2), which can be extended to t±, the restriction of t to I±. Hence
the relation β(Exp(−th±t),Exp(t2h±t)∗(t±)) + β(Exp(t2h−t), t±) = 0 holds. Again by linearity
in the second variable, we have for t1, t2 ∈ R

0 = β(id, t) = β(Exp(−t2h−t),Exp(t2h−t)∗(t)) + β(Exp(t2h−t), t),
0 = β(id, t) = β(Exp(−t1h+t),Exp(t1h+t)∗(t)) + β(Exp(t1h+t), t).

(3.6)

By recalling that h− and h+ have disjoint supports, with the help of (3.3) and an analogous
relation for h+, this yields a one-parameter group in t:

Uσ(t1)Uσ(t2)

= σ(eit1T (h−t))σ(e−it1T (h−t)eit1T (t)e−it1T (h+t))σ(eit1T (h+t))

· σ(eit2T (h−t))σ(e−it2T (h−t)e−it2T (t)eit2T (h+t))σ(eit2T (h+t))

= σ(eit1T (h−t))σ(eit2T (h−t))σ(e−it1T (h−t)eit1T (Exp(t2h−t)∗(t))eiβ(Exp(t2h−t),t)e−it1T (h+t))

· σ(eit1T (h+t))σ(e−it2T (h−t)eit2T (t)e−it2T (h+t))σ(eit2T (h+t))

= σ(ei(t1+t2)T (h−t))σ(e−it1T (h−t)eit1T (Exp(t2h−t)∗(t))eiβ(Exp(t2h−t),t)e−it1T (h+t))

· σ(e−it2T (h−t)eit2T (Exp(t1h+)∗t)eiβ(Exp(t1h+t),t)e−it2T (h+t))σ(eit1T (h+t))σ(eit2T (h+t))

= σ(ei(t1+t2)T (h−t))

· σ(e−it1T (h−t)eit1T (Exp(t2h−t)∗(t))e−it1T (h+t)e−it2T (h−t)eit2T (Exp(t1h+)∗t)e−it2T (h+t))

· σ(eit1T (h+t))σ(eit2T (h+t)) · eiβ(Exp(t2h−t),t)eiβ(Exp(t1h+t),t)

= σ(ei(t1+t2)T (h−t))

· σ(e−i(t1+t2)T (h−t)eit1T (t)eiβ(Exp(−t2h−t),Exp(t2h−t)∗(t))e−it1T (h+t)eit2T (Exp(t1h+)∗t)e−it2T (h+t))

· σ(eit1T (h+t))σ(eit2T (h+t)) · eiβ(Exp(t2h−t),t)eiβ(Exp(t1h+t),t)

= σ(ei(t1+t2)T (h−t))

· σ(e−i(t1+t2)T (h−t)eit1T (t)eit2T (t)eiβ(Exp(−t1h+t),Exp(t1h+t)∗(t))e−i(t1+t2)T (h+t))

· σ(eit1T (h+t))σ(eit2T (h+t)) · eiβ(Exp(t2h−t),t)eiβ(Exp(−t2h−t),Exp(t2h−t)∗(t))eiβ(Exp(t1h+t),t)

= σ(ei(t1+t2)T (h−t))σ(e−(t1+t2)T (h−t)ei(t1+t2)T (t)e−i(t1+t2)T (h+t))

· σ(ei(t1+t2)T (h+t)) · eiβ(Exp(t2h−t),t)eiβ(Exp(−t2h−t),Exp(t2h−t)∗(t))

· eiβ(Exp(t1h+t),t)eiβ(Exp(−t1h+t),Exp(t1h+t)∗(t))

= Uσ(t1 + t2),

where the scalars cancel by (3.6). To show continuity of Uσ(t), it is enough to see that Uσ(t)→ 1

as t→ 0 in the strong operator topology. All the factors in the product

Uσ(t) = σ(eitT (h−t))σ(e−itT (h−t)eitT (t)e−itT (h+t))σ(eitT (h+t))

12



are unitary, and hence uniformly bounded. The first and the third factors tend to 1 by nor-
mality of σ, as they are supported in a fixed half-line. As for the second factor, the product
e−itT (h−t)eitT (t)e−itT (h+t) tends to 1 in the vacuum representation, and this is localized in a fixed
interval for small t, hence by normality of σ the second factor tends to 1 as well.

It remains to prove the positivity of energy. We do this by showing that Uσ(t) can be
obtained as a limit in the strong resolvent sense of a sequence of one-parameter unitary groups
with positive generator. Let t1 be a C∞-vector field on S1 such that C∗(t1) is equal to 1 on
(−∞, 1) and equal to 0 on (2,+∞). From t1 we construct a sequence of vector fields (see Figure
3)

t

t1 t2

Figure 3: Vector fields tn in the real line picture.

C∗(tn)(t) := C∗(t1)

(
t

n

)
, t ∈ R, n ∈ N.

We fix 2 < s < 5
2 (cf. the proof of Lemma 3.1). Let us show that tn → t in the Hs(S1)-topology.

For this it is sufficient to show that
{

d3

dθ3 tn

}
n∈N

is a sequence of functions in L1(S1) uniformly

bounded in n and that tn → τ in L1(S1): this implies that |k3 t̂n(k)| < Const., where t̂n(k)
is the k-th Fourier coefficient of tn, or equivalently, |k2st̂n(k)2| < Const.

k6−2s , and the right-hand
side is summable in k since 6 − 2s > 1. From the convergence tn → t in L1 we obtain the
convergence of each t̂n(k), Therefore, by the Lebesgue dominated convergence theorem (applied
to the measurable set Z with the counting measure), we obtain the convergence tn → t in Hs(S1).
Let us make these necessary estimates separately.

Explicitly, as dC
dθ (e

iθ) = 1
1+cos θ , we have

tn(e
iθ) = (1 + cos θ) · C∗(t1)

(
C(eiθ)

n

)

and C∗(t1) is bounded. The third derivative of tn is

d3

dθ3
tn(e

iθ) = sin θ · C∗(t1)

(
C(eiθ)

n

)
− 2 cos θ

n(1 + cos θ)

d

dt
(C∗(t1))

(
C(eiθ)

n

)

− sin2 θ

n(1 + cos θ)2
d

dt
(C∗(t1))

(
C(eiθ)

n

)
+

1

n3(1 + cos θ)2
d3

dt3
(C∗(t1))

(
C(eiθ)

n

)
.

(3.7)

Recall that C∗(t1) is constant on (−∞, 1)∪ (2,∞). The first term of the right-hand side of (3.7)
is clearly uniformly bounded in n on S1. For the second term of the right-hand side of (3.7), by
the change of variable t = C(eiθ), we have:

∫ 2π

0

∣∣∣∣
2 cos θ

n(1 + cos θ)

d

dt
(C∗(t1))

(
C(eiθ)

n

)∣∣∣∣ dθ =
1

n

∫ 2n

n

∣∣∣∣2 cos(−i logC−1(t))
d

dt
(C∗(t1))

(
t

n

)∣∣∣∣ dt
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which is uniformly bounded in n. Next, by calculating directly one has 1+ cos(−i logC−1(t)) =
2

1+t2
and sin(−i logC−1(t)) = 2t

1+t2
, hence the third term is

∫ 2π

0

∣∣∣∣
2 sin2 θ

n(1 + cos θ)2
d

dt
(C∗(t1))

(
C(eiθ)

n

)∣∣∣∣ dθ =
∫ 2n

n

∣∣∣∣
2 sin2 θ

n(1 + cos θ)

d

dt
(C∗(t1))

(
t

n

)∣∣∣∣ dt

=
1

n

∫ 2n

n

∣∣∣∣
4t2

1 + t2
d

dt
(C∗(t1))

(
t

n

)∣∣∣∣ dt

which is uniformly bounded in n, since the integrand is bounded. The fourth term is also
uniformly bounded in n since

∫ 2π

0

∣∣∣∣
1

n3(1 + cos θ)2
d3

dt3
(C∗(t1))

(
C(eiθ)

n

)∣∣∣∣ dθ =
∫ 2n

n

∣∣∣∣
1 + t2

2n3
d3

dt3
(C∗(t1))

(
t

n

)∣∣∣∣ dt

≤ 1

n

∫ 2n

n

∣∣∣∣
1 + 4n2

2n2
d3

dt3
(C∗(t1))

(
t

n

)∣∣∣∣ dt

Finally, we show that tn → t in L1(S1) using the boundedness of C∗(t1):
∫ 2π

0

∣∣∣t(eiθ)− tn(e
iθ)
∣∣∣ dθ =

∫ 2π

0

∣∣∣∣(1 + cos θ)

(
1−C∗(t1)

(
C(eiθ)

n

))∣∣∣∣ dθ

=

∫ +∞

n

∣∣∣∣(1 + cos(−i logC−1(t)))2
(
1− C∗(t1)

(
t

n

))∣∣∣∣ dt

=

∫ +∞

n

∣∣∣∣
4

(1 + t2)2

(
1− C∗(t1)

(
t

n

))∣∣∣∣ dt −→ 0 (as n→∞)

This completes the proof that tn → t in Hs(S1), 2 < s < 5
2 .

For each fixed t, the representation Uσ(t) can be obtained as the limit of σ(eitT (tn)) in the
strong topology. Indeed,

σ(eitT (tn)) = σ(eitT (h−tn))σ(e−itT (h−tn)eitT (tn)e−itT (h+tn))σ(eitT (h+tn))

Note that h−, h+, tn belong to Hs(S1), and the product is (jointly) continuous [CDIT, Lemma
2.4][IKT13, Lemma B.4] as 3

2 < 2 < s, hence both h−tn and h+tn are convergent in Hs(S1),
and by the argument of Lemma 3.1, they are convergent in S 3

2
(S1,R), hence the corresponding

operators are convergent in the strong resolvent sense. Furthermore, each of these sequences
are localized in a fixed interval or a half line, hence by the normality of σ on half lines, the
convergence follows. In other words, if we write Uσ(t) =: eitT

σ
, then σ(T (tn)) (the generator of

σ(eitT (tn)), which is defined by local normality) is convergent to T σ in the strong resolvent sense.
We have by Theorem 2.2 that T (t1) ≥ α for some α ∈ R. By the fact that the Schwarzian

derivative of a Möbius transformation is 0, it follows that the quantum energy inequalities of
Theorem 2.2 are invariant under dilations, and therefore,

T (δn∗ (t1)) = T (ntn) ≥ α,
which implies

T (tn) ≥
α

n
.

Since T (tn) is localized on a half-line, by local normality of σ, we have σ(T (tn)) ≥ α
n . By [RS75,

Theorem VIII.23] and the convergence in the strong resolvent sense, T σ is positive as well.
By Proposition A.4, the net (A, U,Ω) is locally Diff1,ps

+ (S1)-covariant. Any element γ ∈
Diff1,ps

+,1 (S
1) can be decomposed into a product γ = γ−◦(γ−1

− ◦γ◦γ−1
+ )◦γ+, where γ± ∈ Diff1,ps

+,1 (S
1)

as in the proof for Uσ(t). It is straightforward to see that the definition

Uσ(γ) = σ(U(γ−))σ(U(γ−1
− ◦ γ ◦ γ−1

+ ))σ(U(γ+))

does not depend on the decomposition of γ. If I is a left half-line, we can choose γ− such
that I ∩ suppγ+ = ∅. Now for x ∈ A(I) the covariance σ(AdU(γ)(x)) = AdUσ(γ)(σ(x)) follows
because the both sides are localized in I−, and by the definition Uσ(γ ◦γ−1

+ ) = σ(U(γ ◦γ−1
+ )).
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3.2 Solitons from nonsmooth diffeomorphisms

Here we construct families of continuously many proper solitons for any conformal net A, using
the diffeomorphism covariance.

Nonsmooth extendable diffeomorphisms. Let Diff+(S
1,−1) ⊂ Diff0

+(S
1) be the class of

orientation preserving homeomorphism ν of S1, which have the following properties

• ν(−1) = −1,

• ν is a smooth map from S1 \ {−1} onto S1 \ {−1}, and the left and right derivatives at all
orders exist at the point −1, and the first order left and right derivatives are nonzero.

By Borel’s theorem [Hör90, Theorem 1.2.6], for any sequence of real numbers {λn}n≥1, there
is a smooth function f such that f(−1) = −1 and dnf

dθn (−1) = λn. Let us take λn as the left
derivatives of ν at θ = −1. Then we can find a smooth function f such that f(−1) = −1
dnf
dθn (−1) = λn. Let I be an interval containing −1 and call I−, I+ the subintervals resulting from

I by removing −1. There is a function f̃ which agrees with ν on I− and with f on I+. This
is smooth even at θ = −1, because all the left and right derivatives coincide. Now, since the
first derivative at θ = −1 is nonzero, it defines a diffeomorphism of a small interval containing
I−, hence the restriction to this small interval can be continued to a diffeomorphism of S1 (see
[CDIT, Lemma 3.9]). Let us call it νI−, then νI− ∈ Diff+(S

1) and agrees with ν on I−. Similarly,
we can find νI+ ∈ Diff+(S

1) which agrees with ν on I+.

Irreducible solitons. Let A be a conformal net on S1 on the Hilbert space H and U its
associated projective representation of Diff+(S

1). For ν ∈ Diff+(S
1,−1) and for every I ∈ IR

we choose νI ∈ Diff+(S
1) which agrees with ν on I (there is such νI even if one of the endpoint

of I is −1 (half-lines in the R picture) by the remark above). We denote by σν the family of
maps σν := {σIν} where

σIν : A(I) −→ B(H)
x 7−→ σIν(x) := AdU(νI)(x)

and I ∈ IR, ν ∈ Diff+(S
1,−1).

Proposition 3.5. Let ν ∈ Diff+(S
1,−1). Then σν = {σIν} is an irreducible soliton of the

conformal net A with index 1.

Proof. Normality on each I follows because each map σIν is given by the adjoint action AdU(νI).
We show that the family of maps σν is compatible, namely that, if I ⊂ Î for I, Î ∈ IR, then

σÎν ↾A(I)= σIν . By definition, νI , νÎ ∈ Diff+(S
1) agree with ν on I and Î, respectively, hence they

agree on I. Then on A(I) we have

AdU(νI) = AdU(νÎ) ◦AdU(ν−1

Î
◦ νI) = AdU(νÎ),

because ν−1

Î
◦ νI is a diffeomorphism of the circle localized in I ′ and in this case AdU(ν−1

Î
◦ νI)

acts trivially on I by (2.1).
Irreducibility follows because

∨
I∈IR

σ(A(I)) = ∨I∈IR
σ(A(νI)) = ∨I∈IR

A(I) and the weak
closure of the right-hand side is B(H) by (CN9). The index of σν is 1 because

σν(A(R+)) = A(νR+) = A((νR+)
′)′ = A(νR−)

′ = σν(A(R−))
′.
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Now we show that if ν has different left and right derivatives, then σν is a proper soliton.
Modular theory is used as a tool to show non-triviality of the constructed soliton. Let us introduce
the notation for left and right derivatives (they are in R+ because ν is orientation-preserving):

∂±ν(−1) = −i lim
θ→0±

ν(−eiθ)− ν(−1)
θ

,

We also denote their ratio by r(ν) := ∂+ν(−1)/∂−ν(−1) ∈ R+. For this purpose, we need the
results from Appendix A. Actually, in order to show that there are proper solitons, we can take
ν which coincides with dilations with different parameter in a neighborhood of −1. In this way,
νπ is a product of ψt below for some t and an element in Diff+(S

1), and one does not have to
invoke Proposition A.4.

Theorem 3.6. Let ν ∈ Diff+(S
1,−1) and assume that r(ν) 6= 1. Then σν is a proper, irreducible,

Diff1,ps
+,0 (S

1)-covariant soliton of A. Furthermore, let ν1, ν2 ∈ Diff+(S
1,−1). Then σν1 and σν2

are unitarily equivalent if and only if r(ν1) = r(ν2).

Proof. Let us first consider the function

ψt(e
iθ) :=

{
eiθ if θ ∈ [−π, 0)
δ(t)(eiθ) if θ ∈ [0, π)

which is smooth except −1, 1. It is constructed just by gluing the identity map on [−π, 0) and
the dilation on [0, π) in the circle picture (they correspond to R+ and R− in the R picture,
respectively). By passing to the R picture (which does not affect r(ν)), it is immediate that
r(ψt) = e−t.

We may assume that ν(1) = 1, because if ν(1) 6= 1, then there is a smooth diffeomorphism ν
such that supp ν does not contain −1 and ν(1) = ν(1). We then have ν−1 ◦ ν(1) = 1. As such
ν−1 is represented by U(ν−1), the questions of properness, irreducibility and covariance of σν
are equivalent to that of σν−1◦ν = AdU(ν−1) ◦ σν .

From ν ∈ Diff+(S
1,−1) with ν(1) = 1, we construct a homeomorphism νπ of S1 which is

smooth except two points, the points −1 and 1:

νπ := ν ◦Rπ ◦ ν−1 ◦Rπ,

where Rπ the rotation by π. If t = − log r(ν), then ψt◦ν−1
π ∈ Diff1,ps

+ (S1) because the discrepancy
of the derivatives at 1 and −1 cancel exactly.

We show that σν is a proper soliton, i.e. it does not extend to a DHR representation. Let us
suppose the contrary, namely that it were a restriction of a DHR representation. We denote the
extension by σν . Then σν is rotation covariant [DFK04, Theorem 6], namely there is a unitary
representation of the universal covering of S1, θ → Uν(Rθ), such that

AdUν(Rθ) ◦ σν = σν ◦ AdU(Rθ).

Furthermore, σν is invertible, because σν has index 1.
Consider the following composition as a DHR representation:

ρ := AdU(ψt ◦ ν−1
π ) ◦ σν ◦ AdU(Rπ) ◦ σν−1 ◦ AdU(Rπ)

It follows that this is implemented by a unitary Uρ := U(ψt ◦ ν−1
π )Uν(Rπ)U(Rπ) since

ρ = AdU(ψt ◦ ν−1
π ) ◦ σν ◦ AdU(Rπ) ◦ σν−1 ◦AdU(Rπ)

= AdU(ψt ◦ ν−1
π ) ◦ AdUν(Rπ) ◦ σν ◦ σν−1 ◦ AdU(Rπ)

= AdU(ψt ◦ ν−1
π ) ◦ AdUν(Rπ) ◦ AdU(Rπ).
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On the other hand, by construction we have that ρ(x) = x for x ∈ A(I(−π,0)) where I(−π,0) =
I ′(0,π) and ρ(x) = AdU(δ(t)) for x ∈ A(I(0,π)). Therefore, the unitary Uρ must belong to A(I(0,π))
by Haag duality. At the same time, by the Bisognano-Wichmann property (CN8), the dilation

AdU(δ(t)) is the modular automorphism σ
t/2π
A(I(0,π))

of A(I(0,π)) with respect to the vacuum vector

Ω. This is a contradiction because the modular automorphisms for t 6= 0 cannot be inner for
A(I(0,π)) which is a type III factor [SZ79, Theorem 10.29]. Therefore, we conclude that σν does
not extend to a DHR representation.

Next, let ν1, ν2 ∈ Diff+(S
1,−1). It holds that r(ν1) = r(ν2), if and only if r(ν−1

1 ◦ ν2) = 1,
and by Proposition A.4 and the argument of the previous paragraphs, if and only if ν−1

1 ◦ ν2 is
implemented by a unitary, or in other words, if and only if σν1 and σν2 are unitarily equivalent.

Finally, let us prove Diff1,ps
+,0 (S

1)-covariance. We already know from Theorem 3.4 that any

soliton is Diff1,ps
+,1 (S

1)-covariant, hence it is enough to show that σν is dilation covariant. This
follows because r(δ(t)◦ν ◦δ(−t)) = r(ν), hence σν and σδ(t)◦ν◦δ(−t) are unitarily equivalent. This
unitary implements the dilation δ(t).

Type III solitons. Instead of considering functions ν ∈ Diff+(S
1,−1), we can do a similar

construction using a function ν with the following properties:

• ν is smooth on S1 \ {−1} and the left and right derivatives at all orders exist at the point
−1 and the first order left and right derivatives are nonzero.

• ν is injective and orientation preserving.

• ν(S1 \ {−1}) is a proper interval Iν of S1.

If we take such a ν, σν still yields a soliton of the conformal net A, since the arguments of
Proposition 3.5 remain valid except for irreducibility and index. This type of construction was
implicitly presented in [LX04] and [KLX05], namely, by taking the construction of soliton of the
net A⊗A in [LX04] and restrict it to A⊗C1. In this case, one obtains solitons σν which are of

type III (namely
(⋃

I⊂IR
σν(A(I))

)′′
is a type III factor). For completeness we show that this

type of construction also yields a proper soliton. We further prove that such a soliton is locally

D̃s(S1)-covariant with s > 3, namely, there is a unitary representation Uσ of D̃s(S1) such that
AdUσ(γ)(A(I)) = A(γI) as long as γ is contained in a neighborhood U of the unit element of

D̃s(S1) such that γI ⊂ R for γ ∈ U .

Theorem 3.7. For ν as above, σν is a proper soliton of type III, locally D̃s(S1)-covariant with
s > 3. For any pair ν1, ν2, two solitons σν1 and σν2 are unitarily equivalent.

Proof. We must show that the representation σν does not extend to a representation of the net
A of the circle. Let I− and I+ two disjoint intervals which are made by removing the point −1
from an interval I ∋ −1. As ν(I−) and ν(I+) are separated by nonzero distance, by the split
property (CN11),

σν(A(I−) ∨ A(I+)) = σI−ν (A(I−)) ∨ σI+ν (A(I+))
= A(ν(I−)) ∨A(ν(I+))
≃ A(ν(I−))⊗A(ν(I+))
= σI−ν (A(I−))⊗ σI+ν (A(I+))
≃ A(I−)⊗A(I+),

where ≃ means unitary equivalence mapping the algebra on the left (respectively right) to the
algebra on the left (respectively right). Let us assume that σ extended to a DHR representation.
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Then it would be normal on A(I), and hence σν(A(I−)∨A(I+)) ≃ A(I−)∨A(I+). But we know
from [Buc74, page 292, Example b)] that A(I−)∨A(I+) is not isomorphic to A(I−)⊗A(I+), so
this is a contradiction, and we conclude that σν does not extend to a DHR representation.

Let us next show the unitary equivalence between σν1 and σν2 . This follows because ν2 ◦ ν−1
1

is a diffeomorphism from Iν1 to Iν2 , which can be extended to ν1,2 ∈ Diff+(S
1). Now U(ν1,2)

intertwines σν1 and σν2 because by definition, on A(I) with I ∈ IR,

σν2 = AdU(νI2 ) = AdU(ν1,2)U(νI1 ) = AdU(ν1,2) ◦ σν1,

where we used the fact that ν1,2 ◦ νI1 = νI2 when restricted to I.

With the result of the previous paragraph, in order to show local D̃s(S1)-covariance, we can
take a specific ν. We take ν as the square root map, namely, ν(eiθ) = eiθ/2, where θ ∈ [−π, π).
Note that Ds(S1) contains a copy of the 2-cover Ds(S1)(2) of Ds(S1), and the square root map
ν locally intertwines the action of Ds(S1)(2) on the half-circle [−π

2 ,
π
2 ) and the action of Ds(S1)

on S1 (see [LX04, Section 2], [Wei05, Section 3.1 §3]). Therefore, for γ ∈ D̃s(S1) and I ∈ IR
as in the definition of local covariance and with the quotient map q(2) : D̃s(S1) → Ds(S1)(2),

AdU(q(2)(γ)) ◦ σν = σν ◦ AdU(γ). Namely, σν is locally D̃s(S1)-covariant.

As σν is not irreducible, the implementation of D̃s(S1) is not unique. It is also possible to
use the n-th root map in such a way that the covariance is implemented by the restriction of
U to Ds(S1)(n). The representation γ 7→ U(q(2)(γ)) used here has positive energy by [Wei06,
Corollary 3.6] (applied to the vacuum representation).

3.3 Möbius covariance implies DHR

In Theorem 3.7 we saw that there is a proper, locally D̃s(S1)-covariant soliton on any conformal

net A. In particular, it is locally M̃öb-covariant. In contrast, here we show that there is no
locally Möb-covariant proper soliton. The key is that AdUσ(R2π) is trivial in this case. This
is essentially contained in [CHK+15, Lemma 2.6] and [CKL08, Proposition 19], but we give a
direct proof in our present setting.

Proposition 3.8. Let σ be a locally Möb-covariant soliton of a conformal net A with a repre-
sentation Uσ of Möb. Then σ extends to a DHR representation of A.

Proof. To extend σ to A(I) where I contains −1, we choose a rotation Rθ such that RθI does
not contain −1. We define σI := AdUσ(R−θ) ◦σ ◦AdU(Rθ), and show that this is well-defined.
Indeed, assume that there are two such 0 < θ1, θ2 < 2π. Then, either the rotation from 0 to
θ1− θ2 or the rotation 0 to θ1− θ2+2π brings Rθ2I to Rθ1I inside S1 \{−1}. As R2π is a scalar,
without the loss of generality, we may consider the case of θ1− θ2. By the assumption of locally
Möb-covariance,

AdUσ(R−θ1) ◦ σ ◦ AdU(Rθ1) = AdUσ(R−θ2)U
σ(R−θ1+θ2) ◦ σ ◦AdU(Rθ1−θ2)U(Rθ2)

= AdUσ(R−θ2) ◦ σ ◦ AdU(Rθ2),

hence the definition does not depend on θ under the condition above. The compatibility condition
follows from this, because if θ can be used for a larger interval, it works also for a smaller
interval.

There are also many irreducible locally M̃öb-covariant solitons: consider an inclusion of
conformal nets A ⊂ B, take a certain DHR representation ρ of A and its α-induction to B. For a
generic ρ, the α-induction is not a DHR representation but just a soliton, and often such soliton
can be decomposed into irreducible ones. For concrete examples, see e.g. [CHK+15, Section 5]
(this is due to Sebastiano Carpi, we thank him for his comments).
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4 Applications to infinite-dimensional groups

Some conformal nets arise from a particular representation (often called the “vacuum represen-
tation”) of infinite-dimensional groups. Our construction in Section 3.2 gives rise to a new class
of representation of certain subgroups of them.

4.1 The Virasoro net and representations of B0

The Virasoro net with central charge c is the conformal net induced by the stress-energy tensor
Tc,0 in the vacuum representation H(c, 0) of the Virasoro algebra Vir:

Virc(I) = {eiTc,0(f) : f ∈ C∞(S1), real-valued, suppf ⊂ I}′′.

With the lowest weight vector Ωc and the unitary projective representation of Uc of Diff+(S
1),

(Virc, Uc,Ωc) is a conformal net, see [Car04, Section2.4].
The solitons in Section 3.2 give rise to positive energy representations of B0 which do not

extend to positive-energy representations of Diff+(S
1). Let ν ∈ Diff+(S

1,−1). For any γ ∈ B0,
ν ◦ γ ◦ ν−1 is C1, as the discontinuity of the first derivative of ν at the point of infinity gets
cancelled. We set

αν : B0 → Diff1,ps
+ (S1)

γ 7→ ν ◦ γ ◦ ν−1.

Clearly αν is an homomorphism of B0 into Diff1,ps
+ (S1), and Uc extends to Diff1,ps

+ (S1) by Proposi-
tion A.4 (although we do not know continuity). We construct a projective unitary representation
Uν
c of B0 by

Uν
c (g) := (Uc ◦ αν)(g). (4.1)

Proposition 4.1. Let ν ∈ Diff+(S
1,−1) and assume that r(ν) 6= 1. The representation Uν

c de-
fined in (4.1) is not a restriction of any positive-energy representation of Diff+(S

1). In addition,
Uν1
c ≃ Uν2

c if and only if r(ν1) = r(ν2).

Proof. The representation Uν
c is irreducible, since

∨
I∈IR

A(I) = B(H) by (CN9) and the left-
hand side is generated by {Uc(γ) : suppγ ⋐ R} = {Uν

c (γ) : suppγ ⋐ R}. Suppose that Uν
c were

a restriction of a positive-energy representation of Diff+(S
1). By irreducibility, it would have to

be a (c′, h′)-representation of Section 2.3.2.
Any (c′, h′)-representation Uc′,h′ is a projective representation of Diff+(S

1), in particular, the
2π-rotation is a scalar. Furthermore, it holds5 that AdUc′,h′(Rθ)(U

ν
c (γ)) = Uν

c (Rθ ◦ γ ◦R−θ) as
long as θ is small enough so that Rθ suppγ ⊂ S1 \ {−1}, because Uc′,h′ is an extension of the
projective representation Uν

c . Therefore, the restriction of it to Möb makes the soliton σν of Virc
locally Möb-covariant. By Proposition 3.8, σν would extend to a DHR representation, but this
contradicts with Theorem 3.6. This shows that Uν

c does not extend to any (c′, h′)-representation.
The claim about unitary equivalence also follows from Theorem 3.6, by passing to σν1 and

σν2 .

In Section 5, we show that the representations Un, where n is a positive integer, extend to to
Ds(S1), s > 2 by continuity. As Ds(S1) includes Diff1,ps

+ (S1) if 2 < s < 5/2, the representations
Uν
n are strongly continuous when n ∈ Z+ and the solitons σν are continuously covariant with

respect to B0, see Proposition 5.8.

5This equation holds including phase: AdUc′,h′(Rθ) does not give phase by Proposition 2.1, where the phase
β(Rθ, f) vanishes since Rθ is a Möbius transformation, and exponentials Exp(f) generate the whole group
Diff+(S

1), since Diff+(S
1) is algebraically simple [Mat74].
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4.2 Loop group nets and representations of ΛG

We review the loop group nets, following [Kös03, Section III.2]. These results are based on
[GW84, Kac90, GF93, TL99].

Let G be a simple, compact, connected and simply connected Lie group. The group of smooth
maps from S1 to G is denoted by LG. With ΛG we denote the group of smooth maps R → G
with compact support. This group ΛG is identified through Cayley transform with the subgroup
of LG of elements whose support does not contain −1.

Lie algebra Lg consisting of smooth maps from S1 to g with the pointwise operation is called
the loop algebra, and it is the Lie algebra of the loop group LG in the infinite-dimensional sense
(see [PS86]). A 2-cocycle of Lg is a bilinear form ω : Lg× Lg→ R such that

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0.

With such an ω it is possible to construct a central extension of L̃g of Lg by a one-dimensional
centre: as a vector space, L̃g = Lg⊕ R with bracket

[(x, a), (y, b)] := ([x, y], ω(x, y))

with x, y ∈ Lg and a, b ∈ R. If g is simple, every continuous G-invariant 2-cocycle ω has the
form

ω(x, y) =
1

2π

∫ 2π

0
〈x(θ), y′(θ)〉dθ

where 〈·, ·〉 is a symmetric invariant form on g, which is unique up to a scalar.
The constant functions in Lg can be identified with g. Let us fix a basis {ja0} in g. The

complexification L̃gC of L̃g contains functions einθ multiplied with an element ja0 of the basis in
g. Let us denote these elements by jan. They satisfy the commutation relation

[jam, j
b
n] = ifabc j

c
m+n + ω(ja0 , j

b
0)mδm,−n.

One can construct the “vacuum” representations πGℓ,0, namely, a representation which contains a

vector Ω such that πGℓ,0(j
a
n)Ω = 0 for n ≥ 0. The central element (0, a) is represented by a scalar

ℓ, which is called the level. One can introduce a scalar product on this representation space in
such a way that πGℓ,0(j

a
n)

† = πGℓ,0(j
a
−n) and ‖Ω‖ = 1. Such a scalar product is positive definite if

and only if the level ℓ is positive integer. Furthermore, for a real element f ∈ L̃g, πGℓ,0(f) is an

essentially self-adjoint operator on the domain generated by Ω and {πGℓ,0(ja−n)}.
A projective unitary representation V of a group on a Hilbert spaceH is a map from the group

in U(H) such that V (g)V (h) = c(g, h)V (gh) for some scalar c(g, h). The vacuum representation
of Lg at level ℓ integrates to a projective unitary representations of LG: for a real element

f ∈ L̃g, it holds that Vℓ,0(Expf) = eiπ
G
ℓ,0(f) up to a scalar. Furthermore, there is a projective

unitary representation U of Diff+(S
1) such that U(γ)Vℓ,0(g)U(γ)∗ = Vℓ,0(g ◦ γ−1).

A projective unitary representation V of LG on H is said to have positive energy if there
exists a strongly continuous unitary representation U of the rotation group T on the same Hilbert
space with positive generator such that

U(Rθ)V (g)U(Rθ)
∗ = V (gθ),

where gθ(e
iϕ) := g(ei(ϕ−θ)). Correspondingly, we say that a projective unitary representation V

of ΛG has positive energy if there exists a strongly continuous unitary representation U of the
translation group R such that

U(τt)V (g)U(τt)
∗ = V (gt)

where gt(s) = f(s− t). We have [PS86, Proposition 9.2.6]:

20



Proposition 4.2. The restriction to ΛG of a positive energy representation of LG is a positive
energy representation of ΛG.

Let V G
ℓ,0 be the vacuum representation of level ℓ, which has positive energy with respect to

U . With the family of von Neumann algebras

AG,ℓ(I) :=
{
V G
ℓ,0(g) : supp g ⊂ I

}′′

(AG,ℓ, U,Ω) is a conformal net. They are called the loop group nets with group G at level ℓ.

Proposition 4.3. There exist irreducible positive energy representations of ΛG which do not
extend to positive energy representations of LG.

Proof. Fix a level ℓ and consider the conformal net AG,ℓ. Then we can construct a representation

V G,ν
ℓ,0 of ΛG by

V G,ν
ℓ,0 := σν ◦ V G

ℓ,0,

where σν is a proper soliton of the conformal net AG,ℓ with ν ∈ Diff+(S
1,−1) as in Section 3.2.

By Theorem 3.4, V G,ν
ℓ,0 it has positive energy.

Suppose that V G,ν
ℓ,0 were the restriction V of a positive energy representation of LG. Then

V G,ν
ℓ,0 would also be irreducible as a representation of LG as in Proposition 4.1. Such V must have

positive energy by [GW84, Theorem 7.4], namely, there is a projective unitary representation Uν

of Diff+(S
1) whose restriction to the rotations has positive generator and Uν(γ)V (g)Uν(γ) =

V (g ◦ γ−1). As the restriction of V to ΛG is V G,ν
ℓ,0 , Uν makes V G,ν

ℓ,0 locally Diff+(S
1)-covariant,

especially it is locally Möb-covariant (and not just locally M̃öb-covariant, namely the 2π-rotation
is trivial). Accordingly, the soliton σν is also locally Möb-covariant. By Proposition 3.8, it should
extend to a DHR representation of the net. This contradicts with Theorem 3.6. Therefore, V G,ν

ℓ,0

does not arise from the restriction of any positive energy representation of LG.

The existence of such representation has been marked as an open problem in [PS86, P.174,
Remark]. The type III soliton from Section 3.2 gives another such representation, since it cannot
be locally Möb-covariant as we saw in Theorem 3.7 and Proposition 3.8.

5 Sobolev diffeomorphism covariance of the U(1)-current net

Here we take the U(1)-current net where there is the criterion of Shale-Steinspring to determine
whether an automorphism of the algebra can be unitarily implemented. Indeed, following the
strategy of [Vro13], we show that Ds(S1)-diffeomorphisms are implemented with s > 2, and this
group includes Diff1,ps

+ (S1) and Diff3
+(S

1) and also C1-piecewise Möbius group [Wei05].
Let K be a complex Hilbert space with the scalar product 〈·, ·〉 The C∗-algebra generated

by the operators W (f), f ∈ K, satisfying the relations W (f)W (g) = e−iIm 〈f,g〉/2W (f + g) and
W (0) = 1 is called the CCR algebra. There is a representation of the CCR algebra on the sym-
metric Fock space Γ+(K) =

⊕
SymK⊗n with the Fock vacuum Ω and W (f)Ω =

∑
n

⊕
j

1
n!f

⊗n.
We denote the Weyl operators in this representation with the same W (f). If f ∈ K and A is a
real linear, invertible operator on K which preserves the symplectic bilinear form Im 〈·, ·〉, then
the map W (f) 7→ W (Af) is a *-automorphism of the CCR algebra. Such a *-automorphism
is unitary implemented in the Fock representation if and only if 1

2J [A, J ] is an Hilbert-Schmidt
operator, where J is the multiplication by the imaginary unit [Sha62, Theorem 4.1]. We partly
use the conventions of [Ott95, Section 5.3]. For any f ∈ K the Weyl operators W (f) on Γ+(K)
satisfy strong continuity: if fn → f in K then ‖(W (fn)−W (f))ξ‖ → 0 for every ξ ∈ Γ+(K).
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Let C∞(S1,R) be the space of real-valued smooth function on S1. We define a seminorm on
it by

‖f‖ :=
∑

k∈N
k|f̂k|2. (5.1)

We introduce a complex structure on C∞(S1,R) by means of the operator J :

J


 ∑

k∈Z\{0}
fkek


 :=

∑

k∈N
(ifk)ek +

∑

k∈N
(−if−k)e−k,

where ek(e
iθ) := eikθ. The space C∞(S1,R) quotiented by the null space with respect to the

norm {f ∈ C∞(S1,R) : ‖f‖ = 0} is equipped with the complex structure J . With J as the
imaginary unit, the quotiented space becomes the complex Hilbert space H1. This space admits
the irreducible unitary representation U1 of Möb = PSL(2,R) with lowest weight 1. The action
of Möb on C∞(S1,R)

U1(γ)(f) := f ◦ γ−1

extends to H1. For a function f ∈ C∞(S1,R) we denote with [f ] its image in H1. The seminorm
is induced by the complex scalar product

〈f, g〉 := 1

2

∑

k∈N
k(f̂kĝk + f̂kĝk).

The Möbius group acts on Γ+(H1) via the second quantization, and we denote it by U(γ) :=
Γ+(U1(γ)). The adjoint action of U(γ) on the Weyl operators is particularly simple:

AdU(γ)W ([f ]) =W (U1(γ)[f ]).

The family of von Neumann algebras

AU(1)(I) := {W ([f ]) : f ∈ C∞(S1,R), supp (f) ⊂ I}′′

with the Fock vacuum vector Ω ∈ Γ+(H1) and the representation U is a Möbius covariant net
[GLW98]. The representation U of PSL(2,R) can be extended to a projective representation U
of Diff+(S

1) in such a way that AU(1) is actually a conformal net, see [PS86, Theorem 9.3.1].
We show that U can be extended to Ds(S1), s > 2.

In the following, elements in the universal covering D̃s(S1) are considered as maps γ̃ from
R→ R such that γ̃(θ + 2π) = γ̃(θ) + 2π.

Lemma 5.1. Let γ ∈ Ds(S1), s > 3/2, the image of γ̃ ∈ D̃s(S1) through the covering map and
λm,n := 1

2π

∫ 2π
0 e−imθeinγ̃(θ)dθ, where m,n are either m < 0, n > 0 or m > 0, n < 0. Then there

exists Cs,γ ≥ 0 such that

|λm,n| ≤
Cs,γ

(|m|+ |n|)s−1 .

Proof. As in the proof of [Seg81, Proposition 5.3], consider the path γ̃t in D̃s(S1):

[0, 1] ∋ t 7→ γ̃t := tγ̃ + (1− t)id ∈ D̃s(S1).

This is indeed a path in D̃s(S1), because γ̃′t(θ) > 0.

22



For 0 ≤ t ≤ 1, we have
(
γ̃−1
t

)′ ∈ Hs−1(S1) by [IKT13, Theorem B.2(ii), Lemma B.1].

From the definition of the norm ‖f‖s−1 =
(∑

k(1 + k2)s−1|f̂k|2
) 1

2
where f̂k is the k-th Fourier

component, it follows that

∣∣∣∣
(̂
γ̃−1
t

)′
∓(|m|+|n|)

∣∣∣∣ ≤

∥∥∥
(
γ̃−1
t

)′∥∥∥
s−1

(|m|+ |n|)s−1 ≤
2πCs,γ

(|m|+ |n|)s−1 ,

where supt

{∥∥∥
(
γ̃−1
t

)′∥∥∥
}

=: 2πCs,γ which is finite, because t 7→ γ̃t is continuous in Ds(S1) and

their first derivatives are uniformly separated from 0.
By setting t = |n|

|m|+|n| , with + corresponding to the case m < 0, n > 0 and − corresponding
to m > 0, n < 0, we have

λm,n =
1

2π

∫ 2π

0
e±i(|n|+|m|)γ̃t(θ)dθ =

1

2π

∫ 2π

0
e±i(|n|+|m|)ϕ (γ̃−1

t

)′
(ϕ)dϕ =

1

2π

(̂
γ̃−1
t

)′
∓(|m|+|n|),

therefore, |λm,n| ≤ Cs,γ

(|m|+|n|)s−1 as desired.

Note that the map V (γ)[f ] := [f ◦ γ−1] for γ ∈ Ds(S1) is well-defined, because the kernel of
[·] is the constant functions and they remain constant after composition by γ−1.

In order to estimate the Hilbert-Schmidt norm of AV (γ) :=
1
2J [V (γ), J ], note that AV (γ) is

anti-complex linear [Ott95, Section 5.3], namely, AV (γ)J = −JAV (γ). Therefore, its Hilbert-
Schmidt norm on the complex Hilbert space H1 is just the half of its Hilbert-Schmidt norm on
H1 as a real Hilbert space. If we put the norm defined by (5.1) on C∞(S1,C), we obtain a
complex Hilbert space HC

1 which is naturally isomorphic to the direct sum of two copies of H1,

where the complex structure is given by J above. This space HC
1 has the basis

{
1√
k
ek

}
k∈Z,k 6=0

,

where em(θ) = eimθ, and the operator AV (γ) can be extended diagonally and its Hilbert-Schmidt

norm on H1 as a real linear operator is the same as its Hilbert-Schmidt norm on HC
1 .

Proposition 5.2. Let γ ∈ Ds(S1), s > 2. Then there is a unitary operator U(γ) which imple-
ments the action to the CCR algebra corresponding to the map V (γ), namely, AdU(γ)(W ([f ])) =
W ([f ◦ γ−1]), for f ∈ C∞(S1,R).

Proof. Let f, g ∈ C∞(S1,R). The (real) symplectic bilinear form σ([f ], [g]) := Im 〈f, g〉 can be
written as follows:

σ([f ], [g]) =
1

4π

∫ 2π

0
f(eiθ)g′(eiθ)dθ.

As γ ∈ Ds(S1), s > 2, γ is in Diff1
+(S

1) and the map V (γ) preserves the symplectic form σ(·, ·).
Following [Vro13, Theorem 24], we only need to show that the Hilbert-Schmidt norm of

the operator [V (γ), J ] is finite. As remarked above, we can compute it on HC
1 with the basis{

1√
k
ek

}
k∈Z,k 6=0

. The scalar product
〈

1√
m
em,

1
2J [V (γ), J ] 1√

n
en

〉
vanishes when m > 0, n > 0 or

m < 0, n < 0. The remaining cases are m < 0, n > 0 and m > 0, n < 0 and
∣∣∣∣
〈

1√
m
em,

1

2
J [V (γ), J ]

1√
n
en

〉∣∣∣∣
2

=
|m|
|n|
∣∣〈em, V (γ)en〉L2(S1)

∣∣2

=
|m|
|n| |λm,n|2.

With AV (γ) =
1
2J [V (γ), J ], by Lemma 5.1 we have

1

4
‖AV (γ)‖2HS =

∑

m>0,n<0

|m|
|n| |λm,n|2 ≤

∑

m>0,n<0

|m|
|n|

C2
s,γ

(|m|+ |n|)2(s−1)
.

23



Let p := |m|+ |n|, then

∑

m>0,n>0

m

n (m+ n)2(s−1)
=
∑

p>0

1

p2(s−1)

p−1∑

n=1

p− n
n
≤
∑

p>0

p− 1

p2(s−1)

p−1∑

n=1

1

n
≤
∑

p>0

(p− 1) (2 + log(p))

p2(s−1)

which converges if s > 2, therefore, ‖AV (γ)‖2HS <∞.

Theorem 5.3. The map α : Ds(S1) → Aut(B(Γ+(H1))) such that γ 7→ αγ := AdU(γ) is
pointwise strongly continuous if s > 2.

Proof. Let f ∈ C∞(S1,R) and {γn} ⊂ Ds(S1) a sequence converging to γ in Ds(S1). Recall
that C∞(S1,R) ⊂ Hs(S1) for every s and that if f ∈ Hs(S1), s ≥ 1/2, then ‖f‖ ≤ ‖f‖s, where
‖f‖ :=∑k∈N k|f̂k|2. By Lemma 2.3, the map (f, γ) 7→ f ◦ γ−1 is continuous for s > 3/2. Using
Proposition 5.2 and the strong continuity of the Weyl operators, it follows that for s > 2, the
map αγn(W ([f ]))→ αγ(W ([f ])), f ∈ C∞(S1,R).

Let W be the linear span of Weyl operators W ([f ]). By the previous paragraph, we have
limn→∞ AdU(γn)(x) = AdU(γ)(x) in the strong topology for every x ∈ W, and W is dense in
B(Γ+(H1)) in the strong operator topology. Now let {ξn} ⊂ Γ+(H1) be a dense sequence. Let
A ∈ B(Γ+(H1)). By Kaplanski’s density theorem we can choose a sequence {Am} ⊂ W such
that Am → A strongly. Thus we have for every ξn

lim
m→∞

AdU(γ)(Am)ξn = AdU(γ)(A)ξn,

i.e. fn(γ) := AdU(γ)(A)ξn is the pointwise limit of fn,m(γ) := AdU(γ)(Am)ξn. Note that
Ds(S1) is a Baire space, since it is an open set of a complete metric space [IKT13, Lemma B.2,
cf. Corollary 2.1(ii)]. By Baire-Osgood’s theorem [Car00, Theorem 11.20][Pro] applied to the
maps fn,m and fn from a Baire space Ds(S1) into the Hilbert space Γ+(H1), we get that the set

D(fn) := {γ ∈ Ds(S1) : fn is not continuous in γ}

is meager. Thus also
⋃

nD(fn) is meager. It follows that Ds(S1) \⋃nD(fn) is nonempty and
hence there is γ0 ∈ Ds(S1) for which all fn are continuous. Since {ξn} is dense,

γ 7→ AdU(γ)(A)ξ =: fAξ (γ)

is continuous at γ0 for every ξ ∈ Γ+(H1). Set γ1 := γ−1
0 γ, then

gAξ (γ1) := AdU(γ1)(A)ξ = Ad [U(γ0)
∗U(γ)](A)ξ = U(γ−1

0 )fAU(γ0)ξ
(γ)

converges to U(γ0)
∗fAU(γ0)ξ

(γ0) as γ → γ0 for every A ∈ B(Γ+(H1)) and for every ξ ∈ Γ+(H1).

In other words, the map γ1 7→ AdU(γ1) is pointwise continuous in the strong operator topology
at the identity id ∈ Ds(S1).

Since the map

γ 7→ AdU(γ) ∈ Aut(B(Γ+(H1)))

is a group homomorphism and is continuous at id it is continuous for every γ ∈ Ds(S1).

As we saw in Lemma 3.1, Diff1,ps
+ (S1) ⊂ Ds(S1) if s < 5/2.

Corollary 5.4. The U(1)-current net AU(1) is continuously Ds(S1)-covariant, s > 2, and in

particular is Diff1,ps
+ (S1)-covariant.

Proof. The proof is the same as in [CDIT, Proposition 4.1].
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Note that this is stronger than the general result, Proposition A.4, as here we have the
continuity of Diff1,ps

+ (S1)-action as a subgroup of Ds(S1).

Corollary 5.5. The projective unitary representation U of Diff+(S
1) on Γ+(H1) extends con-

tinuously to Ds(S1), s > 2.

Proof. The map γ 7→ AdU(γ) is continuous by Theorem 5.3, and this is equivalent to the
continuity of γ 7→ U(γ) in U(Γ+(H1))/T.

Corollary 5.6. The Virasoro net Vir1 with central charge c = 1 is continuously Ds(S1)-
covariant, s > 2, and in particular is Diff1,ps

+ (S1)-covariant.

Proof. Let Vir1 the Virasoro net of central charge c = 1, where

Vir1(I) = {U(γ) : γ ∈ Diff+(S
1), suppγ ⊂ I}′′,

which is a subnet of AU(1). The subspace HVir1 :=
⋃

I Vir1(I)Ω is invariant for U(γ), γ ∈ Ds(S1)
by Corollary 5.5, hence the representation U restricts to HVir1 , and the covariance follows.

Let U1,0 the irreducible positive energy projective unitary representation of Diff+(S
1) with

central charge 1 and lowest weight 0. The finite tensor product Un :=
⊗

n U1,0, is a positive
energy projective representation of Diff+(S

1) which contains Un,0 as a subrepresentation. By
Corollary 5.6, all the representations Un,0 of Diff+(S

1) extend to Ds(S1), s > 2. This is a partial
improvement of the results of [CDIT], where all Uc,h were extended to Ds(S1), s > 3.

We now show that for these conformal nets the representations of B0 constructed in Section
4.1 are strongly continuous.

Lemma 5.7. Let γ̊ ∈ B0, ν̊ ∈ Diff+(S
1,−1) and 2 < s < 5/2. The homomorphism αν̊ : B0 −→

Ds(S1), γ̊ 7→ αν̊ (̊γ) := ν̊ ◦ γ̊ ◦ ν̊−1, where B0 is equipped with the C∞-topology, is continuous.

Proof. Let {γ̊n} ⊂ B0 be a sequence converging to γ̊ ∈ B0 with respect to the C∞-topology. We

denote with ν the lift to ˜Diff0
+(S

1) of ν̊ and with γn and γ the lift to B̃0 of γ̊n and γ̊, respectively.
We use the same strategy of Lemma 3.3. Namely, the convergence ν ◦ γn ◦ ν−1 → ν ◦ γ ◦ ν−1 in
the L1(S1)-topology (actually, even in the uniform topology) is straightforward. Then, by

∣∣∣
(

̂ν ◦ γn ◦ ν−1
)
k

∣∣∣ ≤
Var

((
ν ◦ γn ◦ ν−1

)′′)

k3

it is sufficient to show that the right-hand side is uniformly bounded in n. The second derivative
of ν ◦ γn ◦ ν−1 is

d2

dθ2
(
ν ◦ γn ◦ ν−1

)
(θ) = ν ′′(γn(ν

−1(θ)))γ′n(ν
−1(θ))2

1

ν ′(ν−1(θ))2

+ ν ′(γn(ν
−1(θ)))γ′′n(ν

−1(θ))
1

ν ′(ν−1(θ))2
(5.2)

− ν ′(γn(ν−1(θ)))γ′n(ν
−1(θ))

ν ′′(ν−1(θ))

ν ′(ν−1(θ))3
.

To evaluate its total variation, we use the following facts: for every pair of functions f1, f2 with
bounded variation, it holds [Pau15, Theorem 3.7] that

Var(f1 · f2) ≤ ‖f1‖∞Var(f2) + ‖f2‖∞Var(f1) + 3Var(f1)Var(f2)

Var(f1 ◦ f2) ≤ Lf1Var(f2),

where f1 is Lipschitz and Lf1 is the Lipschitz constant of f1. Now, the total variations of the
second and the third terms are uniformly bounded in n since L

γ
(k)
n

are uniformly bounded in n.
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As for the first term, we have Var(ν ′′◦γn◦ν−1) ≤ 2π
∥∥∥
(
ν ′′ ◦ γn ◦ ν−1

)′∥∥∥
L∞(0,2π)

+|ν ′′(2π)−ν ′′(0)|,
and this is again uniformly bounded since ν ′′ has a bounded derivative on the open interval (0, 2π)
and L

γ
(k)
n

are uniformly bounded in n.

Proposition 5.8. Let 2 < s < 5/2 and γ ∈ Diff+(S
1,−1). The map Uγ := U ◦ αγ is a

strongly continuous unitary projective representation of B0 when U = Un,0, n ∈ Z+, or U is as
in Corollary 5.5.

Let A be the U(1)-current net or the Virasoro net AVirc with c ∈ Z+ and γ ∈ Diff+(S
1,−1).

Every soliton σγ of A as in Section 3.2 is continuously B0-covariant with respect to the repre-
sentation Uγ .

Proof. This is clear from Corollary 5.5 and Lemma 5.7.

6 Outlook

Let us collect some open problems.

• There appears to be no known soliton which is not dilation-covariant. Is dilation covariance
automatic in solitons? This is not obvious, because we cannot implement dilations by
cutting the generators as we did for translations.

• Is it possible to classify all solitons for some specific conformal nets? For example, for
Virasoro nets any such soliton should give rise to a representation of the group of the
diffeomorphisms of R with compact support. Yet, the lack of any compact subgroup makes
it difficult to classify such representations.

• As the action γ∗(f) of a diffeomorphism on vector fields involves the derivative of γ, it
may decrease the regularity, especially, it may have discontinuous derivative. On the other
hand, if γ and Exp(f) are implementable, so is Exp(γ∗(f)) by U(γ)U(Exp(f))U(γ)∗, hence
implementability of Exp(g) is not directly related with the regularity of g. What is the
precise relationship? Is D(L0) a core for such T (g)?

• Which is the smallest s > 0 for which conformal nets are Ds(S1)-covariant? Does s depend
on the net? For which s do (c, h)-representations of Diff+(S

1) extend to Ds(S1)?

A Piecewise smooth C
1-diffeomorphisms

Here we show that any γ ∈ Diff1,ps
+ (S1) is implementable in any conformal net. The strategy is

due to André Henriques. We thank him for permitting us to include this in the present paper.
An element γ ∈ Diff1,ps

+ (S1) has only finitely many nonsmooth points, hence if we show that
any γ with one nonsmooth point is implemented, the thesis follows by composing such elements
finitely many times. Furthermore, by composing with rotations and dilations, we may assume
that the nonsmooth point is −1 and γ(−1) = −1, γ′(−1) = 1.

If γ ∈ Diff1,ps
+ (S1), let γ̃ be a lift of γ to the universal covering ˜Diff1

+(S
1). As we observed in

Section 3.2, there exists an open interval I of S1 which contains −1 and γI− , γI+ ∈ Diff+(S
1) such

that γ agrees with γI− in I− and with γI+ in I+, where I− and I+ are the connected components
of I \ {−1}. Denote the derivative of γ from the right and from the left by

∂±γ(−1) := lim
θ→π±

γ̃I±(θ)− γ̃I±(π)
θ − π .
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For f ∈ C∞(S1,R) and γ ∈ Diff+(S
1) we define

f (k)(eiθ) :=
dk

dθk
f(eiθ)

and

γ(k)(eiθ) :=
dk

dθk
γ̃(θ)

where γ̃ is the lift of γ in ˜Diff+(S1) and ˜Diff+(S1) is identified with the group of maps γ̃ : R→ R

satisfying γ̃(θ + 2π) = γ̃(θ) + 2π.
Recall that Vect(S1) is a Lie algebra with the bracket [f, g] := f ′g − g′f . As in [Tan10], for

0 ≤ k ≤ ∞, consider the following Lie subalgebras of Vect(S1)

bn =
{
f ∈ C∞(S1,R) : f (k)(−1) = 0, for 0 ≤ k ≤ n

}
,

b∞ =
{
f ∈ C∞(S1,R) : f (k)(−1) = 0, for all k ∈ N

}
.

To each algebra corresponds a Lie subgroup of Diff+(S
1),

B0 :=
{
γ ∈ Diff+(S

1) : γ(−1) = −1
}
,

B1 :=
{
γ ∈ Diff+(S

1) : γ(−1) = −1, γ(1)(−1) = 1
}
,

Bn :=
{
γ ∈ Diff+(S

1) : γ(−1) = −1, γ(1)(−1) = 1, γ(k)(−1) = 0, for 2 ≤ k ≤ n
}
,

B∞ :=
{
γ ∈ Diff+(S

1) : γ(−1) = −1, γ(1)(−1) = 1, γ(k)(−1) = 0, for all k ≥ 2
}
.

By explicit calculations, bn’s are normal Lie subalgebras of b0. Correspondingly, Bn is a normal
subgroup of B0 for every n ≥ 1: indeed, if γ ∈ Bn and γ0 ∈ B0, then γ−1γ0γ has the same k-th
derivatives at −1 as γ0 for k = 1, · · · , n, hence γ−1γ0γγ

−1
0 ∈ Bn and γ0γγ

−1
0 ∈ Bn. From this,

it is immediate that bn is a normal Lie subalgebra of b1 and Bn is a normal subgroup of B1.
The quotient Lie algebra b1/bn is finite dimensional and every element [g] can be identified

with the (n−1)-tuple of the real numbers (g(2)(−1), · · · , g(n)(−1)). Furthermore, it follows from
straightforward computations that b1/bn is nilpotent. Similarly, the quotient B1/Bn is a finite-
dimensional Lie group and an element [γ] ∈ B1/Bn can be identified with the (n−1)-tuple of real
numbers (γ(2)(−1), · · · , γ(n)(−1)). As we see below, b1/bn is the Lie algebra of B1/Bn, and the
latter is connected and simply connected as it is diffeomorphic to Rn−1, hence the exponential
map is surjective [CG90, Theorem 1.2.1], which is the key of the following Lemma A.2.

Lemma A.1. The Lie algebra of the group B1/Bn is b1/bn. Let Expn be the exponential map
from b1/bn to B1/Bn. With the natural quotient maps [·], the following diagram commutes.

b1 b1/bn

B1 B1/Bn

[·]

Exp Expn

[·]

Proof. We first prove that if [f1] = [f2] in b1/bn, then [Exp(f1)] = [Exp(f2)]. It is enough to
show that Exp(f1)

(k)(−1) = Exp(f2)
(k)(−1) for 0 ≤ k ≤ n − 1. The case k = 0 is obvious by

definition of Exp. We show this by induction in k. By [CL55, Theorem 7.2] we have that

∂

∂t

(
∂k

∂θk
Exp(tfj)(e

iθ)

∣∣∣∣
eiθ=−1

)
=

∂k

∂θk

(
∂

∂t
Exp(tfj)(e

iθ)

) ∣∣∣∣
eiθ=−1

=
∂k

∂θk
fj(Exp(tfj)(e

iθ))

∣∣∣∣
eiθ=−1

(A.1)
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for j = 1, 2. By the chain rule, we observe that the last expression can be written in terms of

∂ℓ

∂θℓ
Exp(tfj)(e

iθ)

∣∣∣∣
eiθ=−1

with 0 ≤ ℓ ≤ k − 1 and f
(ℓ)
j (−1) with 0 ≤ ℓ ≤ k, because f

(1)
j (−1) = 0

and ∂k

∂θk
Exp(tf)(eiθ)

∣∣∣∣
eiθ=−1

does not appear. Therefore, ∂k

∂θk
Exp(tfj)(e

iθ)

∣∣∣∣
eiθ=−1

, j = 1, 2 satisfy

the same differential equation with respect to t (A.1) with the same initial data, we can conclude
that Exp(tf1)

(k)(−1) = Exp(tf2)
(k)(−1).

Let f ∈ b1. Then [Exp(tf)] is a one-parameter group in B1/Bn and it does not depend on
the representative in [f ] by the previous paragraph. The Lie bracket [[f ], [g]] can be computed
from [Exp(tf)], [Exp(sg)] and it gives [[f, g]] = [f ′g − fg′], namely, b1/bn is the Lie algebra of
B1/Bn.

Lemma A.2. Let {λn}n≥2 be a sequence of real numbers. There exists g ∈ C∞(S1,R) such that
Exp(g)(n)(−1) = λn for all n ≥ 2.

Proof. Note that b1/bn ← b1/bn+1 is a Lie algebra homomorphism, since bn ⊃ bn+1. Recall the
inverse limit of the sequence of Lie algebras

b1/b2 ←− · · · ←− b1/bn ←− b1/bn+1 ←− · · ·

is by definition the Lie algebra of sequences (g2, · · · , gn . . . ), gn ∈ b1/bn such that gn/bn−1 =
gn−1. This is isomorphic to b1/b∞, because any such sequence corresponds to a sequence

(λ′2, · · · , λ′n, · · · ) where g
(k)
n (−1) = λ′k and by Borel’s theorem [Hör90, Theorem 1.2.6] there

is g ∈ Vect(S1) such that g(−1) = g′(−1) = 0 and g(k)(−1) = λ′n.
Similarly, the inverse limit of the sequence of groups

B1/B2 ←− · · · ←− B1/Bn ←− B1/Bn+1 ←− · · ·

is isomorphic to B1/B∞, because to any sequence (λ2, · · · , λn, · · · ) one can associate γ ∈
Diff+(S

1) such that γ(k)(−1) = λn by Borel’s theorem, as we did in Section 3.2.
Since b1/bn is a nilpotent Lie algebra, the exponential map Expn : b1/bn −→ B1/Bn is surjec-

tive [CG90, Theorem 1.2.1]. It follows that the inverse limit Exp∞ of the maps Expn is surjective,
because any sequence (γ2, · · · , γn, · · · ) has an inverse image (Exp−1

2 (γ2), · · · ,Exp−1
n (γn), · · · ).

To a given sequence {λn}n≥2, we take the element (λ2, · · · , λn, · · · ) ∈ B1/B∞. Its inverse
image with respect to Exp∞ is a sequence (λ′2, · · · , λ′n, · · · ) ∈ b1/b∞. By Borel’s theorem, there
is g ∈ Vect(S1) such that g(−1) = g′(−1) = 0, g(n)(−1) = λ′n. This g has the desired property
Exp(g)(k)(−1) = λk by Lemma A.1.

The inverse limit of b1/b2 ← · · · ← b1/bn ← · · · is isomorphic to the Lie algebra of formal
power series x2C[[x]], where the Lie bracket is [f, g] := f ′g − g′f , f, g ∈ x2C[[x]]. Similarly, the
inverse limit of B1/B2 ← · · · ← B1/Bn ← · · · is the group x + x2C[[x]] with product given by
the composition of formal power series.

Lemma A.3. Let γ ∈ Diff1,ps
+ (S1), smooth on S1 \ {−1} and γ′(−1) = 1. There exist g

which is piecewise smooth, C1 and possibly nonsmooth at {−1} and γ ∈ Diff+(S
1) such that

γ = Exp(g) ◦ γ.

Proof. Let us first show that, for two sequences of real numbers {λ+n }n≥2, {λ−m}m≥2, there exists
g ∈ C1(S1,R), such that

• Exp(g)(−1) = −1,Exp(g)(1)(−1) = 1

• Exp(g) ∈ Diff1,ps
+ (S1)

• Exp(g) is smooth on S1 \ {−1}
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• ∂n+Exp(g)(−1) = λ+n , ∂m−Exp(g)(−1) = λ−m for all n,m ≥ 2.

By applying Lemma A.2 to {λ+n }n≥2, {λ−m}m≥2, there exist g+, g− ∈ C∞(S1,R) such that
Exp(g+)

(n)(−1) = {λ+n } and Exp(g−)(n)(−1) = {λ−n }, m,n ≥ 2, Exp(g±)(n)(−1) = −1 and
Exp(g±)(1)(−1) = 1.

We may assume that g± has compact support around −1. By gluing the restrictions of g+ and
g− to I+, I− respectively, we obtain g which is smooth on S1 \ {−1}, is in C1(S1,R) and g|I+ =

g+|I+ , g|I− = g−|I− . As the only nonsmooth point of g is −1, we have Exp(g) ∈ Diff1,ps
+ (S1) and

Exp(g) is smooth on S1 \ {−1}.
For n ≥ 2, we set λ+n := ∂n+γ(−1) and λ−m := ∂m− γ(−1). By the observation above, there exists

g ∈ C1(S1,R), smooth on S1 \ {−1} such that Exp(g) ∈ Diff1,ps
+ (S1) and ∂n+Exp(g)(−1) = λ+n ,

∂m−Exp(g)(−1) = λ−m for all n,m ≥ 2, Exp(g) is smooth on S1 \ {−1} and Exp(g)(−1) =
−1,Exp(g)(1)(−1) = 1. It follows that γ := γ ◦ Exp(−g) has ∂k+γ(−1) = ∂k−γ(−1) = 0 for all
k ≥ 2, therefore, γ ∈ B∞ ⊂ Diff+(S

1).

Proposition A.4. In any conformal net (A, U,Ω), U can be extended to Diff1,ps
+ (S1) (not nec-

essarily continuously) in such a way that the net is covariant with respect to U .

Proof. We first show that γ ∈ Diff1,ps
+ (S1) is implementable if γ(−1) = −1 and γ′(−1) = 1 and

γ is smooth elsewhere.
By Lemma A.3, we have γ = Exp(g) ◦ γ, where g is piecewise smooth and C1, and γ ∈

Diff+(S
1). The smooth element γ is already implemented by U , therefore, to obtain the desired

extension, it is enough to prove that Exp(g) is implementable for g which is piecewise smooth
and C1.

Any such g can be approximated by smooth g(θ, µ) = g ∗ hµ(θ) with 0 < µ ≤ 1, where h1

is a smooth function with support in [−1, 1] such that h1 ≥ 0,
∫
h1 = 1 and hµ(θ) =

1
µh1

(
θ
µ

)
.

We set g(θ, 0) = g(θ). Then it is clear that g is a continuous function of (θ, µ) and uniformly
Lipschitz in θ, since ∂θg(θ, µ) = g′ ∗ hµ(θ) and ∂θg(θ, 0) = g′(θ). By [CL55, Chapter1, Theorem
7.4], Exp(tgµ)(θ) is continuous in µ at each τ, θ. Now, as gµ is smooth for µ > 0, we have
AdU(Exp(tgµ))(A(I)) = A(Exp(tgµ)I). Note that U(Exp(tgµ)) = eitT (gµ) up to a scalar, where
T is the stress-energy tensor for U , and since gµ → g in the S 3

2
(S1,R)-topology [CW05, Lemma

4.6], eitT (gµ) → eitT (g) in the strong operator topology [CW05, Proposition 4.5]. Therefore, it
holds that Ad eitT (g)(x) = limµ→0 AdU(Exp(tgµ))(x) for any x ∈ A(I), and by the continuity
above, Ad eitT (g)(x) ∈ A(Exp(tg)I). If we set U(Exp(tg)) = eitT (g), this acts covariantly on the
net A.

It remains to show that U gives a well-defined projective representation of Diff1,ps
+ (S1). Let

us first define U and show the well-definedness.

• First consider γ which has only one nonsmooth point at −1 and γ(−1) = −1, γ′(−1) = 1.
We take the decomposition γ = Exp(g) ◦ γ and define U(γ) = U(Exp(g))U(γ). This is

well-defined as a projective representation. Indeed, its adjoint action on A(I),−1 /∈ I
is determined by U as the representation of Diff+(S

1), and such A(I)’s generate B(H),
therefore, if we take another decomposition U(γ) = U(Exp(g1))U(γ1), the difference must
be a scalar.

• Second, if γ has only one nonsmooth point, then γ = γL ◦ γ0 ◦ γR with γ0 such that
γ0(−1) = −1, γ′0(−1) = 1 and smooth elements γL, γR. By the well-definedness above and
the fact that U is already defined on smooth elements, U(γ) = U(γL)U(γ0)U(γR) is also
well-defined.

• If γ has finitely many nonsmooth points, we decompose it into γ = γ0 · γ̌, where γ0 fixes
all these nonsmooth points, has derivative 1 and supp γ0 is a disjoint union of intervals
around these nonsmooth points. As the nonsmooth part has disjoint unions, if we take the
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product of U defined above on each component, this does not depend on the order of the
product. If we consider two such decompositions, the nonsmooth parts cancel each other
up to a smooth element which is already defined, hence U is well-defined.

That U is a projective representation is shown as follows.

• For two elements γ1, γ2 such that γj(−1) = −1, AdU(γ1γ2) and AdU(γ1)U(γ2) implement
the same action of A(I) such that −1 /∈ I as before, hence the difference between U(γ1γ2)
and U(γ1)U(γ2) must be a scalar.

• By rotation, the homomorphism property U(γ1γ2) = U(γ1)U(γ2), up to a scalar, follows
also when γ1 and γ2 has only one and same nonsmooth point.

• For two elements γ1, γ2 with finitely many nonsmooth points, take the decompositions as
above: γj = γj,0, γ̌j . We may assume that the components of γ̌1γ2,0γ̌

−1
1 is either disjoint

from the components of γ1,0, or have a common nonsmooth point. If they are disjoint,
their representation by U commute. If they have a common nonsmooth point, we can
merge them to a single element and we have shown the homomorphism property above. In
this way, we have the decomposition γ1γ2 = (γ1,0γ̌1γ2,0γ̌

−1
1 ) · (γ̌1γ̌2), where γ1,0γ̌1γ2,0γ̌

−1
1 is

supported around the nonsmooth points and γ̌1γ̌2 is smooth and we have U(γ1)U(γ2) =
U(γ1,0)U(γ̌1)U(γ2,0)U(γ̌2) = U(γ1,0γ̌1γ2,0γ̌

−1
1 )U(γ̌1γ̌2) = U(γ1γ2) up to a scalar.

We have seen the covariance of the net with respect to γ0 such that γ0(−1) = −1 and γ′0(−1) = 1
and smooth elsewhere. Any element γ ∈ Diff1,ps

+ (S1) can be decomposed as a product of such
elements and smooth elements, and for each of them we have shown the covariance, hence the
covariance holds also for γ.

Acknowledgements.

We would like to thank Roberto Longo for suggesting the problem. We are grateful to Sebas-
tiano Carpi, André Henriques, Karl-Hermann Neeb and Stefano Rossi for various interesting
discussions. S.D. and Y.T. acknowledge the MIUR Excellence Department Project awarded to
the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

References

[Bau95] Hellmut Baumgärtel. Operator algebraic methods in quantum field theory. Akademie Verlag,
Berlin, 1995. https://books.google.com/books?id=rq3vAAAAMAAJ.

[BCL98] Paolo Bertozzini, Roberto Conti, and Roberto Longo. Covariant sectors with infinite
dimension and positivity of the energy. Comm. Math. Phys., 193(2):471–492, 1998.
https://arxiv.org/abs/funct-an/9704007.

[BE98] J. Böckenhauer and D. E. Evans. Modular invariants, graphs and α-
induction for nets of subfactors. I. Comm. Math. Phys., 197(2):361–386, 1998.
https://arxiv.org/abs/hep-th/9801171.

[BE99a] Jens Böckenhauer and David E. Evans. Modular invariants, graphs and α-
induction for nets of subfactors. II. Comm. Math. Phys., 200(1):57–103, 1999.
https://arxiv.org/abs/hep-th/9805023.

[BE99b] Jens Böckenhauer and David E. Evans. Modular invariants, graphs and α-
induction for nets of subfactors. III. Comm. Math. Phys., 205(1):183–228, 1999.
https://arxiv.org/abs/hep-th/9812110.

[Buc74] Detlev Buchholz. Product states for local algebras. Comm. Math. Phys., 36:287–304, 1974.
http://projecteuclid.org/euclid.cmp/1103859773.

30

https://books.google.com/books?id=rq3vAAAAMAAJ
https://arxiv.org/abs/funct-an/9704007
https://arxiv.org/abs/hep-th/9801171
https://arxiv.org/abs/hep-th/9805023
https://arxiv.org/abs/hep-th/9812110
http://projecteuclid.org/euclid.cmp/1103859773


[Car98] Sebastiano Carpi. Absence of subsystems for the haag–kastler net generated by the energy-
momentum tensor in two-dimensional conformal field theory. Lett. Math. Phys., 45(3):259–
267, 1998. https://drive.google.com/file/d/0B0qlHPab_Xp5c044QTJzbHAwSVE/view.

[Car00] N. L. Carothers. Real Analysis. Cambridge University Press, 2000.
https://books.google.com/books?id=4VFDVy1NFiAC.

[Car04] Sebastiano Carpi. On the representation theory of Virasoro nets. Comm. Math. Phys.,
244(2):261–284, 2004. https://arxiv.org/abs/math/0306425.

[CDIT] Sebastian Carpi, Simone Del Vecchio, Stefano Iovieno, and Yoh Tanimoto. Pos-
itive energy representations of sobolev diffeomorphism groups of the circle.
https://arxiv.org/abs/1808.02384.

[CG90] Lawrence J. Corwin and Frederick P. Greenleaf. Representations of nilpotent Lie groups and
their applications. Part I: Basic theory and examples. Cambridge University Press, 1990.
https://books.google.com/books?id=H2e1tVW8WrMC.

[CHK+15] Sebastiano Carpi, Robin Hillier, Yasuyuki Kawahigashi, Roberto Longo, and Feng
Xu. N = 2 superconformal nets. Comm. Math. Phys., 336(3):1285–1328, 2015.
https://arxiv.org/abs/1207.2398.

[CKL08] Sebastiano Carpi, Yasuyuki Kawahigashi, and Roberto Longo. Structure and clas-
sification of superconformal nets. Ann. Henri Poincaré, 9(6):1069–1121, 2008.
https://arxiv.org/abs/0705.3609.

[CL55] Earl A. Coddington and Norman Levinson. Theory of ordinary differential
equations. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.
https://books.google.com/books?id=2PJQAAAAMAAJ.

[CW05] Sebastiano Carpi and Mihály Weiner. On the uniqueness of diffeomorphism sym-
metry in conformal field theory. Comm. Math. Phys., 258(1):203–221, 2005.
https://arxiv.org/abs/math/0407190.

[DFK04] Claudio D’Antoni, Klaus Fredenhagen, and Søren Köster. Implementation of confor-
mal covariance by diffeomorphism symmetry. Lett. Math. Phys., 67(3):239–247, 2004.
https://arxiv.org/abs/math-ph/0312017.

[DMS97] Philippe Di Francesco, Pierre Mathieu, and David Sénéchal. Conformal field theory. Springer-
Verlag, New York, 1997. https://books.google.com/books?id=keUrdME5rhIC.

[FH05] Christopher J. Fewster and Stefan Hollands. Quantum energy inequalities in
two-dimensional conformal field theory. Rev. Math. Phys., 17(5):577–612, 2005.
https://arxiv.org/abs/math-ph/0412028.

[FJ96] Klaus Fredenhagen and Martin Jörß. Conformal Haag-Kastler nets, pointlike localized fields
and the existence of operator product expansions. Comm. Math. Phys., 176(3):541–554, 1996.
https://projecteuclid.org/euclid.cmp/1104286114.

[Fre93] Klaus Fredenhagen. Superselection sectors in low-dimensional quantum field theory. J. Geom.
Phys., 11(1-4):337–348, 1993. https://doi.org/10.1016/0393-0440(93)90062-J.

[Frö76] Jürg Fröhlich. New super-selection sectors (“soliton-states”) in two dimen-
sional Bose quantum field models. Comm. Math. Phys., 47(3):269–310, 1976.
http://projecteuclid.org/euclid.cmp/1103899761.

[GF93] Fabrizio Gabbiani and Jürg Fröhlich. Operator algebras and conformal field theory. Comm.
Math. Phys., 155(3):569–640, 1993. http://projecteuclid.org/euclid.cmp/1104253398.

[GLW98] D. Guido, R. Longo, and H.-W. Wiesbrock. Extensions of conformal nets
and superselection structures. Comm. Math. Phys., 192(1):217–244, 1998.
https://arxiv.org/abs/hep-th/9703129.

[GW84] Roe Goodman and Nolan R. Wallach. Structure and unitary cocycle representations of loop
groups and the group of diffeomorphisms of the circle. J. Reine Angew. Math., 347:69–133,
1984.

31

https://drive.google.com/file/d/0B0qlHPab_Xp5c044QTJzbHAwSVE/view
https://books.google.com/books?id=4VFDVy1NFiAC
https://arxiv.org/abs/math/0306425
https://arxiv.org/abs/1808.02384
https://books.google.com/books?id=H2e1tVW8WrMC
https://arxiv.org/abs/1207.2398
https://arxiv.org/abs/0705.3609
https://books.google.com/books?id=2PJQAAAAMAAJ
https://arxiv.org/abs/math/0407190
https://arxiv.org/abs/math-ph/0312017
https://books.google.com/books?id=keUrdME5rhIC
https://arxiv.org/abs/math-ph/0412028
https://projecteuclid.org/euclid.cmp/1104286114
https://doi.org/10.1016/0393-0440(93)90062-J
http://projecteuclid.org/euclid.cmp/1103899761
http://projecteuclid.org/euclid.cmp/1104253398
https://arxiv.org/abs/hep-th/9703129


[Hen17a] André Henriques. Bicommutant categories from conformal nets. 2017.
https://arxiv.org/abs/1701.02052.

[Hen17b] André Henriques. Loop groups and diffeomorphism groups of the circle as colimits. 2017.
https://arxiv.org/abs/1706.08471.

[Hör90] Lars Hörmander. The analysis of linear partial differential operators. I. Springer-Verlag,
Berlin, second edition, 1990. https://books.google.com/books?id=aaLrCAAAQBAJ.

[IKT13] H. Inci, T. Kappeler, and P. Topalov. On the regularity of the composition of diffeomorphisms.
Mem. Amer. Math. Soc., 226(1062):vi+60, 2013. https://arxiv.org/abs/1107.0488.

[Kac90] Victor G. Kac. Infinite-dimensional Lie algebras. Cambridge University Press, Cambridge,
third edition, 1990. https://books.google.com/books?id=kuEjSb9teJwC.

[Kat04] Yitzhak Katznelson. An Introduction to Harmonic Analysis. Cambridge University Press,
2004. https://books.google.com/books?id=gkpUE_m5vvsC.

[Kös02] S. Köster. Conformal transformations as observables. Lett. Math. Phys., 61(3):187–198, 2002.
https://arxiv.org/abs/math-ph/0201016.

[Kös03] Sören Köster. Structure of coset models. 2003. Ph.D. Thesis, Göttingen University.
https://arxiv.org/abs/math-ph/0308031.

[KR87] V. G. Kac and A. K. Raina. Bombay lectures on highest weight representations of
infinite-dimensional Lie algebras. World Scientific Publishing Co. Inc., Teaneck, NJ, 1987.
https://books.google.com/books?id=0P23OB84eqUC.

[KLX05] Kac V., Longo R. and Xu F. Solitons in Affine and Permutation Orbifolds. Communications
in Mathematical Physics, 253:723–764, 2005. https://arxiv.org/abs/math/0312512.

[LR95] R. Longo and K.-H. Rehren. Nets of subfactors. Rev. Math. Phys., 7(4):567–597,
1995. Workshop on Algebraic Quantum Field Theory and Jones Theory (Berlin, 1994).
https://arxiv.org/abs/hep-th/9411077.

[LX04] Roberto Longo and Feng Xu. Topological sectors and a dichotomy in conformal field theory.
Comm. Math. Phys., 251(2):321–364, 2004. https://arxiv.org/abs/math/0309366.

[Mat74] John N. Mather. Commutators of diffeomorphisms. Comment. Math. Helv., 49:512–528, 1974.
https://doi.org/10.1007/BF02566746.

[Mil84] J. Milnor. Remarks on infinite-dimensional Lie groups. In Relativity, groups and
topology, II (Les Houches, 1983), pages 1007–1057. North-Holland, Amsterdam, 1984.
https://books.google.com/books?id=QK-HXwAACAAJ.

[MTW18] Vincenzo Morinelli, Yoh Tanimoto, and Mihály Weiner. Conformal covariance and the split
property. Comm. Math. Phys., 357(1):379–406, 2018. https://arxiv.org/abs/1609.02196.

[Müg99] Michael Müger. On soliton automorphisms in massive and conformal theories. Rev. Math.
Phys., 11(3):337–359, 1999. https://arxiv.org/abs/hep-th/9803057.

[Ott95] Johnny T. Ottesen. Infinite-dimensional groups and algebras in quantum physics. Springer-
Verlag, Berlin, 1995. https://books.google.com/books?id=7Cn6CAAAQBAJ.

[Pau15] Florian Pausinger. A koksma–hlawka inequality for gen-
eral discrepancy systems. J Complex, 31(6):773–797, 2015.
https://www.sciencedirect.com/science/article/pii/S0885064X15000606?via%3Dihub.

[Pro] ProofWiki. Baire-Osgood theorem. https://proofwiki.org/wiki/Baire-Osgood_Theorem.

[PS86] Andrew Pressley and Graeme Segal. Loop groups. The Clarendon Press Oxford University
Press, New York, 1986. https://books.google.com/books?id=MbFBXyuxLKgC.

[Reh98] K.-H. Rehren. Spin statistics and CPT for solitons. Lett. Math. Phys., 46(2):95–110, 1998.
https://www.researchgate.net/publication/226210205.

[Rob74] John E. Roberts. Some applications of dilatation invariance to structural ques-
tions in the theory of local observables. Comm. Math. Phys., 37:273–286, 1974.
https://projecteuclid.org/euclid.cmp/1103859929.

32

https://arxiv.org/abs/1701.02052
https://arxiv.org/abs/1706.08471
https://books.google.com/books?id=aaLrCAAAQBAJ
https://arxiv.org/abs/1107.0488
https://books.google.com/books?id=kuEjSb9teJwC
https://books.google.com/books?id=gkpUE_m5vvsC
https://arxiv.org/abs/math-ph/0201016
https://arxiv.org/abs/math-ph/0308031
https://books.google.com/books?id=0P23OB84eqUC
https://arxiv.org/abs/math/0312512
https://arxiv.org/abs/hep-th/9411077
https://arxiv.org/abs/math/0309366
https://doi.org/10.1007/BF02566746
https://books.google.com/books?id=QK-HXwAACAAJ
https://arxiv.org/abs/1609.02196
https://arxiv.org/abs/hep-th/9803057
https://books.google.com/books?id=7Cn6CAAAQBAJ
https://www.sciencedirect.com/science/article/pii/S0885064X15000606?via%3Dihub
https://proofwiki.org/wiki/Baire-Osgood_Theorem
https://books.google.com/books?id=MbFBXyuxLKgC
https://www.researchgate.net/publication/226210205
https://projecteuclid.org/euclid.cmp/1103859929


[RS75] Michael Reed and Barry Simon. Methods of modern mathematical physics.
II. Fourier analysis, self-adjointness. Academic Press, New York, 1975.
https://books.google.com/books?id=Kz7s7bgVe8gC.

[Sch96] Dirk Schlingemann. On the existence of kink (soliton) states. Rev. Math. Phys., 8(8):1187–
1203, 1996. https://arxiv.org/abs/hep-th/9512100.

[Sch98] Dirk Schlingemann. Construction of kink sectors for two-dimensional quantum field
theory models—an algebraic approach. Rev. Math. Phys., 10(6):851–891, 1998.
https://arxiv.org/abs/math-ph/9902028.

[Seg81] Graeme Segal. Unitary representations of some infinite-dimensional groups. Comm. Math.
Phys., 80(3):301–342, 1981. https://projecteuclid.org/euclid.cmp/1103919978.

[Sha62] David Shale. Linear symmetries of free boson fields. Trans. Amer. Math. Soc., 103:149–167,
1962. https://doi.org/10.2307/1993745.

[SZ79] Şerban Strătilă and László Zsidó. Lectures on von Neumann alge-
bras. Editura Academiei, Bucharest; Abacus Press, Tunbridge Wells, 1979.
https://books.google.com/books?id=Hi3vAAAAMAAJ&q.

[Tan10] Yoh Tanimoto. Representation theory of the stabilizer subgroup of the point at infinity in
Diff(S1). Internat. J. Math., 21(10):1297–1335, 2010. https://arxiv.org/abs/0905.0875.

[Tan11] Yoh Tanimoto. Ground state representations of loop algebras. Ann. Henri Poincaré,
12(4):805–827, 2011. https://arxiv.org/abs/1005.0270.

[Tan18] Yoh Tanimoto. Ground state representations of some non-rational conformal nets. Symmetry,
10(9), 2018. https://arxiv.org/abs/1807.11723.

[TL99] Valerio Toledano Laredo. Integrating unitary representations of infinite-dimensional Lie
groups. J. Funct. Anal., 161(2):478–508, 1999. https://arxiv.org/abs/math/0106195.

[Vro13] L.J.D. Vromen. Circle diffeomorphisms acting on fermionic and bosonic fock space. Master
thesis, Utrecht University, 2013. https://dspace.library.uu.nl/handle/1874/282847.

[Wei05] Mihály Weiner. Conformal covariance and related properties of chiral qft. 2005. Ph.D. thesis,
Universitá di Roma “Tor Vergata”. http://arxiv.org/abs/math/0703336.

[Wei06] Mihály Weiner. Conformal covariance and positivity of energy in charged sectors. Comm.
Math. Phys., 265(2):493–506, 2006. https://arxiv.org/abs/math-ph/0507066.

33

https://books.google.com/books?id=Kz7s7bgVe8gC
https://arxiv.org/abs/hep-th/9512100
https://arxiv.org/abs/math-ph/9902028
https://projecteuclid.org/euclid.cmp/1103919978
https://doi.org/10.2307/1993745
https://books.google.com/books?id=Hi3vAAAAMAAJ&q
https://arxiv.org/abs/0905.0875
https://arxiv.org/abs/1005.0270
https://arxiv.org/abs/1807.11723
https://arxiv.org/abs/math/0106195
https://dspace.library.uu.nl/handle/1874/282847
http://arxiv.org/abs/math/0703336
https://arxiv.org/abs/math-ph/0507066

	1 Introduction
	2 Preliminaries
	2.1 Conformal nets
	2.2 Representations of conformal nets
	2.3 The spacetime symmetry groups
	2.3.1 The Möbius group
	2.3.2 The (smooth) diffeomorphism groups
	2.3.3 Piecewise smooth diffeomorphisms
	2.3.4 The Groups of Sobolev-class diffeomorphisms


	3 General results on solitons
	3.1 Positivity of energy
	3.2 Solitons from nonsmooth diffeomorphisms
	3.3 Möbius covariance implies DHR

	4 Applications to infinite-dimensional groups
	4.1 The Virasoro net and representations of B0
	4.2 Loop group nets and representations of Lambda G

	5 Sobolev diffeomorphism covariance of the U(1)-current net
	6 Outlook
	A Piecewise smooth C1-diffeomorphisms

